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—— Abstract

We formally implement the smallest three-dimensional projective space PG(3,2) in the Coq proof
assistant. This projective space features 15 points and 35 lines, related by an incidence relation. We
define points and lines as two plain datatypes (one with 15 constructors for points, and one with 35
constructors for lines) and the incidence relation as a boolean function, instead of using the well-
known coordinate-based approach relying on GF(2)*. We prove that this implementation actually
verifies all the usual properties of three-dimensional projective spaces. We then use an oracle to
compute some characteristic subsets of objects of PG(3,2), namely spreads and packings. We formally
verify that these computed objects exactly correspond to the spreads and packings of PG(3,2). For
spreads, this means identifying 56 specific sets of 5 lines among 360360 (= 15 x 14 x 13 x 12 x 11)
possible ones. We then classify them, showing that the 56 spreads of PG(3,2) are all isomorphic
whereas the 240 packings of PG(3,2) can be classified into two distinct classes of 120 elements.
Proving these results requires partially automating the generation of some large specification files as
well as some even larger proof scripts. Overall, this work can be viewed as an example of a large-scale
combination of interactive and automated specifications and proofs. It is also a first step towards
formalizing projective spaces of higher dimension, e.g. PG(4,2), or larger order, e.g. PG(3,3).
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1 Introduction

Projective incidence geometry [9, 6] is one of the simplest description of geometry, where
only points and lines as well as their incidence properties are considered. In addition, in
such a setting, we assume that two coplanar lines always meet. There exist some finite and
infinite models of projective incidence geometry. Finite projective spaces are usually built
from finite (Galois) fields of cardinality n denoted GF(n) via a homogeneous coordinate
system. Finite projective spaces arising from GF(n) are denoted by PG(d,n) where d is
the dimension of the space and n the order of the underlying field. Several finite models
are related to interesting mathematical puzzles and sometimes have practical and enjoyable
applications. This is the case for the finite projective plane PG(2,7), which was used to
design the card game Dobble!. In this game, players must identify a symbol which appears
on both their card and their opponent’s card. As the card desk (almost exactly) implements
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Spreads and Packings of PG(3,2) in Coq

Table 1 Numbers of points, lines and points per line depending on the dimension and the order
of projective planes and spaces.

# points # lines # points per line
PG(2,2) 7 7 3
PG(2,3) 13 13 4
PG(2,5) 31 31 6
PG(2,n) n?+n+1 n?+n+1 n+1
PG(3,2) 15 35 3
PG(3,3) 40 130 4
PG(3,4) 85 357 5
PGB,n) | 4+ 1)(n+1) | (n®*+n+1)(n*+1) n+1

the projective plane PG(2,7), given two cards (=lines), there always exists a symbol (=point)
which belongs to both cards. In a three-dimensional setting, the smallest projective space
PG(3,2) can be used to find some solutions to an old combinatorial problem: Kirkman’s
schoolgirl problem [7], which is stated as follows: Fifteen young ladies in a school walk out
three abreast for seven days in succession: it is required to arrange them daily, so that no
two shall walk twice abreast. As noted by Hirschfeld in [14, page 75], some solutions to
this problem correspond to some packings of PG(3,2), which are one of the substructures of
PG(3,2) that we study in this article.

Finite projective spaces have been studied extensively from a mathematical point of
view (see e.g [14]). Recently [4], we started studying small finite projective planes/spaces
from a computer science perspective. We formalized usual projective planes such as PG(2,2),
PG(2,3) or PG(2,5) as well as the smallest projective space PG(3,2) using the Coq proof
assistant [8, 2]. We especially focused on proving that the synthetic axioms for projective
geometry hold in these models. In this paper, we follow up on experiments carried out
recently [16] and we formally describe some of the characteristic subsets of PG(3,2), namely
spreads of lines and packings of spreads as well as their properties.

In a three-dimensional setting, the number of points and lines increase rapidly with the
order, as shown in Table 1. Thus we need to design extremely efficient proof techniques for
PG(3,2) if we want our approach to be scalable to projective spaces of higher dimension
or larger order. The whole Coq formalization is available online and can be retrieved at:
https://github.com/magaud/PG3q?. Pointers to specific parts of the development are given
throughout the document. Visual representations of the smallest projective space PG(3,2)
can be retrieved from https://demonstrations.wolfram.com/15PointProjectiveSpace/.
For illustration purposes, we reproduce a figure taken from wikipedia®, which presents PG(3,2)
as a tetrahedron (see Fig. 1).

This paper is organized as follows. In Sect. 2, we show how to formally describe PG(3,2)
in Coq using plain inductive types. In Sect. 3, we define the notions of collineations, spreads
and packings in the setting of PG(3,2). In Sect. 4, we characterize all the spreads of PG(3,2)
and show that they are all isomorphic. In Sect. 5, we characterize all the packings of PG(3,2)
and then classify them into two distinct classes. In Sect. 6, we present some proof engineering
techniques and suggest some additional optimizations to make the proof development smaller
and easier to compile. Finally, in Sect. 7, we draw some conclusions and outline how this
work can be extended to projective spaces of higher dimension or larger order.

2 Be aware that compiling all the .v files of this development requires about 13 hours on a standard PC.
3 https://en.wikipedia.org/wiki/PG(3,2)
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Figure 1 The smallest projective space PG(3,2), represented as a tetrahedron.

2  Formal Description of the Projective Space PG(3,2) in Coq

We first present an abstract interface (a Coq module) to describe what a projective space
is. We also propose an implementation of PG(3,2), relying on plain inductive datatypes for
points and lines. We then show that all axioms of the projective space are verified by this
implementation.

2.1 Specification of Projective Spaces

A three-dimensional projective space is parameterized by two types Point and Line as well
as an incidence relation incid_lp (see Table 2 for the actual specification in Coq). The two
types are equipped with an equality. Axiom al_exists expresses that given two distinct
points, one can always define a line going through these points. Axiom uniqueness states
that given 2 points A and B and 2 lines [ and m, if A and B are both incident to both I
and m, then either A = B or [ = m. Axiom a2, also known as Pasch axiom, states that two
coplanar lines always intersect. Axiom a3_1 expresses that given a line, there are always
three distinct points on it. Axiom a3_2 expresses that there exist two lines which are not
coplanar, thus making the dimension n > 2. Finally axiom a3_3 states that, given 3 lines [y,
ly and [3, there always exists a fourth line m which intersects these 3 lines. This last axiom
bounds the dimension so that n < 3.

2.2 Points, Lines and the Incidence Relation

We choose to use two simple inductive types to represent points and lines of PG(3,2). Points
are represented by an inductive datatype of 15 constructors without arguments. Lines are
represented in the same way using 35 constructors.

Inductive Point :=
| POo | P1L | P2 | P3 | P4 | P5 | P6 | P7T | P8 | P9
| P10 | P11 | P12 | P13 | P14.

Inductive Line :=

| Lo | L1 | L2 | L3 | L4 | L5 | Lée | L7 | L8 | L9 | Li10 | Li1i1 | L1i2
| L13 | Li14 | Li5 | Li6 | Li7 | L18 | L19 | L20 | L21 | L22 | L23

| L24 | L25 | L26 | L27 | L28 | L29 | L30 | L31 | L32 | L33 | L34.
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As there are three points per line, the incidence relation incid_1p* can be represented in a
compact way using the match ... with construct of Coq specification language.

Definition incid_1lp (p:Point) (l:Line) : bool :=
match 1 with

| LO => match p with PO | P1 | P2 => true | _ => false end
| L1 => match p with PO | P3 | P4 => true | _ => false end
| L2 => match p with PO | P5 | P6 => true | _ => false end
| L3 => match p with PO | P7 | P8 => true | _ => false end
| p with PO | P10 | P9 => true | _ => false end
|

L4 => match
[...]

end .

In order to avoid writing too many specifications and proof scripts manually in Coq, we
choose to build an external specification and proofs generator (a simple C program) which
takes as input the number of points, the number of lines as well as the incidence relation
as a plain file (pg32.txt®) which contains for each line of the projective space, the list of
the points which are incident to it. Given these three elements, the system automatically
builds the inductive datatypes for points and lines as well as the incidence relation. It
also defines an artificial order on points and lines based on the index of the corresponding
points and lines, i.e. PO < P1 < P2 < ... < P14. The specification generator also builds
some auxiliary functions, which will be useful to prove existential statements of the form
Vi1 12 :Line, 3 P : Point, ....

Using plain inductive datatypes may seem naive. An alternative approach to specify
points and lines of PG(3,2) could be to use finite types 'I,, of ssreflect and the mathematical
components library [12, 17]. However the main drawback is that ssreflect is designed for
formal reasoning rather than computing. Thus checking the incidence between a point and a
line is a highly expensive operation, which prevents us from carrying out proofs efficently.
Using plain inductive types is much more efficient both to check incidence properties and
to perform case analysis. The only drawback is that inductive datatypes and functions are
huge to write, but this is not that important as we manage to generate these specifications
automatically. Overall, our choice is to use the main features of ssreflect, especially the
small-scale reflection pattern, but with our own datatypes.

2.3 Formal Proofs

Once the projective space PG(3,2) is described, we check whether all the axioms for
projective space geometry hold for this model. This requires proving all axioms of the
module defined in https://github.com/magaud/PG3q/blob/master/generic/pg3x_spec.
v and presented in Figure 2. This is pretty straightforward and we try and make these proofs
as generic and efficient as possible. We especially focus on writing general-purpose Ltac
tactics, which can be easily reused for other models of projective space such as PG(3,3).

We also rely on our specification generator to enhance producing witnesses for existential
quantification. We use a form of skolemisation to write functions which compute the
existential variable from the other arguments. For instance, to achieve the proof of lemma
a3_3, we automatically build a (large) Coq function f_a3_3 which, given three lines Iy, I5
and I3 computes a line l4 as well as its three intersection points with lines Iy, I3 and 3.

f_a3_3 : Line -> Line -> Line -> Line * (Point * Point * Point)

4 https://github.com/magaud/PG3q/blob/master/pg32/pg32_inductive.v
5 https://github.com/magaud/PG3q/blob/master/pg32/pg32. txt
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Table 2 Projective spaces of dimension 3: definitions and properties (pg3x_spec.v).
Parameter Point, Line : Type.

Parameter eqP : Point -> Point -> bool.
Parameter eqlL : Line -> Line -> bool.

Parameter incid_lp : Point -> Line -> bool.

Definition Intersect_In (11 12 :Line) (P:Point) :=
incid_1p P 11 && incid_1p P 12.

Definition dist_3p (A B C :Point) : bool :=
(negb (eqP A B)) && (negb (eqP A C)) && (negb (eqP B C)).

Definition dist_4p (A B C D:Point) : bool :=
(negb (eqP A B)) && (negb (eqP A C)) && (negb (eqP A D))

&& (negb (eqP B C)) && (negb (eqP B D)) && (negb (eqP C D)).

Definition dist_31 (A B C :Line) : bool :=
(negb (eqL A B)) && (negb (eqL A C)) && (negb (eqL B C)).

Axiom al_exists : forall A B : Point,
{1 : Line| incid_1lp A 1 && incid_1lp B 1}.

Axiom uniqueness : forall (A B :Point)(1l1l 12:Line),
incid_1lp A 11 -> incid_1lp B 11 ->
incid_1p A 12 -> incid_1p B 12 -> A = B \/ 11 = 12.

Axiom a3_1 : forall 1l:Line,
{A:Point & {B:Point & {C:Point | (dist_3p A B C) &&
(incid_1p A 1 && incid_1lp B 1 && incid_1lp C 1)}}}.

Axiom a2 : forall A B C D:Point, forall 1AB 1CD 1AC 1BD :Line,
dist_4p A B C D ->

incid_1p A 1AB && incid_1p B 1AB ->
incid_1p C 1CD && incid_1p D 1CD ->
incid_1p A 1AC && incid_1lp C 1AC ->
incid_1lp B 1BD && incid_1lp D 1BD ->

(exists I:Point, incid_lp I 1AB && incid_1lp I 1CD) ->
exists J:Point, incid_1lp J 1AC && incid_1lp J 1BD.

Axiom a3_2 : exists 1ll1:Line, exists 12:Line,
forall p:Point, ~(incid_lp p 11 && incid_1lp p 12).

Axiom a3_3 : forall 11 12 13:Line,
dist_31 11 12 13 ->

exists 14 :Line, exists J1:Point,exists J2:Point,exists J3:Point,

Intersect_In 11 14 J1 &&
Intersect_In 12 14 J2 &&
Intersect_In 13 14 J3.

25:5
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As a consequence, proving the statement a3_3 boils down to feeding Coq with the correct
existential variables for the line and the three intersection points, obtained by applying the
function f_a3_3 instead of trying all possible lines and points (there are 35 possible lines
and 15 possible points) for each of the 35% = 42875 possible cases for parameters l1, ly and
I3 of lemma a3_3.

Once that we checked that our implementation of PG(3,2) verifies all the axioms of
projective space, we shall study some specific subsets of points and lines, namley spreads
and packings.

3 Collineations, Spreads and Packings of PG(3,2)

Spreads are sets of lines of a projective space which can be defined when the number of points
per line divides the number of points. This is the case for all PG(n,q) whose dimension n is
odd. PG(3,2) features 15 points and has 3 points per line. Thus spreads exist in PG(3,2).

3.1 Collineations

A collineation is a couple of two functions f, : Point — Point and f; : Line — Line where
both f, and f; are bijections and respect the incidence relation.

Definition inj {A:Set} {B:Set} (f:A->B) : Prop :=
forall x y:A, £f x = f y ->x = y.

Definition surj {A:Set} {B:Set} (f:A->B) : Prop :=
forall y:B, exists x:A, y=f(x).

Definition bij {A:Set} {B:Set} (f:A->B) : Prop := (inj £) /\ (surj £f).

Definition is_collineation fp fl :=
((bij £p) /\ ((bij £1) /\
(forall x 1, incid_1lp x 1 -> incid_1lp (fp x) (£f1 1)))).

Collineations, which are automorphisms of PG(3,2) which respect the incidence relation,
shall be useful to establish that two given sets of lines are isomorphic, thus allowing us to
classify spreads and packings into equivalence classes.

3.2 Spreads
3.2.1 Definition and Properties

A spread of PG(3,q) is a set of g% + 1 lines which are pairwise disjoint and thus partition the
set of points. In PG(3,2), it corresponds to some sets of 5 lines. As recalled in [3, 7, 15], it is
well known that there is only one spread (up to isomorphism) in PG(3,2).

3.2.2 Generating all Spreads of PG(3,2)

Using our external specification and proofs generating program, we automatically compute
all sets of lines of PG(3,2) which are disjoint and cover all the points. As lines contain
exactly 3 points, they need to be sets of exactly 5 lines so that all the points of PG(3,2) are
accounted for. We generate 56 distinct spreads (modulo permutations of the order of the
lines involved). These spreads are defined in Coq as a list of 56 sets of 5 lines, as follows:
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Definition SO := [ LO; L19; L24; L28; L33 ].

Definition S1 := [ LO; L19; L26; L29; L32 1].

[...]

Definition spreads := [ SO ; S1 ; S2 ; ... ; Sb54; S55 1].

We also generate automatically the collineations® which allows to go from the spread S;
to the spread S((i+1) moa 56) Of the list spreads’ as shown in the following example for the
spreads SO and S1.

Definition fpO_1 (p:Point) := match p with PO => PO | P1 => P1 | P2 =>
P2 | P3 => P3 | P4 => P4 | P5 => P5 | P6 => P6 | P7 => P11 | P8 => P12
| P9 => P13 | P10 => P14 | P11 => P7 | P12 => P8 | P13 => P9 | P14 =>
P10 end.

Definition f10_1 (1l:Line) := match 1 with LO => LO | L1 => L1 | L2 =>
L2 | L3 => L5 | L4 => L6 | L6 => L3 | L6 => L4 | L7 => L7 | L8 => L9 |
L9 => L8 | L10 => L11 | Li1 => L10 | L12 => L12 | L13 => L14 | L14 =>
L13 | Li5 => L15 | L16 => L18 | L17 => Li17 | L18 => Li16 | L19 => L19 |
L20 => L20 | L21 => L21 | L22 => L22 | L23 => L25 | L24 => L26 | L25
=> L23 | L26 => L24 | L27 => L30 | L28 => L29 | L29 => L28 | L30 =>
L27 | L31 => L34 | L32 => L33 | L33 => L32 | L34 => L31 end.

3.3 Packings

Once that we have built spreads as (disjoint) sets of lines covering all the points, we can
define packings as sets of spreads covering all the lines of PG(3,2).

3.4 Definition and Properties

A packing of PG(3,q) is a set of ¢? + ¢ + 1 spreads which are pairwise disjoint and thus
partition the set of lines. In PG(3,2), it corresponds to some sets of 7 spreads. There are 240
packings, each of them being a list of 7 spreads. As recalled in [3, 7, 15], there are (up to
isomorphism) exactly two distinct classes of packings in PG(3,2).

3.5 Generating all Packings of PG(3,2)

We generate all sets of spreads which are disjoint and cover all the lines, and which thus are
packings. As before, these sets of spreads must have 7 elements, as the number of spreads
multiplied by the number of lines in each spread must be equal to the number of lines (35)
of PG(3,2). As expected (see Theorem 17.5.6 in [14]), we find 240 labelled packings.

Definition PAO := [ SO; S9; S19; S24; S36; S46; S53 ].

Definition PA1 := [ SO; S9; S19; S28; S38; S40; S53 ].

Definition PA2 := [ SO; S9; S20; S27; S36; S46; S49 1.

[...]

Definition packings := [ PAO ; PA1 ; PA2 ; ... ; PA238 ; PA239 ].

These packings belong to two distinct classes classO and classi18.

% https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads_collineations.v
" https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads_packings.v
8 https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads_packings.v
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[PAO; PA3; PA5; ... PA237; PA239 ].
Definition classl := complement classO packings.

Definition classO

As for spreads, we automatically generate the collineations? which allow to go from one
packing of the list class0O (resp. classl) to the next packing of classO (resp. classl).

Now that all externally-computed spreads and packings are defined in Coq, we shall
formally verify that they actually are spreads and packings of PG(3,2). We shall also check
that all the spreads are isomorphic and that the 240 packings can be classified into two
distinct classes of 120 elements.

4  Properties of the Spreads of PG(3,2)
4.1 Characterizing all Spreads of PG(3,2)

Spreads can be specified using the following definitions: the boolean function is_partition
computes whether the lists of points p, ¢, r, s and ¢ partition the set of points and is_spread5'°
used in conjunction with the function all_points_of_line computes whether the lines
11,12,13,14 and 5 actually constitutes a spread. The boolean function forall_Point is a
finite universal quantification: this means that forall_Point (fun t => X t) stands for
X PO && X P1 && X P2 ... && X P14.

Definition is_partition (p q r s t: list Point) :bool :=
(forall_Point
(fun x => inb x p || inb x q || inb x r || inb x s || inb x t))
&&
(forall_Point
(fun x => negb (inb x p && inb x q && inb x r &&

inb x s && inb x t))).

Definition is_spreadb (11 12 13 14 15:Line) : bool :=
disj_51 11 12 13 14 15 &&
is_partition (all_points_of_line 11) (all_points_of_line 12)
(all_points_of_line 13) (all_points_of_line 14)
(all_points_of_line 15).

Once these definitions are set, we prove that the spreads of PG(3,2) are exactly the ones
automatically generated by our external program. On the one hand, we easily check that all
the computed spreads belonging to the list spreads actually verify the property is_spread5
of being a spread. On the other hand, we prove that all sets of 5 lines verifying the
property is_spread5 belong to the proposed list spreads. Due to the size of the proofs
and in order to make them accepted by the Coq proof assistant, we need to decompose
this part of the proof into 35 specific cases. Each of them corresponds to one of the cases
[1=10,l1=1L11,...,l1 =L34. Eventually, using all these auxiliary lemmas, we prove the
following property:

Lemma is_spread_descr : forall 11 12 13 14 15,
lel 11 12 && lelL 12 13 && lelL 13 14 && lelL 14 15 ->
(is_spread5 11 12 13 14 15) <-> In [11;12;13;14;15] spreads.

In the previous statement, 1eL is a total order on the datatype Line, which expresses that
L0 < L1 <...L34 and allows to only consider ordered spreads of lines.

9 https://github.com/magaud/PG3q/blob/master/pg32/pg32_packings_collineations.v
https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads.v
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4.2 Classifying all Spreads of PG(3,2)

The next step consists in proving that all 56 spreads of PG(3,2) are isomorphic. It can be
expressed by stating that there exists a collineation, i.e. an automorphism of PG(3,2) which
respects incidence, between any two spreads of PG(3,2).

Definition are_isomorphic (sl:1list Line) (s2:1list Line) : Prop :=
exists fp, exists fl, ((is_collineation fp £f1) /\ (map fl sl = s2)).

We show that the property are_isomorphic!! is reflexive and transitive. Thanks to these
results, we show that proving the equivalence can be achieved by simply proving that there
exists a collineation (we actually build it) from the n-th element of the list to the (n+1 mod 56)-
th element of the list spreads. Using this transitivity property and the collineations computed
by our external program, we fairly easily prove the following statement:

Lemma all_isomorphic_lemma : forall t1 t2 : list Line,
In t1 spreads -> In t2 spreads -> are_isomorphic t1 t2.

Overall, in this section, we formally proved in Coq that there are 56 labelled spreads in
PG(3,2) and that there are all isomorphic.

5 Properties of Packings of PG(3,2)

In the following, we shall prove that there are 240 labelled packings in PG(3,2) and that
they can be classified into two distinct classes.

5.1 Characterizing all Packings of PG(3,2)

A packing is defined using the predicate is_packing7'? as a set of 7 spreads (each being a
list of lines) which are disjoint and form a partition of the set of lines.

Definition is_partition7 (p g r s t u v: list Line) : bool :=
(forall_Line
(fun x => inbL x p || inbL x g || inbL x r || inbL x s ||
inbL x t || inbL x u || inbL x v))

&& (forall_Line
(fun x => negb (inbL x p && inbL x q && inbL x r &&
inbL x s && inbL x t && inbL x u && inbL x v))).

Definition is_packing7 (sl s2 s3 s4 sb s6 s7:1list Line) : bool :=
disj_7s sl s2 s3 s4 sb s6 s7 &&
is_partition7 s1 s2 s3 s4 sb s6 s7.

Checking that all computed elements of the list packings are actual packings is straightfor-
ward. Proving that all packings of PG(3,2) are in the list packings is a lot more challenging,
especially because of the number of cases to deal with. In order to make it tractable in Coq,
we prove several (56) lemmas of the form statement_packings!? s for some s.

"https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads_collineations.v
12https://github. com/magaud/PG3q/blob/master/pg32/pg32_packings.v
3https://github.com/magaud/PG3q/blob/master/pg32/pg32_packings.v
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Definition statement_packings s :=
forall s2 s3 s4 s s6 s7 : list Line,
In s2 spreads -> In s3 spreads -> In s4 spreads ->
In s5 spreads -> In s6 spreads -> In s7 spreads ->
1tS s s2 -> 1tS s2 s3 -> 1tS s3 s4 ->
1tS s4 s5 -> 1tS sb s6 -> 1tS s6 s7 ->
is_packing7 s s2 s3 s4 sb s6 s7 ->
In [s;s2;s3;s4;s5;s6;s7] packings.

In each of them, we fix the first spread (e.g. s=S0) and then verify that all packings containing
s as the first spread actually belong to the list packings.

Lemma aux_SO : statement_packings SO.
[...]
Lemma aux_S55 : statement_packings S55.

Finally, we agregate all 56 lemmas to obtain the following property:

Lemma is_packing_descr : forall sl s2 s3 s4 sb s6 s7 : list Line,
1tS s1 s2 && 1tS s2 s3 && 1tS s3 s4 &&
1tS s4 sb && 1tS s5 s6 && 1tS s6 s7 ->
In sl spreads -> In s2 spreads -> In s3 spreads -> In s4 spreads ->
In s5 spreads -> In s6 spreads -> In s7 spreads ->
(is_packing7 s1 s2 s3 s4 sb s6 s7) <->
In [s1;s2;s3;s4;s5;s6;s7] packings.

In the above statements, 1tS is an order on spreads, which implements the lexicographic
order on spreads using the order on lines 1tL as its basic order.

5.2 Classifying all Packings of PG(3,2)

In order to classify the packings of PG(3,2), we shall first prove that there are at most two
distinct classes of packings in PG(3,2). This is achieved using the collineations relating
packings provided in Sect. 3. Finally, considering two packings (one in each of the conjectured
classes), we show that no collineation can transform the first one into the second one.

5.2.1 There are at most 2 Classes of Packings in PG(3,2)

When considering packings, the relation are_isomorphic!? is a bit more complex as collin-
eations may transform a packing into a packing whose spreads are not sorted in increasing
order any more. Therefore we enforce that the images of the spreads computed using f; must
be sorted with respect to the relation 1tL.

Definition are_isomorphic
(pl:1list (list Line)) (p2:1list (list Line)) : Prop :=
exists fp, exists fl,
is_collineation fp f£f1 /\
forall s:(list Line), In s spreads -> In s pl -> In
(sort (map f1 s)) spreads /\ In (sort (map f1 s)) p2.

Mhttps://github. com/magaud/PG3q/blob/master/pg32/pg32_packings_collineations.v


https://github.com/magaud/PG3q/blob/master/pg32/pg32_packings_collineations.v

N. Magaud

Once again, we prove that the property are_isomorphic is reflexive and transitive. This
allows to prove that all elements of a class are isomorphic by performing a circular permutation,
simply proving that there exists a collineation (which was built explicitly by our external
specification and proofs generating program) from the n-th element of the list classO (resp.
classl) to the (n + 1 mod 120)-th element of the list classO (resp. classl).

Lemma all_isomorphic_lemmaO : forall t1 t2 : (list (list Line)),
In t1 classO -> In t2 classO -> are_isomorphic tl1 t2.

Lemma all_isomorphic_lemmal : forall t1 t2 : (list (list Line)),
In t1 classl -> In t2 classl -> are_isomorphic tl1 t2.

At this stage, we only proved that there are at most two classes of packings in PG(3,2). The
last step of the proof consists in proving that the two classes classO and class1 are distinct.
To do that, we choose two packings, e.g. PAO and PA1, one in each of the supposed classes.
We then generate all collineations of PG(3,2) and verify that none of these collineations
allows to go from the packing PAO to the packing PA1.

5.2.2 Characterizing all collineations of PG(3,2)

So far we defined a collineation as a pair of two bijective functions f, and f; and a property
that these functions respect the incidence relation. We shall see that a collineation (f,, fi)
can be exactly characterized by simply defining the images of the four following points PO,
P1, P3 and P7. This relies on the property that there are only three points by line and that
collineations are bijections which respect the incidence relation.

Let us start by choosing an image for the first point PO. Let us then choose an image for
the second point P1. Then the image of the point P2, which is on line LO=(POP1) is imposed.
It is the third point of the line generated by f, PO and f, P1. Let us choose the image of
the third point P3, which lies outside line LO. The images of points P4, P5, P6 (see Fig. 2
for an visual interpretation of the process) are imposed by the rules of the projective spaces
and the collineation properties. We can then choose a fourth point P7. This point is outside
the plane generated by PO, P1 and P3. Once these four images f, PO, f, P1, f, P3 and f, P7
are chosen, the images of all remaining points P8, P9, P10, P11, P12, P13, P14 are imposed
as being third points of some lines defined by the combination of images of the four initial
points PO, P1, P3 and P7. In addition, the images of all lines are fully determined as well.
Indeed, the image of the line going through points A and B is the line going through points
fp Aand f, B.

From a combinatorial point of view, we can choose the image of PO by f, among 15
points. The image of P1 by f, can be chosen among 14 points (all points except P0). The
image of P3 by f, can be chosen among 12 points (all points except those on line LO, which
contains points PO, P1 and P2). Finally, the image of the fourth point P7 by f, can only
be chosen outside of the images of points PO, P1, P2, P3, P4, P5 and P6, thus leaving only
8 options available. Once the images of these four points are chosen, the collineation is
fully characterized because both f, and f; must be bijective and that they must respect the
incidence relation. This means that there are 15 x 14 x 12 x 8 = 20160 different ways to
define a collineation of PG(3,2).
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P2

PO P5 _P6

Figure 2 Describing a collineation of PG(3,2) can be achieved by simply providing the images of
points PO, P1, P3 and P7.

Our external specification and proofs generating program takes care of computing all
possible collineations of PG(3,2). It generates some very large files: pg32_automorphisms.v'®
(where the 20160 collineations are enumerated), pg32_automorphisms_inv.v as well as files
pg32_collineationsX.v and pg32_decompX.v, with X ranging from 0 to 14. The list of all
collineations is splitted into smaller lists of size 96 in order to be able to handle the proofs in
Coq. Each subset of 96 collineations corresponds to specific collineations whose images of

points PO and P1 are the same.

Definition all_cO := [

(fp_0, £f1_0); (fp_1, £f1_1); ... ; (fp_94, £f1_94); (fp_95, £f1_95)].
[...]
Definition all_collineations :=

all_cO ++ all_cl1 ++ all_c2 ++ ... ++all_c208 ++ all_c209.

On the one hand, for each of these subsets, we can check that the given collineations
actually verify the property is_collineation. On the other hand, we verify that all
collineations which verify the following conditions: f, PO = PX and f, P1 = PY actually
belong to the corresponding subsets of collineations, namely all_cZ where Z =14 x X + Y.
As an example, all collineations which respect the conditions f, PO = P8 and f,, P1 = P2
belong to the subset of collineations all_c114.

Lemma is_collineations_descr_B_P8_P2
forall fp fl1, is_collineation fp f1 -> fp PO = P8 -> fp P1 = P2 ->
In (fp,fl) all_c114.

To prove that a specific collineation (fp,f1), characterized by fp PO = P8, fp P1 = P2, ...,
actually corresponds to an element of the list all_c114, we rely on extensionality and thus
add the two following safe axioms to our development:

Lemma fp_ext: forall (fp:Point->Point) (fp’:Point->Point),
(forall (p:Point), fp p = fp’ p) -> fp = fp’.
Admitted.

Lemma fl_ext : forall (fl:Line->Line) (fl’:Line->Line),
(forall (l:Line), f1 1 = f1°’> 1) -> f1 = f1°’.
Admitted.

Y nttps://github. com/magaud/PG3q/blob/master/pg32/pg32_automorphisms.v
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Splitting the main statement characterizing all collineations into 210 smaller statements
allows to handle the proofs in Coq. Thankfully, all these 210 statements are almost automat-
ically generated. Only some minor parts, which we plan to fully automate in a near future,
require to be fixed by hand (e.g. unfolding some specific constants or making the naming of
lemmas coherent to prove the general statement). The last step consists in agregating all
these lemmas to obtain the following statement, which explicitly characterize all collineations
of PG(3,2).

Lemma is_collineations_descr : forall fp f1,
is_collineation fp fl <-> In (fp,fl) all_collineations.

5.2.3 There are exactly 2 Distinct Classes of Packings in PG(3,2)

Now that we have a list of all collineations of PG(3,2) at our disposal, we can traverse it to
verify that none of these collineations allow to transform a packing of the class classO0, say
PAO into a packing not in classO, say PA1. The proof simply consists in assuming, for each
collineation that they allow to transform the packing PAO into the packing PA1 and exhibit a
contradiction. As we must check all collineations, the Coq file has more that 20 160 lines.

Lemma not_iso : ~are_isomorphic PAO PA1l.

The statement not_iso!'® shows that the two classes of packings class0 and classi are
distinct. We can conclude that the 240 packings of PG(3,2) belong to two distinct classes,
each of these classes containing exactly 120 elements.

6 Discussion

The Coq development is quite large. It contains more than 50 files. Thankfully, most for
them are automaticaly generated. It consists in more than 317345 lines of specifications and
proofs, among them more than 290 000 are proof steps. Some files have about 20000 lines,
which makes them difficult (or at least very slow) to handle in an editor for Coq. Compiling
the whole development requires about 13 hours (584 minutes on a Intel (R) Core(TM) i5-4460
CPU @ 3.20GHz with 32GB of memory). Therefore it is important that all proofs are as
concise as possible and the development must be well structured as changes in the structure
may result in several hours of compilation before being able to resume interactive theorem
proving. In the following, we present some proof engineering techniques which proved very
useful in our development. We also propose some possible improvements to our work.

6.1 Proof Engineering
6.1.1 Using bool instead of Prop

As we work with finite types, equality and the other relations that we use are decidable.
We can directly implement such relations as operations producing elements of the boolean
datatype bool. This is more convenient than defining them as operations producing elements
of type Prop together with a decidability property: V x y, {x = y} +{—-a = y}. This practical
approach is inspired by the ssreflect [11] and the mathematical components [17] libraries.
In this setting, logical reasoning (eliminating conjunctions or disjunctions) is a bit more
technical. However this makes most proofs much easier to complete by simply computing a

S https://github. com/magaud/PG3q/blob/master/pg32/pg32_packings_two_distinct_classes.v

25:13

ITP 2022


https://github.com/magaud/PG3q/blob/master/pg32/pg32_packings_two_distinct_classes.v

25:14

Spreads and Packings of PG(3,2) in Coq

boolean value and checking that it is equal to true. We could push this technique further
and replace all remaining occurences of Leibnitz equality (e.g. in the axiom uniqueness)
with the two bool predicates eqP and eqL, respectively implementing equality on Point and
Line.

6.1.2 Optimizing proofs

We design some optimization techniques for generating and checking proof terms. We focus
on the current goal, applying some sort of locality principle which means that we try to
prove a (sub-)goal the very first time we face it. This means sequences of tactics such as

intros a; case a; intros H;
try (exact (degen_bool )_ H).
solve_goal.

must be replaced by more efficient sequences like

intros a; case a; intros H;
solve [(exact (degen_bool )_ H |solve_goal].

In this simplified example, we try to apply the tactic (exact (degen_bool )_ H) for a
subgoal and then we switch to the next subgoal. Eventually we solve the remaining subgoals
using the solve_goal tactic. The idea here is to solve the goal the first time we encounter
it. It is achieved by having several possibilities of tactic applications to solve the goal (this
corresponds to the solve [t1]t2]t3] syntax). The order of the tactics t1, t2 and t3 can
be highly significant as well: we should always call the tactic which is the most successful
one on such subgoals first.

As we face a huge number of cases, we need to design extremely efficient prototype tactics
on some specific subgoals and apply them automatically to all the subgoals at stake. Fine
tuning the tactics rapidly is the key to making the proofs faster to complete.

Finally, Coq provides some sort of task parallelism in the form of the par tactical. It is
very useful to deal with all the sub-goals of a proof, once we figure out how to prove the
first one. The generic tactic proving the first goal, say mytactic can be easily applied to
all sub-goals in parallel (in some cases, we have 35x35=1225 or more goals to deal with) by
simply writing par:mytactic.

6.1.3 W.ithout Loss of Generality

Most proofs are highly branching. For instance, performing case analysis on all three lines
to prove the lemma a3_3 leads to 353 = 42875 cases. In order to make the proof more
tractable, we propose a new tactic named wlog'”, which implements the without loss of
generality principle, as it is described in [13]. This allows to reduce the number of cases to
solve explicitly. To use it, we build a virtual order on the points and lines, simply mapping
point Pi (resp. line Li) to the value i of its index and then extend statements of the form
VI1,[2 : Line,... to V(1,12 : Line, 1 <12 — ...

Surprisingly, using the without loss of generality tactic forces us to generalize our statement
for Pasch axiom to accommodate all cases, depending on the order in which we consider
points A, B, C, and D, as shown in Fig. 3. The usual conclusion of Pasch axiom:

" https://github. com/magaud/PG3q/blob/master/generic/wlog.v
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Figure 3 An illustration of the new form of Pasch axiom used to deal with symmetries.

(exists I:Point, incid_lp I 1AB && incid_1lp I 1CD) ->
exists J:Point, incid_1lp J 1AC && incid_1lp J 1BD.

is transformed into a conjunction of two existential properties:

(exists I:Point, incid_lp I 1AB && incid_lp I 1CD) ->
(exists J:Point, (incid_1p J 1AC && incid_lp J 1BD)) /\
(exists K:Point, (incid_1lp K 1AD && incid_lp K 1BC)).

The principles behind the tactic wlog were also extremely useful when dealing with
spreads and packings, especially when checking inside Coq which sets of lines are actual
spreads and which sets of spreads are actual packings.

6.2 Improvements

While carrying out such a proof development, one of the main difficulties is to decide what
a small Coq proof is. Our first experiments crashed because we assumed Coq will handle
very large specifications and proofs easily. Instead we needed to scale down our proofs and
decompose them a lot to make sure they can be compiled. The current decomposition is
probably too strong, but it has the advantage of being tractable by Coq.

Most definitions and properties used in this development are first order. So it would be

interesting to implement the same formal description in a first-order prover such as Z3 [10].

It can also be of interest to use first-order tools such as [1] provided in Coq.

From a specification point of view, as collineations can be simply characterized by
the images of only four points, we shall study how to remove the bijection on lines from
the definition of the collineation and reconstruct it from the bijection on points. This
would make the proof development much smaller and reduces the number of objects we
are handling simultaneously. In addition, some combinatorial arguments could be used to
simplify the specification of spreads is_spreadb and packings is_packing?7, e.g. removing
the disjointness condition for the input lists. Finally, most proofs are very similar to one
another. In the near future, we shall study how symmetry arguments could help reduce the
number of cases to handle. We shall also investigate how to carry out circular permutations
of the set of points so that some proofs can be factorized by simply specifying the first point
or line at stake and then rotating the statement to obtain the other cases.
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7 Conclusion and Future Work

In this work, we show how to formalize in Coq the spreads and packings of PG(3,2). Using
an external specifications and proofs generating program, we build automatically all the
spreads and packings, as well as all the collineations of PG(3,2). We then easily verify that
these generated sets of lines (resp. spreads) are actual spreads (resp. packings). We also
successfully prove that they are the only ones. In addition, we classify the spreads and
packings, showing that there is only one class for the 56 spreads and that the 240 packings
are splitted into two classes of 120 elements. Showing that these two classes are distinct
required generating and characterizing in Coq all the 20 160 collineations of PG(3,2).

All the proofs carried out in this work are very large. A single case analysis on a point
generates 15 cases, and a single case analysis on a line generates 35 cases. In order to let
Coq deal correctly with all these proof scripts, we had to decompose our statements into
several smaller lemmas, which could each be independently handled by Coq. During this
study, we faced case analysis with a huge number of cases as well as debugging proof script
with thousands of sub-goals. We propose some proof engineering techniques to make Coq
process the files more easily e.g by directly providing witnesses or by pruning the proof tree
by using a without loss of generality principle.

So far, we only address properties and transformations which remain in the same (pro-
jective) space. We are currently working on generating specifications of projective spaces
automatically in order to easily have a formal description of two different projective spaces
and thus to be able to formally describe constructions as the Bruck-Bose construction which
allows to build translation planes from projective planes [5]. In parallel, we plan to formalize
the spreads and packings of PG(3,3) and their properties, as presented in [3]. Handling the
projective space PG(3,3) which features 40 points and 130 lines (instead of 15 points and 35
lines in the present case study) would require more decisive specification and proofs tech-
niques. Indeed, PG(3,3) has 8 424 distinct spreads and 12 130 560 collineations, compared
to the mere 56 spreads and the 20 160 collineations of PG(3,2). One of the main issues to
tackle will be to avoid the exhaustive enumeration of all objects at stake. This could be
achieved by using algorithms such as McKay algorithm [18] or FaradZev-Read algorithm [19].
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