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—— Abstract

Compilers are a prime target for formal verification, since compiler bugs invalidate higher-level
correctness guarantees, but compiler changes may become more labor-intensive to implement, if
they must come with proof patches. One appealing approach is to present compilers as sets of
algebraic rewrite rules, which a generic engine can apply efficiently. Now each rewrite rule can be
proved separately, with no need to revisit past proofs for other parts of the compiler. We present
the first realization of this idea, in the form of a framework for the Coq proof assistant. Our new
Coq command takes normal proved theorems and combines them automatically into fast compilers
with proofs. We applied our framework to improve the Fiat Cryptography toolchain for generating
cryptographic arithmetic, producing an extracted command-line compiler that is about 1000x faster
while actually featuring simpler compiler-specific proofs.
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1 Introduction

Formally verified compilers like CompCert [13] and CakeML [12] are success stories for proof
assistants, helping close a trust gap for one of the most important categories of software
infrastructure. A popular compiler cannot afford to stay still; developers will add new
backends, new language features, and better optimizations. Proofs must be adjusted as
these improvements arrive. It makes sense that the author of a new piece of compiler code
must prove its correctness, but ideally there would be no need to revisit old proofs. There
has been limited work, though, on avoiding that kind of coupling. Tatlock and Lerner [17]
demonstrated a streamlined way to extend CompCert with new verified optimizations driven
by dataflow analysis, but we are not aware of past work that supports easy extension for
compilers from functional languages to C code. We present our work targeting that style.

One strategy for writing compilers modularly is to exercise foresight in designing a core
that will change very rarely, such that feature iteration happens outside the core. Specifically,
phrasing the compiler in terms of rewrite rules allows clean abstractions and conceptual
boundaries [11]. Then, most desired iteration on the compiler can be achieved through
iteration on the rewrite rules.

It is surprisingly difficult to realize this modular approach with good performance. Verified
compilers can either be proof-producing (certifying) or proven-correct (certified). Proof-
producing compilers usually operate on the functional languages of the proof assistants
that they are written in, and variable assignments are encoded as let binders. All existing
proof-producing rewriting strategies scale at least quadratically in the number of binders.
This performance scaling is inadequate for applications like Fiat Cryptography [8] where the
generated code has 1000s of variables in a single function. Proven-correct compilers do not
suffer from this asymptotic blowup in the number of binders.

In this paper, we present the first proven-correct compiler-builder toolkit param-
eterized on rewrite rules. Arbitrary sets of Coq theorems (quantified equalities) can be
assembled by a single new Coq command into an extraction-ready verified compiler. We did
not need to extend the trusted code base, so our compiler compiler need not be trusted. We
achieve both good performance of compiler runs and good performance of generated code,
via addressing a number of scale-up challenges vs. past work.

We evaluate our toolkit by replacing a key component of Fiat Cryptography [8], a Coq
library that generates code for big-integer modular arithmetic at the heart of elliptic-curve-
cryptography algorithms. Routines generated (with proof) with Fiat Cryptography now ship
with all major Web browsers and all major mobile operating systems. With our improved
compiler architecture, it became easy to add two new backends and a variety of new supported
source-code features, and we were easily able to try out new optimizations.

Replacing Fiat Cryptography’s original compiler with the compiler generated by our
toolkit has two additional benefits. Fiat Cryptography was previously only used successfully
to build C code for two of the three most widely used curves (P-256 and Curve25519). Our
prior version’s execution timed out trying to compile code for the third most widely used
curve (P-384). Using our new toolkit has made it possible to generate compiler-synthesized
code for P-384 while generating completely identical code for the primes handled by the
previous version, about 1000x more quickly. Additionally, Fiat Cryptography previously
required source code to be written in continuation-passing style, and our compiler has enabled
a direct-style approach, which pays off in simplifying theorem statements and proofs.
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1.1 Related Work

Assume our mission is to take libraries of purely functional combinators, apply them to
compile-time parameters, and compile the results down to lean C code. Furthermore, we ask
for machine-checked proofs that the C programs preserve the behavior of the higher-order
functional programs we started with. What good ideas from the literature can we build on?

Hickey and Nogin [11] discuss at length how to build compilers around rewrite rules.
“All program transformations, from parsing to code generation, are cleanly isolated and
specified as term rewrites.” While they note that the correctness of the compiler is thus
reduced to the correctness of the rewrite rules, they did not prove correctness mechanically.
Furthermore, it is not clear that they manage to avoid the asymptotic blow-up associated
with proof-producing rewriting of deeply nested let-binders. They give no performance
numbers, so it is hard to say whether or not their compiler performs at the scale necessary
for Fiat Cryptography. Their rewrite-engine driver is unproven OCaml code, while we will
produce custom drivers with Coq proofs.

Riac [14] is a more general framework for verified proof tactics in Coq, including an exper-
imental reflective version of rewrite_strat supporting arbitrary setoid relations, unification
variables, and arbitrary semidecidable side conditions solvable by other verified tactics, using
de Bruijn indexing to manage binders. We found that R,. misses a critical feature for compil-
ing large programs: preserving subterm sharing. As a result, our experiments with compiler
construction yielded clear asymptotic slowdown vs. what we eventually accomplished. R
is also more heavyweight to use, for instance requiring that theorems be restated manually
in a deep embedding to bring them into automation procedures. Furthermore, we are not
aware of any past experiments driving verified compilers with R ..

Aehlig et al. [1] came closest to a fitting approach, using normalization by evaluation
(NbE) [3] to bootstrap reduction of open terms on top of full reduction, as built into a proof
assistant. However, it was simultaneously true that they expanded the proof-assistant trusted
code base in ways specific to their technique, and that they did not report any experiments
actually using the tool for partial evaluation (just traditional full reduction), potentially
hiding performance-scaling challenges or other practical issues. For instance, they also do not
preserve subterm sharing explicitly, and they represent variable references as unary natural
numbers (de Bruijn-style). They also require that rewrite rules be embodied in ML code,
rather than stated as natural “native” lemmas of the proof assistant. We will follow their
basic outline with important modifications.

Our implementation builds on fast full reduction in Coq’s kernel, via a virtual machine [9]
or compilation to native code [5] (neither verified). Especially the latter is similar in adopting
NbE for full reduction, simplifying even under As, on top of a more traditional implementation
of OCaml that never executes preemptively under As. Neither approach unifies support for
rewriting with proved rules, and partial evaluation only applies in very limited cases.

A variety of forms of pragmatic partial evaluation have been demonstrated, with
Lightweight Modular Staging [16] in Scala as one of the best-known current examples.
The LMS-Verify system [2] can be used for formal verification of generated code after-the-fact.
Typically LMS-Verify has been used with relatively shallow properties (though potentially
applied to larger and more sophisticated code bases than we tackle), not scaling to the kinds
of functional-correctness properties that concern us here.

So, overall, to our knowledge, no past compiler as a set of rewrite rules has come with
a full proof of correctness as a standalone functional program. Related prior work with
mechanized proofs suffered from both performance bottlenecks and usability problems, the
latter in requiring that eligible rewrite rules be stated in special deep embeddings.
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1.2 OQur Solution

Our variant on the technique of Aehlig et al. [1] has these advantages:

It integrates with a general-purpose, foundational proof assistant, without growing the
trusted code base.

For a wide variety of initial functional programs, it provides fast partial evaluation with
reasonable memory use.

It allows reduction that mixes rules of the definitional equality with equalities proven
explicitly as theorems.

It allows rapid iteration on rewrite rules with minimal verification overhead.
It preserves sharing of common subterms.

It also allows extraction of standalone compilers.

Our contributions include answers to a number of challenges that arise in scaling NbE-
based partial evaluation in a proof assistant. First, we rework the approach of Aehlig et
al. [1] to function without extending a proof assistant’s trusted code base, which, among
other challenges, requires us to prove termination of reduction and encode pattern matching
explicitly (leading us to adopt the performance-tuned approach of Maranget [15]). We
also improve on Cog-specific related work (e.g., of Malecha and Bengtson [14]) by allowing
rewrites to be written in natural Coq form (not special embedded syntax-tree types), while
supporting optimizations associated with past unverified engines (e.g., Boespflug [4]).

Second, using partial evaluation to generate residual terms thousands of lines long raises
new scaling challenges:

Output terms may contain so many nested variable binders that we expect it to be
performance-prohibitive to perform bookkeeping operations on first-order-encoded terms
(e.g., with de Bruijn indices, as is done in R, by Malecha and Bengtson [14]). For
instance, while the reported performance experiments of Aehlig et al. [1] generate only
closed terms with no binders, Fiat Cryptography may generate a single routine (e.g.,
multiplication for curve P-384) with nearly a thousand nested binders.

Naive representation of terms without proper sharing of common subterms can lead to
fatal term-size blow-up.

Unconditional rewrite rules are in general insufficient, and we need rules with side
conditions. E.g., Fiat Cryptography depends on checking lack-of-overflow conditions.

However, it is also not reasonable to expect a general engine to discharge all side conditions
on the spot. We need integration with abstract interpretation.

Briefly, our respective solutions to these problems are the parametric higher-order abstract
syntaz (PHOAS) [6] term encoding, a let-lifting transformation threaded throughout reduction,
extension of rewrite rules with executable Boolean side conditions, and a design pattern that
uses decorator function calls to include analysis results in a program.

Finally, we carry out the first large-scale performance-scaling evaluation of a verified
rewrite-rule-based compiler, covering all elliptic curves from the published Fiat Cryptography
experiments, along with microbenchmarks.

We pause to give a motivating example before presenting the core structure of our engine
(Section 3), the additional scaling challenges we faced (Section 4), experiments (Section 5),
and conclusions. Our implementation is attached.
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2 A Motivating Example

Our compilation style involves source programs that mix higher-order functions and inductive
types. We want to compile to C code, reducing away uses of fancier features while seizing
opportunities for arithmetic simplification. Here is a small but illustrative example.

Definition prefixSums (ls : list nat) : list nat :=

let 1s' := combine 1s (seq O (length 1s)) in
let 1s'' := map (A p, fst p * snd p) 1ls' in
let '(_, 1s''') := fold_left (M '(acc, 1s''') n,
let acc' := acc + n in (acc', acc' :: 1s''')) 1s'' (0, []) in 1s''"'.

This function first computes list 1s' that pairs each element of input list 1s with its
position, so, for instance, list [a;b; ¢] becomes [(a,0); (b, 1); (¢,2)]. Then we map over the list
of pairs, multiplying the components at each position. Finally, we compute all prefix sums.

We would like to specialize this function to particular list lengths. That is, we know in
advance how many list elements we will pass in, but we do not know the values of those
elements. For a given length, we can construct a schematic list with one free variable
per element. For example, to specialize to length four, we can apply the function to list
[a; b; c; dl, and we expect this output:

let acc := b + ¢ * 2 in let acc' := acc + d * 3 in [acc'; acc; b; 0]

We do not quite have C code yet, but, composing this code with another routine to
consume the output list, we easily arrive at a form that looks almost like three-address code
and is quite easy to translate to C and many other languages.

Notice how subterm sharing via lets is important. As list length grows, we avoid
quadratic blowup in term size through sharing. Also notice how we simplified the first two
multiplications with @ -0 = 0 and b- 1 = b (each of which requires explicit proof in Coq),
using other arithmetic identities to avoid introducing new variables for the first two prefix
sums of 1s'', as they are themselves constants or variables, after simplification.

To set up our compiler, we prove the algebraic laws that it should use for simplification,
starting with basic arithmetic identities.

Lemma zero_plus : Vn, O + n = n. Lemma times_zero : V n, n * 0

]
B O

Lemma plus_zero : V n, n + 0 = n. Lemma times_one : V n, n * 1

Next, we prove a law for each list-related function, connecting it to the primitive-recursion
combinator for some inductive type (natural numbers or lists, as appropriate). We also use a
further marker ident.eagerly to ask the compiler to simplify a case of primitive recursion
by complete traversal of the designated argument’s constructor tree.

Lemma eval map A B (f : A -> B) 1

: map f 1 = ident.eagerly list_rect _ _ [1] (A x _1', fx :: 1') 1.
Lemma eval_fold_left AB (f : A ->B ->A) 1 a
: fold_left £ 1 a = ident.eagerly list_rect _ _ (A a, a) (Ax _ra, r (fax))1la.

Lemma eval_combine A B (la : list A) (1b : list B)
: combine la 1b =
list_rect _ (A _, [1) (A x _ r 1b, list_case (A _, 1) [0 (A yys, (x,yD::r ys) 1b) la 1b.

Lemma eval_length A (1s : list A)

: length 1s = list_rect _ 0 (A _ _ n, S n) 1s.

With all the lemmas available, we can package them up into a rewriter, which triggers
generation of a specialized compiler and its soundness proof. Our Coq plugin introduces a
new command Make for building rewriters

ITP 2022
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Make rewriter := Rewriter For (zero_plus, plus_zero, times_zero, times_one, eval_map,
eval_fold_left, do_again eval_length, do_again eval_combine,
eval_rect nat, eval_rect list, eval_rect prod) (with delta) (with extra idents (seq)).

Most inputs to Rewriter For list quantified equalities to use for left-to-right rewriting.
However, we also use options do_again, to request that some rules trigger extra bottom-up
passes after being used for rewriting; eval_rect, to queue up eager evaluation of a call to
a primitive-recursion combinator on a known recursive argument; with delta, to request
evaluation of all monomorphic operations on concrete inputs; and with extra idents, to
inform the engine of further permitted identifiers that do not appear directly in any of the
rewrite rules.

Our plugin also provides new tactics like Rewrite_rhs_for, which applies a rewriter to
the right-hand side of an equality goal. That last tactic is just what we need to synthesize a
specialized prefixSums for list length four, along with its correctness proof.

Definition prefixSums4 :
{f:nat—nat—nat—nat—list nat | Vabcd, f abcd=prefixSums [a;b;c;d]}
:= 1ltac: (eexists; Rewrite_rhs_for rewriter; reflexivity).

That compiler execution ran inside of Coq, but an even more pragmatic approach is
to extract the compiler as a standalone program in OCaml or Haskell. Such a translation
is possible because the Make command produces a proved program in Gallina, Coq’s logic.
As a result, our reworking of Fiat Cryptography compilation culminated in extraction of a
command-line OCaml program that developers in industry have been able to run without
our help, where Fiat Cryptography previously required installing and running Coq, with an
elaborate build process to capture its output. It is also true that the standalone program is
about 10x as fast as execution within Coq, though the trusted code base is larger.

3 The Structure of a Rewriter

We are mostly guided by Aehlig et al. [1] but made a number of crucial changes. Let us

review the basic idea of the approach of Aehlig et al. First, their supporting library contains:

1. Within the logic of the proof assistant (Isabelle/HOL, in their case), a type of syntax
trees for ML programs is defined, with an associated (trusted) operational semantics.

2. They also wrote a reduction function in (deeply embedded) ML, parameterized on a
function to choose the next rewrite, and proved it sound once-and-for-all.

Given a set of rewrite rules and a term to simplify, their main tactic must:

1. Generate a (deeply embedded) ML program that decides which rewrite rule, if any, to
apply at the top node of a syntax tree, along with a proof of its soundness.

2. Generate a (deeply embedded) ML term standing for the term we set out to simplify, with
a proof that it means the same as the original.

3. Combining the general proof of the rewrite engine with proofs generated by reification
(the prior two steps), conclude that an application of the reduction function to the reified
rules and term is indeed an ML term that generates correct answers.

4. “Throw the ML term over the wall,” using a general code-generation framework for
Isabelle/HOL [10]. Trusted code compiles the ML code into the concrete syntax of
Standard ML, and compiles it, and runs it, asserting an axiom about the outcome.
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Here is where our approach differs at that level of detail:

Our reduction engine is written as a normal Gallina functional program, rather than
within a deeply embedded language. As a result, we are able to prove its type-correctness
and termination, and we are able to run it within Coq’s kernel.

We do compile-time specialization of the reduction engine to sets of rewrite rules, removing
overheads of generality.

3.1 Our Approach in Ten Steps

Here is a bit more detail on the steps that go into applying our Coq plugin, many of which

we expand on in the following sections. For Make to precompute a rewriter:

1. The given lemma statements are scraped for which named identifiers to encode.

2. Inductive types enumerating all available primitive types and functions are emitted. This
allows us to achieve the performance gains attributed in Boespflug [4] to having native
metalanguage constructors for all constants, without manual coding.

3. Tactics generate all of the necessary definitions and prove all of the necessary lemmas
for dealing with this particular set of inductive codes. Definitions include operations like
Boolean equality on type codes and lemmas like “all types have decidable equality.”

4. The statements of rewrite rules are reified and soundness and syntactic-well-formedness
lemmas are proven about each of them.

5. Definitions and lemmas needed to prove correctness are assembled into a single package.

Then, to rewrite in a goal, the following steps are performed:

Rearrange the goal into a single quantifier-free logical formula.

Reify a selected subterm and replace it with a call to our denotation function.
Rewrite with a theorem, into a form calling our rewriter.

Call Coq’s built-in full reduction (vm_compute) to reduce this application.

Run standard call-by-value reduction to simplify away use of the denotation function.

Ll

The object language of our rewriter is nearly simply typed.
e:= App e; ex|Let v=-e; In ey |Abs (M\v.e)|Var v | Ident i

The Ident case is for identifiers, which are described by an enumeration specific to a use of
our library. For example, the identifiers might be codes for +, -, and literal constants. We
write [e] for a standard denotational semantics.

3.2 Pattern-Matching Compilation and Evaluation

Aehlig et al. [1] feed a specific set of user-provided rewrite rules to their engine by generating
code for an ML function, which takes in deeply embedded term syntax (actually doubly deeply
embedded, within the syntax of the deeply embedded ML!) and uses ML pattern matching
to decide which rule to apply at the top level. Thus, they delegate efficient implementation
of pattern matching to the underlying ML implementation. As we instead build our rewriter
in Coq’s logic, we have no such option to defer to ML.

We could follow a naive strategy of repeatedly matching each subterm against a pattern
for every rewrite rule, as in the rewriter of Malecha and Bengtson [14], but in that case we
do a lot of duplicate work when rewrite rules use overlapping function symbols. Instead, we
adopted the approach of Maranget [15], who describes compilation of pattern matches in
OCaml to decision trees that eliminate needless repeated work (for example, decomposing
an expression into x + y + z only once even if two different rules match on that pattern).

17:7
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There are three steps to turn a set of rewrite rules into a functional program that takes
in an expression and reduces according to the rules. The first step is pattern-matching
compilation: we must compile the left-hand sides of the rewrite rules to a decision tree that
describes how and in what order to decompose the expression, as well as describing which
rewrite rules to try at which steps of decomposition. Because the decision tree is merely a
decomposition hint, we require no proofs about it to ensure soundness of our rewriter. The
second step is decision-tree evaluation, during which we decompose the expression as per the
decision tree, selecting which rewrite rules to attempt. The only correctness lemma needed
for this stage is that any result it returns is equivalent to picking some rewrite rule and
rewriting with it. The third and final step is to actually rewrite with the chosen rule. Here
the correctness condition is that we must not change the semantics of the expression.

While pattern matching begins with comparing one pattern against one expression,
Maranget’s approach works with intermediate goals that check multiple patterns against
multiple expressions. A decision tree describes how to match a vector (or list) of patterns
against a vector of expressions. It is built from these constructors:

TryLeaf k onfailure: Try the k*" rewrite rule; if it fails, keep going with onfailure.
Failure: Abort; nothing left to try.
Switch icases app_case default: With the first element of the vector, match on its
kind; if it is an identifier matching something in icases, which is a list of pairs of
identifiers and decision trees, remove the first element of the vector and run that decision
tree; if it is an application and app_case is not None, try the app_case decision tree,
replacing the first element of each vector with the two elements of the function and the
argument it is applied to; otherwise, do not modify the vectors and use the default.

Swap i cont: Swap the first element of the vector with the i*® element (0-indexed) and

keep going with cont.

Consider the encoding of two simple example rewrite rules, where we follow Coq’s L4
language in prefacing pattern variables with question marks.

Mm+0—n fstyz(?z,7y) = x
We embed them in an AST type for patterns, which largely follows our ASTs for expressions.

0. App (App (Ident +) Wildcard) (Ident (Literal 0))
1. App (Ident fst) (App (App (Ident pair) Wildcard) Wildcard)

The decision tree produced is

Literal 0

) TryLeaf 1
App App " pair @

where every nonswap node implicitly has a “default” case arrow to Failure and circles

fst

represent Switch nodes.

We implement, in Coq’s logic, an evaluator for these trees against terms. Note that we use
Coq’s normal partial evaluation to turn our general decision-tree evaluator into a specialized
matcher to get reasonable efficiency. Although this partial evaluation of our partial evaluator
is subject to the same performance challenges we highlighted in the introduction, it only has
to be done once for each set of rewrite rules, and we are targeting cases where the time of
per-goal reduction dominates this time of metacompilation.
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For our running example of two rules, specializing gives us this match expression.

match e with
| App £ y => match f with
| Ident fst => match y with

| App (App (Ident pair) x) y => x | _ => e end
| App (Ident +) x => match y with
| Ident (Literal 0) => x | _ => e end | _ => e end | _ => e end.

3.3 Adding Higher-Order Features

Fast rewriting at the top level of a term is the key ingredient for supporting customized

algebraic simplification. However, not only do we want to rewrite throughout the structure

of a term, but we also want to integrate with simplification of higher-order terms, in a

way where we can prove to Coq that our syntax-simplification function always terminates.

Normalization by evaluation (NbE) [3] is an elegant technique for adding the latter aspect, in

a way where we avoid needing to implement our own A-term reducer or prove it terminating.
To orient expectations: we would like to enable the following reduction

Aoy fay) () 20z
using the rewrite rule
Mm+0—=mn

We begin by reviewing NbE’s most classic variant, for performing full S-reduction in a
simply typed term in a guaranteed-terminating way. Our simply typed A-calculus syntax is:

tu=t—t]|b ex=Xv.eleel|v|c

with v for variables, ¢ for constants, and b for base types.
We can now define normalization by evaluation. First, we choose a “semantic” represen-
tation for each syntactic type, which serves as an interpreter’s result type.

NbE, (t; — t5) = NbE(t;) — NbEy(t,) NbE, (b) = expr(b)

Function types are handled as in a simple denotational semantics, while base types receive
the perhaps-counterintuitive treatment that the result of “executing” one is a syntactic
expression of the same type. We write expr(b) for the metalanguage type of object-language
syntax trees of type b, relying on a type family expr.

Now the core of NbE, shown in Figure 1, is a pair of dual functions reify and reflect, for
converting back and forth between syntax and semantics of the object language, defined by
primitive recursion on type syntax. We split out analysis of term syntax in a separate function
reduce, defined by primitive recursion on term syntax, when usually this functionality would
be mixed in with reflect. The reason for this choice will become clear when we extend NbE.

We write v for object-language variables and z for metalanguage (Coq) variables, and
we overload A notation using the metavariable kind to signal whether we are building a
host A or a A syntax tree for the embedded language. The crucial first clause for reduce
replaces object-language variable v with fresh metalanguage variable x, and then we are
somehow tracking that all free variables in an argument to reduce must have been replaced
with metalanguage variables by the time we reach them. We reveal in Subsection 4.1 the
encoding decisions that make all the above legitimate, but first let us see how to integrate
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reify, : NbE,(t) — expr(t)
reify,, ., (f) = Av.reify, (f(reflects, (v)))
reify, (f) = f

reduce : expr(t) — NbE.(t)
reduce(Av. e) = Az. reduce([z/v]e)
= (reduce(e1)) (reduce(ez))

reflect(c)

reduce(e; e2)
reflect; : expr(t) — NbE.(t) reduce(x)
reflects, ¢, (e) = Az. reflects, (e(reify,, (z)) reduce(c)

eflect =
' o(e) = e NbE : expr(t) — expr(t)

NbE(e) = reify(reduce(e))

Figure 1 Implementation of normalization by evaluation.

use of the rewriting operation from the previous section. To fuse NbE with rewriting, we
only modify the constant case of reduce. First, we bind our specialized decision-tree engine
(which rewrites at the root of an AST only) under the name rewrite-head.

In the constant case, we still reflect the constant, but underneath the binders introduced
by full n-expansion, we perform one instance of rewriting. In other words, we change this
one function-definition clause:

reflecty(e) = rewrite-head(e)

It is important to note that a constant of function type will be n-expanded only once for
each syntactic occurrence in the starting term, though the expanded function is effectively a
thunk, waiting to perform rewriting again each time it is called. From first principles, it is
not clear why such a strategy terminates on all possible input terms.

The details so far are essentially the same as in the approach of Aehlig et al. [1]. Recall that
their rewriter was implemented in a deeply embedded ML, while ours is implemented in Coq’s
logic, which enforces termination of all functions. Aehlig et al. did not prove termination,
which indeed does not hold for their rewriter in general, which works with untyped terms,
not to mention the possibility of divergent rule-specific ML functions. In contrast, we need to
convince Coq up-front that our interleaved A-term normalization and algebraic simplification
always terminate. Additionally, we must prove that rewriting preserves term denotations,
which can easily devolve into tedious binder bookkeeping.

The next section introduces the techniques we use to avoid explicit termination proof or
binder bookkeeping, in the context of a more general analysis of scaling challenges.

4  Scaling Challenges

Aehlig et al. [1] only evaluated their implementation against closed programs. What happens
when we try to apply the approach to partial-evaluation problems that should generate
thousands of lines of low-level code?

4.1 Variable Environments Will Be Large

We should think carefully about representation of ASTs, since many primitive operations
on variables will run in the course of a single partial evaluation. For instance, Aehlig et
al. [1] reported a significant performance improvement changing variable nodes from using
strings to using de Bruijn indices [7]. However, de Bruijn indices and other first-order
representations remain painful to work with. We often need to fix up indices in a term being
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substituted in a new context. Even looking up a variable in an environment tends to incur
linear time overhead, thanks to traversal of a list. Perhaps we can do better with some
kind of balanced-tree data structure, but there is a fundamental performance gap versus
the arrays that can be used in imperative implementations. Unfortunately, it is difficult
to integrate arrays soundly in a logic. Also, even ignoring performance overheads, tedious
binder bookkeeping complicates proofs.

Our strategy is to use a variable encoding that pushes all first-order bookkeeping off on
Coq’s kernel or the implementation of the language we extract to, which are themselves
performance-tuned with some crucial pieces of imperative code. Parametric higher-order
abstract syntax (PHOAS) [6] is a dependently typed encoding of syntax where binders are
managed by the enclosing type system. It allows for relatively easy implementation and
proof for NbE, so we adopted it for our framework.

Here is the actual inductive definition of term syntax for our object language, PHOAS-style.
The characteristic oddity is that the core syntax type expr is parameterized on a dependent
type family for representing variables. However, the final representation type Expr uses
first-class polymorphism over choices of variable type, bootstrapping on the metalanguage’s
parametricity to ensure that a syntax tree is agnostic to variable type.

Inductive type := arrow (s d : type) | base (b : base_type).
Infix "—" := arrow.
Inductive expr (var : type -> Type) : type -> Type :=

Var {t} (v : var t) : expr var t

Abs {s d} (f : var s -> expr var d) : expr var (s — d)

LetIn {a b} (x : expr var a) (f : var a -> expr var b) : expr var b
Const {t} (c : const t) : expr var t.
Definition Expr (t : type) : Type := forall var, expr var t.

|
|
| App {s d} (£ : expr var (s — d)) (x : expr var s) : expr var d
|
|

A good example of encoding adequacy is assigning a simple denotational semantics. First,
a simple recursive function assigns meanings to types.

Fixpoint denoteT (t : type) : Type := match t with
| arrow s d => denoteT s -> denoteT d
| base b => denote_base_type b end.

Next we see the convenience of being able to use an expression by choosing how it should
represent variables. Specifically, it is natural to choose the type-denotation function itself
as variable representation. Especially note how this choice makes rigorous last section’s
convention (e.g., in the suspicious function-abstraction clause of reduce), where a recursive
function enforces that values have always been substituted for variables early enough.

Fixpoint denoteE {t} (e : expr denoteT t) : denoteT t := match e with

| Var v = v

| Abs f => )\ x, denoteE (f x)

| App £ x => (denoteE f) (denoteE x)

| LetIn x £ => let xv := denoteE x in denoteE f xv
| Ident ¢ => denotel c end.

Definition DenoteE {t} (E : Expr t) : denoteT t := denoteE (E denoteT).

It is now easy to follow the same script in making our rewriting-enabled NbE fully formal,
in Figure 2. Note especially the first clause of reduce, where we avoid variable substitution

precisely because we have chosen to represent variables with normalized semantic values.

The subtlety there is that base-type semantic values are themselves expression syntax trees,
which depend on a nested choice of variable representation, which we retain as a parameter
throughout these recursive functions. The final definition A\-quantifies over that choice.
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Fixpoint nbeT var (t : type) : Type := with reflect{var t}:expr var t->nbeT var t
match t with := match t with
| arrow s d => nbeT var s -> nbeT var d | arrow s d => A e, A x,
| base b => expr var b reflect (App e (reify x))
end. | base b => rewrite_head end.
Fixpoint reduce{var t}(e:expr (nbeT var) t)
: nbeT var t := match e with
Fixpoint reify {var t} | Abs e => )\ x, reduce (e (Var x))
: nbeT var t -> expr var t := | App el e2 => (reduce el) (reduce e2)
match t with | Var x => x
| arrow s d => X\ f, Abs () x, | Ident ¢ => reflect (Ident c) end.
reify (f (reflect (Var x)))) Definition Rewrite {t} (E:Expr t) : Expr t
| base b = Ae, e end := \ var, reify (reduce (E (nbeT var t))).

Figure 2 PHOAS implementation of normalization by evaluation.

One subtlety hidden in Figure 2 in implicit arguments is in the final clause of reduce,
where the two applications of the Ident constructor use different variable representations.
With all those details hashed out, we can prove a pleasingly simple correctness theorem, with
a lemma for each main definition, with inductive structure mirroring recursive structure of
the definition, also appealing to correctness of last section’s pattern-compilation operations.
(We now use syntax [-] for calls to DenoteE.)

Vi, E : Expr t. [Rewrite(E)] = [E]

To understand how we now apply the soundness theorem in a tactic, it is important
to note how the Coq kernel builds in reduction strategies. These strategies have, to an
extent, been tuned to work well to show equivalence between a simple denotational-semantics
application and the semantic value it produces. In contrast, it is rather difficult to code up
one reduction strategy that works well for all partial-evaluation tasks. Therefore, we should
restrict ourselves to (1) running full reduction in the style of functional-language interpreters
and (2) running normal reduction on “known-good” goals like correctness of evaluation of a
denotational semantics on a concrete input.

Operationally, then, we apply our tactic in a goal containing a term e that we want
to partially evaluate. In standard proof-by-reflection style, we reify e into some E where
[E] = e, replacing e accordingly, asking Coq’s kernel to validate the equivalence via standard
reduction. Now we use the Rewrite correctness theorem to replace [E] with [Rewrite(FE)].
Next we ask the Coq kernel to simplify Rewrite(E) by full reduction via native compilation.
Finally, where E’ is the result of that reduction, we simplify [E’] with standard reduction.

We have been discussing representation of bound variables. Also important is representa-
tion of constants (e.g., library functions mentioned in rewrite rules). They could also be given
some explicit first-order encoding, but dispatching on, say, strings or numbers for constants
would be rather inefficient in our generated code. Instead, we chose to have our Coq plugin
generate a custom inductive type of constant codes, for each rewriter that we ask it to build
with Make. As a result, dispatching on a constant can happen in constant time, based on
whatever pattern-matching is built into the execution language (either the Coq kernel or the
target language of extraction). To our knowledge, no past verified reduction tool in a proof
assistant has employed that optimization.

4.2 Subterm Sharing Is Crucial

For some large-scale partial-evaluation problems, it is important to represent output programs
with sharing of common subterms. Redundantly inlining shared subterms can lead to
exponential increase in space requirements. Consider the Fiat Cryptography [8] example
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of generating a 64-bit implementation of field arithmetic for the P-256 elliptic curve. The
library has been converted manually to continuation-passing style, allowing proper generation
of 1let binders, whose variables are often mentioned multiple times. We ran that old code
generator (actually just a subset of its functionality, but optimized by us a bit further, as
explained in Subsection 5.3) on the P-256 example and found it took about 15 seconds to
finish. Then we modified reduction to inline 1let binders instead of preserving them, at which
point the job terminated with an out-of-memory error, on a machine with 64 GB of RAM.

We see a tension here between performance and niceness of library implementation. When
we built the original Fiat Cryptography, we found it necessary to CPS-convert the code
to coax Coq into adequate reduction performance. Then all of our correctness theorems
were complicated by reasoning about continuations. In fact, the CPS reasoning was so
painful that at one point most algorithms in the template library were defined twice, once in
continuation-passing style and once in direct-style code, because it was easier to prove the
two equivalent and work with the non-CPS version than to reason about the CPS version
directly. It feels like a slippery slope on the path to implementing a domain-specific compiler,
rather than taking advantage of the pleasing simplicity of partial evaluation on natural
functional programs. Our reduction engine takes shared-subterm preservation seriously while
applying to libraries in direct style.

Our approach is let-lifting: we lift 1ets to top level, so that applications of functions to
lets are available for rewriting. For example, we can perform the rewriting

map (Az.y +z) (let z:=e in [0;1;2+1]) ~ let z:=e in [y;y+ Ly + (2 +1)]
using the rules

map ?f [| = |] map ?f (Px :: ?xs) — f x ::map f xs m+0—=n

We define a telescope-style type family called UnderLets:

Inductive UnderLets {var} (T : Type) := Base (v : T)
| UnderLet {A} (e : Qexpr var A) (f : var A -> Underlets T).

A value of type UnderLets T is a series of let binders (where each expression e may mention
earlier-bound variables) ending in a value of type T.

Recall that the NbE type interpretation mapped base types to expression syntax trees.

We add flexibility, parameterizing by a Boolean declaring whether to introduce telescopes.

Fixpoint nbeT' {var} (with_lets : bool) (t : type) := match t with
| base t => if with_lets then QUnderLets var (Qexpr var t) else Qexpr var t
| arrow s d => nbeT' false s -> nbeT' true d end.

Definition nbeT := nbeT' false. Definition nbeT_with_lets := nbeT' true.

There are cases where naive preservation of let binders blocks later rewrites from
triggering and leads to suboptimal performance, so we include some heuristics. For instance,
when the expression being bound is a constant, we always inline. When the expression being
bound is a series of list “cons” operations, we introduce a name for each individual list
element, since such a list might be traversed multiple times in different ways.

4.3 Rules Need Side Conditions

Many useful algebraic simplifications require side conditions. For example, bit-shifting
operations are faster than divisions, so we might want a rule such as

m/tm — n > logom if gllogy,m| _ )
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The trouble is how to support predictable solving of side conditions during partial
evaluation, where we may be rewriting in open terms. We decided to sidestep this problem
by allowing side conditions only as executable Boolean functions, to be applied only to
variables that are confirmed as compile-time constants, unlike Malecha and Bengtson [14]
who support general unification variables. We added a variant of pattern variable that only
matches constants. Semantically, this variable style has no additional meaning, and in fact
we implement it as a special identity function (notated as an apostrophe) that should be
called in the right places within Coq lemma statements. Rather, use of this identity function
triggers the right behavior in our tactic code that reifies lemma statements.

Our reification inspects the hypotheses of lemma statements, using type classes to find
decidable realizations of the predicates that are used, thereby synthesizing one Boolean
expression of our deeply embedded term language, which stands for a decision procedure for
the hypotheses. The Make command fails if any such expression contains pattern variables
not marked as constants.

Hence, we encode the above rule as Vn,m. 2U108:Cm)]) = oy 5 n/2m = n > 2 (logy m).

4.4 Side Conditions Need Abstract Interpretation

With our limitation that side conditions are decided by executable Boolean procedures, we
cannot yet handle directly some of the rewrites needed for realistic compilation. For instance,
Fiat Cryptography reduces high-level functional to low-level code that only uses integer types
available on the target hardware. The starting library code works with arbitrary-precision
integers, while the generated low-level code should be careful to avoid unintended integer
overflow. As a result, the setup may be too naive for our running example rule 7n + 0 — n.
When we get to reducing fixed-precision-integer terms, we must be legalistic:

add_with_carryy,(?n,0) — (0,n) if 0<n < 2%

We developed a design pattern to handle this kind of rule.

First, we introduce a family of functions clip, ,, each of which forces its integer argument
to respect lower bound ! and upper bound w. Partial evaluation is proved with respect to
unknown realizations of these functions, only requiring that clip,, (n) =n when ! <n < u.
Now, before we begin partial evaluation, we can run a verified abstract interpreter to find
conservative bounds for each program variable. When bounds [ and u are found for variable
x, it is sound to replace x with clip; , (). Therefore, at the end of this phase, we assume
all variable occurrences have been rewritten in this manner to record their proved bounds.

Second, we proceed with our example rule refactored:

add_with_carryg,(clip.y; »9,(?n),0) = (0,clip; ,(n)) if u < 264

If the abstract interpreter did its job, then all lower and upper bounds are constants, and we
can execute side conditions straightforwardly during pattern matching.

See Appendix F in the full version for discussion of some further twists in the implemen-
tation.

5 Evaluation

Our implementation, available on GitHub at mit-plv/rewriter@ITP-2022-perf-data and
with a roadmap in Appendix G of the full version, includes a mix of Coq code for the proved
core of rewriting, tactic code for setting up proper use of that core, and OCaml plugin code
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for the manipulations beyond the tactic language’s current capabilities. We report here on
evidence that the tool is effective, first in terms of productivity by users and then in terms of
compile-time performance.

5.1 Iteration on the Fiat Cryptography Compiler

We ported Fiat Cryptography’s core compiler functionality to use our framework. The result
is now used in production by a number of open-source projects. We were glad to retire
the CPS versions of verified arithmetic functions, which had been present only to support
predictable reduction with subterm sharing. More importantly, it became easy to experiment
with new transformations via proving new rewrite theorems, directly in normal Coq syntax,
including the following, all justified by demand from real users:

Reassociating arithmetic to minimize the bitwidths of intermediate results

Multiplication primitives that separately return high halves and low halves

Strings and a “comment” function of type VA. string - A — A

Support for bitwise exclusive-or

A special marker to block C compilers from introducing conditional jumps in code that

should be constant-time

Eliding bitmask-with-constant operations that can be proved as no-ops

Rules to introduce conditional moves (on supported platforms)

New hardware backend, via rules that invoke special instructions of a cryptographic

accelerator

New hardware backend, with a requirement that all intermediate integers have the same

bitwidth, via rules to break wider operations down into several narrower operations

5.2 Microbenchmarks

Now we turn to evaluating performance of generated compilers. We start with microbench-
marks focusing attention on particular aspects of reduction and rewriting, with Appendix C
of the full version going into more detail, including on a few more benchmarks.

Our first example family, nested binders, has two integer parameters n and m. An
expression tree is built with 2" copies of an expression, which is itself a free variable with
m “useless” additions of zero. We want to see all copies of this expression reduced to just
the variable. Figure 3a on the following page shows the results for n = 3 as we scale m.
The comparison points are Coq’s rewrite!, setoid_rewrite, and rewrite_strat. The
first two perform one rewrite at a time, taking minimal advantage of commonalities across
them and thus generating quite large, redundant proof terms. The third makes top-down
or bottom-up passes with combined generation of proof terms. For our own approach, we
list both the total time and the time taken for core execution of a verified rewrite engine,
without counting reification (converting goals to ASTs) or its inverse (interpreting results
back to normal-looking goals). The comparison here is very favorable for our approach so
long as m > 2. (See Appendix B.1 in the full version for more detailed plots.)

Now consider what happens when we use let binders to share subterms within repeated
addition of zero, incorporating exponentially many additions with linearly sized terms.
Figure 3b on the next page shows the results. The comparison here is again very favorable
for our approach. The competing tactics spike upward toward timeouts at just a few hundred
generated binders, while our engine is only taking about 10 seconds for examples with 5,000
nested binders.
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Figure 3 Timing of different partial-evaluation implementations.

Although we have made our comparison against the built-in tactics setoid_rewrite and
rewrite_strat, by analyzing the performance in detail, we can argue that these performance
bottlenecks are likely to hold for any proof assistant designed like Coq. Detailed debugging
reveals five performance bottlenecks in the existing tactics, discussed in Appendix A of the
full version.

5.3 Macrobenchmark: Fiat Cryptography

Finally, we consider an experiment (described in more detail in Appendix B.2 of the full
version) replicating the generation of performance-competitive finite-field-arithmetic code
for all popular elliptic curves by Erbsen et al. [8]. In all cases, we generate essentially the
same code as they did, so we only measure performance of the code-generation process. We
stage partial evaluation with three different reduction engines (i.e., three Make invocations),
respectively applying 85, 56, and 44 rewrite rules (with only 2 rules shared across engines),
taking total time of about 5 minutes to generate all three engines. These engines support 95
distinct function symbols.

Figure 3c graphs running time of three different partial-evaluation and rewriting methods
for Fiat Cryptography, as the prime modulus of arithmetic scales up. Times are normalized
to the performance of the original method of Erbsen et al. [8], which relied on standard Coq
reduction to evaluate code that had been manually written in CPS, followed by reification
and a custom ad-hoc simplification and rewriting engine.

As the figure shows, our approach gives about a 10x—1000x speed-up over the original
Fiat Cryptography pipeline. Inspection of the timing profiles of the original pipeline reveals
that reification dominates the timing profile; since partial evaluation is performed by Coq’s
kernel, reification must happen after partial evaluation, and hence the size of the term being
reified grows with the size of the output code. Also recall that the old approach required
rewriting Fiat Cryptography’s library of arithmetic functions in continuation-passing style,
enduring this complexity in library correctness proofs, while our new approach applies to a
direct-style library. Finally, the old approach included a custom reflection-based arithmetic
simplifier for term syntax, run after traditional reduction, whereas now we are able to apply a
generic engine that combines both, without requiring more than proving traditional rewrites.

The figure also confirms a clear performance advantage of running reduction in code
extracted to OCaml, which is possible because our plugin produces verified code in Coq’s
functional language. The extracted version is about 10x faster than running in Coq’s kernel.
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6 Future Work

By far the biggest next step for our engine is to integrate abstract interpretation with
rewriting and partial evaluation. We expect this would net us asymptotic performance gains
as described in Appendix D of the full version. Additionally, it would allow us to simplify
the phrasing of many of our post-abstract-interpretation rewrite rules, by relegating bounds
information to side conditions rather than requiring that they appear in the syntactic form
of the rule.

There are also a number of natural extensions to our engine. For instance, we do not
yet allow pattern variables marked as “constants only” to apply to container datatypes; we
limit the mixing of higher-order and polymorphic types, as well as limiting use of first-class
polymorphism; we do not support rewriting with equalities of nonfully-applied functions;
we only support decidable predicates as rule side conditions, and the predicates may only
mention pattern variables restricted to matching constants; we have hardcoded support for a
small set of container types and their eliminators; we support rewriting with equality and no
other relations; and we require decidable equality for all types mentioned in rules.
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