
Verifying a Sequent Calculus Prover for First-Order
Logic with Functions in Isabelle/HOL
Asta Halkjær From #

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Frederik Krogsdal Jacobsen #

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract
We describe the design, implementation and verification of an automated theorem prover for first-
order logic with functions. The proof search procedure is based on sequent calculus and we formally
verify its soundness and completeness in Isabelle/HOL using an existing abstract framework for
coinductive proof trees. Our analytic completeness proof covers both open and closed formulas.
Since our deterministic prover considers only the subset of terms relevant to proving a given sequent,
we do so as well when building a countermodel from a failed proof. Finally, we formally connect our
prover with the proof system and semantics of the existing SeCaV system. In particular, the prover
can generate human-readable SeCaV proofs which are also machine-verifiable proof certificates.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Theory of
computation → Proof theory; Theory of computation → Program verification

Keywords and phrases Isabelle/HOL, SeCaV, First-Order Logic, Prover, Soundness, Completeness

Digital Object Identifier 10.4230/LIPIcs.ITP.2022.13

Supplementary Material Software (Isabelle/HOL formalization in the Archive of Formal Proofs):
https://www.isa-afp.org/entries/FOL_Seq_Calc2.html [18]

Acknowledgements We would like to thank Agnes Moesgård Eschen, Alexander Birch Jensen,
Anders Schlichtkrull, Simon Tobias Lund and Jørgen Villadsen for comments on drafts. We are very
grateful to the anonymous reviewers for their thoughtful comments.

1 Introduction

While there are many automated theorem provers capable of proving theorems involving very
large formulas and many lemmas, very few of them have formalized proofs of metatheoretical
properties such as soundness and completeness. This leads to issues of trust: how do we
know that the answers returned by automated theorem provers are actually correct? And do
we know that our automated theorem provers will actually be able to prove what we want
them to? Even those provers that can generate proof certificates to support their answers
may not always be trustworthy, since some proof techniques lead to proofs that are very
difficult to follow for a human, and are thus difficult to check for correctness.

Formalizing the soundness and completeness of a prover provides two crucial benefits.
With a soundness result, we know that the prover does not erroneously accept an invalid
formula and outputs a wrong proof of the formula. Thus, advanced features and optimizations
cannot cause unforeseen flaws in the prover. Completeness of the prover is especially useful
in combination with the possibility of generating readable proof certificates. With formalized
completeness, we can use the prover as a tool to generate step-by-step proofs of any valid
formula, and it can thus also be used to gain understanding, e.g. by students trying to
understand why a counter-intuitive formula is valid. While there are some systems with
formalized metatheory, they rarely include executable provers, often cannot generate proof
certificates, and are often quite limited in their expressive power (cf. Section 1.1).

© Asta Halkjær From and Frederik Krogsdal Jacobsen;
licensed under Creative Commons License CC-BY 4.0

13th International Conference on Interactive Theorem Proving (ITP 2022).
Editors: June Andronick and Leonardo de Moura; Article No. 13; pp. 13:1–13:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ahfrom@dtu.dk
https://orcid.org/0000-0002-3601-0804
mailto:fkjac@dtu.dk
https://orcid.org/0000-0003-3651-8314
https://doi.org/10.4230/LIPIcs.ITP.2022.13
https://www.isa-afp.org/entries/FOL_Seq_Calc2.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Verifying a Sequent Calculus Prover for First-Order Logic with Functions

In this paper, we present an automated theorem prover for first-order logic with functions
based on sequent calculus. We formalize its soundness and completeness in Isabelle/HOL.
We reuse the syntax and semantics of first-order logic from the Sequent Calculus Verifier
(SeCaV) system [16] (Section 2.1). We state the soundness and completeness of the prover
with respect to the SeCaV proof system, its semantics and a bounded semantics that we
introduce here. The prover can generate human-readable and machine-verifiable SeCaV
proofs for valid formulas.

Our formalization instantiates an abstract framework of coinductive proof trees by
Blanchette et al. [11] (Section 2.2). By instantiating the framework with concrete functions
implementing our sequent calculus, it builds a prover for us (Section 3). By discharging
further proof obligations, the framework proves that any proof tree built by our prover is
either finite or contains an infinite path with certain properties. We then build either a
SeCaV proof from the finite tree (Section 4) or a countermodel from the failed proof attempt
(Section 5). As far as we are aware, we are the first to use the framework to prove soundness
and completeness of a non-trivial executable prover (as opposed to simply a calculus).

Our prover is deterministic, fair and works on finite sequents. To handle the quantifiers
we must thus build our countermodel in a Herbrand universe that contains only the subset
of terms that actually appear in the failed proof. This idea is inspired by Ben-Ari’s textbook
proof [2], where terms are either variables or constants, and by Ridge’s Isabelle proof [38],
where only variables are considered. We are not aware of any previous formalization of
this construction that handles functions. We consider all terms in our Herbrand universe,
including those with free variables, yielding completeness for both open and closed formulas.

The prover is free software and the source code is available as supplementary material.
This consists of around 3000 lines of Isabelle/HOL and 1300 lines of supplementary Haskell.

We summarize our main contributions:
A formally verified sound and complete automated theorem prover for full first-order
logic with functions.
An analytic proof of completeness for both open and closed formulas for a deterministic
prover via a bounded semantics.
A method of translating the prover-generated certificates of validity into human-readable
and machine-verifiable proofs in SeCaV.
A concrete application of the abstract completeness framework, and a demonstration
of how to obtain soundness and completeness of an actual, executable prover using the
framework as a starting point.

We summarize the results and discuss the generated proofs, challenges encountered during
the verification, prover limitations and future work in Section 6 before concluding in Section 7.

1.1 Related work
The present paper is a much improved version of the work started in the second author’s
master’s thesis [21]. The Sequent Calculus Verifier (SeCaV) is a well-established proof system,
and both soundness and completeness have been proven for the system [19]. The system has
been used to teach students in several courses at the Technical University of Denmark [20,47].
An online tool called the SeCaV Unshortener has been developed to allow input of proofs in
a simple format which is then translated to an Isabelle proof [16].

Our prover is based on the abstract completeness framework by Blanchette et al. [10, 11].
The framework contains a simple example prover for propositional logic, and the original
application of the framework was in the formalization of the metatheory of the Sledgehammer

A. H. From and F. K. Jacobsen 13:3

tool for automated theorem proving within Isabelle/HOL [8]. Blanchette et al. [11] have
used the framework to formalize soundness and completeness of a calculus for first-order
logic with equality and in negation normal form. Their search is nondeterministic and they
do not generate an executable prover like we do. As such, we improve on their work by using
the framework to prove soundness and completeness of an executable prover.

A number of other systems have formally verified metatheories. NaDeA (Natural De-
duction Assistant) by Villadsen et al. [49] is a web application that allows users to prove
formulas with natural deduction. The metatheory of a model of the system is formalized in
Isabelle/HOL, and the application allows export of proofs for verification in Isabelle. The
Incredible Proof Machine by Breitner [12] is a web application that allows users to create
proofs using a specialized graphical interface. The proof system is as strong as natural
deduction, and a model of the system is formalized in Isabelle using the abstract framework
by Blanchette et al. [11]. Neither system includes automated theorem provers; they are
essentially simple proof assistants designed to aid students in understanding logical systems.

THINKER by Pelletier [35] is a proof system and an attached automated theorem prover.
THINKER is a natural deduction system designed to allow for what the author calls “direct
proofs”, as opposed to proofs based on reduction to a resolution system. THINKER was
perhaps the first automated theorem prover designed specifically with “naturality” in mind, as
a reaction to the indirectness of resolution-based proof systems. MUSCADET by Pastre [34]
is also an automated theorem prover based on natural deduction. The system distinguishes
itself by also supporting usage of prior knowledge such as previously proven theorems through
a Prolog knowledge base.

While there are many very advanced automated theorem provers such as Vampire [24],
Zipperposition [3] and Z3 [13], their metatheory and implementations are rarely formalized.
As a first step towards formally verifying modern provers, Schlichtkrull et al. [40] have
formalized an ordered resolution prover for clausal first-order logic in Isabelle/HOL. Jensen
et al. [22] formalized the soundness, but not the completeness, of a prover for first-order logic
with equality in Isabelle/HOL. Villadsen et al. [50] verified a simple prover for first-order logic
in Isabelle/HOL with the aim of allowing students to understand both the prover and the
formalization. That work is based on an earlier formalization by Ridge and Margetson [38],
but simplifies both the prover and the proofs to enable easier understanding by students.
Neither of these two provers provide support for functions or generation of proof certificates.

Blanchette [5] gives an overview of a number of verification efforts including the metatheory
of SAT solvers [6, 14,29,30,43] and certificate checkers [26,27], SMT solvers [28,31,45], the
superposition calculus [37], resolution [36,39, 41], a number of non-classical logics [15,17, 42,
46,48], and a wide range of proof systems for classical propositional logic [32,33]. Some of
these efforts are part of the IsaFoL project (Isabelle Formalization of Logic). Part of the
goal is to develop “a methodology for formalizing modern research in automated reasoning”.
Our work points in this direction too, by formally verifying a non-saturation-based prover.

2 Background

In this section, we briefly introduce the two existing things we build on: the Sequent Calculus
Verifier (SeCaV) system and the abstract framework by Blanchette et al [11]. In particular,
we have not modified these projects in any way for our use, and their designs thus significantly
influence the design of our prover.

ITP 2022

13:4 Verifying a Sequent Calculus Prover for First-Order Logic with Functions

datatype tm = Fun nat (tm list) | Var nat

datatype fm =
Pre nat (tm list) | Imp fm fm | Dis fm fm | Con fm fm | Exi fm | Uni fm | Neg fm

Figure 1 The syntax of the Sequent Calculus Verifier (parentheses added for clarity).

definition shift e v x ≡ λn. if n < v then e n else if n = v then x else e (n − 1)

primrec semantics-term and semantics-list where
semantics-term e f (Var n) = e n

| semantics-term e f (Fun i l) = f i (semantics-list e f l)
| semantics-list e f [] = []
| semantics-list e f (t # l) = semantics-term e f t # semantics-list e f l

primrec semantics where
semantics e f g (Pre i l) = g i (semantics-list e f l)

| semantics e f g (Imp p q) = (semantics e f g p −→ semantics e f g q)
| semantics e f g (Dis p q) = (semantics e f g p ∨ semantics e f g q)
| semantics e f g (Con p q) = (semantics e f g p ∧ semantics e f g q)
| semantics e f g (Exi p) = (∃ x. semantics (shift e 0 x) f g p)
| semantics e f g (Uni p) = (∀ x. semantics (shift e 0 x) f g p)
| semantics e f g (Neg p) = (¬ semantics e f g p)

Figure 2 The semantics of the Sequent Calculus Verifier (# separates the head and tail of a list).

2.1 The Sequent Calculus Verifier
The system is a one-sided sequent calculus for first-order logic with functions. Constants
are encoded as functions with arity 0. Figure 1 gives the syntax of terms and formulas as
Isabelle/HOL datatypes. The system uses de Bruijn indices to identify variables, while func-
tions and predicates are named by natural numbers. Besides predicates, the system includes
implication, disjunction, conjunction, existential quantification, universal quantification, and
negation (in that order in Figure 1). Predicates and functions take their arguments as ordered
lists of terms, which may be empty. Sequents are ordered lists of formulas. Parameterized
datatypes are written in postfix notation, e.g. the type tm list of lists containing terms.

The semantics of a formula is due to Berghofer [4], who models the universe as a type
variable like we do for now. The interpretation consists of an environment e for variables, a
function denotation f and a predicate denotation g. The semantics of the system is standard
and defined using the three recursive functions in Figure 2. The semantics of the logical
connectives is defined using the connectives from the meta-logic in Isabelle/HOL. The shift
function handles shifting de Bruijn-indices when interpreting quantifiers. We say that a
sequent is valid when, under all interpretations, some formula in the sequent is satisfied.

The system has a number of proof rules, some of which are displayed in Figure 3 (abusing
set notation for the membership and inclusion relations on lists – see the formalization for
details and the remaining rules). The rules should be read from the bottom up, since we
generally work backwards from a sequent we wish to prove. The rules are classified according
to Smullyan’s uniform notation [44].

The first proof rule, Basic, terminates the branch and applies when the sequent contains
both a formula and its negation. Isabelle/HOL allows pattern matching only on the head of
a list, so to simplify the specification of this rule, the positive formula must come first.

A. H. From and F. K. Jacobsen 13:5

Neg p ∈ z

⊩ p, z
Basic

⊩ z z ⊆ y

⊩ y
Ext

⊩ p, z

⊩ Neg (Neg p), z
NegNeg

⊩ p, q, z

⊩ Dis p q, z
AlphaDis

⊩ Neg p, z ⊩ Neg q, z

⊩ Neg (Dis p q), z
BetaDis

⊩ p [Var 0/t], z

⊩ Exi p, z
GammaExi

⊩ Neg (p [Var 0/Fun i []]), z i fresh
⊩ Neg (Exi p), z

DeltaExi

Figure 3 Sample proof rules for the Sequent Calculus Verifier (rules omitted here are similar).

The structural Ext rule can be applied to change the position of formulas in a sequent
(permutation), duplicate an existing formula (contraction), and remove formulas that are
not needed (weakening). It is crucial, since most rules in the system work only on the first
formula in a sequent. Duplicating a formula is necessary if a quantified formula needs to be
instantiated several times, since γ-rules (starting with Gamma) destroy the original formula.

The NegNeg rule removes a double negation from the first formula in a sequent. It can
be considered an α-rule, but we keep it separate from the others because it does not generate
two formulas. The AlphaDis rule decomposes disjunctions (and similar for the AlphaImp
and AlphaCon rules omitted here). The BetaDis rule decomposes negated disjunctions
and requires that two sequents are proven separately, creating branches in the proof tree
(and similar for the BetaCon, BetaImp rules omitted here). This essentially moves the
connective into the proof tree itself, since both branches now need to be proven separately.
The GammaExi rule instantiates an existential quantifier with any term t by substituting t

for variable 0 in the quantified formula. The GammaUni rule omitted here is similar. The
DeltaExi rule instantiates a negated existential quantifier in the first formula in a sequent
with a fresh constant function, with fresh here meaning that the function identifier does not
already occur anywhere in the sequent. The fresh constant cannot have any relationship to
other terms in the sequent: it is arbitrary. Thus we could have used any other term without
affecting the validity of the formula, which is exactly what is needed to prove a universally
quantified (“there does not exist”) formula. The DeltaUni rule omitted here is similar.

The proof system in Figure 3 has been formally verified to be sound and complete with
regards to the semantics in Figure 2 by From et al. [19]. We use these results to relate our
prover to SeCaV.

2.2 Abstract frameworks for soundness and completeness

Blanchette et al. [11] have formalized an abstract framework to facilitate soundness and
completeness proofs by coinductive methods. In particular, they give abstract definitions
that can be instantiated to a concrete sequent calculus or tableau prover. They facilitate
proofs in the Beth-Hintikka style: the search “builds either a finite deduction tree yielding
a proof (. . .) or an infinite tree from which a countermodel (. . .) can be extracted.” The
framework consists of a number of Isabelle/HOL locales that must be instantiated and in
return provide various definitions and proofs.

Locales [1, 23] allow the abstraction of definitions and proofs over given parameters. As
an example, consider groups in algebra defined by a carrier set, a binary operation and the
group axioms. With a locale, these can be specified abstractly and a number of operations

ITP 2022

13:6 Verifying a Sequent Calculus Prover for First-Order Logic with Functions

Table 1 The RuleSystem locale with premises above the line and important conclusions below.

eff Effect relation between a rule, a state and a finite set of resulting states.
rules Stream of rules. The set of these is called R.
S Set of well formed states.
eff-S Proof that for any rule in R and proof state in S the eff -related states are in S.
enabled-R Proof that for any state in S, some rule in R is enabled, i.e. applies to that state.
mkTree A function from a stream of rules and a starting state to a tree of states and rules.
wf-mkTree Proof that the tree generated by mkTree is well formed wrt. eff.

Table 2 The PersistentRuleSystem locale which extends RuleSystem from Table 1.

per Proof that if a rule r in R is enabled in a well formed state s and s’ is
eff -related to s by a rule r’ in R distinct from r, then r is enabled in s’.

epath-completeness-
Saturated

Proof that for any well formed state s, there exists either a well formed
finite tree with s as root or a saturated escape path with s as root.

and results can then be given in the abstract. Later, we can instantiate the locale with a
concrete group by providing the carrier set and binary operation, and proving that the group
axioms are fulfilled. We then obtain instantiations of the results for our concrete group.

In this section we give an overview of the locales provided by the abstract framework:
what they require and what they provide. We have condensed the Isabelle code into four
tables for brevity, since the specific details of the framework are not our main focus. The
exact definitions can be found in the Archive of Formal Proofs entry by Blanchette et al. [9].

First, two coinductive datatypes are crucial: a tree is finitely branching but can be
infinitely deep, while a stream has no branching but is decidedly infinite (a list with no end).

Tables 1 and 2 cover the two locales RuleSystem and PersistentRuleSystem which are
central for proving completeness. The locale premises are given above each vertical line and
the (important) conclusions are given below. The locales require us to prove a number of
things about three definitions. First, the eff relation specifies the effect of applying a rule to
a state in our proof search. By (proof) state we mean a sequent, potentially coupled with
additional information. The nodes of our proof tree will be proof states in this sense. Second,
rules is a stream of rules for the prover to attempt to apply. Third, S is a set of well formed
states (in our case simply the set of all states).

For the RuleSystem locale we must prove two things about these definitions. First, eff-S,
that the set of well formed states S is closed under the eff relation on rules from the stream
rules. Second, enabled-R, that no matter the proof state we have reached (in S), some rule in
rules applies. In return we get the function mkTree which embodies our prover and a proof,
wf-mkTree, that the tree produced by this prover is well formed. A tree is well formed (wf)
when its children are well formed and the set of child states is eff -related to the node’s state
and applied rule.

For the PersistentRuleSystem locale, we must additionally prove per. This essentially
states that rules do not interfere with each other: when we apply a rule, any other rules
that were applicable before are still applicable. In return we get a theorem called epath-
completeness-Saturated. An escape path (epath) is an infinite path in a well formed proof
tree. Such a path is saturated (Saturated) when any rule which is enabled at some point
on the path is eventually applied. Thus, this theorem states a completeness property for
the mkTree function (on valid input): either it returns a well formed finite tree or a tree
containing a saturated escape path (from which we can build a countermodel).

A. H. From and F. K. Jacobsen 13:7

Table 3 The Soundness locale.

eff, rules As in Table 1 but states are now called sequents.
structure Set of models.
sat Satisfaction predicate on sequents and models.
local-soundness Proof that the validity of a sequent (as given by sat and structure) follows from

the validity of its children (as given by eff and rules).
soundness Proof that any finite, well formed tree has a valid root.

Table 4 The RuleSystem-Code locale.

eff Effect function from a rule and a state to a finite set of resulting states.
rules Stream of rules.
i.mkTree Executable version of the mkTree function.

Table 3 covers the Soundness locale used to prove the soundness of resulting proof trees.
Here, besides eff and rules, we must state a set of models, structure, and a satisfaction
predicate, sat, on sequents and models. The locale then turns a local soundness proof,
local-soundness, that validity of a sequent follows from validity of its children, into a global
result, soundness, that any finite, well formed tree has a valid root.

Finally, to generate code we need to instantiate the locale RuleSystem-Code in Table 4,
where eff must now be a deterministic relation, i.e. a function and rules is as before. In
return we get an executable version of mkTree above, called i.mkTree.

RuleSystem-Code provides no guarantees on its own but we use the same underlying
function in all four locales. We export this function to Haskell using Isabelle’s (unverified)
code generation, code lemmas and a few (unverified) custom code-printing facilities. This
step moves us from a verified prover inside Isabelle to a prover in Haskell which is based on
a verified prover, but which is not itself verified.

3 Prover

In this section we explain the design of the proof search procedure driving our prover. The
procedure does not use the proof system of SeCaV directly, but introduces a new set of
similar proof rules that apply to entire sequents at once. This obviates the need for the
structural Ext rule, which is therefore not present. Additionally, we remove the Basic rule
and let the prover close proof branches implicitly.

Before we can define what the rules do, we need a few auxiliary definitions. The function
generateNew generates a function name that is fresh to a given list of terms. The function
subtermFms computes the list of terms occurring in a list of functions. We define subterms
as the list of all terms in a sequent, except that the list contains exactly Fun 0 [] when
it would otherwise be empty. This ensures that we always have some term to instantiate
γ-formulas with. The function sub implements substitution in a standard way using de Bruijn
indices. See the formalization [18] or the original SeCaV work [19] for details. The function
branchDone computes whether a sequent is an axiom, i.e. whether the sequent contains both
a formula and its negation. The prover uses this to determine when a branch of the proof
tree is proven and can be closed.

We first define which “parts” of a single formula must be proven for a rule to apply:

ITP 2022

13:8 Verifying a Sequent Calculus Prover for First-Order Logic with Functions

definition parts :: tm list ⇒ rule ⇒ fm ⇒ fm list list where
parts A r f ≡ (case (r , f) of

(NegNeg, Neg (Neg p)) ⇒ [[p]]
| (AlphaDis, Dis p q) ⇒ [[p, q]]
| (BetaDis, Neg (Dis p q)) ⇒ [[Neg p], [Neg q]]
| (DeltaExi, Neg (Exi p)) ⇒ [[Neg (sub 0 (Fun (generateNew A) []) p)]]
| (GammaExi, Exi p) ⇒ [Exi p # map (λt. sub 0 t p) A]
...
| - ⇒ [[f]])

We have omitted some similar cases here (and will continue to do so in the sequel; see
the formalization for the full definitions). The result of applying a rule is a list of lists of
formulas with an implicit conjunction between lists and disjunction between inner formulas.
For instance, the parts of Dis p q under AlphaDis state that we must prove either p or q. The
definition takes a parameter A, which should be a list of terms present on the proof branch.
For δ-rules, a function which does not appear in A is generated (ensuring soundness), and
for γ-rules, the quantifier is instantiated with every term in A (ensuring completeness). Note
that if the rule and formula do not match, the result simply contains the original formula.
This means that rules are always enabled, but that they do nothing to most formulas.

To construct a proof tree, we need a function that computes the result of applying a rule
to (all formulas in) a sequent. This is done by the following function (@ appends two lists):

primrec children :: tm list ⇒ rule ⇒ sequent ⇒ sequent list where
children - - [] = [[]]

| children A r (p # z) =
(let hs = parts A r p; A ′ = remdups (A @ subtermFms (concat hs))
in list-prod hs (children A ′ r z))

It first computes the effect of applying the rule to the first formula in the sequent (using
the definition parts) and gives a name to the updated list of terms in the sequent (since
δ- and γ-rules may introduce new terms). The function then goes through the rest of the
sequent recursively, combining the generated child branches with the function list-prod:

primrec list-prod :: ′a list list ⇒ ′a list list ⇒ ′a list list where
list-prod - [] = []

| list-prod hs (t # ts) = map (λh. h @ t) hs @ list-prod hs ts

The type variable ′a in the type signature means that the function works on lists of lists
containing any type of elements.

It behaves in the following way (similar to the Cartesian product):

set (list-prod hs ts) = {h @ t |h t. h ∈ set hs ∧ t ∈ set ts}

For β-rules, the end result is a list of 2n child branches, where n is the number of
β-formulas in the sequent. These branches are ordered such that they correspond to the
branches one would have obtained by applying the corresponding SeCaV β-rule n times. For
all other rules, the end result is a single child branch. The parameter A to children should
again be a list of terms present on the proof branch. We should be clear that children does
not apply rules recursively to sub-formulas, but only to the “top layer.” If the application
of a rule reveals a formula that this rule applies to again, this formula is left as is and only
considered the next time children is applied to the sequent with that rule. For example,
the result of calling children with the rule AlphaDis and the sequent containing only the
formula Dis (Dis p q) r is Dis p q, r and not p, q, r.

A. H. From and F. K. Jacobsen 13:9

The prover needs to ensure that bound variables are instantiated with all terms on the
current branch when a γ-rule is applied. For this reason, we define the state in a proof tree
node to be a pair consisting of a list of terms appearing on the branch and a sequent. The
list of terms will be used to instantiate the parameter A in the definitions above.

We are now ready to define the effect of applying a proof rule to a proof state:

primrec effect :: rule ⇒ state ⇒ state fset where
effect r (A, z) =
(if branchDone z then {||} else

fimage (λz ′. (remdups (A @ subterms z @ subterms z ′), z ′))
(fset-of-list (children (remdups (A @ subtermFms z)) r z)))

To fit the types of the framework, the function returns a finite set (fset) instead of a list.
If the sequent is an axiom, the branch is proven, and the function returns an empty set of
child nodes, closing the branch. Otherwise, the function converts the result of the children
function to a finite set, and adds any new terms to the list of terms in each child node.

Having defined what rules do, we now need a stream of them (rules in Table 1). We,
somewhat arbitrarily, define a list of rules in the order α, δ, β, γ and cycle it to obtain a
stream. For efficiency, we could run, say, all α- and δ-rules to completion before branching
with the β-rules, but this cannot be encoded in the simple stream of rules without further
machinery: one could imagine having larger “meta-rules” corresponding to groups of SeCaV
rules. This would give a notion of “phases” where we would first run all the rules in one
group, then all the rules in the next group in the stream etc. For simplicity (see Section 6.4)
we apply single rules in a fixed order. This also trivially ensures fairness.

3.1 Applying the framework

We are now ready to apply the abstract completeness framework to obtain the actual proof
search procedure (cf. Section 2.2). First, we define a relational version of the effect of a rule,
called eff. To use the framework, we need to prove three properties: that the set of well
formed proof states is closed under eff (eff-S), that it is always possible to apply some rule
(enabled-R), and that the rules that can be applied are still possible to apply after applying
other rules (per). We do not need to restrict the set of well formed proof states, so the first
property is trivial. Since all of our rules can always be applied (they simply do nothing
if they do not match the sequent), the other two properties are also trivial. We can thus
instantiate the framework with our effect relation and stream of rules. This allows us to
define the prover using the mkTree function from the framework:

definition secavProver ≡ mkTree rules

This function takes a list of terms and a sequent, and applies the rules in the stream
in order to build a proof tree with the given sequent at the root, using our eff relation to
determine the children of each node. The list of terms is used to collect the terms that occur
in the sequents on each branch and should initially be empty (in the exported prover, the
function is wrapped in another function to ensure that the list of terms is empty).

We call the sequent at the root of this proof tree the root sequent:

abbreviation rootSequent t ≡ snd (fst (root t))

ITP 2022

13:10 Verifying a Sequent Calculus Prover for First-Order Logic with Functions

3.2 Making the prover executable
To actually make the prover executable, we need to specify that the stream of rules should
be lazily evaluated, or the prover will never terminate. Additionally, we need to define the
prover using the code interpretation of the framework to enable computation of some parts of
the framework (cf. Table 4). After telling Isabelle how to translate operations on the option
type to the Maybe type, this also allows us to export the prover to Haskell code.

We have implemented a few Haskell modules to drive the exported prover, and translate
found proofs into the proof system of SeCaV. These modules are not formally verified, but the
proofs generated in this manner can be verified by Isabelle. We have written an automated
test suite that tests the unverified code for soundness and completeness by applying the
prover to a number of valid formulas, then calling Isabelle to verify the generated proofs,
and by applying the prover to a number of invalid formulas and confirming that it does not
generate a proof (within 10 seconds). While these tests do not give us absolute certainty
that the exported code and the hand-written Haskell modules are correct, they provide a
reasonable amount of certainty when combined with the formal proofs of correctness of the
proof search procedure within Isabelle.

4 Soundness

We use the abstract soundness framework (cf. Section 2.2) to prove that any sequent with
a well formed and finite proof tree can be proved in SeCaV. It follows from the soundness
of SeCaV that such sequents for which the prover terminates are semantically valid. The
following lemma comprises the core of the result:

▶ Lemma 1. If for all sequents z ′ in children A r z, we can derive ⊢⊢ pre @ z ′, and the term
list A contains all parameters of pre and z, then we can derive ⊢⊢ pre @ z itself:

assumes ∀ z ′ ∈ set (children A r z). (⊢⊢ pre @ z ′)
and paramss (pre @ z) ⊆ paramsts A

shows ⊢⊢ pre @ z

Proof. By induction on z for arbitrary pre and A.
For the empty sequent, the thesis holds immediately as we get by assumption and the

definition of children that we can derive ⊢⊢ pre.
For the non-empty sequent with formula p as head and z as tail we have the following

induction hypothesis (for any pre and A):

then have ih: ∀ z ′ ∈ set (children A r z). (⊢⊢ pre @ z ′) =⇒ (⊢⊢ pre @ z)
if paramss (pre @ z) ⊆ paramsts A for pre A

We abbreviate the term list that the prover actually recurses on as ?A. From the first
assumption and the definition of list-prod we then have (*):

∀ hs ∈ set (parts A r p). ∀ ts ∈ set (children ?A r z). (⊢⊢ pre @ hs @ ts)

The proof continues by examining the possible cases for parts.
Take first the case where r = AlphaDis and p = Dis q r. Then (*) states that we can

derive ⊢⊢ pre @ q # r # z ′ for all z ′ in children ?A r z. We apply the induction hypothesis
at pre extended with q and r, which is allowed since they are subformulas of p. We then get
the derivation ⊢⊢ pre @ q # r # z. By the Ext and AlphaDis rules from SeCaV we obtain
the desired derivation ⊢⊢ pre @ Dis q r # z.

A. H. From and F. K. Jacobsen 13:11

The remaining α- and β-cases are similar. In the δ-cases we prove that the constant used
by the prover is new to the sequent, as required by the SeCaV δ-rules.

In the γ-cases we get a derivation that includes both the γ-formula and all instances of
it using terms from the list A. Here we induct on A to generalize each instance into the
corresponding γ-formula and use Ext to contract this γ-formula with the existing occurrence.

When parts A r p returns p, the thesis holds from (*) and the induction hypothesis. ◀

We only need pre in the above lemma to make the induction hypothesis strong enough
for the proof, so we can instantiate it afterwards.

▶ Corollary 2 (Proof tree to SeCaV). We derive a sequent from derivations of its children:

assumes ∀ z ′ ∈ set (children A r z). (⊢⊢ z ′) and paramss z ⊆ paramsts A
shows ⊢⊢ z

We obtain the following soundness theorem from the abstract soundness framework.

▶ Theorem 3 (Prover soundness wrt. SeCaV). The root sequent of any finite, well formed
proof tree has a derivation in SeCaV:

assumes tfinite t and wf t
shows ⊢⊢ rootSequent t

5 Completeness

The completeness proof is heavily based on the abstract completeness framework. As noted
in Section 2.2, however, the framework only takes us so far. First, we duplicate the output of
Table 2, since the mkTree function is unhelpfully abstracted away by an existential quantifier.
This could easily be changed in the framework and should be considered for the next release.

▶ Lemma 4 (Prover cases). The proof tree generated by the prover is either finite and well
formed or there exists a saturated escape path with our initial state as root:

defines t ≡ secavProver (A, z)
shows (fst (root t) = (A, z) ∧ wf t ∧ tfinite t) ∨

(∃ steps. fst (shd steps) = (A, z) ∧ epath steps ∧ Saturated steps)

In the first case, the sequent has a proof (cf. Section 4). In the second case, we need to
build a countermodel from the saturated escape path to contradict validity of the sequent.
The rest of this section does exactly that. Inspired by Ben-Ari [2] and Ridge [38], we start
off by giving a definition of Hintikka sets over a restricted set of terms (Section 5.1). We
show that the set of formulas on saturated escape paths fulfill all Hintikka requirements
when we take the set of terms to be the terms on the path (Section 5.2). We then define a
countermodel for any formula in such a set using a new semantics that bounds quantifiers by
an explicit set rather than by types alone (Section 5.3). Finally we tie these results together
to show that the prover terminates for all sequents that are valid under our new semantics
(Section 5.4). In Section 6.1 we use existing results to prove completeness of the prover
wrt. the SeCaV semantics.

ITP 2022

13:12 Verifying a Sequent Calculus Prover for First-Order Logic with Functions

locale Hintikka =
fixes H :: fm set
assumes

Basic: Pre n ts ∈ H =⇒ Neg (Pre n ts) /∈ H and
AlphaDis: Dis p q ∈ H =⇒ p ∈ H ∧ q ∈ H and
BetaDis: Neg (Dis p q) ∈ H =⇒ Neg p ∈ H ∨ Neg q ∈ H and
GammaExi: Exi p ∈ H =⇒ ∀ t ∈ terms H . sub 0 t p ∈ H and
DeltaExi: Neg (Exi p) ∈ H =⇒ ∃ t ∈ terms H . Neg (sub 0 t p) ∈ H and
...
Neg: Neg (Neg p) ∈ H =⇒ p ∈ H

Figure 4 Abridged list of requirements for a set of formulas H to be a Hintikka set.

5.1 Hintikka
First, by the terms of a set of formulas H we mean the following:

definition terms H ≡ if (
⋃

p ∈ H . set (subtermFm p)) = {} then {Fun 0 []}
else (

⋃
p ∈ H . set (subtermFm p))

This set contains an arbitrary (but fixed) constant, Fun 0 [], when H itself contains no
terms. Otherwise it contains all subterms of all formulas in H.

Figure 4 contains an abridged definition of a Hintikka set H. Here, we use a locale slightly
differently to the previous ones, in that we have specify no conclusions, only premises: the
formula set H and the requirements Basic, AlphaDis, etc. The omitted requirements are
similar to the ones shown. This use simply allows us to assume Hintikka H in a theorem and
know that the set H then fulfills the stated requirements. Similarly, we can prove that a set
H is Hintikka by proving that it fulfills the requirements. It is important to note that in the
γ- and δ-cases, the quantifiers only range over the terms of H.

5.2 Saturated escape paths are Hintikka
The following definition forgets all structure of a path and reduces it to a set of formulas:

definition tree-fms steps ≡
⋃

ss ∈ sset steps. set (pseq ss)

The function sset returns the set of steps and pseq extracts the sequent from each.
Given a saturated escape path steps, we want to prove that tree-fms steps is a Hintikka

set. For instance, if Dis p q appears on the path, then both p and q should too. The prover
is designed to make this property of its proof trees as evident as possible: formulas unaffected
by a given rule are easily shown to be preserved by the application of that rule and any rule
immediately applies to all its affected formulas, regardless of their position in the sequent.

We will need a number of intermediate results.

5.2.1 Unaffected formulas
We define the predicate affects to hold for a rule and a formula, when that rule does not
preserve the formula (thus no rule affects a γ-formula, since the γ-rules of the prover, unlike
those of SeCaV, preserve the original formula). For instance, affects AlphaDis (Dis p q) holds
while affects BetaCon (Dis p q) does not.

We then prove the following key preservation lemma:

A. H. From and F. K. Jacobsen 13:13

▶ Lemma 5 (effect preserves unaffected formulas). Assume formula p occurs in sequent z
and the rule r does not affect p. Then p also occurs in all children of z as given by effect
(|∈| denotes membership of a finite set):

assumes p ∈ set z and ¬ affects r p and (B, z ′) |∈| effect r (A, z)
shows p ∈ set z ′

Proof. The function parts preserves unaffected formulas (proof by cases) so children does as
well (proof by induction on the sequent) and thus effect does too. ◀

We lift this to escape paths:

▶ Lemma 6 (Escape paths preserve unaffected formulas). Assume formula p occurs in some
sequent at the head of an escape path which consists of a prefix pre, where none of the rules
affect p, and a suffix suf. Then p occurs at the head of suf:

assumes p ∈ set (pseq (shd steps)) and epath steps and steps = pre @− suf and
list-all (not (λstep. affects (snd step) p)) pre

shows p ∈ set (pseq (shd suf))

Next, notice the following property of streams:

▶ Lemma 7 (Eventual prefix). When a property P eventually holds of a stream, then the
stream is comprised of a prefix of n (possibly zero) elements for which P does not hold and
then a suffix that starts with an element for which P does hold:

assumes ev (holds P) xs
shows ∃ n. list-all (not P) (stake n xs) ∧ holds P (sdrop n xs)

Saturation states that a rule is eventually applied and Lemmas 6 and 7 combine to state
that any affected formulas are preserved until then.

5.2.2 Affected formulas
Knowing that formulas are preserved as desired, we need to know that they are broken down
as desired. The following lemma (proof omitted here) states this in general via parts:

▶ Lemma 8 (Parts in effect). For any formula p in a sequent z, the effect of rule r on z
includes some part of r’s effect on p:

assumes p ∈ set z and (B, z ′) |∈| effect r (A, z)
shows ∃ C xs. set A ⊆ set C ∧ xs ∈ set (parts C r p) ∧ set xs ⊆ set z ′

This is easier to understand when we specialize the rule and the formula:

▶ Corollary 9. Example effect of the NegNeg rule on a double-negated formula p:

corollary Neg (Neg p) ∈ set z =⇒ (B, z ′) |∈| effect NegNeg (A, z) =⇒ p ∈ set z ′

5.2.3 Hintikka requirements
We then need to prove the following:

▶ Theorem 10 (Hintikka escape paths). Saturated escape paths fulfill all Hintikka requirements:

assumes epath steps and Saturated steps
shows Hintikka (tree-fms steps)

ITP 2022

13:14 Verifying a Sequent Calculus Prover for First-Order Logic with Functions

Proof. This boils down to proving each requirement of Figure 4 (and those omitted there).
We give a couple of examples and refer to the formalization for the full details.

For Basic, assume towards a contradiction that both a predicate and its negation appear
on the branch. By preservation of formulas (Lemma 6), both appear in the same sequent
at some point. But then branchDone holds for that sequent, so it has no children and the
branch would terminate. This contradicts that escape paths are infinite, so Basic must hold.

For AlphaDis, assume that Dis p q appears on the branch. Then it appears at some step
n. By saturation of the escape path, AlphaDis is eventually applied at some (earliest) step
n + k. By Lemma 6, Dis p q is preserved until then. So by the effect of rule AlphaDis, both
p and q appear at step n + k + 1. The cases for the β- and δ-requirements are very similar.

For GammaExi assume that Exi p occurs at step n. We need to show that it is instantiated
with all terms that (eventually) appear on the branch. Fix an arbitrary such term t. There
must be some point m where t appears in a sequent. Thus at every point greater than m,
term t appears in the term list which is part of the proof state. By saturation, at some step
greater than n + m + 1, rule GammaExi is applied. The formula Exi p is preserved until
this stage (Lemma 6) and the term list only grows, so t is too. Thus, at the next step, sub 0
t p occurs on the branch as desired. ◀

5.3 Countermodel
We need to build a countermodel for any formula in a Hintikka set to contradict the validity
of any formula on a saturated escape path. We do this in the usual term model with a
(bounded) Herbrand interpretation. Unfortunately, we cannot build a countermodel in the
original semantics where the universe is specified as a type, since we cannot form the type
of terms in a given Hintikka set (the typedef command does not support free variables).
Instead, we introduce a custom bounded semantics.

5.3.1 Bounded semantics
The bounded semantics is exactly like the usual semantics (cf. Figure 2) except for an extra
argument u, standing for the universe, which bounds the range of the quantifiers in the
following cases:

| usemantics u e f g (Exi p) = (∃ x ∈ u. usemantics u (SeCaV .shift e 0 x) f g p)
| usemantics u e f g (Uni p) = (∀ x ∈ u. usemantics u (SeCaV .shift e 0 x) f g p)

This leads to the following natural requirements on environments e and function denota-
tions f, namely that they must stay inside u:

definition is-env u e ≡ ∀ n. e n ∈ u
definition is-fdenot u f ≡ ∀ i l. list-all (λx. x ∈ u) l −→ f i l ∈ u

In general, we only consider environments and function denotations that satisfy these
requirements and call them (and any model based on them) well formed. When u = UNIV,
we do not actually bound the quantifiers and the two semantics coincide.

The SeCaV proof system (cf. Figure 3) is sound for the bounded semantics too.

▶ Theorem 11 (SeCaV is sound for the bounded semantics). Given a SeCaV derivation of
sequent z and a well formed model, some formula p in z is satisfied in that model:

assumes ⊢⊢ z and is-env u e and is-fdenot u f
shows ∃ p ∈ set z. usemantics u e f g p

A. H. From and F. K. Jacobsen 13:15

Proof. The proof closely resembles the original soundness proof (cf. [19]). ◀

We abbreviate validity of a sequent in the bounded semantics as uvalid:

abbreviation uvalid z ≡ ∀ u (e :: nat ⇒ tm) f g. is-env u e −→ is-fdenot u f −→
(∃ p ∈ set z. usemantics u e f g p)

Namely, for all universes and well formed models, some formula in the sequent is satisfied
in the bounded semantics at that universe by that model.

5.3.2 Model construction
Our countermodel is given by a bounded Herbrand interpretation where terms are interpreted
as themselves when they appear in the universe terms H and as an arbitrary term otherwise.

▶ Definition 12 (Countermodel induced by Hintikka set S). We abbreviate the model as M S:

abbreviation E S n ≡ if Var n ∈ terms S then Var n else SOME t. t ∈ terms S
abbreviation F S i l ≡ if Fun i l ∈ terms S then Fun i l else SOME t. t ∈ terms S
abbreviation G S n ts ≡ Neg (Pre n ts) ∈ S
abbreviation M S ≡ usemantics (terms S) (E S) (F S) (G S)

The definition of G is what makes this a countermodel rather than a model: a predicate
is satisfied exactly when its negation is present in the Hintikka set.

Importantly, these definitions are well formed:

▶ Lemma 13 (Well formed countermodel). Definition 12 is well formed:

shows is-env (terms S) (E S)
shows is-fdenot (terms S) (F S)

Proof. By the construction of E and F and the nonemptiness of terms S. ◀

▶ Theorem 14 (Model existence). The given model falsifies any formula p in Hintikka set S:

assumes Hintikka S
shows (p ∈ S −→ ¬ M S p) ∧ (Neg p ∈ S −→ M S p)

Proof. By induction on the size of the formula p (substitution instances are smaller than
the quantified formulas they arise from). The second part of the thesis is needed when the
Hintikka requirements concern negated formulas. We show a few cases here and refer to the
formalization for the full details. The cases omitted here are similar to those shown.

Assume p = Pre n ts occurs in S. We need to show that the given model falsifies p.
Since terms S is downwards closed by construction, ts is interpreted as itself by the bounded
Herbrand interpretation. Moreover, by the Basic requirement, we know that Neg p is not in
S and is therefore satisfied. Thus, p is falsified.

Assume p = Dis q r occurs negated in S. Then by the BetaDis requirement, either Neg q
or Neg r occurs in S. The induction hypothesis applies to these, so p is satisfied as desired.

Assume p = Uni q occurs in S. By the DeltaUni requirement, so does some instance sub
0 t q for a term t in terms S. By the induction hypothesis, this is falsified by M S, and by its
origin, t is interpreted as itself. Thus, we have a counterexample that falsifies p.

Assume p = Exi q occurs in S. By the GammaExi requirement, so do all instances using
terms from S. Thus, these are all falsified by the model. These terms from S are interpreted
as themselves by definition so we have no witness for p in terms S and M S falsifies it. ◀

We note that the above proof works for open and closed formulas alike because we consider
both bound and free variables to be subterms of a formula.

ITP 2022

13:16 Verifying a Sequent Calculus Prover for First-Order Logic with Functions

5.4 Result
We start off by proving completeness for uvalid sequents. We need to relate these to saturated
escape paths.

▶ Lemma 15 (Saturated escape paths contradict uvalidity). A sequent z with a saturated
escape path, steps, cannot be uvalid:

assumes fst (shd steps) = (A, z) and epath steps and Saturated steps
shows ¬ uvalid z

Proof. Assume towards a contradiction that z is uvalid. By Theorem 10 the formulas on
steps form a Hintikka set S. Every formula p in z also occurs in S, so by Theorem 14, the well
formed model M S (Lemma 13) falsifies all of them. This contradicts the uvalidity of z. ◀

This leads to completeness for uvalid sequents:

▶ Theorem 16 (Completeness wrt. uvalid). The prover terminates for uvalid sequents:

assumes uvalid z
defines t ≡ secavProver (A, z)
shows fst (root t) = (A, z) ∧ wf t ∧ tfinite t

Proof. From the abstract framework (Lemma 4), either the thesis holds or a saturated escape
path exists for our sequent, but assumed uvalidity and Lemma 15 contradict the latter. ◀

▶ Corollary 17 (Completeness wrt. SeCaV). Termination for sequents derivable in SeCaV:

assumes ⊢⊢ z
defines t ≡ secavProver (A, z)
shows fst (root t) = (A, z) ∧ wf t ∧ tfinite t

Proof. By the soundness of SeCaV (Theorem 11) and Theorem 16 for uvalid sequents. ◀

6 Results and discussion

We have presented an automated theorem prover for the Sequent Calculus Verifier system.
The prover is capable of proving a number of selected exercise formulas very quickly, including
formulas which are quite difficult for humans to prove. The prover does have some limitations,
mostly related to performance and length of the generated proofs, since our proof search
procedure is not very optimized for either of these metrics. In particular, our prover always
instantiates quantified formulas with all terms in the sequent and breaks down all formulas
as much as possible, even when some formulas are “obviously” irrelevant to the proof.

6.1 Summary of theorems
We have proven soundness and completeness of the proof search procedure with regards to the
proof system of SeCaV (see Figure 3). For soundness, this was done directly (in Theorem 3),
while we took a detour through our notion of a bounded semantics to prove completeness
(in Theorems 11 and 16, which lead to Corollary 17). To justify the introduction of our
bounded semantics, we can use the existing soundness and completeness theorems of the
SeCaV proof system [19] and our results to prove that validity in the two semantics coincide.
Additionally, a number of easy corollaries further linking the prover, the proof system and
the two semantics follow from our results, and have been collected in Figure 5. In the figure,
the interpretations are implicitly universally quantified and for the bounded semantics we
only consider well formed interpretations.

A. H. From and F. K. Jacobsen 13:17

finite(t) ∧ wf(t) ∧ rootSequent(t) = [p]

usemantics u e f g p semantics e f g p

⊩ [p]

prover_soundness_SeCaV

prover_soundness_usemantics

prover_soundness_semantics

sound_usemantics
sound

prover_completeness_usemantics

prover_completeness_SeCaV

prover_completeness_semantics

complete_sound

Figure 5 Overview of our results. Solid arrows represent our main contributions, squiggly arrows
represent theorems of the existing SeCaV system, and dashed arrows represent easy corollaries.

6.2 Example proofs

Famously, we must beware of a program that has only been proven correct, but not tested. To
demonstrate that the automated theorem prover works, we examine some simple generated
proofs. The prover generates proofs in the SeCaV Unshortener format: first comes the
formula to be proven, then the names of proof rules to apply and the resulting sequent after
each application, with each formula in a sequent on its own line. Arguments to predicates and
functions are given in square brackets and parentheses are used to disambiguate formulas.

We start with perhaps the simplest possible classical example, that ¬p ∨ p. Figure 6a
shows the proof generated by the prover. This is the shortest possible proof of the formula
in the SeCaV system, and the prover is thus on par with a human in this very simple case.

The next example is ¬p(a) ∨ ∃x.p(x). Figure 6b contains the generated proof. It can be
shortened since the quantified formula only needs to be instantiated once, by a. However,
the prover always duplicates a γ-formula before instantiating it with all terms on the branch.

6.3 Verification challenges

While verifying the prover, we discovered that our initial version was unsound due to a
missing update of the term list when applying (multiple) δ-rules to a sequent. The attempted
soundness proof failed in exactly this case, pointing us directly to the issue. Thus, the formal
verification caught a critical flaw that we had missed in our testing and helped us fix it.

We have designed the prover to be easily verified and it mostly was. Especially the
abstract framework worked well for our novel case with a deterministic prover for first-order
logic. One obstacle, however, was in using a type to represent the domain in the SeCaV
semantics (cf. Figure 2). To build the countermodel, we need the domain to contain only the
terms on the saturated escape path, but we cannot form this type, which depends on a local
variable, in Isabelle/HOL. Here we would benefit from Isabelle integration of the work by
Kunčar and Popescu [25] which adds exactly this capability to higher-order logic. Instead we
introduced the bounded semantics (“the set-based relativization” in their terminology [25])
and proved a new soundness result for it (cf. Section 5.3.1). Otherwise the largest issue was
dealing with substitutions using de Bruijn indices. We are excited to see how recent work by
Blanchette et al. [7] for reasoning about syntax with bindings improves matters in this area.

ITP 2022

13:18 Verifying a Sequent Calculus Prover for First-Order Logic with Functions

Dis (Neg p) p

AlphaDis
Neg p
p

Ext
p
Neg p

Basic

(a) ¬p ∨ p.

Dis (Neg (p [a]))
(Exi (p [0]))

AlphaDis
Neg (p [a])
Exi (p [0])

Ext
Exi (p [0])
Exi (p [0])
Neg (p [a])

GammaExi [a]
p [a]
Exi (p [0])
Neg (p [a])

(b) ¬p(a) ∨ ∃x.p(x).

Ext
Exi (p [0])
Exi (p [0])
Neg (p [a])
p [a]

GammaExi [0]
p [0]
Exi (p [0])
Neg (p [a])
p [a]

Ext
p [a]
Neg (p [a])
Exi (p [0])
p [0]

Basic

Figure 6b continued.

Figure 6 Proofs generated by the prover in SeCaV Unshortener format.

6.4 Limitations and future work

There are a number of limitations and possibilities for optimization in the proof search itself.
Most importantly, the focus of the procedure is on completeness, not performance. Our
prover is much slower than state-of-the-art provers such as Vampire [24], but our goal was not
to compete on speed, but simply to show that formal verification of provers with advanced
features such as generation of proof certificates and support for functions is possible. The
prover also cannot output counterexamples, even though these can be detected in some cases:
our prover simply never terminates on invalid formulas.

We believe that the approach used for our prover is extendable to more sophisticated and
optimized proof search procedures, albeit with considerably more work needed to formally
verify them. The most obvious opportunity for optimization is controlling the order of proof
rules. In systems with unordered sequents, it is generally better to apply as many α-rules as
possible before applying β-rules to avoid duplicating work, but the prover simply applies
rules in a fixed order. As mentioned in Section 3, this optimization can be done by working
with “meta-rules” corresponding to groups of SeCaV rules such that a meta-rule e.g. applies
as many α-rules as possible before continuing to the next “phase” of the proof. We have
attempted to implement this, but found that it complicates the proofs considerably since this
idea makes it much harder to determine when a proof rule is actually applied. In the proof
of fairness and the proof that the formulas on saturated escape paths form Hintikka sets, we
need to know that certain formulas are preserved until proof rules are eventually applied to
them. By introducing phases in the proof, proving this becomes much more difficult, since
we then need to prove that each phase actually ends (requiring some measure which depends
on the specific sequents in question), and to locate each rule within the meta-rule it is part
of. We thus leave optimizations in this vein as future work. We note that, since the SeCaV
system requires application of the Ext rule to permute sequents, and proof rules only apply
to the first formula in a sequent, the optimization described above may not always reduce the
number of SeCaV proof steps needed to prove a formula, and some heuristics would probably
be needed to produce reasonably short proofs in all cases.

A. H. From and F. K. Jacobsen 13:19

Another optimization could be to only support closed formulas and thus reduce the
number of subterms of a given formula. For our current Herbrand interpretation, we need
variables to be subterms, but if we only considered closed terms, we could do away with this.

The length of proofs could also be optimized by performing more post-processing of the
found proofs, for example by removing unnecessary instantiations or rule applications that
do not contribute to proving a branch. This would not improve the performance in the
sense that the prover would still spend the same amount of time finding the proof, but it
could reduce the length of some proofs significantly. The proof trees generated by the prover
already require some (unverified) post-processing to obtain proofs in the SeCaV system. It
would be interesting to move these steps from Haskell into Isabelle/HOL and extend the
proofs to cover them.

7 Conclusion

We have designed, implemented and verified an automated theorem prover for first-order logic
with functions in Isabelle/HOL. We have used an existing framework in a novel way to get
us part of the way towards completeness and extended existing techniques on countermodels
over restricted domains to reach our destination. We build on the existing SeCaV system
and contribute an automatic way of finding derivations to the project. Thus, we have
demonstrated the utility of Isabelle/HOL for implementing and verifying executable software
and the strength of its libraries in doing so. Our prover handles the full syntax of first-order
logic with functions and constructs human-readable proof certificates in a sequent calculus.
We hope our work inspires others to verify more sophisticated provers in the same vein.

References
1 Clemens Ballarin. Locales: A module system for mathematical theories. Journal of Automated

Reasoning, 52(2):123–153, 2014. doi:10.1007/s10817-013-9284-7.
2 Mordechai Ben-Ari. Mathematical Logic for Computer Science. Springer London, 2012.

doi:10.1007/978-1-4471-4129-7.
3 A. Bentkamp, J. Blanchette, S. Tourret, and P. Vukmirović. Superposition for Full Higher-

order Logic. In A. Platzer and G. Sutcliffe, editors, Proceedings of the 28th International
Conference on Automated Deduction, number 12699 in Lecture Notes in Computer Science,
pages 396–412. Springer-Verlag, 2021. doi:10.1007/978-3-030-79876-5_23.

4 Stefan Berghofer. First-order logic according to Fitting. Archive of Formal Proofs, August
2007. Formal proof development. URL: https://isa-afp.org/entries/FOL-Fitting.html.

5 Jasmin Christian Blanchette. Formalizing the metatheory of logical calculi and automatic
provers in Isabelle/HOL (invited talk). In Assia Mahboubi and Magnus O. Myreen, editors,
Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2019, pages 1–13. ACM, 2019. doi:10.1145/3293880.3294087.

6 Jasmin Christian Blanchette, Mathias Fleury, Peter Lammich, and Christoph Weidenbach.
A verified SAT solver framework with learn, forget, restart, and incrementality. Journal of
Automated Reasoning, 61(1-4):333–365, 2018. doi:10.1007/s10817-018-9455-7.

7 Jasmin Christian Blanchette, Lorenzo Gheri, Andrei Popescu, and Dmitriy Traytel. Bindings
as bounded natural functors. Proc. ACM Program. Lang., 3(POPL):22:1–22:34, 2019. doi:
10.1145/3290335.

8 Jasmin Christian Blanchette and Andrei Popescu. Mechanizing the metatheory of Sledgeham-
mer. In Pascal Fontaine, Christophe Ringeissen, and Renate A. Schmidt, editors, Frontiers
of Combining Systems, pages 245–260, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-40885-4_17.

ITP 2022

https://doi.org/10.1007/s10817-013-9284-7
https://doi.org/10.1007/978-1-4471-4129-7
https://doi.org/10.1007/978-3-030-79876-5_23
https://isa-afp.org/entries/FOL-Fitting.html
https://doi.org/10.1145/3293880.3294087
https://doi.org/10.1007/s10817-018-9455-7
https://doi.org/10.1145/3290335
https://doi.org/10.1145/3290335
https://doi.org/10.1007/978-3-642-40885-4_17

13:20 Verifying a Sequent Calculus Prover for First-Order Logic with Functions

9 Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. Abstract completeness.
Archive of Formal Proofs, April 2014. Formal proof development. URL: https://isa-afp.
org/entries/Abstract_Completeness.html.

10 Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. Unified classical logic
completeness. In Stéphane Demri, Deepak Kapur, and Christoph Weidenbach, editors,
Automated Reasoning, pages 46–60, Cham, 2014. Springer International Publishing. doi:
10.1007/978-3-319-08587-6_4.

11 Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. Soundness and com-
pleteness proofs by coinductive methods. Journal of Automated Reasoning, 58:149–179, 2017.
doi:10.1007/s10817-016-9391-3.

12 Joachim Breitner. Visual theorem proving with the Incredible Proof Machine. In J. Blanchette
and S. Merz, editors, Interactive Theorem Proving, volume ITP 2016. Springer, Cham, 2016.
doi:10.1007/978-3-319-43144-4_8.

13 Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In C. R. Ra-
makrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
doi:10.1007/978-3-540-78800-3_24.

14 Mathias Fleury. Optimizing a verified SAT solver. In Julia M. Badger and Kristin Yvonne
Rozier, editors, NASA Formal Methods – 11th International Symposium, NFM 2019, Houston,
TX, USA, May 7-9, 2019, Proceedings, volume 11460 of Lecture Notes in Computer Science,
pages 148–165. Springer, 2019. doi:10.1007/978-3-030-20652-9_10.

15 Asta Halkjær From. Formalized soundness and completeness of epistemic logic. In Alexandra
Silva, Renata Wassermann, and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information,
and Computation – 27th International Workshop, WoLLIC 2021, Virtual Event, October 5-8,
2021, Proceedings, volume 13038 of Lecture Notes in Computer Science, pages 1–15. Springer,
2021. doi:10.1007/978-3-030-88853-4_1.

16 Asta Halkjær From, Frederik Krogsdal Jacobsen, and Jørgen Villadsen. SeCaV: A sequent
calculus verifier in Isabelle/HOL. In Mauricio Ayala-Rincon and Eduardo Bonelli, editors,
Proceedings 16th Logical and Semantic Frameworks with Applications, Buenos Aires, Argentina
(Online), 23rd – 24th July, 2021, volume 357 of Electronic Proceedings in Theoretical Computer
Science, pages 38–55. Open Publishing Association, 2022. doi:10.4204/EPTCS.357.4.

17 Asta Halkjær From. Epistemic logic: Completeness of modal logics. Archive of Formal Proofs,
October 2018. Formal proof development. URL: https://isa-afp.org/entries/Epistemic_
Logic.html.

18 Asta Halkjær From and Frederik Krogsdal Jacobsen. A sequent calculus prover for first-order
logic with functions. Archive of Formal Proofs, January 2022. Formal proof development.
URL: https://isa-afp.org/entries/FOL_Seq_Calc2.html.

19 Asta Halkjær From, Alexander Birch Jensen, Anders Schlichtkrull, and Jørgen Villadsen.
Teaching a formalized logical calculus. Electronic Proceedings in Theoretical Computer Science,
313:73–92, 2020. doi:10.4204/EPTCS.313.5.

20 Asta Halkjær From, Jørgen Villadsen, and Patrick Blackburn. Isabelle/HOL as a meta-
language for teaching logic. Electronic Proceedings in Theoretical Computer Science, 328:18–34,
October 2020. doi:10.4204/eptcs.328.2.

21 Frederik Krogsdal Jacobsen. Formalization of logical systems in Isabelle: An automated
theorem prover for the Sequent Calculus Verifier. Master’s thesis, Technical University of
Denmark, June 2021. URL: https://findit.dtu.dk/en/catalog/2691928304.

22 Alexander Birch Jensen, John Bruntse Larsen, Anders Schlichtkrull, and Jørgen Villadsen. Pro-
gramming and verifying a declarative first-order prover in Isabelle/HOL. AI Communications,
31(3):281–299, 2018. doi:10.3233/AIC-180764.

23 Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. Locales – A sectioning concept
for Isabelle. In Yves Bertot, Gilles Dowek, André Hirschowitz, Christine Paulin-Mohring,
and Laurent Théry, editors, Theorem Proving in Higher Order Logics, 12th International
Conference, TPHOLs’99, Nice, France, September, 1999, Proceedings, volume 1690 of Lecture
Notes in Computer Science, pages 149–166. Springer, 1999. doi:10.1007/3-540-48256-3_11.

https://isa-afp.org/entries/Abstract_Completeness.html
https://isa-afp.org/entries/Abstract_Completeness.html
https://doi.org/10.1007/978-3-319-08587-6_4
https://doi.org/10.1007/978-3-319-08587-6_4
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1007/978-3-319-43144-4_8
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-20652-9_10
https://doi.org/10.1007/978-3-030-88853-4_1
https://doi.org/10.4204/EPTCS.357.4
https://isa-afp.org/entries/Epistemic_Logic.html
https://isa-afp.org/entries/Epistemic_Logic.html
https://isa-afp.org/entries/FOL_Seq_Calc2.html
https://doi.org/10.4204/EPTCS.313.5
https://doi.org/10.4204/eptcs.328.2
https://findit.dtu.dk/en/catalog/2691928304
https://doi.org/10.3233/AIC-180764
https://doi.org/10.1007/3-540-48256-3_11

A. H. From and F. K. Jacobsen 13:21

24 Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. Lecture Notes
in Computer Science, 8044, 2013. doi:0.1007/978-3-642-39799-8_1.

25 Ondrej Kunčar and Andrei Popescu. From types to sets by local type definition in
higher-order logic. Journal of Automated Reasoning, 62(2):237–260, 2019. doi:10.1007/
s10817-018-9464-6.

26 Peter Lammich. The GRAT tool chain. In Serge Gaspers and Toby Walsh, editors, Theory
and Applications of Satisfiability Testing – SAT 2017, pages 457–463, Cham, 2017. Springer
International Publishing. doi:10.1007/978-3-319-66263-3_29.

27 Peter Lammich. Efficient verified (UN)SAT certificate checking. Journal of Automated
Reasoning, 64(3):513–532, 2020. doi:10.1007/s10817-019-09525-z.

28 Stephane Lescuyer. Formalizing and Implementing a Reflexive Tactic for Automated Deduction
in Coq. Phd thesis, Université Paris Sud – Paris XI, January 2011. URL: https://tel.
archives-ouvertes.fr/tel-00713668.

29 Filip Marić. Formal verification of modern SAT solvers. Archive of Formal Proofs, July 2008.
Formal proof development. URL: https://isa-afp.org/entries/SATSolverVerification.
html.

30 Filip Marić. Formal verification of a modern SAT solver by shallow embedding into Is-
abelle/HOL. Theoretical Computer Science, 411(50):4333–4356, 2010. doi:10.1016/j.tcs.
2010.09.014.

31 Filip Marić, Mirko Spasić, and René Thiemann. An incremental simplex algorithm with
unsatisfiable core generation. Archive of Formal Proofs, August 2018. Formal proof development.
URL: https://isa-afp.org/entries/Simplex.html.

32 Julius Michaelis and Tobias Nipkow. Propositional proof systems. Archive of Formal Proofs,
June 2017. Formal proof development. URL: https://isa-afp.org/entries/Propositional_
Proof_Systems.html.

33 Julius Michaelis and Tobias Nipkow. Formalized Proof Systems for Propositional Logic. In
Andreas Abel, Fredrik Nordvall Forsberg, and Ambrus Kaposi, editors, 23rd International
Conference on Types for Proofs and Programs (TYPES 2017), volume 104 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 5:1–5:16, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.TYPES.2017.5.

34 Dominique Pastre. MUSCADET 2.3: A knowledge-based theorem prover based on nat-
ural deduction. Lecture Notes in Computer Science (including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 2083:685–689, 2001. doi:
10.1007/3-540-45744-5_56.

35 Francis Jeffry Pelletier. Automated natural deduction in THINKER. Studia Logica, 60(1):3–43,
1998. doi:10.1023/A:1005035316026.

36 Nicolas Peltier. Propositional resolution and prime implicates generation. Archive of Formal
Proofs, March 2016. Formal proof development. URL: https://isa-afp.org/entries/
PropResPI.html.

37 Nicolas Peltier. A variant of the superposition calculus. Archive of Formal Proofs, September
2016. Formal proof development. URL: https://isa-afp.org/entries/SuperCalc.html.

38 Tom Ridge and James Margetson. A mechanically verified, sound and complete theorem
prover for first order logic. Lecture Notes in Computer Science, 3603:294–309, 2005. doi:
10.1007/11541868_19.

39 Anders Schlichtkrull. Formalization of the resolution calculus for first-order logic. Journal of
Automated Reasoning, 61(1–4):455–484, 2018. doi:10.1007/s10817-017-9447-z.

40 Anders Schlichtkrull, Jasmin Christian Blanchette, and Dmitriy Traytel. A verified prover
based on ordered resolution. In Proceedings of the 8th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2019, pages 152–165, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3293880.3294100.

ITP 2022

https://doi.org/0.1007/978-3-642-39799-8_1
https://doi.org/10.1007/s10817-018-9464-6
https://doi.org/10.1007/s10817-018-9464-6
https://doi.org/10.1007/978-3-319-66263-3_29
https://doi.org/10.1007/s10817-019-09525-z
https://tel.archives-ouvertes.fr/tel-00713668
https://tel.archives-ouvertes.fr/tel-00713668
https://isa-afp.org/entries/SATSolverVerification.html
https://isa-afp.org/entries/SATSolverVerification.html
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1016/j.tcs.2010.09.014
https://isa-afp.org/entries/Simplex.html
https://isa-afp.org/entries/Propositional_Proof_Systems.html
https://isa-afp.org/entries/Propositional_Proof_Systems.html
https://doi.org/10.4230/LIPIcs.TYPES.2017.5
https://doi.org/10.1007/3-540-45744-5_56
https://doi.org/10.1007/3-540-45744-5_56
https://doi.org/10.1023/A:1005035316026
https://isa-afp.org/entries/PropResPI.html
https://isa-afp.org/entries/PropResPI.html
https://isa-afp.org/entries/SuperCalc.html
https://doi.org/10.1007/11541868_19
https://doi.org/10.1007/11541868_19
https://doi.org/10.1007/s10817-017-9447-z
https://doi.org/10.1145/3293880.3294100

13:22 Verifying a Sequent Calculus Prover for First-Order Logic with Functions

41 Anders Schlichtkrull, Jasmin Christian Blanchette, Dmitriy Traytel, and Uwe Waldmann.
Formalizing Bachmair and Ganzinger’s ordered resolution prover. In Didier Galmiche, Stephan
Schulz, and Roberto Sebastiani, editors, Automated Reasoning, pages 89–107, Cham, 2018.
Springer International Publishing. doi:10.1007/978-3-319-94205-6_7.

42 Anders Schlichtkrull and Jørgen Villadsen. Paraconsistency. Archive of Formal Proofs, Decem-
ber 2016. Formal proof development. URL: https://isa-afp.org/entries/Paraconsistency.
html.

43 Natarajan Shankar and Marc Vaucher. The mechanical verification of a DPLL-based satisfia-
bility solver. Electronic Notes in Theoretical Computer Science, 269:3–17, 2011. Proceedings
of the Fifth Logical and Semantic Frameworks, with Applications Workshop (LSFA 2010).
doi:10.1016/j.entcs.2011.03.002.

44 Raymond M. Smullyan. First-order logic. Dover Publications, 1995.
45 Mirko Spasić and Filip Marić. Formalization of incremental simplex algorithm by stepwise

refinement. In Dimitra Giannakopoulou and Dominique Méry, editors, FM 2012: Formal
Methods, pages 434–449, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. doi:10.1007/
978-3-642-32759-9_35.

46 Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen, and Anders Schlichtkrull.
Interactive theorem proving for logic and information. In Roussanka Loukanova, editor,
Natural Language Processing in Artificial Intelligence — NLPinAI 2021, pages 25–48, Cham,
2022. Springer International Publishing. doi:10.1007/978-3-030-90138-7_2.

47 Jørgen Villadsen and Frederik Krogsdal Jacobsen. Using Isabelle in two courses on logic and
automated reasoning. In João F. Ferreira, Alexandra Mendes, and Claudio Menghi, editors,
Formal Methods Teaching, pages 117–132, Cham, 2021. Springer International Publishing.
doi:10.1007/978-3-030-91550-6_9.

48 Jørgen Villadsen and Anders Schlichtkrull. Formalizing a paraconsistent logic in the Isabelle
proof assistant. In Abdelkader Hameurlain, Josef Küng, Roland Wagner, and Hendrik Decker,
editors, Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIV: Special
Issue on Consistency and Inconsistency in Data-Centric Applications, pages 92–122, Berlin,
Heidelberg, 2017. Springer Berlin Heidelberg. doi:10.1007/978-3-662-55947-5_5.

49 Jørgen Villadsen, Andreas Halkjær From, and Anders Schlichtkrull. Natural deduction
assistant (NaDeA). Electronic Proceedings in Theoretical Computer Science, 290(290):14–29,
2019. doi:10.4204/EPTCS.290.2.

50 Jørgen Villadsen, Anders Schlichtkrull, and Andreas Halkjær From. A verified simple prover
for first-order logic. CEUR Workshop Proceedings, 2162:88–104, 2018. URL: http://ceur-ws.
org/Vol-2162/#paper-08.

https://doi.org/10.1007/978-3-319-94205-6_7
https://isa-afp.org/entries/Paraconsistency.html
https://isa-afp.org/entries/Paraconsistency.html
https://doi.org/10.1016/j.entcs.2011.03.002
https://doi.org/10.1007/978-3-642-32759-9_35
https://doi.org/10.1007/978-3-642-32759-9_35
https://doi.org/10.1007/978-3-030-90138-7_2
https://doi.org/10.1007/978-3-030-91550-6_9
https://doi.org/10.1007/978-3-662-55947-5_5
https://doi.org/10.4204/EPTCS.290.2
http://ceur-ws.org/Vol-2162/#paper-08
http://ceur-ws.org/Vol-2162/#paper-08

	1 Introduction
	1.1 Related work

	2 Background
	2.1 The Sequent Calculus Verifier
	2.2 Abstract frameworks for soundness and completeness

	3 Prover
	3.1 Applying the framework
	3.2 Making the prover executable

	4 Soundness
	5 Completeness
	5.1 Hintikka
	5.2 Saturated escape paths are Hintikka
	5.2.1 Unaffected formulas
	5.2.2 Affected formulas
	5.2.3 Hintikka requirements

	5.3 Countermodel
	5.3.1 Bounded semantics
	5.3.2 Model construction

	5.4 Result

	6 Results and discussion
	6.1 Summary of theorems
	6.2 Example proofs
	6.3 Verification challenges
	6.4 Limitations and future work

	7 Conclusion

