Pedant: A Certifying DQBF Solver

Franz-Xaver Reichl &
TU Wien, Austria

Friedrich Slivovsky &
TU Wien, Austria

—— Abstract

PEDANT is a solver for Dependency Quantified Boolean Formulas (DQBF) that combines propositional
definition extraction with Counterexample-Guided Inductive Synthesis (CEGIS) to compute a model
of a given formula. PEDANT 2 improves upon an earlier version in several ways. We extend the
notion of dependencies by allowing existential variables to depend on other existential variables.
This leads to more and smaller definitions, as well as more concise repairs for counterexamples.
Additionally, we reduce counterexamples by determining minimal separators in a conflict graph, and
use decision tree learning to obtain default functions for undetermined variables. An experimental
evaluation on standard benchmarks showed a significant increase in the number of solved instances
compared to the previous version of our solver.

2012 ACM Subject Classification Theory of computation — Automated reasoning

Keywords and phrases DQBF, DQBF Solver, Decision Procedure, Certificates

Digital Object Identifier 10.4230/LIPIcs.SAT.2022.20

Supplementary Material Software (Source Code): https://github.com/fslivovsky/pedant-solver

Funding Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT19-060,
and the Austrian Science Fund (FWF) under grant W1255.

1 Introduction

The last decades showed steady progress in propositional satisfiability (SAT) solving [13, 14, 9].
This lead to the application of SAT solving to problems of various domains, ranging from
AT planning [23], over software verification [17] to electronic design automation [32]. In
many of these problems — such as Al planning — SAT solving is used to deal with problems
beyond NP [23]. As a consequence of this, the propositional encodings of these problems
can grow superpolynomially in the size of the original problem. This motivates research on
decision procedures for logics that allow more succinct encodings, such as Quantified Boolean
Formulas (QBF) or Dependency Quantified Boolean Formulas (DQBF).

Quantified Boolean Formulas (QBF) extend propositional logic by universal and existential
quantification over truth values. A QBF is true if it has a model, which is a family of Boolean
functions (Skolem functions) that satisfies the underlying propositional formula for each
assignment to the universally quantified variables. The arguments of these functions are
implicitly determined by the structure of the quantifier nesting. Evaluating QBF is PSPACE-
complete [31]. Hence, it is believed to be a much harder problem as SAT. On the other
hand, QBF allow more succinct encodings for a wide range of problems [25]. In practice this
advantage may outweigh the disadvantage of slower decision procedures.

Dependency Quantified Boolean Formulas (DQBF) are a generalization of QBF, where
each existentially quantified variable is equipped with a set of dependencies. The dependencies
are subsets of universally quantified variables and determine the possible arguments of Skolem
functions. While evaluating DQBF is NEXPTIME-complete [19], DQBF allow to succinctly
encode the existence of Boolean functions subject to a set of constraints, equivalence checking
of partial circuit designs and bounded synthesis [21, 10, §].

? Franz-Xaver Reich} and Friedrich slivovsky;

37 icensed under Creative Commons License CC-BY 4.0
25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022).
Editors: Kuldeep S. Meel and Ofer Strichman; Article No. 20; pp. 20:1-20:10

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:freichl@ac.tuwien.ac.at
mailto:fs@ac.tuwien.ac.at
https://doi.org/10.4230/LIPIcs.SAT.2022.20
https://github.com/fslivovsky/pedant-solver
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2

Pedant: A Certifying DQBF Solver

The DQBF solver PEDANT combines the extraction of propositional definitions [27] with
Counter-Example Guided Inductive Synthesis (CEGIS) [30, 29, 16] to construct a candidate
model. It can generate certificates for true DQBF with almost no overhead.

This tool paper presents PEDANT 2, the successor of PEDANT [22], and describes a series
of new features:

Ezxtended dependencies allow existentially quantified variables as arguments of Skolem

functions when dependencies are suitably nested. Their introduction leads to the detection

of additional defined Skolem functions as well as more concise definitions.

A refined counterexample reduction procedure based on minimal separators in a conflict

graph results in more compact rules to repair counterexamples.

Default functions obtained by decision tree learning are used instead of default values for

undetermined existential variables.

In addition, PEDANT 2 comes with several minor improvements such as the support for
Aiger [4] certificates for true DQBF.

The remainder of the paper is structured as follows. After briefly covering basic concepts
in Section 2, we will discuss the underlying algorithm in Section 3. Subsequently, we will
describe the above improvements in Section 4. We discuss experimental results in Section 5
before concluding with an outlook on future work in Section 6.

2 Preliminaries

We use standard notation for propositional logic and refer the reader to the Handbook of
Satisfiability [5] for an introduction to SAT. For propositional definability we refer the reader
to [18, 27].

We only consider Dependency Quantified Boolean Formulas (DQBF) in Prenex Conjunctive
Normal Form (PCNF). A DQBF ® = Q.¢ in PCNF counsists of a quantifier prefic Q and a
matriz . The quantifier prefix Q has the shape Vu; ...Vu,3e1(D1) ... e (D,y,), where the
variables u; and e; are pairwise distinct. We refer to the variables 1, ..., u, as the universal
variables and eq,...,e,, as the existential variables. Moreover, each D; shall be a subset of
the universal variables. We denote the set D; as the dependencies of e;. The matrix ¢ is
a propositional formula in CNF, where each variable is either universally or existentially
quantified in Q.

Given a set X of variables, we write [X] for the set of assignments of X. Let ® be a
DQBF and F be a set of functions {fe,,..., fe,,} such that f., : [D;] — {TRUE, FALSE}
for 1 <4 < m. For an assignment o to the universal variables we denote the existential
assignment {e1 > fe,(o|p,),--.,em = fe, (olp,)} by F(o). F is a model (or a winning
I-strategy) for @ if, for each assignment o to the universal variables, the assignment o U F'(0)
satisfies the matrix . A DQBF is true, if it has a model, and false otherwise.

3 Counterexample-Guided DQBF Solving

In this section we will recap the previously presented CEGIS algorithm [22] in Algorithm 1.
For the remaining part of this paper let ® be some DQBF with matrix ¢ and existential
variables E. Moreover, for each e € E we denote the dependencies of e by D(e).

The core idea of Algorithm 1 is to incrementally construct candidate Skolem functions.
In order to do so we try to obtain counterexamples with respect to the candidate model and
use them to refine the candidate model. For this purpose we first try to compute definitions
for the existential variables in terms of their dependencies. These definitions either describe

F.-X. Reichl and F. Slivovsky

Skolem functions or the DQBF is false. Thus, we set the candidate Skolem functions for
the defined variables according to their definition. Throughout the remaining steps of the
algorithm these functions will not be changed. Note that in contrast to the original algorithm,
here we only compute definitions at the beginning. This change was motivated by the
observation that in practice most often we do not find definitions for variables that were
undefined initially.

For the undefined variables we initially set the candidate Skolem function to some default
value. Then we try to iteratively construct a Skolem function for these variables. For
this purpose we check if we can find a counterexample to the current candidate under an
assignment for the arbiter variables — which is initially empty. This means we check if we
can find an assignment that satisfies the negation of the matrix and that is consistent with
the current candidate model. If we cannot find such a counterexample, our candidate Skolem
functions are indeed proper Skolem functions, which means that the DQBF is true.

Otherwise, we obtain a counterexample o. In general, we are not interested in the complete
counterexample, instead we want to reduce it. For this purpose we apply assumption-based
SAT solving [7]. This means we check the satisfiability of the matrix under o. As this SAT
check yields that the formula is unsatisfiable under the given assumptions, we can compute a
set of failed assumptions. We then use this set as a reduced counterexample, denoted by &.
Subsequently, we will refer to this approach for reducing counterexamples as reduction by
core extraction.

To repair the counterexample we apply two techniques. First, we check if it suffices to
change the assignment for a single existential variable e. This is the case if the reduced
counterexample only contains a single existential variable. To rule out the current coun-
terexample in subsequent iterations we now add a forcing clause to the candidate model. A
forcing clause represents an implication that asserts that under the projection of 6 to D(e)
the variable e must be assigned to —o(e).

If we cannot introduce a forcing clause we do not know a priori which existential variables
in the counterexample need to be assigned differently. In order to get control over the
assignments of these existential variables we introduce arbiter clauses. This means we
introduce for each variable e in 6 a new auxiliary variable a — which we call arbiter variable —
and arbiter clauses a V ﬁU\D(e) V —e and —a V ﬁo"D(e) V e. Note that we used the original
counterexample and not the reduced one for introducing the arbiter clause. By fixing
the assignment for the arbiter variable we can thus fix the assignment of the associated
existential variable under the assignment o| D(e)- To rule out the current counterexample for
the subsequent iterations we first obtain a clause C' of arbiter literals by negating the arbiter
assignment. Next, we add for each existential variable e in & the associated arbiter variable
a to C if & contains —e, respectively —a if 6 contains e. Then we add C' to a SAT solver.
If the clauses of arbiter literals can be satisfied, we know that we can find an assignment
to the arbiter variables that deals with all encountered counterexamples. By using such a
satisfying assignment as the arbiter assignment for the next iteration we ensure that we will
not encounter the same counterexample again. If the clauses cannot be satisfied then every
assignment to the arbiter variables entails a counterexample. This means that the DQBF is
false.

4 Improvements

In this section we will discuss several improvements to the base algorithm presented in the
last section.

20:3

SAT 2022

20:4 Pedant: A Certifying DQBF Solver

Algorithm 1 Solving DQBF by CEGIS and Definition Extraction.

1. procedure SOLVE(®D)

2 model <~ COMPUTEDEFINITIONS()

3 INITIALIZEDEFAULTS(model)

4 arbiterFormula, arbiterAssignment < ()

5: loop

6 if CHECKMODEL(model, arbiterAssignment) then

7 return TRUE

8 o + GETCOUNTEREXAMPLE(model, arbiterAssignment)
9

: & + GETCORE(model, o) > get failed assumptions
10: if HASFORCINGCLAUSE(c0) then
11: ADDFORCINGCLAUSE(model, 5)
12: continue
13: failedArbiters < CLAUSIFY (G| ,) > A the arbiter variables
14: for / € 6|, do
15: a 4 ADDARBITER(model, £, 0,4 (0))
16: ADDARBITERLITERAL(failedArbiters, a)
17: arbiterFormula < arbiterFormula U { failedArbiters}
18: if arbiterFormula is satisfiable then
19: arbiterAssignment < GETMODEL (arbiterFormula)
20: else
21: return FALSE

4.1 Extended Dependencies

One can often obtain more and more compact definitions by allowing definitions of existential
variables not only in terms of their dependencies but also other existential variables. We
illustrate this with the following example:

» Example 1. Consider the DQBF Vu;Vus Jeq (u1)Jea(ur, usz). (e2 < (e1 Aug)) A (e V uy),
where neither e; nor ey is defined in terms of its dependencies. But we can see that es is
defined by e; A us.

In order to make use of this we introduce extended dependencies. The extended dependencies
of an existential variable e — denoted as ED(e) — contain besides the dependencies D(e) also
all the existential variables whose dependencies are contained in D(e). To also take variables
with the same dependencies into account, we introduce some ordering <p on the existential
variables. In PEDANT 2 we order the existential variables according to their index in the
DQDIMACS input. If two variables e; and es; have the same dependencies, we add ey to
ED(eq) if €1 <g ez. Additionally, if we find a definition 1 for a variable e we also add e to
the extended dependencies of all variables that contain var(v).

Replacing dependencies with extended dependencies improves our solver in two ways.
First this allows us to compute more and also more compact definitions — as we have seen
in the above example. Second this also means that more counterexamples can be resolved
by forcing clauses. Remember that in Algorithm 1 we add a forcing clause whenever we
only have a single existential variable in the reduced counterexample. By using extended
dependencies we can introduce a forcing clause whenever there is an existential variable in
the reduced counterexample that contains all the other existential variables in its extended
dependencies. The two improvements mentioned above mean that Skolem functions may not

F.-X. Reichl and F. Slivovsky

only use universal variables from the dependencies but also existential variables from the
extended dependencies. As the used setup allows to replace each existential variable e in a
Skolem function by the application of the Skolem function for e, we can still obtain Skolem
functions that only depend on D(e).

4.2 Counterexample Reduction

We have already discussed that we want small counterexamples. While counterexamples can
be reduced by core extraction, this approach is suboptimal in the sense that the generated
reduced counterexamples are not guaranteed to be minimal. In order to obtain a minimal

counterexample, a minimal set of failed assumptions could be computed in the core extraction.

This can be done by a SAT solver like Picosat [2].

In general the computation of minimal sets of failed assumptions is relatively costly.

Additionally, we want to impose certain properties on the reduced counterexamples — which
we will discuss below. For this reason we present an alternative technique for reducing
counterexamples that is based on computing a minimal separator in a conflict graph — our
notion of a conflict graph is closely related to implication graphs in SAT [5].

If we find a counterexample that is consistent with the current candidate model and
that falsifies the matrix, then it falsifies some clause C' in the matrix. We want to analyze
why this clause was falsified. This is done by considering the conflict graph. The conflict
graph is a directed graph that contains a vertex for each universal, existential and arbiter

variable. Moreover, if the assignment of an existential variable e is entailed by some rule (i.e.

a definition, a forcing clause or an arbiter clause) then the conflict graph contains an edge
for each variable v in this rule to e. Subsequently, we refer to the variables in C as conflict
variables. Moreover, we call the variables that are connected to a conflict variable and only
have outgoing edges but no incoming edges, source variables.

Based on the conflict graphs we can now give two properties a reduced counterexample
shall have. First, the reduced counterexample shall be a separator of the conflict variables
and the source variables. This is motivated by the consideration that otherwise the reduced

counterexample would be consistent with the candidate model but also satisfy the clause C.

Second, we want to ensure that at least one existential source is contained in the reduced
counterexample. We know that the assignments of all non-source existentials are entailed by
some rule, thus in order to fix the current counterexample we have to assign the existential
sources differently.

Next we distinguish between two cases. First, suppose it suffices to assign a single literal
in the sources differently to rule out the counterexample. This means we can obtain a forcing
clause for a variable e from the sources. To reduce the counterexample we compute a minimal
separator of the source and the conflict variables subject to the following constraints:

The forced variable e shall be contained in the separator.

Every other existential variable in the separator shall be contained in ED(e).

To compute the separator we use the Boykov-Kolmogorov maxz-flow algorithm [6]. In the
second case it does not suffice to assign a single variable differently, this means we have to
introduce arbiter clauses. As we do not know which existential variable needs to be assigned
differently we use the set of all sources as a reduced counterexample.

4.3 Default Functions

As mentioned above we use default values in order to fix the assignments of undefined
variables in case no forcing clause, respectively no arbiter clause applies. Subsequently, we
generalize these default values by suitably chosen functions. Actually, we could use any

20:5

SAT 2022

20:6

Pedant: A Certifying DQBF Solver

function that complies with the dependencies to fix the assignment of an existential variable,
as defaults only come into play if no other rule applies. We try to obtain a good guess by
using decision tree learning based on counterexamples seen so far (cf. MANTHAN [12]).

For each existential variable e we use a decision tree, whose sample space is given by the
set of all assignments to the dependencies of e. The labels for the samples are either true
or false and indicate whether the variable e shall be assigned to true or false. The function
computed by the decision tree then gives the default function.

We only use counterexamples for decision tree learning if the counterexample can be
fixed by a forcing clause for the variable e. In this case we use the projection of the
counterexample to the dependencies of e as a sample and label it with —o(e) — where o
denotes the counterexample. We only use counterexamples in this case because only if we
have a forcing clause we know how to assign e and thus know how to label the sample.

As we want to incrementally train the tree we use Hoeffding trees' [15] to represent the
decision trees. Hoeffding trees are decision trees that do not keep track of the complete
samples in the tree. Instead, they have in each leaf a counter for each possible label. If a
sample is added to the tree, it first classifies the sample to the appropriate leaf and increases
the corresponding counter. If the new sample changed the majority class in the node, then
the label of this leaf is changed. Moreover, a suitable evaluation function like information
gain is used to determine whether a split shall be applied.

We illustrate the usage of default functions with the following example:

» Example 2. Let n be some positive integer then consider the DQBF

Yy ... Vup, 3er(ug, ..., up)3es(ug, . o uy).

(e1 & XOR (1, ..., un)) A(ur Vus VerV-oey)A(—up V-ug Ve Ves).

While e; has a definition e does not. In this example, we will get a large number of
counterexamples: A lower bound for the number of counterexamples is given by the number
of assignments that assign an even number of universal variables to true, u; and us to true
and es to false. Each counterexample gives a forcing clause. Moreover, we can see that in each
counterexample where we have —ey we also have usg, respectively that in counterexamples with
eo we have —us. Thus, after a sufficiently large number of counterexamples the decision tree
learning will introduce a split for us. We thus obtain the default function f(us,...,u,) = us.
By using this function we can then immediately show that the formula evaluates to true.
Thus, learned default functions can reduce the number of conflicts.

4.4 Further Improvements

Besides the major changes we described until now PEDANT 2 also implements minor changes.

Aiger Certificates. As a core idea of our algorithm is the refinement of candidate Skolem
functions, PEDANT 2 can compute certificates for true DQBF with almost no overhead.
In the previous version only certificates in the form of DIMACS CNF formulas could
be generated. In the current version also certificates given as circuits in the AIGER
format [4] are supported.

Preprocessing. The experimental evaluation in [22] showed that for certain formulas the
preprocessing of formulas can be advantageous for our solver. This motivated the idea of
pruning the dependencies of a given formula by means of the Reflexive Resolution Path

I Note that our setup does not fulfil the requirement of independent samples. Thus, the Hoeffding trees are
not necessarily asymptotically arbitrarily close to a decision tree learned by traditional batch learning.

F.-X. Reichl and F. Slivovsky

Table 1 Solved Instances QBFEVAL’20 DQBF Track.

DQBDD HQS Pedant Pedant2
Family Total Solved PAR2 Solved PAR2 Solved PAR2 Solved PAR2
Balabanov 34 14 21753 18 1880.4 14 2281.6 18 1958.6
Bloem 90 34 2278.8 33 22984 37 2163.8 41 1976.0
Kullmann 50 50 32.5 36 1100.5 33 1397.8 50 78.3
Scholl 90 83 283.3 81 406.2 81 362.0 85 207.7
Tentrup 90 85 249.0 79 481.5 15 3047.7 86 236.2
All 354 266 928.2 247 1146.1 180 1833.6 280 814.4

Dependency Scheme (RRS) [33, 28]. We decided to incorporate this preprocessing step
directly into our solver. This is motivated by the consideration that on the one hand
the introduction of arbiter clauses prefers small dependencies but on the other hand the
computation of definitions and the search for forcing clauses prefers large dependencies.
By adding the preprocessing step directly to PEDANT 2, it has a direct access both to the
original dependencies and to the pruned dependencies.

Usage of other SAT Solvers. In the previous version of the solver we did only support
the SAT solver CADICAL [3] as backend solver. The current version of the solver also
supports the solver GLUCOSE [1]. Moreover, we provide an interface which allows to
easily extend our solver such that also other SAT solvers can be used.

5 Experimental Evaluation

In this section we will on the one hand give a comparison of PEDANT 2 with other state-of-
the-art DQBF solvers and on the other hand we will illustrate the impact of the presented
techniques by giving a small ablation study. For evaluating the solvers we used instances
from the DQBF track of QBFEVAL’20 [20]. To compare the solvers we use on the one
hand the number of solved instances within a given timeout and on the other hand the
PAR2 score?. For all experiments described below we used a cluster with Intel Xeon E5649
processors at 2.53 GHz running 64-bit Linux. The presented results are based on single runs
of the respective solvers where we imposed a time and memory limit of 1800 seconds and
8 GB, by using RUNSOLVER [24]. We run each solver with its default configuration, except
for the evaluations for the ablation study where we used the appropriate configurations to
disable the respective features.

We compared PEDANT 2 with the previous version of PEDANT [22], the DQBF solver
DQBDD 1.2 [26] and the solver HQS 2 [11]. The results are given in Table 1. In particular
these results show that PEDANT 2 could significantly improve on the instances from the
Tentrup family. Not only PEDANT 2 could solve more instances than all the other solvers, it
could also generate certificates for all true DQBF. We validated these certificates by using a
tool which is available as part of the PEDANT 2 system.

The results for the ablation study are given in Table 2. We compare four different
configurations:

2 The Penalized Average Runtime (PAR) is the average runtime, with the time for each unsolved instance
calculated as a constant multiple of the timeout.

20:7

SAT 2022

20:8

Pedant: A Certifying DQBF Solver

Table 2 Solved Instances QBFEVAL’20 DQBF Track — Ablation Study.

Pedant noSep + noML noML Pedant2
Family Total Solved PAR2 Solved PAR2 Solved PAR2 Solved PAR2
Balabanov 34 14 2281.6 20 1776.0 18 1957.3 18 1958.6
Bloem 90 37 2163.8 31 2385.7 41 1979.7 41 1976.0
Kullmann 50 33 1397.8 40 816.9 50 76.2 50 78.3
Scholl 90 81 362.0 75 604.3 80 402.7 85 207.7
Tentrup 90 15 3047.7 24 2785.3 86 220.2 86 236.2
All 354 180 1833.6 190 1754.3 275 860.4 280 814.4

1. Disable extended dependencies, separator-based counterexample reduction and machine
learning. Due to their deep integration into PEDANT 2, extended dependencies cannot
be disabled. For this reason this configuration is represented by the previous version of
PEDANT.

2. Disable machine learning and separator-based counterexample reduction.
3. Disable machine learning.

4. Default configuration.

The table shows that the technique with the by far most significant impact is the separator-
based counterexample reduction. Still, we have to remember that the separator based
counterexample reduction requires the usage of extended dependencies. Thus, the significance
of using extended dependencies is not fully captured in the table. A closer analysis of the
results shows that in most of the instances that could not be solved by PEDANT 2 there is
only a relatively small number of forcing clauses. For this reason no, respectively only few
shallow decision trees, can be learned. Thus, with a more reliable source for samples for the
decision trees, the learning of default functions may further improve the solver.

6 Conclusion

We detailed several improvements introduced in PEDANT 2. Jointly, these resulted in
significantly improved performance on benchmark instances compared to the initial release.
In particular, the combination of extended dependencies and counterexample reduction lead to
many counterexamples being resolved by forcing clauses. Generally, fixing a counterexample
through a forcing clause is more efficient than the introduction of arbiter variables, since
only a single candidate Skolem function is modified. However, it requires that variables
occurring in a counterexample have dependencies than can be linearly ordered. While
this is the case for many benchmark formulas, it appears to be less common in “genuine’
DQBF instances, where counterexamples often involve multiple existential variables with
incomparable dependency sets. In such cases, PEDANT 2 still has to create arbiter variables
that define the values of existential variables for complete assignments of their dependency
sets, negating the effect of counterexample reduction. Finding a more eflicient way of dealing
with such counterexamples is the most important challenge for future work.

i

F.-X. Reichl and F. Slivovsky

—— References

1

10

11

12

13

14

15

Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.
In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint Conference
on Artificial Intelligence, pages 399404, 2009.

Armin Biere. PicoSAT Essentials. Journal on Satisfiability, Boolean Modeling and Computation
(JSAT), 4(2-4):75-97, 2008. doi:10.3233/sat190039.

Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCal, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Jérvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 — Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51-53. University of Helsinki, 2020.

Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 and beyond. Technical Report
11/2, Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr.
69, 4040 Linz, Austria, 2011.

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. I0S Press,
2009.

Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEFE Transactions on Pattern Analysis and
Machine Intelligence, 26:1124-1137, September 2004. URL: http://www.csd.uwo.ca/~yuri/
Abstracts/pamiO4-abs.shtml.

Niklas Eén and Niklas Sorensson. An extensible SAT-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, pages 502-518,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe, and Leander Tentrup. Encodings of
bounded synthesis. In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference, TACAS 2017, volume
10205 of Lecture Notes in Computer Science, pages 354-370, 2017.

Nils Froleyks, Marijn Heule, Markus Iser, Matti Jarvisalo, and Martin Suda. SAT competition
2020. Artificial Intelligence, 301:103572, 2021. doi:10.1016/j.artint.2021.103572.
Karina Gitina, Sven Reimer, Matthias Sauer, Ralf Wimmer, Christoph Scholl, and Bernd
Becker. Equivalence checking of partial designs using dependency quantified Boolean formulae.

In IEEFE 31st International Conference on Computer Design, ICCD 20183,, pages 396-403.

IEEE Computer Society, 2013.

Karina Gitina, Ralf Wimmer, Sven Reimer, Matthias Sauer, Christoph Scholl, and Bernd
Becker. Solving DQBF through quantifier elimination. In Wolfgang Nebel and David Atienza,
editors, Proceedings of the 2015 Design, Automation & Test in Europe Conference € Exhibition,
DATE 2015, pages 1617-1622. ACM, 2015.

Priyanka Golia, Subhajit Roy, and Kuldeep S. Meel. Manthan: A data-driven approach for
Boolean function synthesis. In Shuvendu K. Lahiri and Chao Wang, editors, Computer Aided
Verification - 82nd International Conference, CAV 2020, volume 12225 of Lecture Notes in
Computer Science, pages 611-633. Springer, 2020.

Marijn J. H. Heule, Matti Jarvisalo, and Martin Suda. SAT competition 2018. J. Satisf.
Boolean Model. Comput., 11(1):133-154, 2019.

Marijn J.H. Heule, Matti Jarvisalo, and Martin Suda, editors. Proceedings of SAT Race 2019:
Solver and Benchmark Descriptions, volume B-2019-1 of Department of Computer Science
Report Series B. Department of Computer Science, University of Helsinki, Finland, 2019.
Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data streams. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 01, pages 97-106, New York, NY, USA, 2001. Association for
Computing Machinery. doi:10.1145/502512.502529.

20:9

SAT 2022

https://doi.org/10.3233/sat190039
http://www.csd.uwo.ca/~yuri/Abstracts/pami04-abs.shtml
http://www.csd.uwo.ca/~yuri/Abstracts/pami04-abs.shtml
https://doi.org/10.1016/j.artint.2021.103572
https://doi.org/10.1145/502512.502529

20:10

Pedant: A Certifying DQBF Solver

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Susmit Jha and Sanjit A. Seshia. A theory of formal synthesis via inductive learning. Acta
Informatica, 54(7):693-726, 2017.

Daniel Kroening. Software verification. In Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability, chapter 16, pages 505-532. IOS Press,
Amsterdam, 2009.

Jéréme Lang and Pierre Marquis. On propositional definability. Artif. Intell., 172(8-9):991—
1017, 2008. doi:10.1016/j.artint.2007.12.003.

G. Peterson, J. Reif, and S. Azhar. Lower bounds for multiplayer noncooperative games of
incomplete information. Computers & Mathematics with Applications, 41(7):957-992, 2001.
Luca Pulina and Martina Seidl. The 2016 and 2017 QBF solvers evaluations (gbfeval’l6 and
gbfeval’lT). Artif. Intell., 274:224-248, 2019.

Markus N. Rabe. A resolution-style proof system for DQBF. In Serge Gaspers and Toby
Walsh, editors, Theory and Applications of Satisfiability Testing - SAT 2017, volume 10491 of
Lecture Notes in Computer Science, pages 314-325. Springer, 2017.

Franz-Xaver Reichl, Friedrich Slivovsky, and Stefan Szeider. Certified DQBF solving by
definition extraction. In Chu-Min Li and Felip Manya, editors, Theory and Applications
of Satisfiability Testing — SAT 2021, pages 499-517, Cham, 2021. Springer International
Publishing.

Jussi Rintanen. Planning and sat. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby
Walsh, editors, Handbook of Satisfiability, chapter 15, pages 483-504. IOS Press, Amsterdam,
20009.

Olivier Roussel. Controlling a solver execution with the runsolver tool. J. Satisf. Boolean
Model. Comput., 7(4):139-144, 2011.

Ankit Shukla, Armin Biere, Luca Pulina, and Martina Seidl. A survey on applications of
quantified Boolean formulas. In ICTAI pages 78-84. IEEE, 2019.

Juraj Si¢. Satisfiability of DQBF using binary decision diagrams. Master’s thesis, Masaryk
University, Brno, Czech Republic, 2020.

Friedrich Slivovsky. Interpolation-based semantic gate extraction and its applications to QBF
preprocessing. In CAV (1), volume 12224 of Lecture Notes in Computer Science, pages 508-528.
Springer, 2020.

Friedrich Slivovsky and Stefan Szeider. Soundness of Q-resolution with dependency schemes.
Theor. Comput. Sci., 612:83—-101, 2016.

Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. Sketching concurrent
data structures. In Rajiv Gupta and Saman P. Amarasinghe, editors, Proceedings of the ACM
SIGPLAN 2008 Conference on Programming Language Design and Implementation, pages
136-148. ACM, 2008.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit A. Seshia, and Vijay A.
Saraswat. Combinatorial sketching for finite programs. In John Paul Shen and Margaret
Martonosi, editors, Proceedings of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2006, pages 404—415. ACM,
2006.

Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd,
Michael A. Harrison, Richard M. Karp, and H. Raymond Strong, editors, Proceedings of the
5th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas,
USA, pages 1-9. ACM, 1973.

Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfiability solvers and their
applications in model checking. Proc. IEEFE, 103(11):2021-2035, 2015.

Ralf Wimmer, Christoph Scholl, Karina Wimmer, and Bernd Becker. Dependency schemes
for DQBF. In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of
Satisfiability Testing - SAT 2016, volume 9710 of Lecture Notes in Computer Science, pages
473-489. Springer, 2016.

https://doi.org/10.1016/j.artint.2007.12.003

	1 Introduction
	2 Preliminaries
	3 Counterexample-Guided DQBF Solving
	4 Improvements
	4.1 Extended Dependencies
	4.2 Counterexample Reduction
	4.3 Default Functions
	4.4 Further Improvements

	5 Experimental Evaluation
	6 Conclusion

