
A Portfolio-Based Approach to Select Efficient
Variable Ordering Heuristics for Constraint
Satisfaction Problems
Hongbo Li #

School of Information Science and Technology, Northeast Normal University, Changchun, China

Yaling Wu #

School of Information Science and Technology, Northeast Normal University, Changchun, China

Minghao Yin #

School of Information Science and Technology, Northeast Normal University, Changchun, China

Zhanshan Li1 #

College of Computer Science and Technology, Jilin University, Changchun, China

Abstract
Variable ordering heuristics (VOH) play a central role in solving Constraint Satisfaction Problems
(CSP). The performance of different VOHs may vary greatly in solving the same CSP instance. In
this paper, we propose an approach to select efficient VOHs for solving different CSP instances. The
approach contains two phases. The first phase is a probing procedure that runs a simple portfolio
strategy containing several different VOHs. The portfolio tries to use each of the candidate VOHs to
guide backtracking search to solve the CSP instance within a limited number of failures. If the CSP
is not solved by the portfolio, one of the candidates is selected for it by analysing the information
attached in the search trees generated by the candidates. The second phase uses the selected VOH to
guide backtracking search to solve the CSP. The experiments are run with the MiniZinc benchmark
suite and four different VOHs which are considered as the state of the art are involved. The results
show that the proposed approach finds the best VOH for more than 67% instances and it solves
more instances than all the candidate VOHs and an adaptive VOH based on Multi-Armed Bandit.
It could be an effective adaptive search strategy for black-box CSP solvers.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Constraint Satisfaction Problem, Variable Ordering Heuristic, Adaptive
Search Heuristic, Portfolio

Digital Object Identifier 10.4230/LIPIcs.CP.2022.32

Supplementary Material Software (Source Code): https://github.com/lihb905/sevoh
archived at swh:1:dir:566338d2739577697c51179e2071e6bf0bea108f

Funding Hongbo Li: The National Natural Science Foundation of China (61802056). The Plan
of Science and Technology Development in Jilin Province (20210101470JC). Key Laboratory of
Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University.
Minghao Yin: The National Natural Science Foundation of China under Grant NO. 61976050.
Zhanshan Li: Open Research Fund of Key Laboratory of Space Utilization, Chinese Academy of
Sciences under Grant NO. LSU-KFJJ-2019-08.

1 Introduction

The challenge in a Constraint Satisfaction Problem (CSP) is to find an assignment of values
to all variables that satisfies the constraints defined over the variables, or otherwise, to prove
that there is no such an assignment. Backtracking search is a complete method for solving

1 Corresponding author

© Hongbo Li, Yaling Wu, Minghao Yin, and Zhanshan Li;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 32; pp. 32:1–32:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lihb905@nenu.edu.cn
https://orcid.org/0000-0002-2664-4117
mailto:wuyl316@nenu.edu.cn
mailto:ymh@nenu.edu.cn
mailto:lizs@jlu.edu.cn
https://doi.org/10.4230/LIPIcs.CP.2022.32
https://github.com/lihb905/sevoh
https://archive.softwareheritage.org/swh:1:dir:566338d2739577697c51179e2071e6bf0bea108f;origin=https://github.com/lihb905/sevoh;visit=swh:1:snp:0bed1aa2d533dd6708b13866055929c02dbfec41;anchor=swh:1:rev:6dd35ce93523aaee14c400651f6e16d68acf6f35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


32:2 A Portfolio-Based Approach to Select Efficient Variable Ordering Heuristics for CSPs

CSPs. It performs a depth-first traversal of a search tree to solve CSPs. At each node of
the search tree, an unassigned variable is selected to assign a value. The ordering in which
the variables are assigned is crucial to the efficiency of backtracking search for solving CSPs.
Thus, variable ordering heuristics (VOH) play a central role in solving CSPs.

In the past decades, much effort has been done in developing effective variable ordering
heuristics [3, 21, 16, 23, 7, 25, 13]. There is no VOH dominating all the others in solving
all CSP instances. In other words, different VOHs have different performances on different
problems. The performances of different VOHs can vary greatly while solving the same
CSP instance. Thus, if we can find the best VOHs for different CSP instances, then the
overall performance of a black-box CSP solver will be significantly improved. In recent years,
determining an efficient VOH for a given CSP instance has attracted much attention. For
instance, a reinforcement learning technique, Multi-Armed Bandit (MAB), has been used to
design adaptive VOHs for CSPs [27, 24]. In these approaches, MAB is employed to select
VOHs to make decisions and the candidate VOHs are switched over during the search.

In this paper, we propose a new approach to select efficient VOHs for solving different
CSP instances. The approach contains two phases. The first phase is a probing procedure
that checks how each candidate VOH behaves when trying to solve the CSP instance within
limited resources. It runs a portfolio strategy containing the candidate VOHs and monitors
the searching process. In each run with a candidate, a search tree will be generated within a
limited number of failures. If the failure number reaches the limit, it restarts the search to try
the next candidate. For each candidate VOH, the maximum depth and the failure depth of
the search trees are collected. If the CSP is not solved during the probing, some measurements
utilizing the collected information are used to select an efficient VOH. In the second phase,
the selected VOH is used to guide backtracking search until the search completes. Extensive
experimentation with the MiniZinc benchmark suite are performed to examine the efficiency
of the proposed approach. Four modern VOHs including activity-based search (ABS) [16],
conflict-history search (CHS) [7], refined weighted degree (WDEG) [25] and failure rate based
VOH (FRBA) [13] are used as candidates. The results show that the proposed approach finds
the best VOH from four candidates for more than 67% instances and it solves more instances
than all the candidates and an adaptive strategy based on MAB. The approach does not need
an offline training and it is easy to be implemented in constraint solvers, so it could be an
effective adaptive search strategy for black-box CSP solvers.

2 Background

A constraint satisfaction problem (CSP) P is a triple P = ⟨X ,D, C⟩, where X is a set of n
variables X ={x1, x2 ... xn}, D is a set of domains D ={dom(x1), dom(x2) ... dom(xn)},
where dom(xi) is a finite set of possible values for variable xi, and C is a set of e constraints
C={c1, c2 ... ce}. Each constraint c consists of two parts, an ordered set of variables scp(c) =
{xi1, xi2 ... xir} and a subset of the Cartesian product dom(xi1) × dom(xi2) × ... × dom(xir)
that specifies the disallowed (or allowed) combinations of values for the variables {xi1, xi2
... xir}. A solution to a CSP is an assignment of a value to each variable such that all the
constraints are satisfied. Solving a CSP P involves either finding one (or more) solution of P
or proving that P is unsatisfiable.

To solve real world problems, the users model the problems as CSPs and constraint solvers
solve the CSPs. Average users have little knowledge about constraint solving, so an efficient
black-box solver is required. Backtracking search is a standard algorithm for solving CSPs.
It performs a depth-first traversal of a search tree. At each search tree node, an unassigned



H. Li, Y. Wu, M. Yin, and Z. Li 32:3

variable is selected and a new node is generated after the assignment to this variable, then
a propagation algorithm is applied to filter those inconsistent values from the domains of
variables. If the propagation leads to a domain wipe out, then a failure is encountered, one
or more assignments must be canceled and a backtracking occurs. The ordering in which
the variables are assigned is crucial to the efficiency of backtracking search and it is difficult
to find an optimal ordering that results in a search tree exploring the smallest number of
nodes [14]. Thus, the ordering is usually determined by variable ordering heuristics (VOH).

There exists many efficient VOHs, such as the impact-based search [21], activity-based
search [16], the count-based search [19], the correlation-based search [23], the conflict-history
search [7], the refined weighted degree [3, 25] and the failure-based VOHs [13]. None of them
dominates all the others and their performances may vary greatly in solving a same CSP
instance. Thus, finding the right VOH for a given CSP is a key issue for black-box solvers.

3 Related Work

Adaptive constraint solving has been studied in the CP community. A major difference
between these methods is whether an offline training phase is required. Relying on the offline
training phases, these methods are effective to predict an efficient algorithm, heuristic or even
a solver for CSP instances [28, 9, 5, 1]. While these methods have shown their effectiveness,
they may be less efficient to solve a new unseen instance (such as a new real-world problem)
if it contains some unknown characteristics or structures, e.g., it is not close to any of the
instances used in the training data.

On the contrary, the online learning methods do not require an offline training phase or
training data. Some of them do learning during constraint solving procedure, such as the the
modern VOHs [21, 16, 3, 23, 17, 7, 13, 12], the bandit-based search strategies [15, 27, 24] and
the adaptive constraint propagation techniques [18, 26, 2]. Some other methods do online
learning before searching starts, such as the learning value heuristics with a linear regression
method [4] and the frequent pattern mining-based search [11].

Among these online learning approaches, the closest works are the two adaptive variable
ordering heuristics based on Multi-Armed Bandit. Both them associate each candidate
VOH with an arm. The first one applies the Upper Confidence Bound algorithm (UCB1)
and Thompson Sampling (TS) algorithm to select a candidate VOH to make a decision at
each search tree node [27]. If a new node is generated by a candidate Hi, the reward of
Hi will be updated with the number of children of the search tree node. The second one
applies the exponentially weighted forecaster for exploration and exploitation (EXP3), UCB1
and TS to estimate the best VOH for given CSPs [24]. It exploits a restart mechanism with
the MAB-based framework. Besides, the candidate VOHs are switched only after restarts.
Its reward function is defined by the pruned tree size (PTS) [24]. The two methods use the
reinforcement learning technique to combine different VOH online, e.g., the candidate VOHs
are switched over during search. Our approach uses an effective measurement to select the
best VOHs for given CSPs. Although our approach also switches the candidate VOH at the
probing phase, after the best one is selected, it will be used to guide backtracking search
until the search completes.

4 Selecting An Efficient VOH for a CSP

Given a set of k candidate VOHs, H1, H2, ..., Hk. We propose an approach, namely Selecting
Efficient Variable Ordering Heuristics (SEVOH), to select an efficient VOH for solving a given
CSP instance. The approach consists of two phases. The first phase is a probing procedure

CP 2022



32:4 A Portfolio-Based Approach to Select Efficient Variable Ordering Heuristics for CSPs

that runs a simple portfolio strategy to collect some information of search trees built by
the candidate VOHs. If the problem is not solved by the probing procedure, we analysis
the collected information to select an efficient VOH for the problem. The second phase is a
straightforward strategy that uses the selected VOH to guide backtracking search to solve
the problem. In the following, we introduce how to design the measurements for selecting
an efficient VOH and how to collect search tree information for the measurements in a
portfolio-based probing procedure.

4.1 The Measurements for Selecting An Efficient VOH
To select an efficient VOH for a CSP instance, we analysis how the candidate VOHs behave
when solving the instance within limited resources, e.g., a limited number of failures. Then
some measurements should be used to evaluate the performance of the candidates.

Firstly, many effective VOHs are designed according to the Fail First Principle that “to
succeed, try first where you are likely to fail” [8]. Therefore, one intuition is that a more
efficient VOH may detect failures at higher levels of the search trees, which has been used by
the failure length based VOH [13]. The intuition is reasonable, because the higher level a
failure is detected, the more search space is pruned. So our first measurement is the minimum
failure depth of the search trees of each candidate.

Minimum Failure Depth (MinFD)
Given a CSP instance and a VOH Hi, we use Hi to guide backtracking search to solve
the instance and a search tree will be built. In the search tree, the number of assigned
variables when a failure occurs is record as the depth of the failure. A search tree usually
contains a number of failures, so we use the average of the depths of all the failures as the
failure depth of the search tree. The probing procedure, introduced in next subsection,
will generates roundLimit search trees for Hi. The minimum one of the failure depth of
the roundLimit search trees is considered as the Minimum Failure Depth of Hi for the
instance, denoted by MinFD(Hi). This measurement prefers the VOH with smaller MinFD.

Secondly, an efficient VOH for a satisfiable CSP instance should find a solution as early
as possible. An intuition is that a more efficient VOH may explore a deeper search tree than
the others within limited resources. So our second measurement is the maximum depth of
the search trees.

Maximum Depth (MaxD)
Given a CSP instance, each candidate Hi will build roundLimit search trees during the
probing procedure. Each of the search trees has a deepest depth which is the largest
number of simultaneously assigned variables. We use the largest one of all the deepest
depth of the roundLimit search trees as the Maximum Depth of Hi for the instance,
denoted by MaxD(Hi). This measurement prefers the VOH with larger MaxD.

Given a CSP instance, for each candidate Hi, we collect the information during the
probing procedure to calculate MinFD(Hi) and MaxD(Hi). Each of the two measurements
can be used as the scoring function to evaluate the performance of Hi solving the instance.
Besides, we can combine the two measurements to use MaxD(Hi)

log(MinFD(Hi)) as the scoring function
to evaluate the performance of Hi, which prefers the candidate with the largest score. The
logarithmic scaling is to make MinFD(Hi) a smaller number, because the MinFD(Hi) and
MaxD(Hi) are quite close in some instances.



H. Li, Y. Wu, M. Yin, and Z. Li 32:5

4.2 A Portfolio-Based Probing
The portfolio contains several candidate VOHs, H1, H2, ..., Hk. The probing procedure is
shown in Algorithm 1.

Algorithm 1 Portfolio-Based Probing.

Input: k candidate VOHs: H1, H2, ..., Hk; the maximum number of rounds:
roundLimit; the maximum number of failures in each call: failLimit

Output: the collected MinFD and MaxD, or unsatisfiable, or a solution.
1 for i = 1 to k do
2 MaxD(Hi) ← 0;
3 MinFD(Hi) ← the number of variables;
4 round ← 1;
5 while round ≤ roundLimit do
6 for i = 1 to k do
7 failNum ← 0;
8 totalFailDepth ← 0;
9 while failNum < failLimit do

10 depth ← the number of fixed variables;
11 if depth > MaxD(Hi) then
12 MaxD(Hi) ← depth;
13 x ← the variable selected by Hi;
14 v ← a value selected for x;
15 if the propagation of the assignment x=v fails then
16 totalFailDepth← totalFailDepth + depth;
17 failNum ← failNum + 1;
18 if unsatisfiable is proved then
19 terminate the search and return unsatisfiable;
20 backtracking occurs;
21 else
22 if a solution is found then
23 terminate the search and return the solution;

24 failDepth← totalFailDepth/failNum;
25 if failDepth < MinFD(Hi) then
26 MinFD(Hi) ← failDepth;
27 restart the search;
28 round ← round + 1;

The procedure runs at most roundLimit rounds (line 5). In each round, the candidate
VOHs are called sequentially. In each call of a candidate Hi (lines 9 to 23), we run backtracking
search with Hi as the variable ordering heuristic and set a restart condition to failLimit

failures. If the failure number reaches the limit, then we record the search tree information
and restart the search with next candidate VOH. Every candidate builds a search tree in
each round and the corresponding information is recorded, so if the problem is not solved at
the probing procedure, then the information of roundLimit search trees will be recorded for
each candidate.

CP 2022



32:6 A Portfolio-Based Approach to Select Efficient Variable Ordering Heuristics for CSPs

Modern VOHs usually use some learning strategies during search, so we make all candidate
VOHs to learn during the entire probing procedure. In other words, during the call of
candidate Hi, the information used by Hi will be learned and updated. Meanwhile, the
information used by the other candidates will be learned and updated. All the information
for the candidates, such as the weighted degrees [25], the activities of variables [16], the
conflict history [7] and the failure rates [13], will be accumulated throughout the procedure.

The portfolio strategy runs backtracking search with different VOHs, so if a CSP instance
can be easily solved by one of the candidate VOHs, then it may be solved during the probing
procedure; otherwise, we analysis the recorded information of search trees and use the
proposed measurements to select an efficient candidate VOH for the instance.

5 Experiments

To examine the efficiency of the proposed approach, we perform extensive experimentation
with the MiniZinc benchmark suite. Four candidate VOHs including ABS [16], dom/wdegca.cd

(marked by WDEG in the following tables) [25], CHS [7] and FRBA [13] are involved. The
performance of searching for the first solution or proving unsatisfiable are measured by cpu
time in seconds and numbers of instances solved in a timeout limit of 1200 seconds. In the
following, we present the results of all instances (All), the satisfiable instances (Sat) and
the unsatisfiable instances (UnSat) respectively. The best one in each comparison is in bold.
More details about the experiments can be found in the appendix.

Table 1 The performance of different measurements.

PTS MinFD MaxD MaxD
log(MinFD)

All
(325)

BestOne 15.08% 17.23% 59.69% 67.69%
BestTwo 23.69% 26.77% 72.62% 81.85%

Sat
(288)

BestOne 15.63% 16.67% 64.58% 72.22%
BestTwo 23.96% 20.14% 75.35% 83.33%

UnSat
(37)

BestOne 10.81% 21.62% 21.62% 32.43%
BestTwo 21.62% 78.38% 51.35% 70.27%

Firstly, we examine the percentage of instances where SEVOH finds the best one among
the four candidate VOHs with different measurements. The reward function of the MAB-based
VOH can be adapted as a measurement for SEVOH, so we further involve the pruned tree size
(PTS) [24] as a measurement here. The results are presented in Table 1. After eliminating the
instances solved by the probing procedure and the instances where all candidates result in
timeout, the table contains the results of 325 instances. The BestOne (BestTwo) row is the
percentage of instances where the VOH selected by SEVOH is the best one (one of the best two
candidates). It is shown that PTS is not suitable for the selection here. Although MinFD does
not work well in finding efficient VOHs for the satisfiable instances, it works well in finding
a good candidate which is one of the best two for the unsatisfiable ones. On the contrary,
MaxD works well in the satisfiable instances, but it does not work well in the unsatisfiable
ones. The observation indicates that we should use different measurements for satisfiable
and unsatisfiable instances. However, the satisfiability of a CSP is not determinable before
solving it, so we cannot pre-select a measurement for each instance. Thankfully, combining
the two measurements, MaxD

log(MinFD) performs well in finding efficient VOHs for all the instances.
For both the satisfiable and the unsatisfiable, it finds a good candidate which is one of the
best two for more than 70% instances. Thus, we uses MaxD

log(MinFD) as the measurement in the
following experiments.



H. Li, Y. Wu, M. Yin, and Z. Li 32:7

Secondly, we examine how the parameter roundLimit affects the percentage of instances
where SEVOH finds good candidates. The results are presented in Table 2. The #Solved by
Portfolio is the number of instance solved by the probing procedure and the Probing Time
is the average time cost of the probing procedure. It is shown that different roundLimit

makes little affection for the percentages. With the increasing of roundLimit, the number of
instances solved by the portfolio strategy increases, as well as the probing time cost. But
there is a trend that the number of increased instances solved by the probing procedure is
diminishing, e.g., at the beginning we have 808-785=23, and then 16, 7, 4, 2. It indicates
that increasing the roundLimit of the portfolio may not always solve more instances. Thus,
we should find the best VOH for the hard instances which can not be easily solved by any of
the candidate VOHs. The roundLimit 100 results in the largest percentage of BestTwo, so
we set roundLimit to 100 in the following experiments.

Table 2 The performance of the probing procedure with different roundLimits.

50 100 200 300 400 500
BestOne 66.86% 67.69% 67.81% 66.79% 66.79% 67.29%
BestTwo 79.71% 81.85% 80.14% 78.83% 79.48% 79.70%

#Solved by Portfolio 785 808 824 831 835 837
Probing Time 63.61 78.08 94.78 103.29 109.16 114.42

Thirdly, we compare SEVOH with the candidate VOHs and the RestartMAB (marked by
RMABPTS) [24] which is a MAB-based VOH with its default reward function PTS. Besides the
RMABPTS, we further involve a strategy (marked by RMAB Max

Min
) that adapts MaxD

log(MinFD) as the
reward function in the MAB-based framework. In Table 3, we present the number of instances
solved (#Solved), the average cpu time in solving the instances that are solved by all the
compared VOHs (average time of all-solved instances, AST) and the average cpu time in
solving all the instances which are solved by at least one of the VOHs (average time of all
instances, AllT). The integer in the brackets after AST is the number of all-solved instances,
so is the one after AllT. The time cost of a timeout run is counted as 1200 seconds. It is
shown that SEVOH performs better than all the others in solving the satisfiable instances.
Although SEVOH is outperformed by RMAB Max

Min
in solving the unsatisfiable instances, it solves

only 1 instance less than the bests. Thus, SEVOH gets the best overall performance.

Table 3 The overall performance.

ABS CHS WDEG FRBA RMABPTS RMAB Max
Min

SEVOH

All
#Solved 630 730 700 985 894 933 1056

AST (464) 34.91 26.67 57.91 23.65 18.29 11.87 9.18
AllT (1131) 573.29 461.88 500.95 190.68 322.87 266.12 142.38

Sat
#Solved 570 679 648 919 830 867 991

AST (416) 35.76 27.59 60.98 21.16 20.11 12.81 8.20
AllT (1059) 590.51 467.87 509.69 186.42 333.75 273.07 137.77

Unsat
#Solved 60 51 52 66 64 66 65
AST (48) 27.57 18.71 31.38 45.26 2.54 3.65 17.70
AllT (72) 320.11 373.76 372.46 253.44 162.81 163.81 210.12

It has been shown in Table 2 that the probing procedure of SEVOH solves a number of
instances. This is because the portfolio strategy works well in solving most of the instances
that can be easily solved by at least one of the candidates. We are wondering how SEVOH

CP 2022



32:8 A Portfolio-Based Approach to Select Efficient Variable Ordering Heuristics for CSPs

performs in solving the hard instances that cannot be solved by the probing procedure, e.g.,
those cannot be easily solved by any of the candidates. Thus, in Table 4, we present the
results of such instances. We can see that SEVOH solves the largest numbers of both satisfiable
instances and unsatisfiable instances.

Table 4 Results of the instances that cannot be solved by the probing procedure of SEVOH.

ABS CHS WDEG FRBA RMABPTS RMAB Max
Min

SEVOH

All
#Solved 121 91 101 224 133 151 248
AST (53) 59.83 116.44 251.29 130.97 48.57 38.55 63.96

AllT (323) 807.24 902.62 898.90 414.15 776.49 695.10 395.78

Sat
#Solved 87 64 75 193 97 115 212
AST (29) 64.03 182.01 407.54 164.69 84.61 64.48 87.84

AllT (280) 876.52 966.57 954.09 400.46 863.27 768.48 408.00

Unsat
#Solved 34 27 26 31 36 36 36
AST (24) 54.76 37.22 62.48 90.23 5.02 7.23 35.10
AllT (43) 356.07 486.19 539.55 503.26 211.46 217.28 316.24

Finally, we compare the performance of the three adaptive strategies. Three different
combinations of candidates are considered. The results are presented in Table 5. It is shown
SEVOH solves the largest numbers of instances in all the combinations of candidates. When
combining three candidates, SEVOH costs more time than the others in solving the all-solved
instances. This is because it has poor performance in solving some of the instances. However,
its average time cost of solving all the instances which are solved by at least one of the 9
strategies is the least one.

Table 5 The performance of the adaptive strategies with different candidates.

ABS+CHS ABS+CHS+WDEG ABS+CHS+WDEG+FRBA
RMABPTS RMAB Max

Min
SEVOH RMABPTS RMAB Max

Min
SEVOH RMABPTS RMAB Max

Min
SEVOH

#Solved 754 759 814 755 796 846 894 933 1056
AST (683) 26.92 23.35 21.71 24.08 28.85 28.72 26.73 24.75 19.48
AllT (1111) 424.87 415.07 358.96 423.39 398.71 335.55 307.08 249.31 123.34

6 Conclusion

In this paper, we propose a portfolio-based approach to select efficient variable ordering
heuristics for CSPs. Extensive experimentations performed on MiniZinc benchmark suite
demonstrate that the portfolio strategy is effective in solving the instances that can be
easily solved by some of the candidate VOHs. Besides, the measurement combining the
information of minimum failure depth and the maximum depth of search trees is effective to
select good candidate VOHs for different CSPs. With the measurement, SEVOH finds the best
one from four candidate VOHs for more than 67% instances. Consequently, SEVOH solves
more instances than all the candidate VOHs and the adaptive VOH based on Multi-Armed
Bandit. It could be an effective adaptive search strategy for black-box CSP solvers.



H. Li, Y. Wu, M. Yin, and Z. Li 32:9

References
1 R. Amadini, M. Gabbrielli, and J. Mauro. Portfolio approaches for constraint optimization

problems. Annals of Mathematics and Artificial Intelligence, 76:229–246, 2016.
2 A. Balafrej, C. Bessiere, and A. Paparrizou. Multi-armed bandits for adaptive constraint

propagation. In Proc. IJCAI’15, pages 290–296. AAAI Press, 2015.
3 F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting

constraints. In Proc. ECAI’04, pages 146–150, 2004.
4 G. Chu and P. J. Stuckey. Learning value heuristics for constraint programming. In Proc.

CPAIOR’15, pages 108–123. Springer, 2015.
5 S. Epstein and S. Petrovic. Learning to solve constraint problems. In Proc. ICAPS’07,

Workshop on Planning and Learning, 2007.
6 C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through randomization.

In Proc. AAAI’98, pages 431–437. AAAI, 1998.
7 D. Habet and C. Terrioux. Conflict history based search for constraint satisfaction problem. In

Proc. of the 34th ACM/SIGAPP Symposium on Applied Computing, pages 1117–1122. ACM,
2019.

8 R. Haralick and G. Elliott. Increasing tree search efficiency for constraint satisfaction problems.
Artificial Intelligence, 14:263–313, 1980.

9 H. Hurley, L. Kotthoff, Y. Malitsky, and B. O’Sullivan. Proteus: a hierarchical portfolio of
solvers and transformations. In Proc. CPAIOR’14, 2014.

10 J. Hwang and D. G. Mitchell. 2-way vs d-way branching for csp. In Proc. CP’05, pages
343–357. Springer, 2005.

11 H. Li, J. H. Lee, H. Mi, and M. Yin. Finding good subtrees for constraint optimization
problems using frequent pattern mining. In Proc. AAAI’20, pages 1577–1584, 2020.

12 H. Li, Y. Liang, N. Zhang, J. Guo, D. Xu, and Z. Li. Improving degree-based variable ordering
heuristics for solving constraint satisfaction problems. Journal of Heuristics, 22(2):125–145,
2016.

13 H. Li, M. Yin, and Z. Li. Failure Based Variable Ordering Heuristics for Solving CSPs. In
Proc. CP’21, pages 9:1–9:10, 2021.

14 P. Liberatore. On the complexity of choosing the branching literal in dpll. Artificial Intelligence,
116(1):315–326, 2000.

15 M. Loth, M. Sebag, Y. Hamadi, and M. Schoenauer. Bandit-based search for constraint
programming. In Proc. CP’13, pages 464–480. Springer, 2013.

16 L. Michel and P. Van Hentenryck. Activity-based search for black-box constraint programming
solvers. In Proc. CPAIOR’12, pages 228–243. Springer, 2012.

17 A. Palmieri and G. Perez. Objective as a feature for robust search strategies. In Proc. CP’18,
pages 328–344. Springer, 2018.

18 Anastasia Paparrizou and Kostas Stergiou. Evaluating simple fully automated heuristics
for adaptive constraint propagation. In Proc. of ICTAI’12, volume 1, pages 880–885, 2012.
doi:10.1109/ICTAI.2012.123.

19 G. Pesant, C. G. Quimper, and A. Zanarini. Counting-based search: Branching heuristics for
constraint satisfaction problems. Journal of Artificial Intelligence Research, 43:173–210, 2012.

20 C. Prud’homme, J-G. Fages, and X. Lorca. Choco Documentation. TASC - LS2N CNRS UMR
6241, COSLING S.A.S., 2017. URL: http://www.choco-solver.org.

21 P. Refalo. Impact-based search strategies for constraint programming. In Proc. CP’04, pages
557–571. Springer, 2004.

22 T. Walsh. Search in a small world. In Proc. IJCAI’99, pages 1172–1177, 1999.
23 R. Wang, W. Xia, and R. H. C. Yap. Correlation heuristics for constraint programming. In

Proc. ICTAI’17, pages 1037–1041. IEEE, 2017.
24 H. Wattez, F. Koriche, C. Lecoutre, A. Paparrizou, and S. Tabary. Learning variable ordering

heuristics with multi-armed bandits and restarts. In Proc. ECAI’20, pages 371–378. IOS Press,
2020.

CP 2022

https://doi.org/10.1109/ICTAI.2012.123
http://www.choco-solver.org


32:10 A Portfolio-Based Approach to Select Efficient Variable Ordering Heuristics for CSPs

25 H. Wattez, C. Lecoutre, A. Paparrizou, and S. Tabary. Refining constraint weighting. In Proc.
of ICTAI’19, pages 71–77. IEEE, 2019.

26 R. J. Woodward, A. Schneider, B.Y. Choueiry, and C. Bessiere. Adaptive parameterized
consistency for non-binary csps by counting supports. In Proc. of CP’14, pages 755–764, 2014.

27 W. Xia and R. H. C. Yap. Learning robust search strategies using a bandit-based approach.
In Proc. AAAI’18, pages 6657–6665. AAAI, 2018.

28 L. Xu, F. Hutter, H. H Hoos, and K. Leyton-Brown. SATzilla: portfolio-based algorithm
selection for SAT. Journal of Artificial Intelligence Research, 32:565–606, 2008.

A Details of The Experiments

A.1 Environment
The experiments were run in Choco solver (version 4.10.6) [20] where all the candidate VOHs
are already implemented. The environment is JDK8 under CentOS 6.4 with 4 Intel Xeon
CPU E7-4820@2.00GHz processors and 58 GB RAM. Each run is allocated 1 GB RAM.

A.2 Benchmark
The benchmark suite are from https://github.com/MiniZinc/minizinc-benchmarks.
The instances are flattened offline. After eliminating some large instances which cannot be
flattened in 1 hour and the problems where unsatisfiable is proved at root node, we include
46 MiniZinc models with 1876 instances in the experiments.

A.3 Restart
The failLimit of the probing procedure of SEVOH is set to the number of variables. If the
instance contains less than 100 variables, the failLimit is set to 100. A geometric restart
strategy [6, 22] is equipped by the second phase of SEVOH and the candidates VOHs. The
growing factor is 1.1 and the initial cutoff is 10 failures. The restart strategy of the MAB-based
framework is the Luby restart which is the default one used in [24].

A.4 Searching
Binary branching strategy [10] is used throughout the experiments. ABS uses its default value
selector and all the others use lexicographic ordering as the value selector. We forbid the
sampling procedure of ABS when it is used as a candidate, because the probing procedure
of SEVOH warms up all the candidates. When ABS is used alone, we run it with its default
settings.

A.5 Other Details
In Table 1 and Table 2, we need to determine the best candidate for each instance. Thus,
for each instance, we run each candidate Hi with 10 random seeds from 1 to 10 and use the
average time cost of the 10 runs as the performance of Hi solving the instance. The best
VOH for a instance is the one costing least cpu time. Then we run the probing procedure
with random seed 0 to select a VOH for each instance. The results in Table 1 are obtained
with roundLimit 100. In Tables 3, 4 and 5, we have used a unique random seed 0 in the
experiments. The instances where all the seven VOHs result in timeout are eliminated.

https://github.com/MiniZinc/minizinc-benchmarks

	1 Introduction
	2 Background
	3 Related Work
	4 Selecting An Efficient VOH for a CSP
	4.1 The Measurements for Selecting An Efficient VOH
	4.2 A Portfolio-Based Probing

	5 Experiments
	6 Conclusion
	A Details of The Experiments
	A.1 Environment
	A.2 Benchmark
	A.3 Restart
	A.4 Searching
	A.5 Other Details


