
Constraint Acquisition Based on Solution Counting
Christopher Coulombe #

Université Laval, Québec, Canada

Claude-Guy Quimper # Ñ

Université Laval, Québec, Canada

Abstract
We propose CABSC, a system that performs Constraint Acquisition Based on Solution Counting.
In order to learn a Constraint Satisfaction Problem (CSP), the user provides positive examples and
a Meta-CSP, i.e. a model of a combinatorial problem whose solution is a CSP. This Meta-CSP
allows listing the potential constraints that can be part of the CSP the user wants to learn. It also
allows stating the parameters of the constraints, such as the coefficients of a linear equation, and
imposing constraints over these parameters. The CABSC reads the Meta-CSP using an augmented
version of the language MiniZinc and returns the CSP that accepts the fewest solutions among the
CSPs accepting all positive examples. This is done using a branch and bound where the bounding
mechanism makes use of a model counter. Experiments show that CABSC is successful at learning
constraints and their parameters from positive examples.

2012 ACM Subject Classification Computing methodologies Ñ Modeling methodologies

Keywords and phrases Constraint acquisition, CSP, Model counting, Solution counting

Digital Object Identifier 10.4230/LIPIcs.CP.2022.15

1 Introduction

Constraint solvers are used to solve complex combinatorial problems. They require an expert
to model the problem using the constraints available in the solver. The model creation is a
crucial step, but is often time-consuming. One way to save time to the expert is to suggest
a model based on sample solutions. For instance, a hospital that wants to automatize the
creation of their work schedules for its staff might provide to the experts previous schedules.
Assisted with software, the expert wants to discover what constraint generated the examples.
While some of these constraints are already known and even written on legal documents,
there are as important constraints that are not written but are part of the work culture.
These are the constraints for which a constraint acquisition software becomes handy.

When two constraints are candidates for a model, the one that was the most likely used
to generate the sample solutions is the most restrictive one [14]. Different approaches exist to
decide which constraint is the most restrictive. There are mainly statistical approaches [13, 14]
and approaches based on a ranking system [6] (that includes many other criteria). Current
methods analyze the constraint in isolation. However, adding to a model a constraint that
accepts many solutions can reduce more the solution space than adding a constraint that
accepts few solutions. It all depends on the interaction between the constraints in the model.
We propose the first approach that takes into account this interaction. It uses a model
counter to make sure that the constraints suggested to the expert are those that are the
most likely to explain the observed sample solutions given the constraints that were already
identified to be part of the model.

In this paper, we propose CABSC, an algorithm for Constraint Acquisition Based on
Solution Counting. CABSC uses examples of solutions to evaluate which constraints to keep
from a chosen set of candidates. The selection process is based on solution counting using
model counters, an approach which differs from the current methods detailed in Section 2.
The definitions for our approach are given in the Section 3, followed by a practical explanation
in Section 4. Experiments are explained in Section 5 and discussed in Section 6.

© Christopher Coulombe and Claude-Guy Quimper;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christopher.coulombe.1@ulaval.ca
mailto:claude-guy.quimper@ift.ulaval.ca
http://www2.ift.ulaval.ca/~quimper
https://doi.org/10.4230/LIPIcs.CP.2022.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Constraint Acquisition Based on Solution Counting

2 General Background

Constraint acquisition is an intricate problem that can be solved in a few ways. A first
idea called passive learning requires examples of solutions and/or non-solutions. A system
chooses which constraint represents best the examples from a preselection of constraints.
The preselected pool of constraints from which the model is built is called a bias. Other
methods use active learning and generate examples of solution and ask an expert to classify
the examples given. From a bias, the system choses the best set of constraints according to
the answer provided.

Passive learning systems exploit the idea that the underlying structure of the given
examples gives information about the model to learn. Beldiceanu and Simonis [6] created a
Model Seeker that learns constraints from a catalog given positive and negative examples.
The constraints of the catalog that accepts the positive examples and reject the negative
examples are sorted with the more likely constraints having a higher rank. The sorting system
is based on a ranking value that is a function of multiple parameters, including the number
of solutions satisfying the constraint [5]. A constraint accepting fewer solutions is more
likely to be the constraint that generated the examples as there is a lesser chance that the
examples are a product of a coincidence. To work, this method needs to make the hypothesis
that the constraints learned are independent of each other. That hypothesis is not what
transpires in real applications and may result in errors. Two constraints with a small but
near identical set of solutions would be picked over two constraints accepting more solutions
if picked individually but very few solutions when combined. This is counterproductive as
the idea is often to complete an already existing model or to learn multiple constraints at
the same time.

Picard-Cantin et al. [13] approached the problem with a statistical approach with the idea
that the constraint that best explains the examples is the most improbable one. Equation (1)
was therefore used by Picard-Cantin et al. [14] to calculate the probability of the constraints
where GCpP q is the probability that a random assignment satisfies the constraint C with
the parameters P . The parameters can be, for instance, the coefficients of a linear equation.
SCpP q is the solution set that satisfies the constraint C with the parameters P . The
probability is calculated for a constraint over n variables. probpeq is the probability to observe
an assignment e of n variables and probpeiq is the probability to observe an assignment of a
single variable.

GCpP q “
ÿ

ePSCpP q

Probpeq “
ÿ

ePSCpP q

n
ź

i“1
Probpeiq (1)

A hypothesis of independence between the variables of the constraints is applied in the
equation. Whenever a variable is in the scopes of multiple constraints, the hypothesis of
independence between the variables becomes an approximation. In all cases, the preferred
constraints are the ones with a small number of solutions but the independence hypothesis
can lead to an erroneous ranking of the constraints. Moreover, this system was not designed
for learning multiple constraints and requires solution counting algorithms specialized for
each constraint.

Another approach was suggested by Bessiere et al. [8] which consists of creating a model
from partial queries, a form of active learning, with an algorithm called QuAcq. The system
creates an example and asks an expert whether the presented values are valid. The system
adapts the learned constraints depending on the provided answer. Recently, QuAcq was
improved with a new version called QuAcq2 [7]. In some cases, QuAcq and QuAcq2 can

C. Coulombe and C.-G. Quimper 15:3

require a number of queries too high to be efficiently answered by a person. The number of
queries can go as high as n2 logpnq where n is the number of variables of the problem [7].
Multiple authors tackled this problem such as Daoudi et al. [10], Addi et al. [2], Addi et al. [1],
Arcangioli and Lazaar [3], Tsouros et al. [20] and Tsouros et al. [19], but up to thousands of
queries can still be needed.

3 The CABSC approach

The CABSC approach (Constraint Acquisition Based on Solutions Counting) we introduce
fulfills three goals:
1. To lift the hypothesis of independence between variables;
2. To allow learning multiple constraints;
3. To work with any set of constraints for which filtering algorithms exist, rather than

solution counting algorithms.

CABSC models the process of learning constraints as a Meta-CSP. As will be described in
Section 3.1, a Meta-CSP is a combinatorial problem whose solution is a CSP. In our case, the
solution is the CSP we learn from the examples. When modeling the Meta-CSP, we list the
mandatory constraints, i.e. the constraints that we know belong to the model, and also the
possible constraints, those that could belong to the model. The variables of the Meta-CSP
encode the possible activation of a constraint and also the parameters of the constraints, such
as the coefficients of a linear constraint. Solving the Meta-CSP provides the learned model.
To do so, we use a branch and bound to decide which constraint to keep and identify the
values of the parameters. Our approach uses constraint programming to model a Meta-CSP
and to define a family of CSPs from which we can learn. We therefore do not aim to learn
any CSP but the optimal CSP among a set programmed through constraint programming.
This approach is inspired from regression where one defines a family of functions (e.g. linear
functions) and aims at finding the function from this family that best fits the data. Here, we
aim at finding the CSP from a family of CSPs defined by the Meta-CSP that best explains
the examples.

As there are multiple candidate constraints that could belong to the learned model, we
follow Beldiceanu and Simonis [6] and Picard-Cantin et al. [13] by selecting the constraints
that minimize the number of solutions. However, instead of analyzing the constraints
individually like Beldiceanu and Simonis [6] and Picard-Cantin et al. [13], our system reasons
globally on all constraints which allows us to consider multiple different constraints at once.

In order to lift the hypothesis that variables and constraints in a CSP are independent,
we directly count the solutions of a model using a model counter. The solution to our
Meta-CSP is therefore a CSP whose constraints are satisfied by all observed examples and is
as restrictive as possible, i.e. it minimizes the number of solutions.

Our approach has two main differences from existing methods. The first difference is that
constraint programming, through the declaration of a Meta-CSP, is used to define a family
of CSPs from which we can learn. A second difference from most existing methods is that
we use a criterion with a global view on the model to learn by considering the constraints to
learn as a whole instead of individually.

3.1 Definition of a Meta-CSP
Following [16], a CSP P is a triple P “ xX, dom, Cy where X is a n-tuple of variables
X “ xX1, X2, . . . , Xny, dom is a function that maps a variable in Xi P X to a set of
values, called domain, that can be assigned to the variable Xi, C is a t-tuple of constraints

CP 2022

15:4 Constraint Acquisition Based on Solution Counting

C “ xC1, C2, . . . , Cty . A constraint Cj is a pair xRj , Sjy where Sj Ď X is the scope of the
constraint and Rj is a relation on the variables in Sj . In other words, Rj is a subset of
the Cartesian product of the domains of the variables in Sj . A solution to the CSP P is an
assignment to the variables X “ v1, . . . , Xn “ vn such that vj P dompXjq @1 ď j ď n and
each Cj is satisfied in that the tuple xv1, . . . , vny projected onto Sj is a tuple in Rj .

We extend the definition of a CSP to a Meta-CSP. The solution of a Meta-CSP is a CSP.
In our case, it is the CSP we want to learn. A Meta-CSP is a tuple M “ xX, P, α, dom, E, Cy

where X “ xX1, . . . , Xny are the decision variables, P “ xP1, . . . , Pqy are the parameter
variables, α “ xα1, α2, . . .y are the activation variables, dom is a function that maps a variable
in X Y P Y α to a set of values that can be assigned to the variable, E is the example matrix
of dimensions m ˆ n, and C “ tC1, . . . , Ctu is a set of constraints. A row ei “ xei,1, . . . , ei,ny

of matrix E satisfies ei,j P dompxjq and is a solution to the CSP we want to learn. The
examples of the matrix must satisfy the constraints that we want to learn.

A constraint Cj is a quadruple xRj , Sj , Pj , αjy where Sj Ď X is the scope of the constraint,
Pj Ď P Y α its parameters set and αj P α its activation variable. For instance, for a linear
constraint, the parameters Pj are the coefficients that need to be learned. To each constraint
Cj is associated the activation variable αj with domain dompαjq Ď tK, Ju. Deciding whether
αj is true (J) is equivalent to deciding whether the constraint appears in the learned model.
One can force a constraint to appear in the learned model by setting dompαjq “ tJu in the
definition of the Meta-CSP. The relation Rj is a set of the assignments accepted by the
constraint along with the parameters given to the constraint: Rj Ď

Ś

xPSj
x ˆ

Ś

pPPj
.

A solution to the Meta-CSP is an assignment to the parameter variables P1 “ p1, . . . , Pq “

pq and an assignment to the activation variables α1 “ r1, . . . , αt “ rt such that rj P dompαjq

for all constraints Cj , pk P dompPkq for all 1 ď k ď q. Finally, the examples must satisfy the
activated constraint, i.e. @1 ď j ď t, αj ùñ @i xei,1, . . . , ei,n, p1, . . . , pqy P Rj .

4 Framework

4.1 The Language

We augmented the MiniZinc language [12] to model a Meta-CSP. The declaration of constraints
in a Meta-CSP differs from the one in a CSP in two ways. First, the constraints had to
be rewritten in MiniZinc to include the Boolean activation variable. This avoids writing
explicitly, for each constraint, the underlying constraints needed for such variables. Second,
when declaring the scope of a constraint, the indices of the decision variables in X need
to be stored in the constraint. Indeed, the constraint’s filtering algorithm needs a map of
the decision variables in its scope to the columns of the matrix of examples E. Therefore,
constraints used for the Meta-CSP have different specifications from what is possible within
MiniZinc, which is why the language had to be augmented. The MiniZinc language was also
modified to better communicate with the solver we developed, i.e. imports and heuristics
were adapted to give a better control. Even though the modifications to MiniZinc do not
change its fundamental structure, the way to write a Meta-CSP is made significantly easier.

Listing 1 provides a code snippet written in the augmented MiniZinc language. A set of
two-dimensional points are given as solutions of an unknown CSP problem. We know that
the x and y coordinates of these points are nonnegative. We do not know whether these
points are subject to a linear inequality or an elliptic inequality. This Meta-CSP will tell us.

C. Coulombe and C.-G. Quimper 15:5

Listing 1 Code snippet of the augemented MiniZinc.
1 set: domain = 1..10;
2 array: x = [1]; % Points are (x,y)
3 array: y = [2];
4 array: x_y = [1..2];
5 var domain : a;
6 var domain : b;
7 var domain : c;
8 var 0..1: activation1 ;
9 var 0..1: activation2 ;

10

11 constraint Linear (x, [1], " >=", 0, true); % x >= 0
12 constraint Linear (y, [1], " >=", 0, true); % y >= 0
13 constraint Linear (x_y , [a,b], " <=", c, activation1); % a*x + b*y <= c
14 constraint Ellipse (x_y , [a,b], " <=", c, activation2); % a*x2 + b*y2 <= c
15 constraint Xor(activation1 , activation2 , true);

The decision variables x and y are declared on lines 2 and 3. As their values are known
for each example, they are not declared as variables using the keyword var but rather as
constants corresponding to the column numbers in the example matrix E.

Line 11 declares the first constraint of the problem. It is interpreted as follows: It is a
linear constraint whose scope is the decision variable x, whose coefficient vector is r1s, whose
comparison operator is ě, and whose right-hand side is 0. It can be interpreted as r1sT x ě 0.
The activation variable is set to true, which means that this constraint is known to belong to
the CSP. Line 12 imposes y ě 0 with a similar constraint. Line 13 encodes the first constraint
that we want to learn. It is a linear constraint over the variables x and y whose coefficients
and right-hand side are unknown and are represented by the parameter variables a, b, and c.
Finally, it is unknown whether this constraint belongs to the CSP. The activation variable
activation1 will be set to 1 if it belongs and 0 otherwise. Line 14 encodes the second
constraint that we want to learn. It is an elliptic constraint centered at the origin where
parameter variables a, b, and c are reused. The activation variable activation2 is used
for this constraint. Line 15 shows an example of a constraint over two activation variables
meaning that exactly one constraint among the linear and the elliptic constraint can be
activated. This is an example of how one can define the bias (i.e. the family of CSPs from
which the CSP is learned) and exploit the full richness of CP to model the learning process.

A constraint can be satisfied by all examples even if the solver chooses not to learn it by
setting its activation variable to K, unlike a reified constraint which would be set to K only
if the examples are not satisfied.

Figure 1 is a graphical representation of the problem encoded in Listing 1. The curves
represent both candidate constraints: the linear candidate and the elliptic candidate. The
dots are the sample solutions that are provided.

We are looking for the CSP that is the most likely the one that generated the points
provided in the example matrix E, i.e. the CSP that accepts the fewest solutions among
all CSPs that accepts all solutions in E. We see in Figure 1 that the Elliptic constraint
accepts 9 solutions while the linear constraint accepts 10 solutions. Therefore, our approach
learns that an elliptic inequality fits best the examples with parameters a “ 1, b “ 2, c “

10, activation1 “ K and activation2 “ J, which confirms the visual intuition.

4.2 The Solver
We created a custom solver called CabscSolver that reads the Meta-CSP written in the
augmented MiniZinc language and the example matrix E. This solver finds the CSP that
accepts the fewest solutions among all CSPs that accept all examples. CabscSolver uses
a branch and bound to solve the problem. The branching variables are the activation

CP 2022

15:6 Constraint Acquisition Based on Solution Counting

0 1 2 3 4

0

1

2

3

4
Simple Example

Linear : 3x+3y=10
Elliptic : 1x²+2y²=10

Figure 1 Simple example.

and parameter variables α Y P . After branching, constraint propagation is triggered. Let
Cpx⃗, p⃗, αq be a constraint where x⃗ is the vector of decision variables, p⃗ is the vector of
parameter variables, and α is the activation variable. Only the domains of p⃗ and α need to
be filtered as the values of the decision variables are provided by the examples. To filter
the constraint, one needs to filter the expression α ùñ

Źm
i“1 Cpei|x⃗, p⃗, Jq where ei|x⃗ is the

projection of the ith example over the decision variables in the scope of the constraint. The
filtering can take place only when the value of the activation variable α is known. Indeed,
if α is false (K), the constraint is satisfied and no filtering is required. If α is true (J), a
conjunction of constraints needs to be filtered. Each component of the conjunction can
be filtered independently, but a more sophisticated algorithm might process the examples
in batch to gain in efficiency. The choice is specific to each constraint. In the example of
Listing 1, if variable activation1 is set to J during the search process, the linear constraint
filters values 1 and 2 from the domain of c as the point px, yq “ p3, 0q prevents the linear
constraint to be satisfied when c ď 2.

In order to make the branch and bound effective at minimizing the number of solutions
accepted by the CSP we want to learn, one needs to compute a lower bound on this number
of solutions. This computation is carried in two phases. In the first phase, we detect if
a situation occurs where it is possible to deduce which CSP accepts the fewest solutions,
regardless whether this CSP accepts the examples or not. If such a CSP can be deduced, the
second phase launches a model counter to compute the number of solutions for this CSP.

Some constraints have monotonic parameters with respect to the number of solutions
they accept [14]. For instance, consider the linear constraint cT x ď b where the parameters c

and b are a vector of nonnegative coefficients and a nonnegative right-hand side. The vector
x contains the decision variables. It is clear that the number of solutions accepted by this
constraint decreases as the values in c increases and b decreases. In order to obtain the
most restrictive constraint, one needs to fix the parameters c to their greatest values in their
domains and b to its smallest value. If all parameter variables with more than one value in
their domain are monotonic and all constraints agree to set these variables to the same values

C. Coulombe and C.-G. Quimper 15:7

(either largest or smallest) in order to minimize the number of solutions, then we can proceed
to the second phase and compute a lower bound on the number of solutions. Otherwise, we
use the number of examples as the trivial lower bound as this is the minimum number of
solutions the CSP can accept. Since parameter variables can be subject to constraints, it is
possible that fixing the value of the parameter variables leads to inconsistencies. In such
a case, the CSP used to calculate the lower bound has no solution. Even if that CSP has
no solution, multiple CSPs can exist further in the search tree. We therefore still use the
number of examples as a lower bound on those nodes.

In the second phase, the parameter variables are set to their most restrictive value and
activation variables that are not set to false are forced to be true in order to have the
maximum number of activated constraints. This results in a CSP A for which the number of
solutions needs to be determined. There exists a few model counters in the literature such
as the exact probabilistic model counter GANAK [17] or the approximate model counter
ApproxMC4 [9, 18]. Both of these counters can only approximate the number of solutions of a
model written as a CNF file. CabscSolver encodes the constraints of A into a pseudo-Boolean
language that is translated to a CNF using the MiniSat+ module NaPS [11]. This CNF is
given to the model counter which calculates the number of solutions of the model. This
number is used as a lower bound on the number of solutions of the learned CSP for the
current node of the branch and bound.

Executing the model counter is the most time-consuming operation in the whole search
process. Since the parameter variables are often fixed to the same values (due to their
monotonicity), it is worth implementing a cache system. Therefore, before calling the model
counter, the system checks whether the generated model was previously counted, and if so,
returns the number of solutions previously found.

The resulting algorithm is summarized in Figure 2. The next branching is defined by the
best-first-search heuristics, i.e. the open node with the smallest lower bound is expanded.
When the lower bound of a node is greater than the number of solutions of the incumbent
CSP, this node is closed.

5 Experiments

5.1 Implementation

We implemented CabscSolver in Python1. While this interpreted language leads to a slow
execution, in practice, most of the computation time is spent in the model counters. We use
GANAK [17] and ApproxMC4 [9, 18] as model counters that are both efficiently implemented
in C/C++.

GANAK is a probabilistic exact model counter [17]. Using the parameter δ, GANAK
guarantees with a probability of at least 1 ´ δ that the value provided is an exact count. The
approximate model counter ApproxMC4 [9, 18] was also integrated to our solver to count
the number of solutions since some calculations are much faster with this counter. Let F be
the real number of solutions of a model. ApproxMC4 gives an approximation of F with a
configurable confidence. More specifically, it returns a count that is guaranteed to be within
r F

p1`ϵq
, F ¨ p1 ` ϵqs with a probability of at least 1 ´ δ, where ϵ and δ are the configurable

parameters. The chosen values for the parameters ϵ and δ are discussed in Section 5.3.

1 The code and the benchmarks will be available on the authors’ web sites.

CP 2022

15:8 Constraint Acquisition Based on Solution Counting

Next branching

NoCan the parameters be fixed
to launch model counting?

Start

Is the CSP model in cache?

Convert the CSP model to a
SAT model

No

Yes

Is the CSP model optimal?
Yes

Return CSP model

Count the number of
solutions of the SAT model

Add the CSP model to the
cache

No

Yes

Figure 2 Flow chart for the CABSC approach.

To read the Meta-CSP models, using the parsing toolkit Lark, we implemented, from
scratch, a parser that interprets a subset of the MiniZinc language [12] to which we add the
necessary augmentations. MiniZinc was not changed in any way other than the required
augmentations. This allows us to efficiently communicate the Meta-CSP models to the solver.

5.2 Instances
We try to learn the constraints inspired from nurse scheduling problems. The problem
consists of creating a schedule that respects a set of predetermined rules. In these schedules,
the increments used are days, meaning that we are only preoccupied on a daily basis whether
the nurses work or not. Let η P t2, 3, 4u and d P t7, 14, 21, 28u be the number of nurses
and days in a schedule (with ηd ď 56). All instances have a matrix of decision variables
rrXp1,1q, . . . , Xp1,dqs, . . . , rXpη,1q, . . . , Xpη,dqss. Each variable of the matrix represents a day of
work for a nurse with its domain being t0, 1, 2u. Xi,j takes the value 0 if the nurse i does not
work on day j. If the nurse i does work during day j, Xi,j takes the value 1 or 2, depending
on whether the nurse works in room 1 or 2.

In the first benchmark, denoted Sequence, we want to learn one of these two constraints
on the rows of the matrix.

SequenceprXi,1, . . . , Xi,ds, l, u, k, V q @1 ď i ď η (2)

Amongpt1, t2, rXi,7w`1, . . . , Xi,7pw`1qs, V q @1 ď i ď η, @0 ď w ă
d

7 (3)

Constraint (2) is the Sequence constraint [4] that is satisfied when at least l and at most u

variables in a window Xi,j , . . . , Xi,j`k´1 of k consecutive variables are assigned to a value
in the set V . This constraint is used to spread out the workload of the nurses over the
days without underload nor overload. The parameters l, u, and k are unknown and need
to be learned. Their domains are given by domplq “ dompuq “ dompkq “ r0, 7s and are

C. Coulombe and C.-G. Quimper 15:9

subject to l ď u ă k. The set V is known and fixed to t1, 2u as these are the values that
represent a nurse who is working. Constraint (3) simply constrains the number of work days
to be at least t1 and at most t2 every week. The parameter variables t1 and t2 have for
domain dompt1q “ dompt2q “ r0, 7s. One, and only one, constraint among (2) or (3) must
be activated. We therefore constrain the activation variables of both constraints with a Xor,
just like the line 15 of Listing 1. The benchmark Sequence is composed of 368 instances
generated with distinct constraints, parameters, and examples. These instances satisfy the
Sequence constraint and the parameters lie in the intervals l, u P r1, 6s and k P r2, 7s.

The second benchmark, denoted Complex, inherits all the characteristics of the Se-
quence benchmark, including the constraint to learn, to which additional known constraints
are added on the decision variables. These constraints have for goal to encode a more realistic
situation where constraints that we want to learn are mixed with constraints that are known.
For each column rXp1,dq, . . . , Xpη,dqs of the matrix that represents the schedule for the day
d, we have the constraint Amongpb, 3, rXp1,dq, . . . , Xpη,dqs, V q where b “ 1 if d is a Monday,
Tuesday, Wednesday, or Thursday and b “ 2 otherwise. This constraint and its parameters
are known and added to the Meta-CSP with an activation variable set to J. This constraint
does not need to be learned. For instances with 3 or more nurses, we also have another
known constraint Xpη,jq “ 0 _ Xpη´2,jq “ 0 @j P t1, . . . , du in order to prevent nurse η from
working at the same time as η ´ 2. When applicable, this constraint is also included in the
Meta-CSP as a known constraint. The Complex benchmark has 247 instances that satisfy
the Sequence constraint with the parameters lying in the intervals l, u P r1, 6s and k P r2, 7s.

In the third benchmark denoted Vacation, the Meta-CSP is identical to the one of
Complex. However, the examples E that are provided to the solver are particular: nurses
can be non-working for 7 consecutive days. This represents a situation where the staff goes on
leave during the vacation period. These leaves violate the Sequence constraint and force the
solver to activate the Among constraint and learn its parameters t1 and t2. The examples
were created such that nurse η never takes a vacation but other nurses do. For a problem
spanning w weeks, nurses globally take no more than w weeks of vacation. We generated
272 instances for this benchmark such that the instances satisfy the Among constraint. The
parameters lie in the intervals t1 P r2, 3s and t2 P r3, 7s.

The last benchmark Overtime uses the same Meta-CSP as Complex and Vacation,
but the examples E provided to learn the CSP differ from Vacation on one point: rather
than leaving for vacations for 7 consecutive days, the nurses in the Overtime benchmark
work on a stretch of 7 consecutive days. This represents a situation when the hospital is
understaffed and nurses need to work overtime. This benchmark has 304 instances such that
the instances satisfy the Among constraint and the parameters lie in the intervals t1 P r2, 7s

and t2 P r4, 7s with the restriction t1 ď t2.
For all benchmarks, the solver aims to learn exactly one constraint among (2) and (3).

The selection depends on the known constraints added to the Meta-CSPs and the examples.

5.3 Experimental Setup
For each instance, the CSP we want to learn was written in the MiniZinc language [12] and
used to randomly generate up to a thousand solutions. The Meta-CSP model was written in
our augmented-MiniZinc language in order to learn which constraint, between the Sequence
and the Among constraints, is activated and what are the parameters that were used to
generate the examples.

CabscSolver supports two model counters. We first used the solver with the model
counter GANAK [17]. By setting the parameter δ to 0.05, we state that the value returned
by the model counter is guaranteed to be exact with a probability of at least 0.95. Tighter

CP 2022

15:10 Constraint Acquisition Based on Solution Counting

guarantees can be used, but the time taken to count the number of solutions of the models
increases accordingly. Using this model counter and this configuration, we nevertheless
assume the given number of solutions to be exact. GANAK was used with a maximum cache
size of 2000 Mb. We ran all benchmarks on the solver using this model counter.

As a second series of tests, we used a mix of ApproxMC4 [9, 18] and GANAK. Some CSP
models are faster to evaluate with ApproxMC4, so we tried to make CABSC faster using
both model counters. Since ApproxMC4 is not an exact model counter, we did not want to
run both model counters at the same time and simply use the result returned by the fastest
of the two. When using both model counters, GANAK and ApproxMC4 are simultaneously
launched. If GANAK finishes first, ApproxMC4 is terminated. If ApproxMC4 finishes first,
GANAK is terminated only if the returned result is conclusive. Indeed, ApproxMC4 returns
a solution count that is guaranteed to be within an interval with a parametrized confidence.
A solution returned by this model counter could be largely underestimated, which could
lead to the wrong CSP model being learned. If F is the exact number of solutions of a CSP,
the number of solutions returned by ApproxMC4 lies in r F

p1`ϵq
, F ¨ p1 ` ϵqs with probability

1 ´ δ. When ApproxMC4 returns a number of solutions that is p1 ` ϵq times greater than
the number of solutions accepted by the incumbent CSP, the computation of GANAK is
halted, and the node is closed, i.e. no children of this node will be explored in the search tree.
Otherwise, we draw no conclusion and let GANAK terminate its computation. ApproxMC4
is rather used as a means to close nodes faster than substituting GANAK.

The same way we assumed that GANAK would return exact values, we assume that
ApproxMC4 does not give a solution count that is lower than the minimum value of the
interval. We used δ “ 0.10 and ϵ “ 0.5 which means that the count calculated is guaranteed
to be in the range r F

1.5 , 1.5F s with a probability of at least 0.90. A lower probability is
accepted from ApproxMC4 than GANAK since the main focus of using ApproxMC4 is to
count CSP models faster than GANAK.

We ran the experiments on a computer with the following configuration: CentOS 7.6.1810,
32 GB ram, Processor Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz, 32 Cores. We
simultaneously launch 7 instances of the solver.

From each instance, random subsets of 1, 2, 3, 5, 10, 25, and 100 examples were used. Each
time, the top 3 solutions are returned by the solver, and we verify that one of these solutions
is the one used to generate the examples. For the Sequence and Complex benchmarks,
the expected constraint to be learned is the Sequence constraint with parameters l, u,
and k. For the Vacation and Overtime benchmarks, the examples violate the Sequence
constraint, and the Among constraint is expected to be learned with parameters t1 and t2.

6 Results and Discussion

Figure 3 presents the results obtained when running CabscSolver using only GANAK for the
four benchmarks presented at Section 5.2. On the y-axis is the number of examples that are
given to the solver. On the x-axis is the proportion of instances for which the solution is the
best one returned by the solver, the second best, the third best, or whether the CSP that
was used to produce the examples does not appear at all in the top-3 learned models. We
recall that the solver returns the CSP that minimizes the number of solutions.

6.1 Accuracy
CABSC performs generally well as seen in Figure 3. Each benchmark presents a distinct
behavior regarding the quality of the results. The first observable behavior is that CABSC
succeeds in learning the CSP that was used to generate the data as seen with the benchmark

C. Coulombe and C.-G. Quimper 15:11

Classification of the Instances for Various Number of Examples

0 20 40 60 80 100
1
2
3
5

10
25

100

Percentage (%)

#
E

xa
m

pl
es

a) Sequence

0 20 40 60 80 100
1
2
3
5

10
25

100

bl
an

k

#1 #2 #3 Other

b) Complex

0 20 40 60 80 100
1
2
3
5

10
25

100

bl
an

k

c) Vacation
0 20 40 60 80 100

1
2
3
5

10
25

100

bl
an

k
d) Overtime

Figure 3 Classification of the instances in percentage for each number of examples. CabscSolver
uses GANAK as the only model counter.

Sequence. In this simpler case, the solver has to count the solutions of a conjunction of
Sequence constraints, i.e. the constraints to learn. With few examples, our approach stays
coherent with the results of Picard-Cantin et al. [13] where they reach above 70% accuracy
with a single example of solution, and around 85% accuracy with 5 examples. Extending the
number of examples drastically reduces the margin of incorrectly learned instances while
the number of examples needed is still relatively low. With only 25 examples, 96.47% of the
instances resulted in a correctly learned Sequence constraint at the first try. A few instances
could not be resolved even with 100 examples. The unsolved instances occur when the solver
finds a more restrictive constraint than the one that was used to generate the examples. This
can happen if all the examples given are not enough to filter out parameters that would make
the constraints more restrictive. This is why we see that with more examples given, fewer
instances remain unsolved. The same phenomenon happens with the Complex benchmark
where we see an efficient progression as the number of given examples increases.

Finding a more restrictive constraint is not the only way to get an incorrect model.
As Figure 3 c) shows, the results for the Vacation benchmark converge toward a point
where increasing the number of examples does not affect the results while still having a
non-negligible proportion (8.82%) of unsolved instances. This is caused by multiple CSPs
that are tied. A tie occurs when two distinct CSPs have the same number of solutions. In
an instance from Vacation, the constraint we want to learn restricts 2 nurses to work a
minimum of 3 days and a maximum of 4 days from Monday to Sunday. Since at least one
nurse is required to work each day and that a nurse can work a maximum of 4 days within
the week, the only way to satisfy the requirements is by having a first nurse working 4 days
and the second nurse working 3 or 4 days. It is impossible for one of the nurses to work
fewer than 3 days without violating the constraints. The problem comes when setting the
value for the minimum number of days a nurse can work during the week. Consider a second
selection of parameters where a minimum of 2 working days is required instead of 3. The
same solutions are available since this change in parameters does not add solutions. The

CP 2022

15:12 Constraint Acquisition Based on Solution Counting

same goes with a minimum of 1 or 0 working day. This situation leads to four distinct CSPs
with the same solution space. Since the objective is to find the CSP accepting the fewest
solutions, these four CSPs are equivalent and the solver returns them in an arbitrary order.
Most of the unsolved instances in the benchmark Vacation have the correct CSP in fourth
position, which would have been first if the branching heuristics broke ties differently. We did
not observe in our benchmarks situations where the solution spaces differ which let us believe
that these models are equivalent. If we pretend for a moment that the Vacation benchmark
was completed using heuristics that break ties without errors, we obtain the Figure 4.

Classification of the Instances for Various Number of Examples

0 20 40 60 80 100
1
2
3
5

10
25

100

Percentage (%)

#
E

xa
m

pl
es

a) Sequence

0 20 40 60 80 100
1
2
3
5

10
25

100

bl
an

k
#1 #2 #3 Other

b) Complex

0 20 40 60 80 100
1
2
3
5

10
25

100

bl
an

k

c) Vacation
0 20 40 60 80 100

1
2
3
5

10
25

100

bl
an

k

d) Overtime

Figure 4 Hypothetical best results for each benchmark.

Figure 4 shows that this hypothetical heuristic allows solving perfectly the Vacation
benchmark using as few as 10 examples. Improvements are also present with the other
benchmarks. This confirms that finding equivalent CSPs is the main reason why the solver
does not succeed to correctly learn some CSPs.

The unsolved instances from the Complex benchmark are mainly caused by constraints
found more restrictive than the correct one while the unsolved instances from the Vacation
benchmark are mostly caused by equivalent CSPs. The unsolved instances of the Overtime
benchmark are caused by a mix of these two reasons.

The final results show that our model can accurately learn the constraints even when the
schedules contain vacations, overtime, or constraints that interfere with the constraints one
wants to learn. Few examples are needed to obtain good results. These figures demonstrate
that CABSC can learn constraints with the right parameters in diverse situations.

6.2 Execution Time
6.2.1 Using GANAK alone
For the Complex benchmark, model counting represents on average 93.6% of the time
spent in the solver. Solution counting is a #P-difficult problem with few effective algorithms.
Even with state-of-the-art tools, computing a lower bound on the number of solutions
can take several minutes. The bound that took the longest time to compute by GANAK

C. Coulombe and C.-G. Quimper 15:13

took 648 seconds. Figure 5 represents the time taken to solve all instances, i.e. the
p368 ` 247 ` 272 ` 304q ˆ 7 instances that come from the four benchmarks that were solved
with 1, 2, 3, 5, 10, 25, and 100 examples using only GANAK as a model counter. Most of
the instances are solved within a minute, but the solving time quickly and abruptly rises.
This time limitation comes from a few main elements.

First, the size of the Meta-CSP greatly impacts the time needed for CABSC to find a
solution. This size is measured in the number of parameter variables and activation variables
since their number affects the depth of the search tree, thus the number of nodes explored
in the branch and bound. For our instances, a few hundreds nodes could be observed on
average resulting in around 30 to 60 unique calls to a model counter.

Second, the examples also impact the total runtime in two ways. With a higher number
of examples, the solver is able to filter out more values from the domain of the parameter
variables which directly decreases the number of potential calls to a model counter. Using a
single example, the instances in the Complex benchmark takes on average 385.3 seconds to
solve. With a hundred examples, the average time drops to 306.9 seconds, an improvement of
20.35%. The second way the solving time is impacted by the examples is with their length, i.e.
the number of decision variables. The more decision variables, the more Boolean variables
in the SAT model to count. For this reason, we were not able to learn the constraints of
schedules with a horizon of 56 days or more.

Lastly, all bounds do not take the same computation time. Indeed, we obtain SAT
instances with various numbers of Boolean variables and clauses. The internal structure of
these SAT instances can also vary. The bound that is the slowest to calculate uses a SAT
instance with 672 Boolean variables and 1172 clauses and takes 648 seconds to count. The
Boolean model with the greatest number of variables has 804 variables and 2052 clauses and
is counted in 0.11 seconds. This demonstrates that the counting time does not only depend
on the number of decision variables, but also the structure of the problem.

6.2.2 Using both GANAK and ApproxMC4

One method used to improve the time needed to solve a Meta-CSP is by combining a
probabilistic exact model counter with an approximate model counter. This allows some
CSP models to have their solutions counted quicker. The way ApproxMC4 was added to

0 2000 4000 6000 8000
Instances sorted by solving time

1

10

100

1000

So
lv

in
g

tim
e

(s
)

Time taken to solve each instance using GANAK alone

Complex
Overtime
Vacation
Sequence
One minute
Worst instance with GANAK alone

1

10

100

1000

Figure 5 Measures of time for all instances using GANAK alone.

CP 2022

15:14 Constraint Acquisition Based on Solution Counting

CabscSolver was to use it to prune CSP models from the search tree when the number of
solutions was reasonably far from the number of solutions of the best CSP model found so
far, as explained in Section 5.3.

This method is a lot faster than using GANAK as the only model counter as demonstrated
by the Figure 6. The worst instance with GANAK alone lasted 2350 seconds while the same
instance lasted 1099 seconds using ApproxMC4. The arithmetic average solving time of
the Complex drops from 333.0 seconds to 158.7 seconds. This represents an improvement
of 52.3% in average. The geometric average drops from 54.2 seconds to 41.0 seconds, an
improvement of 24.4%.

The results obtained using both GANAK and ApproxMC4 have a lower accuracy by a
small margin. While the accuracy of the results for the Sequence, Vacation and Overtime
benchmarks remain unchanged, Complex suffers slight changes when few examples of
solutions are given. Since the results have no significant differences to be seen on a graph,
the changes are textually reported. With a single example of solution, the percentage of
correctly learned CSP models drops from 48.99% to 48.48%. When using two examples of
solutions, the percentage of correctly learned CSP models drops from 63.97% to 63.56% and
with three examples, it drops from 69.64% to 68.83%. When using five examples of solutions
or more, adding ApproxMC4 do not change the results anymore. All the other accuracy
results are exactly the same, whether ApproxMC4 was used or not.

The lack of changes in the accuracy of Sequence, Vacation and Overtime benchmarks
is mainly caused by the fact that ApproxMC4 returns approximations that are often too
close to take into account. The solver then has to ask GANAK to finish calculating the
number of solutions of the CSP model regardless of the time needed by ApproxMC4. For the
Complex benchmark, many CSP models were approximated by ApproxMC4 a lot faster
than GANAK could and with values that allow pruning many nodes. ApproxMC4 sometimes
overestimates the count of solutions outside the wanted interval of values. Since we used
δ “ 0.10 for the model counters, ApproxMC4 therefore has a probability of at most 0.10
to return values outside the wanted interval. This can cause many of the evaluations to
accidentally prune correct CSP models, which can cause the Meta-CSP not to be properly
solved. On the opposite side, it is possible to see improvements in the CSP learned due

0 2000 4000 6000 8000
Instances sorted by solving time

1

10

100

1000

So
lv

in
g

tim
e

(s
)

Time taken to solve each instance using GANAK and ApproxMC4

Complex
Overtime
Vacation
Sequence
One minute
Worst instance with GANAK alone

1

10

100

1000

Figure 6 Measures of time for all instances using GANAK with ApproxMC4.

C. Coulombe and C.-G. Quimper 15:15

to overestimations that prune CSP models that would be learned if counted exactly. This
happened on few instances from the Complex benchmark where the correct CSP went from
being the third suggestion to the second. Since the correct CSP was not suggested as a first
choice, the accuracy of correctly learned CSP models did not improve from these.

6.3 Potential Improvements
There exist several open source model counters that are efficient at counting SAT models, but
fewer available programs to count the solutions of a CSP. Translating Sequence constraints
into pseudo-Boolean constraints and then to CNF offers no guarantee in the efficiency of the
model. Directly counting the solution of a CSP could be faster and would certainly prevent
from translating the model.

Parallelization could also speed up the exploration of the search tree. An approach like
Embarassingly Parallel Search [15] could be appropriate, but also parallelization within the
model counters would be suited as it is offered by ApproxMC3 [9, 18].

7 Conclusion

We introduced CABSC, a technique for Constraint Acquisition Based on Solution Counting.
Our approach learns the CSP that accepts all provided examples but that minimizes the size
of its solution space. This criterion has proven to return good solutions. The branch and
bound uses model counters to compute a bound on the number of solutions for a given CSP.
Experimental results show that CABSC successfully learns models and require few examples
for our benchmarks.

References
1 Hajar Ait Addi and Redouane Ezzahir. Pa-quacq: Algorithm for constraint acquisition system.

In Smart Data and Computational Intelligence, pages 249–256, 2019.
2 Hajar Ait Addi, Christian Bessiere, Redouane Ezzahir, and Nadjib Lazaar. Time-bounded

query generator for constraint acquisition. In Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR 2018), pages 1–17, 2018.

3 Robin Arcangioli and Nadjib Lazaar. Multiple constraint acquisition. In Proceedings of
the 2015 International Conference on Constraints and Preferences for Configuration and
Recommendation and Intelligent Techniques for Web Personalization, pages 16–20, 2015.

4 Nicolas Beldiceanu and Évelyne Contejean. Introducing global constraints in chip. Mathematical
and Computer Modelling, 20(12):97–123, 1994.

5 Nicolas Beldiceanu and Helmut Simonis. A constraint seeker: Finding and ranking global
constraints from examples. In Proceedings of the 17th International Conference on Principles
and Practice of Constraint Programming (CP 2011), pages 12–26, 2011.

6 Nicolas Beldiceanu and Helmut Simonis. A model seeker: Extracting global constraint models
from positive examples. In Proceedings of the 18th International Conference on Principles and
Practice of Constraint Programming (CP 2012), pages 141–157, 2012.

7 Christian Bessiere, Clément Carbonnel, Anton Dries, Emmanuel Hebrard, George Katsirelos,
Nadjib Lazaar, Nina Narodytska, Claude-Guy Quimper, Kostas Stergiou, Dimosthenis C.
Tsouros, and Toby Walsh. Partial queries for constraint acquisition. Technical Report
abs/2003.06649, CoRR, 2020. arXiv:2003.06649.

8 Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar, Nina
Narodytska, Claude-Guy Quimper, and Toby Walsh. Constraint acquisition via partial queries.
In Francesca Rossi, editor, Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI-13), pages 475–481, 2013.

CP 2022

http://arxiv.org/abs/2003.06649

15:16 Constraint Acquisition Based on Solution Counting

9 Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Algorithmic improvements
in approximate counting for probabilistic inference: From linear to logarithmic sat calls. In
Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI-16),
pages 3569–3576, 2016.

10 Abderrazak Daoudi, Younes Mechqrane, Christian Bessiere, Nadjib Lazaar, and El-Houssine
Bouyakhf. Constraint acquisition with recommendation queries. In Proceedings of the 25th
International Joint Conference on Artificial Intelligence (IJCAI-16), pages 720–726, 2016.

11 Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into sat. Journal on
Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006.

12 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. Minizinc: Towards a standard cp modelling language. In Proceedings of the 13th
International Conference on Principles and Practice of Constraint Programming (CP 2007),
pages 529–543, 2007.

13 Émilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney. Learning
parameters for the sequence constraint from solutions. In Proceedings of the 22nd International
Conference on Principles and Practice of Constraint Programming (CP 2016), pages 405–420,
2016.

14 Émilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney. Learning
the parameters of global constraints using branch-and-bound. In Proceedings of the 23rd
International Conference on Principles and Practice of Constraint Programming (CP 2017),
pages 512–528, 2017.

15 Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert. Embarrassingly parallel search.
In Proceedings of the 19th International Conference on Principles and Practice of Constraint
Programming (CP 2013), pages 596–610, 2013.

16 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Program-
ming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

17 Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel. Ganak: A scalable
probabilistic exact model counter. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence (IJCAI-19), pages 1169–1176, 2019.

18 Mate Soos and Kuldeep S. Meel. Bird: Engineering an efficient cnf-xor sat solver and its
applications to approximate model counting. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence (AAAI-19), pages 1592–1599, 2019.

19 Dimosthenis C. Tsouros, Kostas Stergiou, and Christian Bessiere. Structure-driven multiple
constraint acquisition. In Proceedings of the 25th International Conference on Principles and
Practice of Constraint Programming (CP 2019), pages 709–725, 2019.

20 Dimosthenis C. Tsouros, Kostas Stergiou, and Panagiotis G. Sarigiannidis. Efficient methods
for constraint acquisition. In Proceedings of the 24th International Conference on Principles
and Practice of Constraint Programming (CP 2018), pages 373–388, 2018.

	1 Introduction
	2 General Background
	3 The CABSC approach
	3.1 Definition of a Meta-CSP

	4 Framework
	4.1 The Language
	4.2 The Solver

	5 Experiments
	5.1 Implementation
	5.2 Instances
	5.3 Experimental Setup

	6 Results and Discussion
	6.1 Accuracy
	6.2 Execution Time
	6.2.1 Using GANAK alone
	6.2.2 Using both GANAK and ApproxMC4

	6.3 Potential Improvements

	7 Conclusion

