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Abstract
Constructing a complete control-flow graph (CGF) and computing upper bounds on loops of a
computing system are essential to safely estimate the worst-case execution time (WCET) of real-
time tasks. WCETs are required for verifying the timing requirements of a real-time computing
system. Therefore, we propose an analysis using dynamic symbolic execution (DSE) that detects
and computes upper bounds on the loops, and resolves indirect jumps. The proposed analysis
constructs and initializes memory models, then it uses a satisfiability modulo theories (SMT) solver
to symbolically execute the instructions. The analysis showed higher precision in bounding loops of
the Mälardalen benchmarks comparing to SWEET and oRange. We integrated our analysis with
the OTAWA toolbox for performing a WCET analysis. Then, we used the proposed analysis for
estimating the WCET of functions in a use case inspired by an aerospace project.
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1 Introduction

Timing analyses aim to verify the timing constraints of a computing system. A timing
analysis should start with computing a safe upper bound on the worst-case execution time
(WCET) of each task (or sub-task in the case of directed acyclic graph (DAG) tasks) in
the computing system. Then, a response-time analysis or a schedulability test should follow
considering the scheduling policy and the deadline of each task. Estimates of the WCET of
tasks can be obtained by using measurement, static or hybrid methods. The applications
may be complex, therefore, the choice of the best method is not straightforward. However,
only the static methods can cover all corner cases and can therefore provide safe upper
bounds on the WCETs. Also, the development process is iterative, hence, setting up a static
analysis would potentially save time and effort after applying changes compared to using
measurements.

1 This author’s contribution has been conducted at the German Aerospace Center (DLR) while pursuing
his Master’s degree
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A static WCET analysis has to provide an abstract model of the micro-architecture
including, e.g., pipeline and caches, and facts on the program flow. Flow facts include
program control-flow and upper bounds on loops. The Implicit Path Enumeration technique
(IPET) computes the WCET as an objective function maximization in an integer linear
programming (ILP) problem of the abstract interpretation of the micro-architecture and
the execution paths of the program [19]. This paper presents an analysis based on dynamic
symbolic execution (DSE) to automatically 1) compute upper bounds on loops and; 2) resolve
indirect jumps to construct the control flow of the program. Automatic loop bounding and
indirect jump resolution are desirable over manual annotation, which is error-prone and
sometimes not manageable due to the amount of annotation needed [8].

DSE is a systematic approach to explore program paths and defining predicates [4]. A
satisfiability modulo theories (SMT) [7] solver checks the satisfiability of the predicates to
identify the next path. DSE has been used widely in computer security for, e.g., vulnerability
discovery and reverse-engineering [27]. We use DSE in this work to explore program paths
to identify potential jump targets and compute loop bounds. DSE reports results based
on the given input values to the program, therefore, it cannot guarantee computing a safe
upper bound on the loop bounds for applications implemented as an input-value-based state
machine. In such applications, a value analysis should support DSE. However, applications
that are implemented following the data-flow programming paradigm can use our DSE-based
analysis safely as long as the control flow is input-value independent. In this work, we have
special interest in data-flow applications, such as some on-board data processing (OBDP)
applications. Hence, a value analysis is beyond the scope of this paper.

Developing embedded software using the inversion control programming principle improves
modularity and maintainability [10]. Therefore, it is not uncommon nowadays to develop
embedded software using e.g. C++-based software frameworks. C++-based software
frameworks are the main motivation for this work. The German Aerospace Center (DLR)
has developed a C++ software framework for developing OBDP applications, called Tasking
Framework [17]. We will use it in this paper as a case study. Modularity and maintainability
come at the cost of the underlying complexity. Therefore, performing static WCET analysis
for such software is challenging. The challenges can be narrowed down to:

Control-flow reconstruction due to indirect jumps
Indirect jumps result mainly from virtual methods. They ensure that the correct function
is called for an object. Calling a virtual method is translated at the binary level to an
indirect jump instruction, in which the memory location of the target function is stored
in a register. In Listing 1, the function synchronizeStart() in the Tasking Framework is
defined as a virtual method. Listing 2 shows in Line 3 how the call is translated to an
indirect jump in assembly. Such as branching instruction is challenging for the static
analysis as it fails to fully construct the control-flow graph (CFG).

Listing 1 Indirect jump inside a simple for-loop where the bound is known at compile time.
1 void Tasking : : TaskImpl : : s y n c h r o n i z e S t a r t ( void ){
2 for ( unsigned int i = 0 ; ( i < i np u ts . s i z e ( ) ) ; i ++){
3 static_cast<ProtectedInputAccess&>(i np u ts [ i ] ) . s y n c h r o n i z e S t a r t ( ) ; } }

Listing 2 Indirect jump in the assembly code.
1 00009 cca l d r r3 , [ r3 , 0 x7f f000000000 ]
2 00009 ccc move r0 , r2
3 00009 cce blx r3
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Loop Bounding
Loops that iterate over lists as shown in Listing 3 are specially challenging source-level
loop bounding tools. The information about the list’s size and its location in memory is
not always available at the source level and requires additional binary level analysis to
extract. Even simple for loops like the one presented in Listing 1 may be bounded by an
object’s value, which requires knowledge of the content of the memory location where
the object is stored. Moreover, some loops are only available at the binary level. For
example, constructing n objects from the same class sometimes is translated into loops
at the binary level. These loops are hard to detect and bound at the source level.

Listing 3 A loop iterates over a bounded list.
1 //The loop i t e r a t e s over the a s s o c i a t e d inputs to n o t i f y the t as k .
2 void Tasking : : Channel : : push ( void ) {
3 for ( InputImpl ∗ i = m_inputs ; i != NULL; i = i−>channelNextInput ){
4 i−>n o t i f y I n p u t ( ) ; } }

Our analysis uses a low level intermediate representation (LLIR) of the analyzed program
as input. It translates each instruction into an SMT formula and symbolically executes them.
We build a memory model, stack model, and register model to enhance the DSE such that
each SMT formula updates the memory, stack and register models accordingly. With the
help of a loop detection algorithm, namely Johnson’s Algorithm [20], we bound loops.

We evaluated our analysis on the Mälardalen benchmark and compared the results with
other tools, e.g., oRange [5]. The results showed high precision in bounding loops. We used
the proposed analysis to provide flow facts to the open-source toolbox OTAWA [2]. Then
OTAWA was used to compute the WCET of some Tasking Framework methods for the
Cortex M3 architecture.

The rest of the paper is organized as follows: Chapter 2 visits the related work. In
Chapter 3, we present our DSE-based analysis to compute loop bounds and resolve indirect
jumps. The proposed analysis is evaluated in Chapter 4. Chapter 5 concludes the paper.

2 Related Work

In the scientific literature, SMT has been used to expose the program semantics to improve
the tightness of the computed WCETs by eliminating infeasible paths. In [24], Ruiz et al.
worked on machine code where they formulated the program states as sets of predicates to
expose infeasible paths using SMT solvers. Henry et al. in [18] formulated the problem of
computing the WCET as optimization modulo theory, which extends the satisfiability modulo
theory. Neither paper addressed the problem of resolving indirect jumps. In [18], the loops
must be unrolled before applying the proposed analysis. The analysis of program semantics
is admitted to be easier at the source level [23]. However, for C++ software frameworks,
performing the analysis at LLIR level is easier than at source level due to the complexity of
the C++ language.

Gustafsson et al. presented in [16] an automated analysis to derive loop bounds using
abstract execution. However, the proposed analysis was not developed to bound loops that
iterate over a bounded list like in Listing 3. Therefore, we doubt that the polynomial
correlations from the abstract execution can comprehend such loops. Besides that, the
analysis was not developed to resolve potential indirect jumps in the CFG.

In many aerospace projects, intensive measurements are applied to estimate the WCET [12]
using commercial tools like RapiTime [22]. Applying static analysis is done on critical
functions [13]. Using aiT [11] is common to that end. Both approaches need human
interaction, e.g., manual annotation. This work aims to automate the flow facts computation
and to use the open-source toolbox OTAWA.

WCET 2022
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3 DSE-based Flow Fact Computation
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Figure 1 Analysis steps in DELOOP with the engine state.

In this section, we elaborate on our proposed analysis: Dynamic symbolic Execution-based
LOOP bounding (DELOOP). The analysis steps are shown in Figure 1. DELOOP takes the
executable binary of the given program as input, computes loop bounds and resolves indirect
jumps. The analysis carries out the following steps:
1. Lifting the executable binary to static single-assignment (SSA) LLIR. We use the com-

mercial tool BINARYNINJA [3] for that purpose. Performing the analysis on LLIR makes
the analysis platform-independent.

2. Detecting the loops using Johnson’s Algorithm.
3. Translating each SSA instruction in the LLIR into SMT formulas. We use Microsoft

Z3 [6] as the SMT solver.
4. Building and initializing memory, stack and register models as arrays of bit vectors. The

models will store the state of the memory, stack and registers.
5. Symbolically executing each instruction by checking the satisfiability of the equivalent

SMT formula and updating the affected model.
After lifting the executable binary of the given program, the CFG is reconstructed. DELOOP
computes an upper bound on the number of executions for each basic block. Combined with
the loop detection algorithm, DELOOP can report an upper bound on loops. The lifting
tool, BINARYNINJA, is a reverse engineering framework used mainly for binary analysis.
We used its Python API to parse the assembly code and facilitate all parts of the analysis.

3.1 Loop Detection

We implemented Johnson’s Algorithm to detect loops in the given CFG. The algorithm takes
the CFG as a directed graph G (V, E), which consists of a non-empty set of vertices V and
a set of ordered pairs of vertices called edges E. The algorithm can detect the loops, known
as elementary circuits, within a time bounded by O((n + e)(c + 1)) and space by O(n +
e), where n is the number of vertices, e the number of edges and c the elementary circuits in
the graph. A single elementary circuit is defined as a closed path where no node appears
twice, except that the first and last nodes are the same. Two elementary circuits are distinct
if they are not cyclic permutations of each other.

DELOOP groups the basic blocks in a single elementary circuit (i.e., loop). Each detected
loop, denoted by λ, is given a loop ID that is equal to theID of the last basic block in the
loop. Recursive function calls are not handled with the loop detection algorithm. However,
DELOOP can automatically bound the depth of recursion during the DSE phase.
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3.2 SMT formulas and engine state
To symbolically execute the program, we compile the SSA LLIR into SMT formulae. The
SSA form of the LLIR facilitates the whole translation process as every SSA instruction is
directly mapped to one SMT formula using array and bit vector theories.

Two memory models are built based on the array theory. Data inside the arrays are
formulated as bit vectors with a size that matches the target architecture; thus, the arrays
are defined as arrays of bit vectors. The first memory is used for symbolic execution of the
load/store instructions and is initialized with the values of all the program’s data variables
in the given executable binary. The second memory, the stack, is dedicated for the push/pop
instructions. Both memory models grow and are updated dynamically along the DSE of the
program.

Besides the models for memory and stack, we have a third model for representing the
registers and flags. This model is also updated dynamically. Together, the memory model µ,
the stack model σ and the register model ρ represent the engine state S. SSA instructions are
translated to formulas in a form that implies the mathematical effect of the SSA instruction
on the engine state. For example, the SSA instruction R2 = R3 + 1 is translated as shown in
Equation 1 where bit vector variables are defined for R2, R3 and the immediate value.

R2 = R3 + 1 =⇒ BitV ec(R2, size) = BitV ec(R3, size) + BitV ec(1, size) (1)

Memory instructions are also interpreted in the same way. For example, the SSA instruction
shown in Equation 2 is computed as select(mem,0x8080) where mem is the memory model
and 0x8080 is the load address. The translator performs the previous steps for all kinds of
LLIR operations.

R2 = [data_0x8080] =⇒ BitV ec(R2, size) = select(mem, 0x8080) (2)

3.3 Dynamic symbolic execution
DSE is used in a number of industrial tools to explore the CFG of a sequential program P
for identifying test inputs that can lead the execution to new paths [7]. A path Π in the
program P is said to be feasible if there is a non-empty set of inputs I such that ∀i ∈ I the
execution of P follows the path Π. If I = ∅, then the path is not feasible.

Inspired by that concept, we try to explore loop bounds. For a program P starting at an
initial path Πin with a set of initial inputs Iin, we aim to deduce the set of outputs at the
end of the path Πin: Iout. Our approach uses Iout as the new Iin to reach the next path.
Following this concept, we dynamically execute all the feasible paths in the given CFG.

DELOOP checks the satisfiability of every SMT formula and updates the engine state
S with the effect of execution. The SMT formulas are categorized into four main types:
memory-related, stack-related, register-related and director formulas. Director formulas
represent the branching instructions and are responsible for setting the execution path for the
solver. Memory-related formulas update the memory model µ in the engine state. Similarly,
stack and registers-related formulas update the stack σ and register ρ models respectively.

The concept of states transformed our execution from a static to a dynamic symbolic
execution. For example, during the translation of R2 = R3 + 1, the translator first checks
whether there are previous variables in the engine state for R3 and R2. In the case of already
existing variables, the value of R3 is fetched from ρ and increased by one and then assigned
to R2. If R3 has a previous value of 100, then the translation process is done as follows:

R2 = R3 + 1 =⇒ BitV ec(R2, size) = BitV ec(100, size) + BitV ec(1, size) (3)

The same is true for the memory instruction in Equation 2. If the address 0x8080 has a
value, let it be 0xa080, then R2 will be updated as follows: R2 = [data_0x8080] =⇒ 0xa080.

WCET 2022
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3.3.1 Bounding loops
The execution starts from the program entry point and continues to the CFG’s exit function,
or to the synthetically inserted exit point, which can be defined by the person who performs
the analysis to stop the analysis at a designated point. DELOOP symbolically executes each
SSA instruction and updates the engine state. Also, for each basic block Bi, DELOOP stores
the number of executions EXi of Bi. After finishing executing, the loops that are detected
by Johnson’s Algorithm, are visited and the bound is computed as the maximum number of
executions for each basic block in loop λ. Let β̄ be a function that returns an upper bound
for a given loop λ:

β̄(λ) = max
∀Bi∈λ

{EXi} (4)

In the case of nested loops, Equation 4 returns the total number of executions of the inner
loop, which is a non-necessary over-approximation. Therefore, before reporting the loop
bounds we check if there are nested loops and update the loop bounds of inner loops as
follows: β̄(λinner) = β̄(λinner)/β̄(λouter)

3.3.2 Indirect jumps
Symbolic execution builds correlations between basic blocks for the program under analysis.
It generates equations depending on an input variable to describe the jump target and the
execution sequence of the program. These correlations can be used to resolve indirect jumps
and anticipate the next basic block to be executed. However, the static symbolic execution
generates multiple equations, based on the input and CFG path, that may satisfy the jump
target resolution. These equations can be represented as first-degree-polynomial equations in
the form of a + x ∗ C where a is the base of the jump table and x ∗ C is an offset. In each
SMT formulated equation, C will depend on the input and the CFG path. The dynamic
symbolic execution narrows the search space for these equations as it defines the execution
path based on the given inputs for every solution iteration. In our generated engine model,
the value of the indirect jump register is being updated based on the SAT formulations from
state i till the indirect jump call instruction. That implicitly resolves the generated SAT
inter-basic block formulations.

During the execution in our execution model, the indirect jump target is correlated to
the CFG and the input through the forward propagation of the data. The result correlation
is an SMT formulation of bit vectors and memory arrays. To resolve the formulation into
meaningful targets, a reversed data-flow analysis with defined stop conditions needs to be
run. However, this solution will lead to multiple resolutions for the formulation with no SAT
guarantees. The dynamic symbolic solution solves this problem through the forward update
of the engine states.

call(R3) =⇒ BitV ec(R3, size) = BitV ec(select(mem, 0x8080), size)+
BitV ec(select(mem, BitV ec(R1, size)), size) (5)

The update of the state after each execution implicitly preserves forward propagation of
the memory arrays and bit vector values that will correctly resolve the jump target. For
example, an indirect jump call formulation as in Equation 5 can be resolved to the jump
target address by substituting the propagated values of the memory address and R1 at the
engine state executing the indirect call instruction.
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Table 1 Benchmark results where L: loops; E: exact bounding.

Program #L E Program #L E Program #L E
adpcm 27 27 bs 1 1 cnt 4 4
cover 3 3 crc 6 6 duff 2 2
edn 12 12 expint 3 3 fac 1 1
fdct 2 2 fft1 30 30 fibcal 1 1
fir 2 2 inssort 2 2 jcomplex 2 2
ludcmp 11 11 matmult 7 7 ndes 12 12
ns 4 4 nsichneu 1 0 prime 2 2
qsort-exam 6 6 qurt 3 3 select 4 4
ud 11 11

Table 2 Loop-bounding tools comparison where BLT: bounded loop total.

Tool BLT % BLT E % E
DELOOP 158 99% 158 99%
oRange [5] 134 84% 117 73.5%
SWEET [9] 100 63% 81 51%

4 Evaluation

4.1 Mälardalen WCET benchmarks
The Mälardalen WCET benchmarks [15] are open-source test programs for WCET analysis.
Although the Mälardalen WCET benchmarks are ANSI-C code, they can be used to verify
our tool and compare its results against the state-of-the art tools. For validating our tool,
we use Tasking Framework in the next section.

We used 25 programs from the Mälardalen WCET benchmark suite to test our tool. The
results are presented in Table 1. E represents the number of loops which could be exactly
bounded. For all programs except one, DELOOP can exactly bound the loops. For the
very large function nischneu, the lifter, BINARYNINJA, failed to restore the CFG of the
main function. It might not be surprising to exactly bound all the detected loops because
we symbolically execute the program using the SMT formulas. In Table 2, we compare our
results with oRange [5] and SWEET [9]. For oRange and SWEET, we recall the results from
the cited papers. BLT and %BLT represent the number of bounded loops and percentage
out of 159 loops respectively.

4.2 A use case developed using Tasking Framework
Tasking Framework [17] is an open-source [14] software development library. Also, it is a
multithreading event-driven execution platform for embedded software. It provides abstract
classes with virtual methods to realize an application by a directed graph of connected tasks
and channels, where each computation block of a software component is realized by the
class task, and the data exchanged between tasks is an object of the class channel. Periodic
tasks are connected to a source of events as shown in Figure 3. Tasks can start executing
as soon as their input data is available, thus, some of them can work concurrently. A task
forwards the data to the next task by pushing it to the associated channel, which represents
an interface between two tasks, and activating the next task. This data-driven activation
mechanism is implemented in Tasking Framework with different activation semantics, e.g.,
and, or semantics.

WCET 2022
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Figure 2 Use case inspired from the optical navigation sub-system in the ATON project [25].

camTask1 imgChannel10 craterTask craterChannel

timer
10Hz

camTask2 imgChannel45 featureTask featureChannel

timer
100Hz

navTask outChannel

logTask

flightTask

Input Task Channel

Figure 3 The use case in Figure 2 as realized by the Tasking Framework.

Tasking Framework has been used for many real-world aerospace applications such as
Autonomous Terrain-based Optical Navigation (ATON)[25] and Scalable On-Board Comput-
ing for Space Avionics (ScOSA)[21]. ScOSA is an ongoing project in 2022.

We evaluated our analysis on a use case inspired from the optical navigation sub-system in
the ATON project [25], and implemented using the Tasking Framework. In this sub-system,
two camera drivers, camTask1 and camTask2, run periodically and transfer the images to 1)
a crater navigation component craterTask and 2) a feature tracking component featureTask
respectively. The output of these components feeds the navigation filter navTask to estimate
the position. The output is logged by logTask and forwarded to the flight controller flightTask.

4.2.1 Results
SWEET: Its input is an IR based on the ARTIST2 Language for Flow Analysis (ALF).
To apply SWEET, we built the binary code, then lifted it to LLVM using RetDec [1],
which is a retargetable machine code decompiler based on LLVM. We translate the LLVM
IR to ALF using the translator introduced in [26]. SWEET failed to build its abstract
execution model.
oRange: We generated the binary code and lifted it back to C code using RetDec.
oRange reports NOCOMP for all loops in the use case.
DELOOP: We integrated DELOOP with OTAWA as shown in Figure 4 to compute the
WCET.

The results are presented here:
Loops: Unlike the loops in the benchmark, Tasking Framework does not contain any
simple loop like the one in Listing 4. The loops in Tasking Framework are either bounded
by an object’s attribute, see Listing 1, or iterates over a list, see Listing 3. However, the
code of the user-developed tasks may contain different types of loops.

Listing 4 Simple ANSI-C loop.
1 for ( int i =0; i <20 ; i ++){}

DELOOP provides more than one bound for loops, one bound per instance. For example,
each channel in our case study will run its own copy of the push() function; thus, the
loop in Listing 1 will be executed by different tasks in the case study. DELOOP will
compute an upper bound for each copy of the loop. The loop is bounded by the number
of associated inputs and is thus bounded by two for the navTask while it is bounded by
one for all other tasks.
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Figure 4 DELOOP integrated with OTAWA.

Also, DELOOP detected an implicit loop, which does not appear in the source code, as
shown in Listing 5. navTask has three input objects, thus, the bound of this loop is three.

Listing 5 A constructor template translated into a loop in assembly code.
1 template<s i z e _ t n>
2 InputArrayProvider<n >:: InputArrayProvider ( void ) :
3 InputArray ( inputMemory , n ) {}

Indirect jumps: The indirect jumps in Tasking Framework are mainly due to virtual
methods. Virtual methods are there to support, for instance, three scheduling policies.
After compilation, each indirect jump has only one target. Therefore, resolving the
indirect jumps using DSE is safe. All the indirect jumps in our case study were resolved.
WCET Computation: As mentioned earlier in this paper, we use OTAWA as a static
analyzer and DELOOP as a flow facts generator as shown in Figure 4. This setup
expands the capabilities of OTAWA in estimating WCET for C++ code. After given
OTAWA a hardware description file for armv-7m, the WCET estimation starts with
reconstructing the CFG. Then, the results of the loop analysis performed by DELOOP
are passed to OTAWA for the WCET analysis. The analysis is performed for a bare-metal
implementation.
In OBDP applications based on a data-flow programming paradigm, ideally, each task
pushes to the associated channel to activate the next task. This data-driven activation
mechanism is implemented in Tasking Framework via the push() method. push() starts a
chain of method calls, which ends with queue() that queues the next connected task in the
ready queue. The chain contains two loops and one indirect jump. Bounding the WCET
of push(), i.e., the chain of function calls, helps in estimating the overhead imposed by
Tasking Framework. The implementation of push()2 contains two loops: Loop1 is the
outer loop that iterates over the tasks associated with the considered channel; Loop2 is
executed for each iteration on Loop1 and it iterates over the inputs of each associated
task with the considered channel. The WCET of push() executed by the task camTask1
is 2435 cycles. Note that the channel imgChannel10 is associated with only one input
object, i.e. task craterTask. The same result is valid for the push() executed by the task

2 https://github.com/DLR-SC/tasking-framework/commit/349ce3ddd98cd1fe69daf08318e1b8cbf9c01e9b

WCET 2022
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camTask2 because it has the same flow facts. The WCET of push() executed by the task
featureTask and craterTask is 3635 cycles. Finally, the WCET of push() executed by the
task navTask is 4800 cycles. Table 3 summarizes the results. As the results show, push()
has different WCET values for different tasks, but it is bounded and fixed for each task.

Table 3 Results of the WCET analysis for the push function in the use case in Figure 3.

Task Loop1 Loop2 WCET (cycles)
camTask1 1 1 2435
camTask2 1 1 2435
craterTask 1 3 3635
featureTask 1 3 3635

navTask 2 1 4800

Performance: The analysis was executed on a workstation with Linux, i7-9750H
processor and 16Gbyte RAM. The use case has a binary size = 664 kbyte. The analysis
used 25% of the CPU capacity and 640 Mbyte of memory. The analysis took about 81
seconds to compute the flow facts.

5 Conclusions

The complexity of modern architectures, software development practices and compilers often
leads to executable code which is difficult to match to its source code. Additionally, manual
computation of flow facts and manual annotation are error-prone especially for software
developed using object-oriented practices, in which one loop can be executed many times by
different objects for different number of iterations. This provides motivation to compute the
flow facts at the binary level.

In this work, we proposed an analysis to bounding loops and resolving indirect jumps
using DSE. The proposed analysis lifts the executable binary to SSA LLIR, then each SSA
instruction is translated into an SMT formula. Using the Z3 SMT solver, the satisfiability is
checked and memory, stack and register custom models are updated accordingly. We showed
that the proposed analysis can safely compute upper bounds on loops in the Mälardalen
benchmarks. Also, we used the proposed analysis together with OTAWA to compute the
WCETs for a use case developed using the Tasking Framework.

Although successful in computing loop bounds and resolving indirect jumps, the proposed
analysis has two main limitations: 1) the need for value analysis for some applications to
guarantee that the computed bounds are safe; 2) using a memory model, which might be very
complex for large applications and therefore increase the analysis time. We will investigate
in the future development the scalability of DELOOP to larger applications in our ScOSA
project. Also, we are interested in verifying whether DELOOP yields any improvement in
terms of WCET estimation by conducting more case studies for which oRange and SWEET
can compute the flow facts.
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