Solving and Generating Nagareru Puzzles

Masakazu Ishihata @&

NTT Communication Science Laboratories, Kyoto, Japan

Fumiya Tokumasu
National Institute of Technology, Nara College, Nara, Japan

—— Abstract

Solving paper-and-pencil puzzles is fun for people, and their analysis is also an essential issue in

computational complexity theory. There are some practically efficient solvers for some NP-complete
puzzles; however, the automatic generation of interesting puzzle instances still stands out as a
complex problem because it requires checking whether the generated instance has a unique solution.
In this paper, we focus on a puzzle called Nagareru and propose two methods: one is for implicitly
enumerating all the solutions of its instance, and the other is for efficiently generating an instance
with a unique solution. The former constructs a ZDD that implicitly represents all the solutions.
The latter employs the ZDD-based solver as a building block to check the uniqueness of the solution
of generated instances. We experimentally showed that the ZDD-based solver was drastically faster
than a CSP-based solver, and our generation method created an interesting instance in a reasonable
time.

2012 ACM Subject Classification Computing methodologies — Combinatorial algorithms; Theory
of computation — Generating random combinatorial structures; Mathematics of computing —
Graph algorithms

Keywords and phrases Paper-and-pencil puzzle, SAT, CSP, ZDD

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.2

Supplementary Material Software (Source Code and Data):
https://github.com/masakazu-ishihata/Nagareru
archived at swh:1:dir:6c6604df4d55d8e2f019fdfe5¢19225060e8ce83

1 Introduction

Paper-and-pencil puzzles are a type of logic puzzle; a player gradually fills in parts of a
solution on the puzzle board without violating any rules and eventually constructs a single
consistent solution. Solving a puzzle is much fun for puzzle fans, but it has also attracted the
extensive attention of theoretical computer scientists because of an interest in computational
complexity [13]. They have been competing to prove the computational complexity of various
puzzles, and the following is just a small selection of the list of puzzles that have so far
proved to be NP-complete to solve: Bag (Corral) [3], Cross Sum [23], Country Road [5],
Dosun-Fuwari [8], Herugolf [7], Hiroimono [2], Makaro [7], Moon-or-Sun [9], Nagareru [9],
Nurikabe [4], Nurimeizu [9], Nurimisaki [10], Sashigane [10], Slitherlink [23], Sudoku (Number
Place) [23], Tatamibari [1], Yajilin [5], Yosenabe [6], and more. The above series of studies is
essential from the point of view of computational complexity theory; however, not so crucial
for puzzle fans because it does not directly help them enjoy puzzles more. In contrast, the
automatic generation of puzzle instances is one of the most promising computer science
techniques for puzzle fans. They believe that one of the necessary conditions for an interesting
puzzle instance is that the instance admits precisely one solution. However, for some puzzles,
checking the uniqueness of solutions of an instance is an equally or more difficult task than
solving the instance. Given an instance and its solution, finding another solution is called

© Masakazu Ishihata and Fumiya Tokumasu;

oY licensed under Creative Commons License CC-BY 4.0
20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Ugar; Article No. 2; pp. 2:1-2:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:masakazu.ishihata.ze@hco.ntt.co.jp
https://sites.google.com/site/masakazuishihata
https://doi.org/10.4230/LIPIcs.SEA.2022.2
https://github.com/masakazu-ishihata/Nagareru
https://github.com/masakazu-ishihata/Nagareru
https://archive.softwareheritage.org/swh:1:dir:6c6604df4d55d8e2f019fdfe5e19225060e8ce83;origin=https://github.com/masakazu-ishihata/Nagareru;visit=swh:1:snp:167af5861a04d20b13b4de922c67702693de365f;anchor=swh:1:rev:21f5e2baca87f68fd54efb40789e0b2965f3ec04
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2

Solving and Generating Nagareru Puzzles

another solution problem (ASP) [21]. The ASP of an NP-complete problem is not necessary
NP-complete; however, it has been shown that many puzzles are NP-complete not only in
finding one solution but also in finding another solution [7, 10, 9].

In contrast to the theoretical difficulties of solving puzzles, practically efficient puzzle
solvers have been proposed. One of the most popular approaches for solving puzzles is
formulating a puzzle instance as a SAT problem, or its variants, including a constraint
satisfaction problem (CSP) and satisfiability modulo theories (SMT), and solving it by a
general constraint solver. For instance, Sugar [20], one of the latest CSP solvers, can solve a
wide range of real-world instances of various puzzles, including a part of the above list [18].
Furthermore, some methods for generating puzzle instances have been proposed [22] that
employ a SAT/CSP/SMT-based puzzle solvers as their building block to check the uniqueness
of the generated instance; however, it has been reported that such a generator is too slow to
generate a realistic instance (e.g., a 10 x 10 grid) because it calls the solver so many times.

Another promising approach to solving puzzles is using zero-suppressed decision diagrams
(ZDDs) [14]. A ZDD is a compact graph representation of a set family and provides a variety
of queries, including counting, sampling, and set operations, in linear time for its size. The
frontier-based search (FBS) [11] is a meta-algorithm for constructing a ZDD representing
constrained subgraphs of a target graph. Many FBS examples for various constraints have
been proposed, e.g., trees, cycles, simple paths, and more complex constraints [12, 15]. Once
a puzzle is formulated as a constrained subgraph finding problem, one can construct a
ZDD-based puzzle solver by designing the FBS for the problem. For instance, Slitherlink is a
puzzle played on a graph G = (V, E) to find a single cycle C C E consistent with given all
hints, where a hint is a pair of an edge set H C E and a positive number n and restricts C
to |C N H| = n. Hence, Slitherlink can be formulated as a cycle finding problem with some
cardinality constraints of some edge sets. It has been reported that a ZDD-based Slitherlink
solver [24] performs faster than a CSP-based one [19], even though the former implicitly
enumerates all the solutions, whereas the latter finds only one solution. In addition, the
ZDD-based solver is helpful to generate puzzle instances because it can compute the number
of solutions by the counting query of ZDDs. ZDD-based puzzle instance generators have
been proposed for Slitherlink [24], Numberlink [24], and Minesweeper [17].

We focus on a puzzle called Nagareru [16], which has recently been proven to be NP-
complete to solve and find another solution [9], and propose practically efficient methods for
solving and generating its instance. Nagareru is a puzzle to draw a cycle that satisfies certain
constraints like Slitherlink, but the cycle must have a global orientation consistent with some
local orientation constraints (detailed rules are explained later), unlike Slitherlink. The FBS
for Nagareru cannot be realized by combining existing FBS examples; namely, a new FBS
is desired to solve Nagareru puzzles. The main contributions of this paper are threefold.
First, we propose a ZDD-based Nagareru solver; we formulate Nagareru as a constraint
cycle finding problem and propose the FBS for the constraints. Second, we propose an
efficient Nagareru instance generator that employs the ZDD-based solver as its building block.
Third, we empirically show that our solver outperforms a CSP-based solver and also that
our generator creates an interesting instance in a reasonable time. Note that our generator
is very different from those for other puzzles because the definition of “interesting” depends
strongly on the target puzzle.

The rest of this paper is organized as follows: In Section 2, we review the rules of Nagareru
and formulate it as a constrained cycle finding problem. We formulate a problem to find a
constrained cycle as CSP in Section 3. In Section 4, we propose a new FBS for constructing
a ZDD that implicitly enumerates all the constrained cycles; namely, it represents all the

M. Ishihata and F. Tokumasu

]] T
] 1 i
]] L
Fe——=r=== i aa i
I I |]
I |
] I |] I |
—— ——— = — —] L — - — [[—— (R P g i
| | |
I _ |
| | |
- — — — _—— -t - == - - — e L b ——— e

e | = e

|
P
(b) Solution. (c) Instance with winds.

(a) Instance.

Figure 1 The grid board (a) is an instance of Nagareru, and the grid board (b) indicates its
solution. The grid board (c) is the same instance as (a) with gray cells representing winds.

solutions of a Nagareru instance. In addition, we propose a new efficient generator of an
“interesting” Nagareru instance that employs our ZDD-based solver to check the uniqueness
of the solution in Section 5. We show the experimental results of the above methods in
Section 6 and then conclude this paper in Section 7.

2 Problem Definition

2.1 Nagareru Puzzles

Nagareru is a paper-and-pencil puzzle played according to the following rules on a grid

board [16]:

1. Draw a line to make a single continuous loop.

2. The line passes through the centers of cells, horizontally, vertically, or turning. It cannot
cross itself, branch off, or go through the same cell twice.

3. The line must go through the white cells with a black arrow, and when you go along the
arrows of the loop, that becomes the direction of all of the loop.

4. The white arrows in the black cells show that wind is blowing in the direction of the
arrow till it reaches another black cell or the border. In cells where the wind blows, the
line cannot advance against the wind.

5. When the line enters a cell where the wind blows, it must move at least one cell in that
direction. When the line is blown like this (bent by a side wind), it cannot progress to or
enter cells to hit the borders or enter black cells.

For example, the left grid board of Figure 1 is an instance of Nagareru, and the middle grid

board indicates its solution.

We begin by formulating an instance of Nagareru. For any positive integer n € Z, let

[n] ={1,...,n}. Given w,h € Z;, a w x h gird board consists of w columns and h rows;
namely, it has w x h cells. For any w’ € [w] and A’ € [h], let i = w’ + w(h’ — 1) refer to
the cell in the w'th column from the left and the h'th row from the top. For any i € [wh],
let adj(¢) C [wh] be a set of adjacent cells of i. Let D = {Up, Down, Left, Right, No} denote
a set of directions, where No indicates non-directional. For any d € D\ {No}, let d~* € D
denote the opposite direction of d. For any i,j € [wh], let rel(i, j) € D denote the relative
direction from i to j if ¢ and j are adjacent each other, and rel(i, j) = No if otherwise. For
any ¢ € [wh] and d € D\ {No}, there exists at most one adjacent cell j € adj(i) satisfying
rel(4,j) = d, denoted by i4, where iy = Null denotes rel(i, j) # d for any j € adj(i). Then,
an instance of Nagareru is defined as follows:

2:3

SEA 2022

2:4

Solving and Generating Nagareru Puzzles

» Definition 1 (An instance of Nagareru). Let W C [wh] x (D \ {No}) be white cells with
(black) arrows and B C [wh] x D be black cells with (white) arrows. P = (w,h, W, B) is an
instance of Nagareru on a w X h grid board if P satisfies V{(i,d), (i',d)} CWUDB,i #1i'.

» Theorem 2 (Hardness of finding a solution of Nagareru [9]). For input Nagareru instance
P, checking whether P admits a solution or not is NP-complete.

Let w = (w1, ...,wr) € [wh]* be a cell sequence of L-length. For any black cell (i,d) € B
and j € [wh], w is a wind path from i to j if w satisfies the following conditions:

wy =1 and wy, = j,

Vi e |[L—1],Vd' € D, (wi41,d") ¢ B: w has no other black cell than (i, d),

Vi € [L — 1], rel(w;,wi41) = d: w is a straight path of direction d.
Namely, the wind path w from ¢ to j indicates that a wind of direction d goes from i to j.
For any i € [wh], we use D}'"d C D to denote the directions of winds blowing on 7; namely,
d € D¥™d indicates that there exist a black cell (j,d) € B and a wind path w of direction d
from j to 7. We here introduce new colors, gray and colorless to make the explanation easier:
for any i € [wh] such that Vd € D, (i,d) ¢ W U B, i is gray if D)4 # () and colorless if
Dynd — (): namely, a cell with no arrow is gray if it is blown, and colorless if otherwise. For
example, the grid board (c¢) of Figure 1, obtained by adding gray and colorless to the grid
board (a), consists of three black cells, one white cell, six gray cells, and six colorless cells.

2.2 Formulating Nagareru as a constrained cycle finding problem

We formulate the problem of finding a solution of a Nagareru instance as a constrained
cycle finding problem on a graph representing the instance. Let C' = {White, Black, Gray, No}
denote a set of colors, where No indicates colorless. For any set V and n € Z, let (Z) ={SC
V [|S| = n}. For any i € [wh] and d € D, let E;y = {{i,j} | j € adj(i) ,rel(, j) ¢ {d,d"'}}

be edges of ¢ that are orthogonal to direction d.

» Definition 3 (A graph representation of a Nagareru instance). Let G = (V, E, col,dir) where
V C [wh] is a vertex set, E C (‘2/) is an edge set, col : V. — C' defines the color of each
vertez, and dir : V — 2P defines the direction set of each vertex. G represents a Nagareru
instance P if G satisfies following conditions:

v=[wh\ J {i}, (1)

(i,d)eB
. V| . i i
E=ofigye(,)lieadi@) e U Eia (2)
(i,d)EW
White 3d € D, (i,d) e W
col(i) =< Gray Vde D, (i,d) ¢ W,Dymd £ (), (3)

No Vd € D, (i,d) ¢ W, Dynd =)

dir(i) = {{d} (i,d) e W (4)

D¥d otherwise
For any color ¢ € C, let V., = {i € V | col(i) = ¢}. Equation (1) leads to Vgack = 0.
Equation (2) indicates that E has no edge inconsistent with (orthogonal to) an arrow

of a white vertex. Figure 2(a) indicates a 4x4 grid graph, and Figure 2(b) is the graph
representation of the instance shown in Figure 1.

M. Ishihata and F. Tokumasu

(a) 4x4 grid graph. (b) Graph representation. (c) Solution.

Figure 2 The graph (a) indicates a 4x4 grid graph with 16 vertices and 24 edges. The graph (b)
is the graph representation of the instance shown in Figure 1, where white, gray, and dotted circles
represent vertices colored by white, gray, and colorless, respectively, and white arrows attached to
each vertex i indicate dir(¢). A directed cycle of bold black directed edges in the graph (c) forms a
solution of Nagareru.

For any F' C E, let V[F] = J.cpe denote a set of all endpoints of F, G[F] =
(V[F], F, col,dir) denote an edge-induced subgraph of G, neip(i) = {j € V[F] | {i,j} € F'}

denote the neighbors of i on G[F], and degy (i) = |neip(i) | denote the degree of ¢ on G[F].

Let n, m, np, and mp denote |V|, |E|, |V[F]|, and |F|, respectively.

» Definition 4 (A solution of a Nagareru instance). An edge set F C E is a solution of a
Nagareru instance P if there exits a permutation of V[F|, denoted by p = (p1,...,Pnp), Such
that the following conditions are satisfied, where let po = Pnp, Pnp+1 = P1, €1 = {Pi,Di+1}s
and r; = rel(py, pi+1) for any l € [np].

Vi € Vinhite, 3l € [nF], pi = 1, (5)
Vi€ [np],degr(pi) =2 A e € F, (6)
Vi € [nF],col(p;) = White = Vd € dir(p;) ,ri—1 #d ', m #d 1, (7)
Vi € [np],col(p)) = Gray = Vd € dir(p;), i1 #d ,m #d 71, (8)
Vil € [np],col(p;) = Gray = Vd € dir(p;),{ei-1,€e1} # Ele,d- (9)

Equation (5) guarantees that every white vertex is contained in G[F]. Equation (6) restricts
GI[F] to be a cycle. Equation (7) (resp. (8)) prohibits G[F] from advancing against any wind
of a white (resp. gray) vertex. Equation (9) prohibits G[F] from orthogonal to (crossing)
any wind of a gray vertex. Consequently, G[F] forms a solution of P. Let Fp C 2¥ be the
set of all the solutions of P. P is said to be inwvalid, valid, and good if it has no solution

(|JF|p = 0), at least one solution (|Fp| > 1), exactly one solution (|Fp| = 1), respectively.

For example, let P be a Nagareru instance shown in Figure 1, G be its graph representation
shown in Figure 2(b), and F be the set of bold black arrows (edges) in Figure 2(c). Then,
G[F] forms a solution of P, and P admits no other solution; namely, P is a good instance.

3 A CSP-based Nagareru solver

We propose a baseline method for finding a solution of a Nagareru instance. The method
consists of three steps: (1) translating a constrained subgraph finding problem on a Nagareru
instance as a CSP instance, (2) solving the CSP instance by a CSP solver, and (3) converting
the obtained CSP solution to the solution of Nagareru.

2:5

SEA 2022

2:6

Solving and Generating Nagareru Puzzles

A CSP instance is denoted by a triplet of variables, variable domains, and constraints. We
first introduce variables and their domains. Because G[F|] for any F € Fp forms a directed
cycle, we introduce the same idea of a CSP formulation of Slitherlink [19] to represent a cycle
constraint; introducing auxiliary variables to represent a visiting order of variables that forms
a cycle. Let Dg = {(i,7) | i < j,{i,j} € F}. Then, our CSP formulation contains following
four types of variables and domains: u; ; € {—1,0,+1}, d; € {0,2}, ¢; € {0,1,...,m}, and
s; € {0,1} for any (i,j) € Dg. u;; denotes the use of edge {i,j} (i < j) with direction:
u;,; = 0 indicates {7,j} ¢ F and u;; = +1 (resp. —1) indicates {i,j} € F with the forward
direction rel(4, j) (resp. backward direction rel(j,4)). d; denotes degp (7). A set of ¢; denotes
a permutation of V[F]: ¢; = 0 indicates i ¢ V[F] and the rest ¢; define a permutation
P = (P1,...,Pny) such as p,, = i. s; denotes the starting vertex of the permutation p: ¢; =1
is represented by s; = 1 and s;; = 0 for ¢ € [wh] \ {i}.

We then introduce constraints such that an assignment of the above variables satisfying
the conditions if-and-only-if P is valid; in other words, we describe Equation (5), (6), (7), (8),
and (9) of Definition 4 as formulas of the above variables. We first introduce the following
sets of doublets and triplets of indices:

D, ={({,k) € Dg|iec{j,k}},

F.={(i,j) € Dg | 3k € {3, j},col(k) = c,rel(i,) € dir(k)},

B, ={(i,5) € Dg | 3k € {i,j},col(k) = ¢, rel(j,4) € dir(k)},

T, = {(i,.K) | (i,4), (G, k) € D, col(j) = Gray, 3d € dix(j) , {{i, j}. {j, k}} = By},

Then, the constraints of our CSP formulation are follows:

/\iEVWhite (Qi > O)) (10)
(/\iev (di = Z(j,k) j ke)) A (/\iev (Zj:(j,i)eDi Uji = Ej:(i,j)eDi “iyj») (11)
Niev (@ >0 = di>0)A(g; =1 < s;=1), (12)
Niev (wij =+1= (g +1=¢q; Vg =1)), (13)
Niev (wij=—-1=(ai=q¢; +1V ¢ =1)), (14)
ZiEV si =1, (15)
(/\(iuj)eFWhite (ui,j 7 _1)) A (/\(i,j)GBwhite (ui,j # +1)) s (16)
(Aireran, Wis # =) A (Atese, Wi # +1) (17)
N jmer, (ti;=0Vu;r=0), (18)

Equation (10) corresponds to Equation (5). Equation (11) defines d; = degp(i). Equa-
tion (12), (13), (14), and (15) jointly represent Equation (6). Equation (16), (17), and (18)
correspond to Equation (7), (8), and (9), respectively.

» Proposition 5 (A CSP formulation of Nagareru). The triplet of the above variables, domains,
and constraints is a CSP formulation for finding a solution F' € Fp of a Nagareru instance
P, and F' is constructed from a CPS solution as F = {{i,j} | (4,5) € Dg,u;; # 0}.

4 A ZDD-based Nagareru Solver

We here propose a ZDD-based Nagareru solver that constructs a ZDD representing Fp. We
first review a ZDD, a compact graph expression of a set family, and FBS, a meta-algorithm

M. Ishihata and F. Tokumasu

to construct a ZDD for constrained subgraphs. Then, we propose a new FBS for a ZDD
of]:p.

4.1 ZDDs for subgraphs

A ZDD 7 is a compact graph representation of a set family over a universe set E and let
Fz C 2F be the set family represented by Z. When the universe set E is an edge set of
a graph G = (V, E), Z can be regarded as a set of edge-induced subgraphs G[F] for each
F € Fz. To avoid confusing two graphs Z and G, we use terms nodes and arcs for describing
Z. A 7DD requires a total order on E denoted by > and let e; denote the Ith smallest
element of E. Then, a ZDD Z and its set family Fz are defined as follows.

» Definition 6 (A ZDD). Let Z = (N, Ay, A1, {) where N is a set of nodes, A, C N X N is
a set of b-arcs for any b € {0,1}, and £ : N — EU{Null} defines the label of each node. Z is
a ZDD if it satisfies the following conditions:
N has ezactly one root node denoted by p and exactly two terminal nodes denoted by 1y
and 11 such as £(m9) = £(m1) = Null.
FEach non-terminal node v € N\ {19, 71} has exzactly one outgoing b-arc for each b € {0,1},
and is labeled by some element of E: {(v) € E.
For any arc (v,v') € Ag U Ay, £(v) = £(V') holds where let e = Null for any e € E.

» Definition 7 (A set family represented by a ZDD). For any non-terminal node v € N\{r9, 71}
and b € {0,1}, let vy, be the node pointed by the b-arc of v, referred to as the b-child of v.
For any v € N, let F, C 2F be a set family recursively-defined as

Fry =0, Fr = {0}, Fo = Foy U{FU{LW)} | F € F,).

Then, Z is said to represent F, denoted by Fz.

Definition 6 restricts Z to a rooted directed cyclic graph (DAG). Definition 7 defines F,
in a bottom-up manner; however, it has another intuitive definition as follows. Let m =
(m1,...,71) € NE be a directed path from 7, to 77, on Z of L-length, and also let F,, =
{(m) |l € [L—-1],(m,m41) € A1}; namely, F contains £(v) if m contains the 1-arc of v. Let

IT, . be a set of all directed path from v to v/ on Z, and also let F,,_,,» = {F | 7 € I,/ }.

Then, for any v € N, F,, = F, ., holds [14]. Consequently, checking |Fz| > 0 corresponds
to finding a directed path from p to 7y on Z, and counting |F7z| is equivalent to counting such
paths. Since Z is a rooted DAG, dynamic programming solves both tasks in O(|N|) time.

4.2 FBS for constrained subgraphs

A ZDD 7Z is said to represent constraint subgraphs of G if G[F] for all F € F; satisfies
the target constraint but not for any F ¢ Fz. FBS is a meta-algorithm to construct such
Z. The basic idea of FBS is layer-wise top-down construction. For any I € [m], let N; be
non-terminal nodes labeled by e;, and also let [be referred to as layer. FBS initializes
N, = {p} and repeats the generation of N;_; from N; in order from the top layer m to
the bottom layer 1, and the resulting N = (Uje[m) V) U {70, 71} forms a ZDD. The essential
idea of FBS is introducing a state to each node v, denoted by S,. Each S, is a set of some
variables, and its specific definition depends on the constraint of interest. We use S,.x to
denote the value of the variable x in S,,. Given v € N; and its state S,, its b-child 14, and its
state S.vp is generated by only using the information of S, and G. In other words, all the
necessary information to create the children of v should be concentrated in S,. In addition,

2:7

SEA 2022

2:8 Solving and Generating Nagareru Puzzles

Algorithm 1 ConstructZDD.

1: Let p be a new node and £(p) < m. > Initialize the root
2: Ny {p}, Ny 0 for I € [m — 1] > Initialize the node set N
3: Ay + 0 for b e {0,1} > Initialize the arc sets Ay and Aq
4: forl=m,...,1do > The layer-wise top-down construction
5: for v € N; do

6: for b€ {0,1} do

7: v < getChild(S,, 1, b) > Create vy, the b-child of v
8: if vy € {79, 71} then > Branching
9: ‘ > do nothing N
10: else if ' € N;_; :S,, =S,/ then > vy, has an identical existing node v/
11: ‘ vy v > Merge v/ and v,
12: else > vy has no identical existing node
13: L E(Vb) —1—1

14: Ni_1 <+ N1 U{w} > Add vy to N;_1 as a new node
5 Ay A U{(v,m)} > Add (v,vy), the b-arc of v, to Ay as a new arc
16: N «+ (Ule[m] Nz) U {70, 71} > Unite all layers
17: return (N, Ay, Ay, {)

nodes with the same state must have the same children. Hence, such identical nodes in the
same layer can be merged into a single node. Algorithm 1 is the pseudo-code of FBS, where
a subroutine getChild(S,,, b), which returns the b-child of v with its state, is defined depend
on the target constraint.

» Theorem 8 (The complexity of FBS [11]). For anyl € [m], let k; be the number of different
realizations of the state at the lth layer; namely, |N;| = k; holds. Let k = maxcp,y,) 1. Then,
the space and time complexity of FBS is O(mk) under the assumption that the identical state
can be found in O(1) time.

4.2.1 Example: the size constraint

Let us consider the FBS for the size constraint |F| < K. For any non-terminal node v, let
S, consist only of an integer variable x,s.q that indicates the number of passed 1-arcs from
the root p to v; namely, |Fr| = S, .Zusea holds for any 7 € II,,,, of Z under construction.
S, .Tusea = K indicates that F, cannot adopt any more edges. Two nodes v and v’ are
equivalent if S, = S,/ because the paths from p to them passed the same number of 1-arcs.

In summary, Algorithm 2 describes getChild(S, [, b) of the size constraint. Since k; < K
holds for any [€ [m], the resulting ZDD size is O(mK) by Theorem 8.

Algorithm 2 getChild(S,,b) for a size constraint |F| < K.

1: Let S’ be a new state.

2: S Tysed < (I=m) 7 0: SZysed > Initialize & Copy
3: if b =1 then > Adopt e
4: L S Tused — S Tgize + 1 > Update S’
5: return 7g if S’ .zg,e > K > Pruning: detect |F| > K
6: return 7 if [=1 > Termination: reach the end without the violation
7: return a new node v with S, = S’

M. Ishihata and F. Tokumasu

Algorithm 3 getChild(S, !, b) for a cycle constraint.

1: Let e, = {i,j}, S’ be a new state.

2: S'.my, < S.my, for each k € VNV > Copy
3: S'my, < k for each k € V;\ V31 > Initialize
4: my, < S'.my, for each k € V] > Abbreviate
5. if b =1 then > Adopte e
6: return 7y if m; = Null V- m; = Null > Pruning: detect a branching
7 if m; = j Am; =1 then > Detect a cycle
8: L return 7o if 3k € V;\ e;,my, € Vi \ {k} © Pruning: detect a redundant endpoint
9: return 7| > Termination: complete a single cycle
10: > Update S <
11: S My, < m;

12: S M, = my

13: S .m; <= Null if S".m; #4

14: | S'mj < Null if S".m; # j

15: return 79 if Ik € Vi \ Vi_1,8 my € Vi > Pruning: detect a leaving endpoint
16: return 7y if [=1 > Pruning: reach the end without completing a cycle
17: return a new node v with S, = S’

4.2.2 Example: the cycle constraint

Let us consider the FBS for the cycle constraint. For each layer | € [m], let E<; = {ey €
E|V<Ii},Esy={ep e E|U >1},Vi={i €V |3Jeec Eq,3e € E>j,i € ene'}, and
A = maxie(m) |Vi|, where V; and X are referred to as the frontier of the Ith layer and the
maximum frontier size, respectively.

For each non-terminal node v € Ny, let S, = {my, | k € V;} where my, € V; U {Null} is
referred to as the mate of k. The mate my, indicates the connectivity of k in G[F}] for any
mell,,: (1) my = k indicates that k is an isolated fragment (vertex), (2) my € V; \ {k}
indicates that k and my, are the endpoints of a path fragment, and (3) my = Null indicates
that k is an intermediate vertex of a path fragment.

We next consider what will happen if an edge e; = {i,;} is adopted to F,. If m; =
Null V:m; = Null (i.e., i and/or j is an intermediate vertex of a path fragment), adopting
e; violates the cycle condition because it causes a branching. Otherwise, it connects two
fragments to which i belongs and j belongs. More specifically, if m; # j Am; # i (i.e., i
and j belong to different fragments), it constructs a new path fragment whose endpoints
are m; and m;. If m; = j Am; = i (i.e,, i and j are the endpoints of the same path
fragment), it completes a cycle; in addition, if G[F,] has no redundant path fragment (i.e.,
Vk e Vi\e,mi, ¢ Vi\ {k}), G[Fy] forms a single cycle. Similarly, leaving an endpoint % (i.e.,
my € Vi \ {k}) from the frontier violates the cycle constraint because k has no chance to join
a cycle anymore; namely, k is fixed as an endpoint of a redundant path fragment.

In summary, Algorithm 3 describes getChild(S,,b) of the cycle constraint. Since S,
corresponds to a matching in the complete graph (V, (‘g’)), K < 2IVil* holds and the resulting
ZDD size is O(mQAz) by Theorem 8. In practice, however, S, does not take as many
realizations as 2’\2, the actual ZDD size is empirically much smaller.

2:9

SEA 2022

2:10

Solving and Generating Nagareru Puzzles

4.3 The FBS for the Nagareru constraints

We here propose the FBS for the Nagareru constraints shown in Definition 4. For any
non-terminal node v, let S, consist of three types of variables: my € V; U {Null}, ui € {0,1},
and di, € DU {Null} for any k € V}. my, is the exactly same as the mate of Example 2 and
indicates the connectivity of k on G[Fy]. uy indicates the upper stream of path fragments
on G[Fy]. dj indicates the relative direction from the neighbor of k to k on G[F;]. More
specifically, uy and d are defined as follows: If my ¢ Vi \ {k} (i.e., k is an isolated vertex or
an intermediate vertex of a path fragment), let ux = 0 and dy, = Null. If my, € V; \ {k} (i.e.,
k is an endpoint of a path fragment on G[F;]), let ux = 1 indicate that k& must be upper
stream of a path fragment whose endpoints are k and my, and also let d = rel(k’, k) where
{K',k} € F,. By regarding u; as a Boolean variable, uj A u,, must always be false and
—uy A "y, indicates that the upper stream of the path fragment is not yet decided.

Let us consider what will happen if ¢; = {i,j} is adapted to F. As Example 2, if
m; # j Amj # 1, adapting e; connects two different path fragments on G[F;] and constructs
a new path fragment whose endpoints are m; and my. If u; A uj (resp. U, A Up,), it
corresponds to connecting up streams (resp. down streams) of the two path fragments
on G[Fy]; namely, G[F;] has no consistent direction. If u; V wy,; (resp. wu; V upm,), the
up stream of the resulting path fragment should be m; (resp. m;). In addition, the
direction of e; decided by its colored endpoints must be consistent with this direction. If
col(i) = White V col(j) = White, ¢; must be adapted to satisfy Equation (5) of Definition 4.
Let lwhite = min{l € [m] | Ik € e, col(k) = White}. Then, completing a cycle before
reaching lwhiteth layer deduces that at least one edge with a white endpoint is unused; namely,
Equation (5) is violated. In summary, Algorithm 4 describes getChild(S,,b) of the Nagareru
constraints shown in Definition 4.

The complexity of the proposed FBS is following: Because k; is less than 2lVil* x 2lVil x
) holds.
Hence, its complexity is O(m2’\2) that is the same as Example 2, where A\ depends on
G and the total order > on E. For instance, when > is defined as e > ¢’ < (mine <
mine’) V (mine = mine’ A maxe < maxe’), A of an n x n grid graph is n.

\D|M|, the product of the domain size of each variable in the state, x; = O(2Vi

» Proposition 9 (The FBS for the Nagareru constraints). Given a Nagareru instance P, the
FBS shown in Algorithm 1 with getChild(S,[,b) shown in Algorithm 4 constructs a ZDD
representing Fp, a set of all the solutions of P defined by Definition 4. The complexity of
the proposed FBS and the resulting ZDD size is O(m2’\2).

5 An efficient Nagareru instance generator

In this section, we first define the “interesting” instance of Nagareru and propose an efficient
Nagareru instance generator that generates interesting instances using our ZDD-based
Nagareru solver as its building blocks.

5.1 An interesting instance of Nagareru

Let us begin by defining an interesting instance. Given an instance P and its graph G of
Definition 3, we introduce infeasible, ineffective, and redundant cells as follows: A white
cell (i,d) € W is infeasible if D" ¢ dir(i) V degy(i) < 2; namely, there exists a wind
inconsistent to its arrow or there is not enough number of neighbors to follow its arrow.
Consequently, P with an infeasible cell has no solution. A black cell (¢,d) € B is ineffective if

M. Ishihata and F. Tokumasu

Algorithm 4 getChild(S,,b) for the Nagareru constraints.

1: > Initialize & Copy

Let S’ be a new state.

S'.my + k, S".ug < 0, S’.d < Null for each k € V; \ Vj41

S'.my < S.my, S'.uy < S.ug, S'.dy < S.di, for each k € VNV,
> Abbreviate

Let ¢, = {i,7}.

my < S .my, up < S .uy, di < S'.d;, for each k € V,

> Direction that e; must follow

d; < Null

10: dp < rel(,) if um, V u;

11: dp = rel(f, i) if upm; Vo,

12: if b =1 then > Adopt e;
13: > Pruning: check Equation (6) of Definition / N
14: return 7y if m; = Null V- m; = Null

15: return 7 if (u; Auj) V (U, A Um;)

16: > Pruning: check Equation (7) of Definition / N
17: return 7y if col(i) = White A d; ! € dir(i)

18: return 7 if col(j) = White A d; " € dir(j)

19: > Pruning: check Equation (8) of Definition / <
20: return 7y if col(i) = Gray Ad; * € dir(i)

21: return 7y if col(j) = Gray Ad; ' € dir(j)

22: > Pruning: check Equation (9) of Definition / <
23: return 7 if col(i) = Gray A d; = rel(i, j) A (3d € dir(i) ,d; ¢ {d,d"'})

24: return 7y if col(j) = Gray A d; = rel(j,i) A (3d € dir(j),d; & {d,d"'})

25: if m; = j Am; =i then > Detect a cycle
26: return 7g if I > lwhite > Pruning: detect a unused white vertex
27: return 7o if Ik € Vi \ e;,mi € Vi \ {k} > Pruning: detect a redundant endpoint
28: return 7 > Termination: complete a solution
29: > Update S’ <
30: S" My, <= my, S mp; < my,

31: S'.m; < Null if m; # i

32: S'.m; < Null if m; # j

33: S'.d; < (m; =14) 7 j: Null

34: S'.dj < (mj =j3) 7 i: Null

35: S, < uj, S U, = u;

36: S, = 1if 3k € ¢, (col(k) € {White, Gray}) A (rel(i, j) € dir(k))

37 S'um,; = 1if Ik € e;, (col(k) € {White, Gray}) A (rel(j,4) € dir(k))

38: else > Does not adopt e,
39: > Pruning: check Equation (5) of Definition / N
40: | return 7y if col(i) = White V col(j) = White

41: return 1o if Ik € V\ Vi_1,my € Vi3 > Pruning: detect a leaving endpoint
42: return 7y if [=1 > Pruning: reach the end without completing a cycle
43: return a new node v with S, = S’

2:11

SEA 2022

2:12

Solving and Generating Nagareru Puzzles

iq = Null; namely, there is no cell affected by its wind. A white or black cell (i,d) € WU D is
redundant if | Fp| = |Fp/| where P’ is obtained by removing (¢, d) from P; namely, removing
it does not change the number of solutions. We define that P is interesting if P is good (i.e.,
|Fp| = 1) and contains neither infeasible, ineffective, nor redundant cell.

5.2 The proposed Nagareru instance generator

We propose a new efficient method to generate an interesting Nagareru instance P as follows:

1. Let W =B =0 and P = (w,h, W, B)

2. Enumerate Ay C [wh] x D that is a set of non-infeasible white cells, and Ag C [wh] x D
that is a set of non-ineffective black cells.

3. If Aw = Ap = 0, restart this algorithm. Otherwise uniformly sample (7, d) from Ay (or
Ap) without replacement, and add (i,d) to W (or B.)

4. If P is good, go to 5. If P is not good but valid, repeat 2-3. If P is invalid, delete (%, d)
from P and go to 3.

5. Delete all redundant cells on P and output P.

The Algorithm employs our ZDD-based solver as its building block. In Step 4, the Algorithm

constructs the ZDD Z of Fp and checks whether P is good, valid, or not by computing | Fp|

on Z. In Step 5, for each white and black cell on P, the Algorithm constructs the ZDD of

Fpr where P’ is obtained by removing the cell from P and checks |Fp| = |Fp/| or not. If

every cell on P is non-redundant, the Algorithm outputs P as an interesting instance.

6 Experiments

We conducted several experiments and confirmed the following two facts:

1. The ZDD-based Nagareru solver works more efficiently than the CSP-based solver,

2. The ZDD-based Nagareru generator creates interesting instances with realistic board
sizes in a reasonable time.

We have uploaded our code and datasets used in the experiments to the following GitHub

repository: https://github.com/masakazu-ishihata/Nagareru.

6.1 Experimental Setting

Our CSP-based Nagareru solver was implemented using Sugar [20], a state-of-the-art CSP
solver. Our ZDD-based Nagareru solver was implemented in C++ using TdZdd! that is
a C++ library for FBS. Our Nagareru instance generator was also implemented in C++
using the ZDD-based solver as a building block. The ZDD-based solver and generator were
compiled by g++ 11.0.3 with the -O3 option. All experiments were conducted on a 64-bit
mac OS Big Sur 11.2.3 with six Intel Core i7 3.2 GHz CPU and 64 GB RAM; however,
we ran all programs on a single core. The timeout for solving each instance is 100 seconds
throughout the experiment.

The whole dataset for evaluation consisted of 10 synthetic datasets and one handcrafted
dataset. Each synthetic dataset consisted of 100 interesting instances generated by our
generator with the different gird size (w,h) = (5,5), (6,6),...,(14,14). The handcrafted
dataset consisted of 97 interesting instances on (10, 10) grid board obtained by crawling some
puzzle creators’ blogs and collecting instances in PUZ-PRE format, where PUZ-PRE? is a
web application for editing and playing paper-and-pencil puzzles.

! https://github.com/kunisura/TdZdd
2 http://pzv.jp/

https://github.com/masakazu-ishihata/Nagareru
https://github.com/kunisura/TdZdd
http://pzv.jp/

M. Ishihata and F. Tokumasu

Table 1 The averages (Ave.), variance (Var.), and median (Med.) of the computation time (sec)
and the numbers of solved instances (Sol.) of the CSP-based and the ZDD-based solver, respectively.
Timeout instances were excluded when calculating the averages, variances, and medians.

Datataset (w, h) The CSP-based solver The ZDD-based solver
Ave. Var. Med. Sol Ave. Var. Med. Sol
(5,5) 0.521 0.001 0.523 100 | 0.007 0.000 0.007 100
(6,6) 0.571 0.001 0.556 100 | 0.007 0.000 0.007 100
(7,7) 0.673 0.060 0.611 100 | 0.007 0.000 0.007 100
(8,8) 2.672 73.400 0.909 100 | 0.008 0.000 0.008 100
Synthetic (9,9) 1.402 11.518 0.948 99 | 0.009 0.000 0.008 100
(10,10) | 1.088 1.344 0.855 100 | 0.009 0.000 0.008 100
(11,11) | 1.306 0.682 1.186 100 | 0.010 0.000 0.010 100
(12,12) | 2.185 24.127 1.309 100 | 0.015 0.000 0.011 100
(13,13) | 4.169 105.999 1.565 100 | 0.022 0.001 0.013 100
(14,14) | 2.791 18.174 1.851 98 | 0.022 0.001 0.016 100
Handcrafted (10, 10) ‘ 1.089 0.008 1.084 97 | 0.008 0.000 0.008 97

6.2 Experimental Results

Table 1 shows the computation times and numbers of solved instances of the CSP- and
ZDD-based solver, respectively. It indicates that the ZDD-based solver is drastically faster
than the CSP-based solver for each dataset; even though the former implicitly enumerates
all the solutions, the latter finds only one solution. It also shows that the variance of the
ZDD-based solver is significantly smaller than that of the CSP-based solver. Similar results
have been reported for solving Slitherlink [24].

Table 2 indicates the statistics of each dataset; it shows that the average generation
time increases exponentially with the grid size, whereas the average number of calls of the
ZDD-based solver rises almost linearly. This result implies that the computation time of
the ZDD-based solver increases exponentially with the grid size, which is consistent with its
computational complexity shown in Proposition 9. It also shows that synthetic instances
slightly tend to have more white cells, fewer black cells, and smaller solutions than handcrafted
instances; however, it is unknown whether the proportion of white and black cells directly
contributes to the fun of instances that humans feel. The interesting instances of (14, 14) grid
with the smallest/largest |W|, |B|, and | F| are shown in Appendix; the one with the smallest
|F'| seems too easy for humans to solve; however, the others seem complicated enough to
enjoy solving. Note that our generator allows adjusting the ratio of white and black cells by
changing the sampling distribution of its Step 3 and adjusting the size of the solution by
adding a size constraint to Nagareru constraints.

7 Conclusion

We proposed an efficient solver and generator for Nagareru. Our solver constructs a ZDD
representing all the solutions of a Nagareru instance by the FBS designed for this problem.
Our generator employs our solver to guarantee that a generated instance is interesting; namely,
it admits precisely one solution and has no redundant cell. We conducted some experiments
and confirmed that our ZDD-based solver was drastically faster than a CSP-based one and
our generator created interesting instances in a reasonable time.

2:13

SEA 2022

2:14

Solving and Generating Nagareru Puzzles

Table 2 The first and second columns indicate the database type and grid size, respectively. The

third and fourth ones indicate the averages of the construction time (sec) and the number of calls of
the ZDD-based solver of each instance generation, respectively. The fifth and sixth ones indicate the
average number of white and black cells, respectively. The seventh one indicates the average of the
solution size | F|.

10

Dataset (w,h) | Ave. Time Ave. # calls | Ave. |W| Ave. |B| | Ave. |F|

(5,5) 0.020 26.280 2.050 2.850 11.500

(6,6) 0.040 39.930 2.920 3.430 16.360

(7,7) 0.085 59.880 3.900 4.810 22.680

(8,8) 0.212 84.460 5.200 6.470 30.580

. (9,9) 0.677 110.640 6.800 8.530 42.940
Synthetic

(10,10) 2.638 148.380 8.800 10.720 53.980

(11,11) 11.660 197.880 10.780 12.710 65.620

(12,12) 58.152 240.010 12.590 15.780 76.680

(13,13) 317.790 281.710 14.630 18.510 88.840

(14,14) 1525.987 337.740 17.450 21.360 105.620

Handcrafted (10, 10) - - 6.814 16.278 66.020

References

Aviv Adler, Jeffrey Bosboom, Erik D. Demaine, Martin L. Demaine, Quanquan C. Liu, and
Jayson Lynch. Tatamibari is np-complete. In Martin Farach-Colton, Giuseppe Prencipe, and
Ryuhei Uehara, editors, 10th International Conference on Fun with Algorithms, FUN 2021,
May 30 to June 1, 2021, Favignana Island, Sicily, Italy, volume 157 of LIPIcs, pages 1:1-1:24.
Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2021. doi:10.4230/LIPIcs.FUN.2021.1.
Daniel Andersson. HIROIMONO is np-complete. In Pierluigi Crescenzi, Giuseppe Prencipe,
and Geppino Pucci, editors, Fun with Algorithms, 4th International Conference, FUN 2007,
Castiglioncello, Italy, June 3-5, 2007, Proceedings, volume 4475 of Lecture Notes in Computer
Science, pages 30-39. Springer, 2007. doi:10.1007/978-3-540-72914-3_5.

Erich Friedman. Corral puzzles are np-complete. Technical Report, 2002. URL: https:
//erich-friedman.github.io/papers/corral.pdf.

Markus Holzer, Andreas Klein, Martin Kutrib, and Oliver Ruepp. Computational complexity
of NURIKABE. Fundam. Informaticae, 110(1-4):159-174, 2011. doi:10.3233/FI-2011-534.
Ayaka Ishibashi, Yuichi Sato, and Shigeki Iwata. Np-completeness of two pencil puzzles:
Yajilin and country road. UTILITAS MATHEMATICA, 88:237-246, July 2012.

Chuzo Iwamoto. Yosenabe is np-complete. J. Inf. Process., 22(1):40-43, 2014. doi:10.2197/
ipsjjip.22.40.

Chuzo Iwamoto, Masato Haruishi, and Tatsuaki Ibusuki. Herugolf and makaro are np-complete.
In Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe, editors, 9th International
Conference on Fun with Algorithms, FUN 2018, June 13-15, 2018, La Maddalena, Italy,
volume 100 of LIPIcs, pages 24:1-24:11. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik,
2018. doi:10.4230/LIPIcs.FUN.2018.24.

Chuzo Iwamoto and Tatsuaki Ibusuki. Dosun-fuwari is np-complete. J. Inf. Process., 26:358—
361, 2018. doi:10.2197/ipsjjip.26.358.

Chuzo Iwamoto and Tatsuya Ide. Moon-or-sun, nagareru, and nurimeizu are np-complete (in
japanese). In Winter LA Symposium 2019, 2019.

Chuzo Iwamoto and Tatsuya Ide. Nurimisaki and sashigane are np-complete. In Zachary
Friggstad and Jean-Lou De Carufel, editors, Proceedings of the 31st Canadian Conference on
Computational Geometry, CCCG 2019, August 8-10, 2019, University of Alberta, Edmonton,
Alberta, Canada, pages 184-194, 2019.

https://doi.org/10.4230/LIPIcs.FUN.2021.1
https://doi.org/10.1007/978-3-540-72914-3_5
https://erich-friedman.github.io/papers/corral.pdf
https://erich-friedman.github.io/papers/corral.pdf
https://doi.org/10.3233/FI-2011-534
https://doi.org/10.2197/ipsjjip.22.40
https://doi.org/10.2197/ipsjjip.22.40
https://doi.org/10.4230/LIPIcs.FUN.2018.24
https://doi.org/10.2197/ipsjjip.26.358

M

11

12

13

14

15

16

17

18

19

20

21

22

23

24

A

. Ishihata and F. Tokumasu

Jun Kawahara, Takeru Inoue, Hiroaki Iwashita, and Shin-ichi Minato. Frontier-based search for
enumerating all constrained subgraphs with compressed representation. IEICE Trans. Fundam.

Electron. Commun. Comput. Sci., 100-A(9):1773-1784, 2017. doi:10.1587/transfun.E100.A.

1773.

Jun Kawahara, Toshiki Saitoh, Hirofumi Suzuki, and Ryo Yoshinaka. Colorful frontier-based
search: Implicit enumeration of chordal and interval subgraphs. In Ilias S. Kotsireas, Panos M.
Pardalos, Konstantinos E. Parsopoulos, Dimitris Souravlias, and Arsenis Tsokas, editors,
Analysis of Experimental Algorithms - Special Fvent, SEA? 2019, Kalamata, Greece, June
24-29, 2019, Revised Selected Papers, volume 11544 of Lecture Notes in Computer Science,
pages 125-141. Springer, 2019. doi:10.1007/978-3-030-34029-2_9.

Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A survey of np-complete puzzles.
J. Int. Comput. Games Assoc., 31(1):13-34, 2008.

Shin-ichi Minato. Zero-suppressed bdds for set manipulation in combinatorial problems. In
Alfred E. Dunlop, editor, Proceedings of the 30th Design Automation Conference. Dallas, Tezxas,
USA, June 14-18, 1993, pages 272-277. ACM Press, 1993. doi:10.1145/157485.164890.

Yu Nakahata, Jun Kawahara, Takashi Horiyama, and Shin-ichi Minato. Implicit enumeration
of topological-minor-embeddings and its application to planar subgraph enumeration. In
M. Sohel Rahman, Kunihiko Sadakane, and Wing-Kin Sung, editors, WALCOM: Algorithms
and Computation - 14th International Conference, WALCOM 2020, Singapore, March 31 -
April 2, 2020, Proceedings, volume 12049 of Lecture Notes in Computer Science, pages 211-222.
Springer, 2020. doi:10.1007/978-3-030-39881-1_18.

Nikoli Co., Ltd. Puzzles: Nagareru [Nikoli]. Available online, 2021. https://wuw.nikoli.co.

jp/en/puzzles/nagareru.html, (accessed on 20th April 2021).

Hirofumi Suzuki, Sun Hao, and Shin-ichi Minato. Generating all solutions of minesweeper
problem using degree constrained subgraph model. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA),
page 356. The Steering Committee of The World Congress in Computer Science, Computer ...,
2016.

Naoyuki Tamura. Solving Puzzles with Sugar Constraint Solver (in Japanese). Awvailable
online, 2013. https://cspsat.gitlab.io/sugar-puzzles/, (accessed on 20th April 2021).
Naoyuki Tamura. Solving Slither Link Puzzles with Sugar Constraint Solver (in Japan-
ese). Available online, 2013. https://cspsat.gitlab.io/sugar-puzzles/slitherlink.html,
(accessed on 20th April 2021).

Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Compiling fi-
nite linear CSP into SAT. Constraints An Int. J., 14(2):254-272, 2009. doi:10.1007/
s10601-008-9061-0.

Nobuhisa Ueda and Tadaaki Nagao. Np-completeness results for nonogram via parsimonious
reductions. Technical report, Technical Report, TR96-0008, 1996.

Gerhard van der Knijff, H Zantema, and JH Geuvers. Solving and generating puzzles with a
connectivity constraint. Bachelor thesis of Radboud University, 2021.

Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another solution
and its application to puzzles. IEICE Trans. Fundam. FElectron. Commun. Comput. Sci.,
86-A(5):1052-1060, 2003. URL: http://search.ieice.org/bin/summary.php?id=e86-a_5_
1052.

Ryo Yoshinaka, Toshiki Saitoh, Jun Kawahara, Koji Tsuruma, Hiroaki Iwashita, and Shin-ichi
Minato. Finding all solutions and instances of numberlink and slitherlink by zdds. Algorithms,
5(2):176-213, 2012. doi:10.3390/a5020176.

Solving blank instances

A Nagareru instance with a small number of white and black cells has a small number of
constraints; that is, it has many solutions. For instance, the number of solutions of the n x n
blank instance, which is a grid with no colored cell, is the same as the number of cycles on

2:15

SEA 2022

https://doi.org/10.1587/transfun.E100.A.1773
https://doi.org/10.1587/transfun.E100.A.1773
https://doi.org/10.1007/978-3-030-34029-2_9
https://doi.org/10.1145/157485.164890
https://doi.org/10.1007/978-3-030-39881-1_18
https://www.nikoli.co.jp/en/puzzles/nagareru.html
https://www.nikoli.co.jp/en/puzzles/nagareru.html
https://cspsat.gitlab.io/sugar-puzzles/
https://cspsat.gitlab.io/sugar-puzzles/slitherlink.html
https://doi.org/10.1007/s10601-008-9061-0
https://doi.org/10.1007/s10601-008-9061-0
http://search.ieice.org/bin/summary.php?id=e86-a_5_1052
http://search.ieice.org/bin/summary.php?id=e86-a_5_1052
https://doi.org/10.3390/a5020176

2:16

Solving and Generating Nagareru Puzzles

the grid that is exponential in n. Whereas it is trivial for humans to find a cycle in the blank
instance, it is not trivial for the CSP-based and ZDD-based solvers because, in most cases of
CSP, constraints help to reduce the search space. The CPS-based solver has to find a cycle
with no additional directional constraint, and the ZDD-based solver has to enumerate all
cycles in the grid. Table 3 indicates the computation time of solving the n x n blank instance
(n=25,6,...,14) of the CSP-based and the ZDD-based solvers. Compared to Table 1 in our
main manuscript, the computation time of the blank instance is relatively more significant
than that of an interesting instance. Our generator constructs the ZDD of the blank instance
in the first step, which accounts for a large part of the total generation time. Thus, we can
quickly scale up our generator by initializing the grid with many colored cells.

Table 3 The computation time of solving the n X n blank instance of the CSP-based and the
ZDD-based solver. T.O. indicates timeout, meaning that it takes more than 100 seconds.

n CSP 7DD

5 | 0.586906 0.005276
6 | 0.722846 0.006490
7 | 0.867803 0.009694
8 | 1.106015 0.020341
9 | 1.102662 0.056783
10 | 1.430713 0.172517
11 | 4.939170 0.544814
12 | 4.022487 1.838747
13 T.0. 6.246969
14 T.0. 22.105007

B Various interesting instances generated by our Nagareru generator

Figure 3 shows a part of interesting instances generated by our generator. Figure 3(a) and (b)
have the smallest and the largest number of |W|, respectively. Figure 3(c) and (d) have the
smallest and the largest number of | B|, respectively. Figure 3(e) and (f) have the largest
number of |F'| and |B U W/, respectively. Figure 3(c) has also the smallest |F| and |B U W|.

Figure 3(c) looks easy to solve for humans; however, the CSP-based solver could not solve
it in 100 seconds. In this instance, the variables corresponding to the bottom four blank rows
are not constrained. We consider that the CSP-based solver wasted much time determining
the values of such non-constraint variables.

In contrast to Figure 3(c), the other instances seem complex enough for humans to
enjoy solving. The first step of solving a Nagareru instance is extending each arrow in
each direction of its head and tail by one cell length and creating some line fragments. For
example, Figure 3(b) has the largest number of white cells; therefore, the first step can
create many long line fragments. On the other hand, Figure 3(a) and (d) have a few white
cells, and the first step creates a few short line fragments. However, an instance with many
line fragments is not always easy to solve because it is not obvious how to connect them to
construct a single consistent cycle. In fact, in Figure 3(b), one has to connect those line
fragments carefully to form a single consistent cycle.

M. Ishihata and F. Tokumasu

(b) Largest |W]|.

(c) Smallest |B|.

(e) Largest |F|.

Figure 3 Some examples of 14x14 Nagareru instances generated by our method.

(f) Largest |B U W|.

2:17

SEA 2022

http://pzv.jp/p.html?nagare/14/14/p75a5a6b8a5f4c55o6c8f9c7c5a3d1i4b6h2a56v7b87b6a8i1s8d3a85a56c6a8h6b
http://pzv.jp/p.html?nagare/14/14/f3h3a51c1a2a1h4b2a1b8b5p5a9a4a5b2a33b5a1d3p1a51a7a1e4j2a3f7a1f44b4c3b3p1a51a29b5a4a4j
http://pzv.jp/p.html?nagare/14/14/v4i7d6a6e4b9e6b4e1e7e4e5b1h3c2a33c16a7b3e5e8n6zzf
http://pzv.jp/p.html?nagare/14/14/o9b5a1a6c3c5g6d59c6a1a9f5c5c5c8b6d5a8a5k5a7a57a25a559g1g9a5a8b5d8b3g8m821a5a7j7c1d8a4g
http://pzv.jp/p.html?nagare/14/14/c3i5a8g4a5c3d1e7c1a1b5a4e2c3e3d9d5a2g86a3a9c7p33b33e2i6a1d2a1a3f9h6b3d51a21b4c4g9c9c
http://pzv.jp/p.html?nagare/14/14/a4k7e5b8a61c3a1b9a5c2b5b5d9a6d4d5d2a1d5d8i2d3a5a3e1b4g3c6c82a2b7c7c8g4c5d5a2d2b9g6a6d5b5a3i5

	1 Introduction
	2 Problem Definition
	2.1 Nagareru Puzzles
	2.2 Formulating Nagareru as a constrained cycle finding problem

	3 A CSP-based Nagareru solver
	4 A ZDD-based Nagareru Solver
	4.1 ZDDs for subgraphs
	4.2 FBS for constrained subgraphs
	4.2.1 Example: the size constraint
	4.2.2 Example: the cycle constraint

	4.3 The FBS for the Nagareru constraints

	5 An efficient Nagareru instance generator
	5.1 An interesting instance of Nagareru
	5.2 The proposed Nagareru instance generator

	6 Experiments
	6.1 Experimental Setting
	6.2 Experimental Results

	7 Conclusion
	A Solving blank instances
	B Various interesting instances generated by our Nagareru generator

