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Abstract
Differential privacy is known to protect against threats to validity incurred due to adaptive, or
exploratory, data analysis – even when the analyst adversarially searches for a statistical estimate
that diverges from the true value of the quantity of interest on the underlying population. The
cost of this protection is the accuracy loss incurred by differential privacy. In this work, inspired
by standard models in the genomics literature, we consider data models in which individuals are
represented by a sequence of attributes with the property that where distant attributes are only
weakly correlated. We show that, under this assumption, it is possible to “re-use” privacy budget
on different portions of the data, significantly improving accuracy without increasing the risk of
overfitting.

2012 ACM Subject Classification Theory of computation → Machine learning theory; Theory of
computation → Design and analysis of algorithms; Theory of computation → Streaming, sublinear
and near linear time algorithms

Keywords and phrases Differential Privacy, Adaptive Data Analysis, Transfer Theorem

Digital Object Identifier 10.4230/LIPIcs.FORC.2022.6

Acknowledgements The authors are indebted to Guy Rothblum and Pragya Sur for many helpful
conversations.

1 Introduction

It has been known for nearly a decade that interacting with data in a differentially private
fashion provides a universal approach to reducing the risk of spurious scientific discoveries
incurred by adaptive, or exploratory, data analysis [5, 6], in which new analyses or questions
posed of the data depend on the outcomes of previous analyses. Strengthenings of these initial
results, and extensions to other information-restrictive interactions, rapidly followed, for
example, [1, 4]. In these works and their sequelae, the data analyst is viewed as an accuracy
adversary whose goal is to find a query on which the dataset (or the response produced by a
mechanism that interacts with the data) is not representative of the population.

For some kinds of data and analyses, for example, in Genome-Wide Association Studies
(GWAS), which involve vast numbers of statistical queries on very high dimensional data,
differential privacy faces daunting lower bounds [3]. However, our interest in this work is
in accuracy, and not privacy per se. Inspired by two natural examples, we consider the
question of whether we can improve on the accuracy by exploiting independence properties
in the features of the data. In data streams, it is often assumed that elements far apart in
the stream are uncorrelated or only weakly correlated, with the correlation decreasing as
the distance increases. In a stream, data of different individuals are interleaved; genomic
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6:2 Improved Generalization Guarantees in Restricted Data Models

information has this same low-correlation property even in the DNA for a single individual:
for example, chromosomes are considered to be unrelated, and even within a chromosome
correlations decrease with distance [12].

While genomic data is our motivating example, we note that similar assumptions are
reasonable in other settings. For example, in certain kinds of image data distant pixels may
be relatively uncorrelated even within a single image. We will make this notion precise in
Section 2.

The line of work described above gave rise to a number of so-called “transfer theorems,”
and we will make use of the sharp recent addition to this literature in [10]. Transfer theorems
generally say that if a query-response mechanism satisfies some specific quantifiable constraint
on the information it imparts, then an analyst interacting with this mechanism cannot overfit
to within some related quantity. In the context of differential privacy the requirement is
that the mechanism must be (ε, δ)-differentially private and (α′, β′)-sample accurate2, and
the guarantee from the theorem is that the responses will be (α = α(ϵ, δ, α′), β = β(ϵ, δ, β′))-
distributionally accurate, meaning that with probability at least 1 − β the responses are
within α of their distributional values.

Our restriction on data models comes into play here: consider a genome-wide association
study (GWAS), in which the dataset contains, for each of n individuals, a string of potentially
millions of Single Nucleotide Polynomorphisms (SNPs). A typical study will make huge
numbers of counting queries, looking for SNPs that are associated with a disease, at a huge
cost in accuracy, as the data of each individual simultaneously affect all these counts. We
asked the following question: under the assumption that distant SNPs in the genome of any
given individual are at best very loosely correlated, is it possible to “re-use” privacy budget
when examining distant portions of the genome? We will not achieve privacy in so doing, but
can we achieve better accuracy? For example, if we examine the dataset one chromosome at a
time, meaning, we analyze the first chromosome for everyone in the dataset using (ε0, δ0)-DP
and a single application of a transfer theorem to ensure validity on the queries for this
chromosome, and then examine the second chromosome for everyone in the dataset, “re-using”
(ε0, δ0)-DP, and it really is the case that one’s first and second chromosomes are unrelated,
can we safely apply the transfer theorem a second time to conclude that the queries on the
second chromosome have not overfit, and so on? We obtain an affirmative answer to this
and other, less restrictive, data access models. The key factors in the analysis are (1) the
independence of the features (chromosomes, distant SNPs) and (2) the exclusion of queries
that simultaneously operate on distant features (sums of adjacent features permitted, sums
of distant features not supported).

Our first result considers the model in which each individual’s data is partitioned into a
sequence of m fully independent blocks. Roughly speaking, it says that the privacy budget
for a single block can be re-used, risking only a factor of m increase in failure probability.

▶ Theorem 1 (Informal). If the data consists of m independent blocks, and our mechanism
M performs an (ϵ, δ)-DP and (α, β)-sample accurate interaction on each block, then M

is (α′, mβ′)-distributionally accurate, where α′ and β′ are the parameters we get from the
transfer theorem on each block.

To build intuition for this result, suppose that, for each individual, we have a series of m > 1
mutually independent blocks of features B1, B2, ...Bm. That is, there are m distributions
D1, . . . , Dm and the data of each individual is a draw from the product distribution D1 ×
D2 × · · · × Dm. Suppose, for this intuition-building only, that the mechanism accesses the

2 That is, with probability at least 1 − β′ the responses produced are within α′ of their sample values.
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data in m epochs, first accessing block B1 of attributes for all n individuals, then accessing
block B2 of attributes for all n individuals, and so on. At epoch i ∈ [m] the analyst may
carry out any (ϵ0, δ0)-DP analysis of the data on block i. In this case, we claim we can
apply the transfer theorem m times while retaining the accuracy guarantees and paying a
factor of m in the failure probability β. To see this, note that, because of the independence
assumptions, we can assume that the data for block Bi have not even been selected before
processing of this block. In this case, an accuracy adversary – even one with all the data of
blocks B1, . . . , Bi−1 “hard-wired” in, is just an arbitrary adversary. Allowing this adversary
to interact with an independently randomly chosen block Bi is precisely what happens in
differential privacy: an adversary interacts with (apparently) freshly drawn data. We can
therefore apply the transfer theorem to conclude that, on this ith block, with probability at
least 1 − β, the responses are α-accurate. A union bound then gives the result, yielding an
upper bound of mβ on the probability of failure.

While this “thick” streaming access mode is not required for our algorithms, it remains
useful for building intuition when we depart from the full independence data models.

For our most general result, we consider models in which correlations between attributes
ai and aj in the data of a single individual falls exponentially with their “distance” |i − j|,
and we restrict the “width” of a query so that it cannot simultaneously access very distant
elements. Roughly speaking, in our model distant attributes have high probability of being
independent and vanishing probability of being arbitrarily dependent. We show that we can
again re-use the privacy budget, paying only a small additional probability of failure due to
the low-probability dependence events.

▶ Theorem 2 (Informal). Suppose the probability that two attributes at distance d are not
independent is negligible, and suppose further that queries involve only attributes with distance
at most d. Then, if our mechanism M is (ϵ, δ)-DP and (α′, β′)-sample accurate on every
sequence of 2d + 1 consecutive attributes, it’s also (α, mβ + negl)-distributionally accurate
where (α = α(ϵ, δ, α′), β = β(ϵ, δ, β′)) are the parameters we get from the transfer theorem.

2 Preliminaries

We are interested in query answering mechanisms that operate on datasets and produce
outputs. A standard view is that the mechanism interacts with an adversary whose goals are
unknown and who may be malicious. Both parties may employ randomness.

The interaction between a mechanism M and an adversary A using sample S, is a random
variable denoted by Interact(M, A; S), where the adversary generates queries qi and the mech-
anism M generates responses ai, giving rise to transcripts of the form (q1, a1, q2, a2, . . . qk, ak).
Later queries may be chosen as functions of the transcript prefix. We will sometimes use the
shorthand I(S) when M and A are clear from context. The set of transcripts that can be
generated by the interaction between M and A will be denoted Interact(M, A, ∗).

In this work, individuals are represented in the dataset as a sequence of m attributes, or
covariates. Doing so allows us to formalize the idea of distance among attributes in a dataset
as the difference in the indices of the attributes.

▶ Definition 3. Datasets X and X ′ of the same cardinality are adjacent if they differ on at
most one element.

▶ Definition 4. A mechanism M is (ϵ, δ)-differentially private if for any pair of adjacent
datasets X, X ′, any adversary A, and any set of transcripts E, we have

Pr[Interact(M, A, X) ∈ E] ≤ eϵ · Pr[Interact(M, A, X ′) ∈ E] + δ,

where the probability space is over the randomness of M and A.

FORC 2022
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▶ Definition 5. A mechanism M satisfies (α, β)-sample accuracy if for every data analyst
A and every data distribution P,

Pr
X∼Pn,Interact(M,A,X)

[
max

j
|qj(S) − aj | ≥ α

]
≤ β.

Similarly, M satisfies (α, β)-distributional accuracy if for every data analyst A and every
data distribution P,

Pr
X∼Pn,Interact(M,A,X)

[
max

j
|qj(Pn) − aj | ≥ α

]
≤ β.

▶ Definition 6. We say that a sequence of random variables (B1, B2, . . . , Bm) is k-dependent
if for any two subsets I and J of {1, 2, . . . , m} such that max (I) < min (J) and min(J) −
max(I) > k, the families of random variables (Bi)i∈I and (Bj)j∈J are independent.

▶ Definition 7. A linear query (sometimes called statistical query) is a query q such for any
individual X ∈ X , q(x) ∈ [0, 1], and for any sample S ∈ X n, q(S) = 1

n

∑
x∈S q(x)

From time to time, we will need to focus on the queries that involve a specific collection
of attributes. For this purpose, we introduce the following definition:

▶ Definition 8. Let Q be a collection of queries, defined before the interaction happens.
Given a mechanism M, the transcript of the interaction restricted to Q is defined as follows:
1. M interacts with an adversary A, producing transcript Π
2. As a postprocessing step, we remove every query and answer (q, a) from Π such that

q /∈ Q. Let Π′ denote resulting transcript.
3. Π′ is the transcript of the interaction restricted to Q.

Intuitively, this is just “projecting” the transcript onto Q.

2.1 Transfer Theorem
The following is Theorem 3.5 from [10].

▶ Theorem 9. Suppose M is (ϵ, δ)-DP and (α, β)-sample accurate for linear queries. Then
for any data distribution P, a sample S ∼ Pn, any analyst A, and any constants c, d > 0:

Pr
S∼Pn,Π∼Interact(M,A;S)

[
max

j
|aj − qj(P)| > α + (eϵ − 1) + c + 2d

]
≤ β

c
+ δ

d

i.e. it is (α′, β′)-distributionally accurate for α′ = α + eϵ − 1 + c + 2d and β′ = β
c + δ

d .

There are two facts to note here. Firstly, the transfer theorem assumes that all queries
are linear queries (often called statistical queries in the literature). A linear query q is one in
which for each x ∈ S, q(x) ∈ [0, 1] and q(S) = 1

n

∑
x∈S q(x).

The notable features of a linear query are that q must be a function of x, so it is
deterministic and also cannot use information not captured in the features of the database,
such as index. Linear queries are powerful; it is known that we can learn nearly everything
that is PAC-learnable in the statistical queries learning model [11]. In addition, there is a
vast literature on handling very large numbers of differentially private statistical queries,
beginning with the exciting contributions in [2, 8].

Note that, were we to remove the constraint that the query must be a function only of
the covariates (and not, say the index of a row in the database), the sample accuracy of the
mechanism would become ill-defined.
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The other key fact is that, in the statement of the transfer theorem, the probability is
taken over both the sample and the randomness employed during the interaction. Thus, the
mechanism could be arbitrarily bad for some particularly unrepresentative sample. That is,
we could come up with “counterexample” samples where we do get aj − qj(P) to be very
large (imagine a sample where α + α′ is significantly greater than |q(S) − q(P)| for many
queries q).

In the following sections, we will analyze mechanisms, where, to bound their privacy
loss naïvely, we would need to take the composition of m mechanisms, requiring us to pay
an Ω(

√
m) factor in the DP guarantee. By assuming (limited) independence in our data,

we are able to instead bound the privacy loss with the composition of 1 or 2 mechanisms,
while having the same m-fold increase in the probability of failure that we would get from
composition.

3 Full Independence

In this setting, we are motivated by the structure of chromosomes. The entire sequence of
DNA is contained in many linear chromosomes, and there is no known dependence between
the sequence of one linear chromosome and the sequences of any other linear chromosomes.
As such, it is reasonable to assume that these sequences are all independent. Thus, if we
consider each linear chromosome to be a block, then we obtain the following bounds when
doing adaptive data analysis with in a simple setting:

▶ Theorem 10. Let M be a query answering mechanism M, such that when given
(X1, X2, . . . Xn) ∼ Dn for a population distribution D such that the attributes are divided
into fully independent blocks B1, B2, . . . Bm, given a data analyst A, M proceeds as follows:

M refuses to answer queries that involve attributes in different blocks.
M ensures that, for each block Bi, the interaction restricted to queries on the block Bi is
(ϵ, δ)-DP and (α, β) sample accurate.

Then, for every c, d > 0, M is (α′, β′) distributionally accurate where α′ = α+eϵ−1+c+2d

and β′ = m
(

β
c + δ

d

)
.

Proof. Let X = (X1, X2, . . . , Xn) denote the sample that M takes as input. For each i, we
conduct a thought experiment to define a query answering mechanism M′

i as follows:
M′

i takes as data the ith block of X (which we denote X(i)). Then, M′
i samples new

values for blocks B1, B2, . . . , Bi−1, Bi+1, . . . , Bm from D3. Let X ′ denote this new sample.
M′

i then interacts with an analyst A by running M with the new sample X ′. The queries
on any block other than Bi update the states of A and M′

i, but are not considered to be
queries and answers of the interaction between A and M′

i.
Now, by definition, when A interacts with M′

i, only queries on the ith block interact with
the data in any way, which means this interaction is (ϵ, δ)-DP. Furthermore, it is (α, β)-sample
accurate from the assumption that M was (α, β)-sample accurate for the queries on block
Bi. Thus, by theorem 3.5 from [10], M′

i is (α′, β′/m) distributionally accurate.
Now, since Bi is independent from all other blocks, X ′ ∼ Dn. Thus, all M′

i does is
interact with A as if it were M on sample X ′, except it only writes queries on block Bi

on the transcript. When we consider the distribution with randomness over the choice

3 The reason why this is just a thought experiment is that in reality the mechanism will not know the
distribution D. This is why we carry out data analysis in the first place.

FORC 2022



6:6 Improved Generalization Guarantees in Restricted Data Models

of sample, the mechanism, and the adversary, the distribution of transcripts produced by
Interact(M′

i, A, X(i)) is therefore exactly the same as the distribution of transcripts produced
by Interact(M, A, X), with the added postprocessing step of throwing away every query and
answer asked about some block other than Bi.

Thus, the distribution of transcripts produced by Interact(M, A, X) is identical to the
distribution of the concatenation of the transcripts of Interact(M′

i, Ai, X(i)) for every i where
all of the Ai are copies of A. Taking a union bound over the accuracy guarantees for the
latter, we get that M is (α′, β′) accurate. ◀

4 Partial Independence

This model is a generalization of the previous model, as the intuition that attributes which
are close to one another can be related produces data which do not satisfy the assumptions
necessary for the full independence model (consider items that are close, but on different
sides of a block boundary). We therefore generalize our result to the case where adjacent
blocks are allowed to be related. Additionally, we restrict access to the data to a streaming
model. This allows us to achieve stronger accuracy guarantees; specifically, we obtain a
bound with twice the privacy loss of full independence; without the streaming restriction it
would be thrice the privacy loss.

To do this, we first introduce the following lemma that we will use in the proof. Intuitively,
the lemma states that a transformation of individuals preserves privacy.

▶ Lemma 11. Let MY be an (ε, δ)-differentially private mechanism with data domain Y.
Then the mechanism MX , defined next and having data domain X , is also (ε, δ)-differentially
private.

MX takes as input a database X ∈ X n and constructs Y = f(X) ∈ Yn, where f is a
randomized mapping f : X → Y. The randomness is chosen independently every time f

is called, and we define Y = f(X) = {f(x) | x ∈ X}. Then, MX runs MY on Y : given
(oracle) access to any adversary A, MX simply acts as a channel, conveying queries from A

to MY and responses from MY to A.

Proof. Fix an adversary A, and let Π be the random variable denoting the transcript of the
interaction between A and MY ; that is, Π ∈ Interact(MY , A, ∗), the set of all transcripts
that can be produced by these two parties.

Let Q be a random variable that represents the value of the database given to MY by
MX , with randomness over X and f . Since MY is (ε, δ)-differentially private we have that,
for any event E ∈ Interact(MY , A, ∗) and any Y ′ adjacent to Y ,

Pr[Π ∈ E | Q = Y ] ≤ eϵ Pr[Π ∈ E | Q = Y ′] + δ,

where the probabilities are over the randomness of MY and A.
Fix an adjacent pair X and X ′ in X n and let i be the index in which they differ. For

R ∈ {X, X ′} we have:

Pr[Π ∈ E | Ri = Xi] =
∑
y∈Y

Pr[Π ∈ E | Qi = y] · Pr[Qi = y | Ri = Xi]

since the event Π ∈ E is independent of the original database R conditional on the transformed
database Y . Here the probabilities are over the randomness in the mapping f and the
randomness in the [MY , A] interaction, i.e., the coin flips of MY and A.
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Let y∗ denote the outcome which minimizes Pr[Π ∈ E | Qi = y∗]. Additionally, recall
that we defined Y as the input to MY , so if we fix Yi = y, then Y = (f(X−i), y).

Pr
Interact(MX ,A,X)

[Π ∈ E | R = X] (1)

=
∑
y∈Y

Pr
f(X−i),Interact(MY ,A,Y )

[Π ∈ E | Qi = y] · Pr
f(Xi)

[Qi = y | Ri = Xi] (2)

≤
∑

y

(eϵ Pr[Π ∈ E | Qi = y∗] + δ) · Pr[Qi = y | Ri = Xi] (3)

= (eϵ Pr[Π ∈ E | Qi = y∗] + δ)
∑

y

Pr[Qi = y | Ri = Xi] (4)

= (eϵ Pr[Π ∈ E | Qi = y∗] + δ)
∑

y

Pr[Qi = y | Ri = X ′
i] (5)

≤
∑

y

(eϵ Pr[Π ∈ E | Qi = y] + δ) Pr[Qi = y | Ri = X ′
i] (6)

= δ + eϵ
∑

y

Pr[Π ∈ E | Qi = y] Pr[Qi = y | Ri = X ′
i] (7)

= eϵ Pr[Π ∈ E | R = X ′] + δ (8)

Since Y−i is sampled independently from Yi and Xi, the inequality in line (3) holds when
we condition on any value of Y−i by definition of (ϵ, δ)-DP, so it must also hold when we
take the probability over Y−i as well. The equality in line (5) follows by the law of total
probability. ◀

▶ Theorem 12. Suppose we have a query answering mechanism M, such that when given
(X1, X2, . . . Xn) ∼ Dn for a population distribution D where the attributes are grouped into
1-dependent blocks {B1, B2, . . . Bm}(sequences of consecutive attributes), and a stateful data
analyst A, M procedes as follows:

At each time step t ∈ [m], M has an arbitrary (ϵ, δ)-DP interaction with A in which
A asks linear queries about block Bt and M answers the queries in such a way that the
interaction is (α, β) sample accurate. The transcript is denoted by St.

Then, for every c, d > 0, M is (α′, β′) accurate where α′ = α + e2ϵ − 1 + c + 2d and
β′ = m

(
β
c + 2δ

d

)
.

Proof. First, for each i ∈ [m], we define a query answering mechanism M′
i and adversary

A′
i as follows:

M′
i takes as input the ith block of our original sample of n individuals (X1, X2, . . . Xn) ∼

Dn, which we will denote X(i). It then resamples the first i−1 blocks from Dn conditional on
X(i). We will refer to this database of the i−1 resampled blocks and the ith block as Y . Then,
A′

i and M′
i run Interact(M, A, Y ) for t from 1 to i, and we denote the transcript generated

at time t by this interaction as S′
i. While both parties may keep track of S′

1, S′
2, . . . S′

i−1,
only Si = S′

i is considered to be the transcript of this interaction.
Now, we note that the distribution of transcripts S1, S2, . . . , Si produced by M′

i and
M are identical. This is because, analogously to the proof of theorem 10, first sampling a
block and then sampling the rest of the data conditional on that block produces the same
distribution as sampling all of the data at once.

Now, we shall analyze the accuracy of M′
i. By definition, the first i − 2 blocks are

independent of X(i), so the part of Interact(M′
i, A′

i, X(i)) that generates S′
1, S′

2, . . . S′
i−2 is

independent of X(i) and thus does not incur any privacy loss with respect to X(i).

FORC 2022



6:8 Improved Generalization Guarantees in Restricted Data Models

For Si−1, recall that (X1, X2, . . . , Xn) are drawn from the distribution iid. Thus, when
we fix X(i) and resample the i − 1st block conditional on X(i), the value of the i − 1st block
of each individual Xj is a randomized mapping of the ith block the same individual Xj ,
independent of every other individual Xj′ . Then, the interaction between M′

i and A′
i on

block Bi−1 is (ϵ, δ)-DP with respect to the resample i − 1st block. Thus, by Lemma 11, the
part of Interact(M′

i, A′
i, X(i)) that generates Si−1 is (ϵ, δ)-DP.

Finally, because M is (ϵ, δ)-DP on the interaction in each block, the part of
Interact(M′

i, A′
i, X(i)) that generates Si is (ϵ, δ)-DP. As such, M′

i is (2ϵ, 2δ)-DP and (α, β)-
sample accurate. By theorem 3.5 from [10], M′

i is (α′, β′/m) distributionally accurate.
This tells us that M′

i is (α′, β′/m) distributionally accurate for each i, and just like in
Theorem 10, we can concatenate the transcripts Si computed from M′

i for each i to get the
transcript S1, S2, . . . , Sm with the same distribution as the interaction between M and A.
taking a union bound over the probabilities of failure over these m mechanisms tells us that
M is (α′, β′) distributionally accurate. ◀

5 Exponential Decay

Our final model directly captures the idea that the strength of the relationship between two
attributes should be decreasing with the distance between them. We model this via following
definition:

▶ Definition 13. In the decaying correlation model with parameter p, we are given attributes
B1, B2, . . . Bn, such that for each i, Bi and Bi+1 are independent with probability p, and
otherwise they are arbitrarily related. The event of Bi and Bi+1 being related and Bj and
Bj+1 being related are independent for all i ̸= j, and for any i < j, Bi and Bj are related iff
Bi′−1 is related to Bi′ for every i < i′ ≤ j.

With this model, there is some dependence between all of the attributes. However, due
to the way it is defined, the dependence only exists with small probability over the sample
between distant attributes. Thus, we can utilize similar arguments as above, and simply add
this small probability to the probability of failure.

▶ Theorem 14 (General Access). Given a database X in the decaying correlation model with
parameter p and m attributes, a mechanism M which satisfies the following properties while
interacting with an adversary A is (α′, β′)-distributionally accurate where for all integers
d > 0:

α′ = α + (eϵ − 1) + c + 2f, β′ = m

(
β

c
+ δ

f

)
+ 2n(1 − p)d+1.

1. For each i, M restricted to queries that involve at least one of the attributes
{Bi−2d, Bi−2d+1, . . . Bi+2d} is (ϵ, δ)-DP.

2. For each i, M restricted to queries that involve only attributes in the set
{Bi−d, Bi−d+1, . . . Bi+d} is (α, β) sample accurate.

3. Any query can only involve attributes Bi and Bj if |i − j| ≤ d.

Proof. Let D be the population distribution. For each i, we define a query answering
mechanism M′

i as follows:
M′

i takes as data the attributes {Bi−d, . . . , Bi+d} of n individuals (X1, X2, . . . Xn) ∼ Dn,
which we shall refer to as X(i). M′

i then constructs Y by sampling the attributes
{Bi−2d, Bi−2d+1, . . . , Bi−d−1, Bi+d+1, . . . , Bi+2d} for n individuals from the population D

conditional on agreeing with X(i) on the attributes {Bi−d, . . . , Bi+d}. The rest of the
attributes for these n individuals are sampled from D independently from X(i).
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Then, M′
i interacts with an adversary A by simulating M on the dataset Y . Any query

which asks about an attribute outside of the set {Bi−d, . . . , Bi+d} still takes place in the
interaction, but it is not recorded in the transcript.

This construction guarantees that our (α, β)-sample accuracy bound on M restricted to
queries that involve at least one of the attributes {Bi−d, Bi−d+1, . . . , Bi+d} also applies to
M′

i, since {Bi−d, . . . , Bi+d} are exactly the attributes M′
i takes as data, so sample accuracy

is well-defined over these queries.
The privacy loss of M′

i can be bounded by the privacy loss when we only consider queries
that involve at least one of the attributes {Bi−2d, Bi−2d+1, . . . , Bi+2d} since all of the other
attributes are sampled independently from the data. We are given that this is (ϵ, δ) − DP .

Thus, M′
i is (ϵ, δ) − DP and (α, β)-sample accurate. By the transfer theorem, M′

i on
the set of queries involving attribute Bi is (α′, β2)-distributionally accurate for

α′ = α + (eϵ − 1) + c + 2f, β2 = β

c
+ δ

f
.

Now, by construction, if we condition on Y ∼ X, we can get the same distribution of tran-
scripts as Interact(M′

i, A, X(i)) by computing the transcript of Interact(M, A, X) restricted
to queries that involve only attributes in the set {Bi−d, Bi−d+1, . . . , Bi+d}. Additionally,
by assumption 2, we know that the guarantee for M′

i applies to every query that involves
attribute Bi. As such, (α′, β2) bounds the distributional accuracy of all queries involving
attribute Bi in Interact(M, A, X). Thus, we can bound the distributional accuracy of M
by union bounding the probability that the distributional error of any answer in any of
{M′

1, M′
2, . . . M′

m} is greater than α′, conditional on Y ∼ X.
We get Y ∼ X iff X satisfies the property that all attributes outside of

{Bi−2d, Bi−2d+1, . . . , Bi−2d} are independent from all attributes in the set {Bi−d, . . . , Bi+d}.
This happens iff Bi−2d−1 is independent from Bi−d and Bi+2d+1 is independent from Bi+d

for every individual in X. This probability is at least 1 − 2n(1 − p)d+1 by taking a union
bound over the 2 attributes Bi−2d−1 and Bi+2d+1 for each of the n individuals.

As such we can bound the accuracy of the answers M produces to the queries involving
some attribute in the set {Bi−d, Bi−d+1, . . . Bi+d} by simply adding the probability that it
does not produce the same distribution of transcripts as M′

i to the probability of failure, so
it is (α′, β′)-distributionally accurate for

β′ = mβ2 + 2n(1 − p)d+1

or equivalently,

α′ = α + (eϵ − 1) + c + 2f, β′ = m

(
β

c
+ δ

f

)
+ 2n(1 − p)d+1

as desired. ◀

We can improve the parameters by constraining access to the sliding window model
studied in other contexts (see, for example, the tutorial [9] on sliding window aggregation
algorithms, and the references therein). Details may be found in the appendix.

6 Using the Label in the Mechanism

In this Section, we show that, at a small cost in accuracy, we can extend our results to analyses
that incorporate the labels. This is a pleasant surprise, as the labels are “morally” exposed
to high privacy loss. The key idea to note here is that even though we use the exact marginal

FORC 2022



6:10 Improved Generalization Guarantees in Restricted Data Models

distribution of the label, which cannot be done privately, the query-answering mechanisms
that we use as sub-processes take data without the label, for which no information has been
revealed to the adversary.

▶ Theorem 15. Suppose the following is true:
1. There is a binary attribute y which we refer to as the “label.”
2. We have a mechanism M0 which is (α0, β0)-distributionally accurate when y = 0 for

every individual in the distribution.
3. We have a mechanism M1 which is (α1, β1)-distributionally accurate when y = 1 for

every individual in the distribution.

Now, consider the mechanism M which on input S, runs as follows:
1. Partition S into samples S0 = {s ∈ S | s has y = 0} and S1 = {s ∈ S | s has y = 1}
2. When M receives query q from the adversary, it asks q to M0 on sample S0 and gets

answer a0. It then asks q to M1 on sample S1 and gets answer a1. M then returns the
answer

a0
|S0|
|S|

+ a1
|S1|
|S|

.

Let D be the population distribution, Dy be the marginal distribution of the label y, and
p = Pry∼Dy [y = 0]. Then, M is (α, β)-distributionally accurate for any δ > 0 and

α = pα0 + (1 − p)α1 + δp√
n

, β = β0 + β1 + 2e−2δ2
.

Proof. To approximate the population proportion, we want to take p times the output of M0
plus 1 − p times the output of M1. To see this, if we let D0 be the population distribution
when we let y = 0, and D1 be the population distribution when we let y = 1, then we have
for any query q, pq(D0) + (1 − p)q(D1) = q(D). Thus, for query qj , if we let aj be the answer
from M0 and a′

j be the answer from M1, we have

|paj + (1 − p)a′
j − qj(D)| =

∣∣p (aj − qj(D0)) + (1 − p)
(
a′

j − qj(D1)
)∣∣

≤ p|aj − qj(D0)| + (1 − p)|a′
j − qj(D1)|.

Now, if we let p̂ = |S0|
|S| , then we have by the triangle inequality

|p̂aj + (1 − p̂)a′
j − qj(D)| ≤ |p̂aj + (1 − p̂)a′

j − paj − (1 − p)a′
j | + |paj + (1 − p)a′

j − qj(D)|
≤ |(p̂ − p)(aj − a′

j)| + p|aj − qj(D0)| + (1 − p)|a′
j − qj(D1)|

≤ |(p̂ − p)| + p|aj − qj(D0)| + (1 − p)|a′
j − qj(D1)|

where the last inequality comes from the fact that the answers are bounded betweeen [0, 1].
Now, p̂ ∼ 1

n binom(n, p), so we can apply Chernoff to get that for any δ > 0,

Pr
[
|p − p̂| <

δp√
n

]
< 2e−2δ2

.

Furthermore, by assumption, we know that |aj − qj(D0)| ≤ α1 with probability 1 − β1,
and |a′

j − qj(D1)| ≤ α2 with probability 1 − β2. Thus, taking a union bound, we get that for
any δ > 0, M is (α, β)-sample accurate for

α = pα0 + (1 − p)α1 + δp√
n

, β = β0 + β1 + 2e−2δ2
. ◀
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7 Discussion

It is common practice in other fields to consider restricted classes of adversaries, where it is
often possible to obtain better bounds. For example, while Byzantine Agreement requires
n ≥ 3t + 1 processors if the number of arbitrary failures can be as large as t, it requires only
n ≥ t + 1 processors to handle t fail-stop faults. Similarly, in cryptographic protocols the
bounds for honest-but-curious adversaries are often better than for the case of processors
that diverge arbitrarily from the protocol.

This history, combined with the fact that an algorithm that only protects benign data
analysts could still be of use, naturally leads to the question of whether it is possible to get
better accuracy/adaptivity tradeoffs for more benign adaptive accuracy adversaries. Efforts
to define an appropriate class of benign failure modes were stymied, however, by Freedman’s
paradox, which states that when we have a dataset of n individuals and n attributes, all of
which are independent of a label y, we will find some attribute which is strongly correlated
with y with high probability. We feel this gives an example of a very natural error, naïve but
not malicious [7].

Our conclusion is that some restriction – e.g., on data models or access models – is
therefore required, which led to this work. It would be interesting to find other natural
restrictions that lead to improvements comparable to – or better than – those obtained in
this work.
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A Sliding Window Model for Exponential Decay

▶ Remark 16. The form of this bound looks mostly identical to the bound in Theorem 14, with
a slightly better probability of failure. However, one must note that the privacy guarantee is
now restricted to the set {Bi−2d, Bi−2d+1, . . . , Bi+d} rather than {Bi−2d, Bi−2d+1, . . . , Bi+2d}
as it was before, so this does in fact give us a multiplicative constant improvement over
Theorem 14.
▶ Theorem 17 (Sliding Window). Given a database X in the decaying correlation model with
parameter p and m attributes, a mechanism M which satisfies the following properties while
interacting with an adversary A is (α′, β′)-distributionally accurate where

α′ = α + (eϵ − 1) + c + 2f, β′ = m

(
β

c
+ δ

f

)
+ n(1 − p)d+1.

1. For each i, M restricted to queries that involve only attributes in the set
{Bi−2d, Bi−2d+1, . . . Bi+d} is (ϵ, δ)-DP.

2. For each i, M restricted to queries that involve Bi is (α, β)-sample accurate.
3. Any query can only involve attributes Bi and Bj if |i − j| ≤ d.
4. After answering a query involving attribute Bi, the mechanism can no longer answer

queries involving attributes B1, B2, . . . Bi−d.
Proof. We define X(i) and M′

i as in theorem 14, except we now stop the interaction imme-
diately after A asks the first query which involves an attribute in the set {Bi+d+1, . . . , Bm}
and before M′

i answers.
This interaction still contains every query which involves attribute Bi by assumption 4,

and these queries are all well-defined by assumption 3, so analogously to in theorem 14, M′
i

is (α, β)-sample accurate.
This time, the privacy loss of M′

i can be bounded by the privacy loss when we only
consider queries that involve the attributes {Bi−2d, Bi−2d+1, . . . , Bi+d} since there are no
queries asked about {Bi+d, Bi+d+1, . . . , Bi+2d}. We are given that this is (ϵ, δ) − DP .

Thus, M′
i is (ϵ, δ) − DP and (α, β)-sample accurate on all the queries in the transcript.

Hence, by the transfer theorem, M′
i on the set of queries involving attribute Bi is (α′, β2)-

distributionally accurate for

α′ = α + (eϵ − 1) + c + 2f, β2 = β

c
+ δ

f
.

In this setting, we cannot have any query involving {Bi+d+1, . . . , Bm} be answered by M′
i

or by M prior to any query involving Bi. Hence, this time, we note that the probability that
some attribute in {B1, B2, . . . , Bi−2d−1} is related to Bi−d is at most n(1 − p)d+1 by taking a
union bound over the n individuals, in which case Interact(M′

i, A, X(i)) restricted to queries
that involve attribute Bi produces the same distribution of transcripts as Interact(M, A, X)
restricted to queries that involve attribute Bi.

As such, similarly to in Theorem 14, we can bound the accuracy of the an-
swers in Interact(M, A, X) by adding the probability that X has some attribute in
{B1, B2, . . . , Bi−2d−1} related to Bi−d to the probability that any Interact(M′

i, A, i) has
an answer with error greater than α. Thus, it is (α′, β′)-distributionally accurate for

α′ = α + (eϵ − 1) + c + 2f, β′ = m

(
β

c
+ δ

f

)
+ n(1 − p)d+1. ◀
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