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—— Abstract
The question of building the most efficient tn-to-n-bit collision-resistant hash function H from a
smaller (say, 2n-to-n-bit) compression function f is one of the fundamental questions in symmetric
key cryptography. This question has a rich history, and was open for general ¢, until a recent
breakthrough paper by Andreeva, Bhattacharyya and Roy at Eurocrypt’21, who designed an elegant
mode (which we call ABR) achieving roughly 2¢/3 calls to f, which matches the famous Stam’s bound
from CRYPTOQO’08. Unfortunately, we have found serious issues in the claims made by the authors.
These issues appear quite significant, and range from verifiably false statements to noticeable gaps
in the proofs (e.g., omissions of important cases and unjustified bounds).

We were unable to patch up the current proof provided by the authors. Instead, we prove from
scratch the security of the ABR construction for the first non-trivial case ¢ = 11 (ABR mode of height
3), which was incorrectly handled by the authors. In particular, our result matches Stam’s bound
for t = 11. While the general case is still open, we hope our techniques will prove useful to finally
settle the question of the optimal efficiency of hash functions.
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1 Introduction

The Merkle-Damgdrd construction [3,7] is a sequential construction which is used in MD5,
SHA-1 and SHA-2 and many other hash functions. On the other hand, the Merkle tree [6]
is a parallel construction that is used in hash-based signatures (of interest due to their
post-quantum security), version control systems such as git, and cryptocurrencies such as
Ethereum. It is well known that the Merkle-Damgérd construction and the Merkle tree are
collision-resistant provided so are the compression functions. The number of compression
function calls is (essentially) the same for both constructions. When we use 2n-to-n-bit
compression functions, we can process ¢t blocks of messages by making ¢ or (¢ — 1) calls to
the compression function.

Although both of these widely used constructions are rather efficient, and only rely on the
collision-resistance of the compression function, practical compression functions are believed
to have more properties than mere collision resistance. As such, it is interesting to study the
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question of designing the most efficient way to build a t-to-1 collision-resistant hash function,
even if modeling the compression function as ideal (i.e. a random oracle). In particular, to see
whether the classical Merkle-Damgard and Merkle tree constructions can be improved under
such idealized modeling. This question has received a lot of attention from the cryptography
community, which we survey below.

Lower Bound on the Number of Calls. We start with lower bounds (i.e., attacks). In [2],
Black et al. formally analyze the security-efficiency trade-off of compression functions, showing
that a 2n-to-n-bit compression function making a single call to a fixed-key n-bit block cipher
can not achieve collision resistance. Later Rogaway and Steinberger [9] generalized the
result for permutation-based hash. For a general hash function based on a compression
function, Stam [11] conjectures a lower bound on the number of compression function calls.
In particular, a collision with at most 27(*~(#=0-5)/7) queries on a t-to-1 block hash function
can be found after making r calls to A-to-1 block compression functions. Equivalently, for
optimal birthday security, the number of hash calls must be at least r > (2t — 1)/(2A — 1).
This bound is popularly known as the Stam’s bound. Stam has shown the bound for some
cases under a uniformity assumption. Later by Steinberger [12] and by Steinberger, Sun and
Yang [13], a formal proof of the Stam’s bound is shown.

Hence, for the most widely studied case of A = 2, we have a lower bound r > (2t — 1)/3,
leaving a factor 1.5 efficiency gap when compared to the Merkle-Damgérd and Merkle trees.

Upper Bound on the Number of Calls. For the upper bounds, much of earlier work
concentrated on the setting of the “non-compressing” case of A = 1, and often focused on the
case of small ¢ (e.g., t = 2), implicitly suggesting that — once the 2-to-1 function is built, —
one should do further extensions with either Merkle-Damgard and Merkle trees. For example,
Shrimpton and Stam [10] proposed a 2-to-1 compression function based on three calls of
non-compressing function, which matches Stam’s bound for A = 1 and ¢t = 2. Rogaway and
Steinberger [8] designed similar results when the non-compressing primitive is an invertible
permutation, which they also showed is optimal for this setting [9].

For general (large) ¢, Mennink and Preneel [5] also considered the non-compressing
case A = 1 and proposed an elegant tree-based mode of operation making (2t — 1) calls to
the non-compressing round function, which matches Stam’s bound. Unfortunately, they
could only prove below-birthday security of 2"/3 queries for this construction. They also
conjectured that the construction achieves optimal birthday security 2*/2, but could only
prove it for a very restricted special-case attacker. These attacks make all their random
oracle calls “layer-by-layer” (as opposed to in any order). As acknowledged by the authors,
the simplifying assumption significantly helps with the proof of this special case and appears
to be with a great loss of generality. In fact, they presented evidence that their existing
analysis is unlikely to work for proving optimal security against unrestricted attackers.

Recently, two papers have appeared to tackle the compressing case A = 2. In [4], Dodis
et al. optimally settled the case ¢t = 5, by introducing the T'5 construction that processes
five n-bit message blocks using three 2n-to-n-bit compression function calls, which matches
Stam’s bound for t = 5 and A\ = 2. Further, they suggested extending the T'5 construction
to a larger value of ¢t using either Merkle-Damgard or Merkle trees. In both cases, they
already achieve non-trivial saving compared to the earlier efficiency of these modes (equal
to ¢t compression calls): both variants now make roughly 3t/4 calls to the compression
functions. Still, once ¢ > 5, this does not match the current lower bound of 2¢/3 calls. [4]
also mentioned a natural, but more aggressive, variant of this extended construction for
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the case of Merkle trees. However, they remark that this construction — even if proven
collision-resistant (which is open), — would lose the efficient “local opening” properties of
their simpler tree construction with 3¢/4 compression calls. Namely, one can no longer open
one message block by only opening O(logt) internal values in the tree (as any such opening
cannot have birthday security, despite satisfying correctness).

Finally, a breakthrough result of Andreeva, Bhattacharyya and Roy at Eurocrypt’21 [1]
have claimed to settle the general case in the affirmative. They proposed a hash function ABR;
based on a perfect binary tree of height I. The hash ABR; can process t = (2! 42!~ —1) blocks
with 7 = (2! — 1) calls of compression functions. This matches Stam’s bound r > (2t — 1)/3.
Somewhat interestingly, the ABR construction looks very similar to the tree construction of
Mennink and Preneel [5] from non-compressing primitives, except all the compression calls
at the leaf level now have an extra input (due to A = 2 instead of A = 1), while the internal
calls to the compression function can also process an extra input, but using a slightly trickier
rule involving two simple XOR operations. So, at least in the intuitive sense, the authors
must have resolved the difficulty of [5] of dealing with general adversaries, for a construction
very similar to the one of [5].

As an additional bonus feature, the work of [1] even claimed that the ABR; mode also has
attractive local opening properties, at the expense of slightly longer proof length (2! instead
of [ of Merkle trees), but still having only ! compression calls to verify such local opening.

Are We Done? Unfortunately, we have found serious issues in many claims made by the
authors of [1], whom we call ABR hereafter. These issues appear quite significant, and range
from verifiably false statements to noticeable gaps in the proof (e.g., omissions of important
cases and unjustified bounds). Unfortunately, at this stage, we are unable to fix these issues
in any simple way.

1.1 Our Results

Our results can be roughly divided into 3 categories:

(1) explicit refutation of some claims made by [1];

(2) serious technical issues in the proof provided by [1];

(3) a correct (but very different from [1]) proof for the for the ABR3 construction (i.e. ¢t =11
and r = 7), which is incorrectly handled by ABR.

We detail these below.

Local Opening Insecurity of ABR. As we mentioned, ABR proposed a very efficient local
opening for ABR;. It opens about 2! blocks and makes [ calls to verify. However, we have
shown that a collision pair of the verification function can be found in O(2"/2") queries, which
is significantly below birthday security already for I = 2. Hence, the suggested local opening
can be broken in the above complexity. Moreover, we have shown that any non-trivial local
opening of ABR; satisfying a “by-pass verification” property (which is a natural class of
openings that seems to include any natural opening one can think of) is broken below the
birthday bound. For example, even opening (¢ — 1) out of ¢ inputs cannot be birthday-secure,
where ¢ = 2! +-2!71 — 1 = 29()_ In contrast, previous tree-like constructions (e.g., [4]) achieve
birthday security with logarithmic opening length O(l). This is discussed in Section 4.

There are two surprising aspects to this mistake. First, our attack is completely standard
(using standard generalized birthday attack [14]). Second, the local opening subsection in the
ABR-paper does not even mention anything about security, only focusing on the correctness
of the opening. We found this quite surprising.

11:3

ITC 2022



11:4

Revisiting Collision and Local Opening Analysis of ABR Hash

Mistakes with the Main Proof. While the local opening mistake above is indisputable,
the technical mistakes in the main collision resistance proof of ABR are harder to explain in
detail (at least in the Introduction, before the technical notation is developed). They are also
harder to state with conviction, since they often do a combination of the following pitfalls:
(a) involve imprecise statements,

(b) state a bound which might be true, but which appears completely non-obvious to us (to
the extent of being the most difficult part of the proof);

(c) point to an “analogous” earlier case, but we fail to see why the previous argument
generalizes;

(d) state some bound which appears to be correct only if one makes some restricting
assumption on the attacker (but no such assumptions are made by the authors, who
claim a fully general result!);

(e) silently omitting an important special case of the proof (i.e., the proof is non-exhaustive).

The totality of these issues make the proof presented by [1] at best unverifiable, and at worst
incorrect. In particular, we still believe that the end result is correct, but fixing it would
require a substantially harder proof.

At a very high level, the correct collision analysis for a tree-based function like ABR;
is complex mostly due to the adaptive nature of queries, and the queries made to different
layers in the tree might not come in monotone order (i.e., may not be in order of the level of
the nodes). Indeed, this is precisely the reason why the earlier birthday security result of
Mennink and Preneel [5] only held for “in order” adversaries. Fortunately, the outputs of the
leaf nodes can be given beforehand, as the input of those has no role in finding a collision.
More formally, we can make a simple argument to force the attacker “evaluate” the first
layer compression calls before any of the subsequent calls as follows. We give the attacker ¢
random outputs (where ¢ is the total number of queries made by the attacker) at the very
beginning, but allow the adversary to arbitrarily label the corresponding input values at any
point in the game. This is fine, since those input values do not participate in any other
computation, but now all the outputs in the first layer are known before a single compression
call is made to the lower layers. This allows for relatively simple analysis for the special case
I = 2, and the authors of [1] indeed start with the correct analysis of this special case.

Unfortunately, this argument completely fails after the first layer. (Indeed, handling this
case will be one of the most difficult parts of our analysis, when we provide a correct proof
for | = 3 in this paper.) In particular, we see the following high-level issues with the proof
presented by [1] for [ > 3. (More lower-level issues are discussed in Section 5.3 in the paper.)
1. ABR claimed a relation between collision and the number of computable hash outputs

(termed as load). We will show in Section 5.4 that the relation is not true in general

by giving a counterexample. This seems to hold for ABR if queries to the root node are

performed at the end (which is the case for ABRg). However, it seems non-obvious to us
why a similar relation holds when the adversary makes out-of-order queries.

2. We have also found issues while bounding load. ABR consider “input multi-collision”
for every node up to O(n). However, due to the multiplicative nature of the number of
multi-collisions as one goes down in the tree, we find that O(n?) multi-collision must
be considered for the nodes at the i-th level. This would degrade the bound for load

1 Another correct proof for t = 5 (corresponding to tree depth [ = 2) was made for the T'5 compression
function by [4]. Interestingly, the authors did not notice the simplifying non-adaptivity argument above,
and had to work relatively hard to handle out-of-order queries (e.g., it involved a careful expectation
analysis and applying Markov’s inequality; see proof of Proposition 5 in [4], which is over a page). This
shows that handling out-of-order attackers is indeed highly non-trivial.



C. Dhar, Y. Dodis, and M. Nandi

claimed by ABR, and invalidate the claimed birthday security at the end (unless the
number of levels i is constant, in which case one can hide the extra n’ bound in the
“O-tilde”-notation). This will be discussed in Step 1 of Section 5.3.

3. In fact, even if the load analysis is somehow fixed, ABR seem to consider the last query
happens in the final node (or at the node where the load is considered). This is effectively
equivalent to in order adversaries, but does not seem to be the case for general attackers.
See Step 2 of Section 5.3.

4. Moreover, both messages of a collision pair can be generated due to a single query response
(termed as twin collision pair). ABR completely ignore this case. This is discussed in
detail in the last paragraph of Section 5.3.

We leave a more detailed explanation of these (and other issues (a)-(e)) later in the paper.

Collision Analysis of ABR3. On a positive, our main technical result shows that the ABRg
construction for t+ = 11 indeed achieves birthday security (roughly n°¢?/2", where q is
the number of compression function queries) with an optimally small number of r = 7
compression calls (see Section 6). While forming only the first step in recouping the incorrect
results of [1], we are optimistic that our approach could be extended to finally settle the
general case correctly. For example, compared to best known correct proofs for t =5 (e.g.,
ABR; from [1], or the T'5 compression function from [4]), we can no longer assume that the
second layer calls to the compression function are made before all the third-layer calls, which
is the main (unresolved) difficulty in the work of [5], and one of the key mistakes in the
analysis of [1] (as we explained above). Thus, our proof is the first which handles non-trivial
“out-of-order” adversaries correctly.

We also hope our proof of ABR3 provides a sharp contrast to the flawed proof of [1], even
for this special case. For example, we already mentioned handling general “out-of-order”
adversaries. In a different vein, we also consider the twin-collision analysis for ABR3 which is
completely missing from [1]. This analysis requires a non-trivial multi-collision analysis on a
sum of our compression functions, and we also need to bound some other failure events to
analyze the non-twin collision security of ABRs. None of these arguments appeared in [1].

2  Security Definitions

2.1 Notations

We call elements of {0,1}" blocks. A k-to-r (block) function or random oracle has domain
{0, 1}*" and range {0,1}"™. We write the set [k] = {1,2,...,k}. A partial function 7 from D
to R is a subset 7 C D x R such that for every x € D, there are at most one y with (z,y) € 7.
We define domain dom(7) := {x : Jy, (z,y) € 7} and range ran(7) = {y : Iz, (x,y) € 7} of a
partial function 7. We use the shorthand notation AUz and A\ z to denote AU {z} and
A\ {z} respectively. For any g-tuple x?, we define mc(z?) = max,|{i : ; = a}|. For two
lists £1 and Lo, we define me(Ly & Lo) = max,|[{(¢,i') : L; ® Ly = a,L; € L1, Ly € Lo}]. Tt
can be similarly extended for xor of more than two lists.

2.2 Generic Hash Mode

Let H/ be a t-to-1 hash function which uses an n-bit compression function (i.e. A-to-1
compression function f for some A > 1) as an oracle. Note that a mode can use more than
one compression functions fi, ..., f.. However, as we analyze in the random oracle model,
independent random oracles can be obtained from a single random oracle with a little bit

11:5

ITC 2022



11:6

Revisiting Collision and Local Opening Analysis of ABR Hash

larger domain by using the standard domain separation method. In this paper, we only
consider fixed-length input and also assume r is the same for all messages. Moreover, the
hash function calls f; on i-th call and so the domains of every call are separated by domain
separation. We also denote the family f := (f; : ¢ € [r]) by f and we call A\-to-1 r r.o.
(random oracle). We denote (M | f) := {((1,21),v1),-.., ((r,z;),yr)} where z; denotes
the input of i-th call of its oracle tuple while computing B (M) and y; = fi(x;) == f(i, ;).
A A-to-1 transcript 7 is a partial function from [r] x {0, 1}*" to {0,1}". For a A-to-1 r 1.0.
f, we have

V(i,z) & dom(7),y € {0,1}", Prob(f(i,z)=y|7C f)=2""

» Definition 1 (transcript-based hash computation). Given a partial function T C f, let
H™ = {(M,B/ (M)): (M | f) C 7} be a partial hash function. In other words, H™ consists
of all pairs (M, z) such that B (M) can be computed by simply using the transcript T and z
is the final value. The elements of the set dom(H™) are called T-computable messages. As
7 C f, we must have H™ C Hf,

2.3 Collision Game

Let A be an adversary having oracle access of f which makes ¢ queries to each f; adaptively. As
we assume an unbounded time adversary, there is no loss in assuming that A is deterministic.
Thus, the i-th query (z;,v;) of A depends on 7¢~! (the transcript of query-responses after
(i—1) queries). After the query-response phase, A returns a pair of distinct messages (M, M)
such that both M, M’ are transcript-computable. We say colly holds if H" (M) = H™ (M),
called a computable collision pair. We define Adv<y'(A) := Pr(colly).

» Definition 2 (cross collision). Let H and H be two hash functions. A cross-collision 7-
computable pair is a pair (M, M’) (not necessarily distinct) such that H™ (M) = H7(M'). We
denote collfy, == {M € dom(H") : IM’, H" (M) =H"(M")}.

2.4 Local Opening

We now define the local opening security of a hash function output (viewed as a commitment
of a message). Given a hash function mode H/, a local opening Openf for H maps a pair
(M,i) to ™ = (my,i,7") (called proof) where M = (mq, ma,...,m.) is a message (a tuple of
blocks) and i € [¢] is an index.

Correctness of Local Opening. There is an efficient function Ver’ such that for all message
M, all index i, Ver! (Open’ (M, i), B (M)) = 1.

Security of Local Opening. In the local opening security, the adversary wins if it produces
an output h corresponding to two contradicting local openings for some position 1.

» Definition 3 (local opening advantage). Let H be a hash function and Open be a correct
local opening for H with verification function Ver. For any adversary A, we define the local
opening advantage as

Adviel(A) = Pr | Ver(i,m,m, h) = Ver(i,m', ', h) = 1,m # m/

| (Z"m’ m/7ﬂ-7ﬂ-/7h) — Af
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By-Pass Hash Computation. We say that H has a by-pass computation (H; : i € [c])
corresponding to a local opening Open if for all M, i € [],

H/ (Open’ (M, 7)) = B/ (M).

In other words, given a proof (output of the Open) and the message block for the index (for
which the proof is produced), we can compute the hash output of the message (without
knowing the other blocks of the message). The verification algorithm simply checks whether
the hash value computed through the by-pass hash is the same as what was committed
before. As f is treated as an oracle, it is natural to assume that for all M and for all 7,

TOpen(Mvi | f) U THi(Openf(Mvi) | f) = TH(M | f)
We now define the inter-collision advantage for by-pass computation H; as
Adv?"™(A) = Pr [Hi(m,w) =H;(m/,7") and m # m’ | (m,7,m,w) Af].

Thus, it is the same as the collision game, except that the adversary needs to find a collision
pair for which m # m’. Suppose A finds a collision pair ((m, ), (m’,7")) for H;, and let
h =H;(m, ). Then A can commit h and later on, it can successfully open for either of two
messages m and m’ as required. Now we make the following simple observation

Advlo(q') = max max Adv;j”* (A). (1)

The above observation (see [4] for details) helps us to reduce the local opening security to
inter-collision security problem for the by-pass hash family.

2.5 Stam’s Tradeoff between Security and Performance

Stam’s bound states that there always exists a collision attack with at most 27 —(t=0.5)/7)

queries on a t-to-1 block hash function making r calls to A-to-1 block compression functions.

3 Re-introduction of the ABR Hash due to [1]

We first start by defining a generalized tree hash structure, and then re-introduce the ABR
Hash as a special tree hash, as opposed to introducing as it is in [1]. This is because we feel
some things have not been properly defined by the authors there, and these issues need to
be addressed properly.

A full binary tree (FBT) is a binary tree in which every node v other than the leaves has
two children, denoted as v (left child) and vg (right child). A perfect binary tree (PBT) is a
full binary tree in which all the leaf nodes are at the same level (called height of the tree).

» Example 4 (perfect binary tree of height I). Let | be a fixed positive integer and 7 be
a perfect binary tree of height [ over all vertices (j,b), j € [I],b € [2!79] with (I,1) being
the root. For every two vertices (j,b) and (5 + 1,[b/2]), we associate an edge. We call

(j—1,2b—1) and (j — 1,2b) the left and right child of (j, b) respectively. Note that 7 = T 1).

3.1 Some Notations and Definitions on Binary Trees

For a binary tree F, let Lz and V(F) denote the set of leaf nodes and all nodes of F
respectively. Any non-leaf node is called an intermediate node. For a non-root intermediate
node v of F, we consider the following two full binary trees:
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Figure 1 In this figure, F, is the sub-tree rooted at v, i.e. the union of the red and blue sub-trees,
F_o is the black sub-tree, and F,_,, is the red sub-tree.

1. F,: the full binary sub-tree rooted at v.

2. F_,: the sub-tree (F\ F,) Uw.

For a tree F, and a vertex v of F, we write V,,, £, and V,} to denote the set of all nodes, leaf

nodes and intermediate (non-leaf) nodes respectively for the tree F,. For any u € V,* \ v, we

write Fy_qy = (Fy \ Fu) Uu. We write V,,_,, to denote the set of vertices of F,_,,. For the

sake of notational simplicity we ignore the suffix v when v is the root. In this section we only

consider trees of the form F, and F,_,. Refer to Figure 1 for a pictorial representation.
To each node v € V of a perfect binary tree 7, an independent 2-to-1 block compression

function (modeled as a random oracle) f, is assigned. We use the notation f to denote the

collection of random oracles {f, : v € T}.

» Definition 5 (message for tree hash). A message m for any full binary sub-tree F of a
perfect binary tree T having the same root is a function m : V(F) — {0,1}"* U {0,1}2" such
that for all uw € L N L7, m(u) € {0,1}2", otherwise, m(u) € {0,1}". A complete message
m is a message at the root of T.

Thus, for every leaf node of F (which is also a leaf node of the perfect binary tree), we
associate 2n bit messages. For all other vertices, we associate an n bit message. We write
M to denote the set of all messages for . We simply write M, and M, _,, instead of M,
and My,

v—u

respectively.

For a message m for 7, (also called m at the node v), and u € V,,, we write m|, = m|r,,
the message restricted to 7T,. Similarly, we write m := m|,, and mg := m|,,. We also
write m|,_y—p to denote a message for T,_,, which is same as the restricted function m|y,__,
except at u, where it assigns h (instead of m(w)). In the context of our work, this basically
means we replace the message m(u) at node u by the intermediate hash output of T, the
tree rooted at u, and consider the message for the remaining tree, T,_,,.

» Definition 6 (Generalized Tree Hash). Let F be a full binary sub-tree of a perfect binary
tree T and let m € Mx. For every v € F, we associate an intermediate hash output O, and
an intermediate input I, recursively as follows:

1.ve Lr\ Ly, Im@)| =n: O, =m(v) and there is no input,
2.velrnlLr, |m(v)\ =2n: 0, = fv(m(v))’ I, = m(’U),
3. otherwise: |m(v)| = n and we define

I, = (OUL ®m(v), Oy, ® m(v))7 and Oy = f,(Oy, & m(v), Oy @ m(v)) & Ouyy.

O,, is the final hash output corresponding to F where w is the root of F. We also call I,
final input.
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Figure 2 ABR of height 3.

Let us see what this means. If 7 = T, the above definition implies that for a leaf node v,
the message at v, which itself is the input, is 2n bits long, and the output is just f,(m(v)),
where f, is the 2-to-1 block compression function attached to it, and for an intermediate
node, the message is n bits long, and the input and output are as defined above. If F is
a proper sub-tree of 7, then there might exist vertices, which are leaves of F, but not of
T. For such a vertex v, the message is n bits long, and the message itself is considered the
output of the vertex. This vertex doesn’t have any input.

The ABR Hash Function. The ABR hash is the hash output based on a perfect binary
tree T of height [. In terms of Definition 6, the case F = T corresponds to a ABR tree, and
the final hash output is the ABR hash. Thus, ABR; hash is a (2! + 2/~ — 1)-to-1 block hash
function, I > 1. We refer to Figure 2 for a pictorial view of ABR with [ = 3. For a trivial
tree F = {w}, with a message m(w) € {0,1}*", F(m) = f,(m).

We write H™(m) and in”(m) to denote the transcript based hash and the final input
respectively, whenever defined for the message m for a tree F. If H"(m) is defined we call
m T-computable or simply computable message. We write L to mean that it is undefined.
Note that a tree is uniquely determined from the message. We write dom;, and dom;_, to
denote the set of all computable messages at v and for 7T,_, respectively. Similarly, we write
ran] and ran]_, to denote the set of all computable hashes at v and for 7,_,, respectively.

The size of the set ran], called load at v, is denoted as L ,,.

v

4 Local Opening Analysis of ABR Hash Function

In section 3, we have defined hash function based on a tree F for a message over the tree JF.
In this section, we consider a variant of the message function and a hash function for the
variant message. This is required to properly define the local opening of the ABR tree.
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Message for a Full Binary Tree. Let F be a full binary tree and L C Lx. Let Mr
be the set of all functions m : V(F) — {0,1}" U {0,1}*" such that for all v € Lz \ L,
m(v) € {0,1}?" and for all other vertices v, m(v) € {0,1}". We call m a message (or a
message function) for F.

» Definition 7 (Generalized Tree Hash, a variant). Let m € My r be a message function for
F. For every v € F, the intermediate hash output O, is defined recursively as follows:

1. ve L, im(v)| =n: O, =m(v),

2. ve Ly \ L, Im()| =2n: O, = fy(m(v)), I, = m(v),

3. v Lr: we define

I, = (hy ®m(v), ha ®m(v)) and O, = fy,(h1 ® m(v), hy ® m(v)) ® ha,

where hy = Oy, and ha = O,
The hash output corresponding to F is defined as F'(m) := O, where w is the root of F.
We also call 1, := }"Iﬁ(m) final input. It is clear from the definition that for any node v & L,
Fl(m|,) = O, and Ff (mly) = I,.

v,in

Visualizing the tree is not difficult. As an example, when F = ABRj3, we have Figure 2,
where L is a subset of the leaf nodes, say (1,1) and (1,2). We now define local opening of
the Generalized Tree Hash.

» Definition 8. Let m be a message for a perfect binary tree T. For any full binary sub-tree
F and a set Ly \ L7 C L C Lx, we define a message m’ := Open;L(m) € Mg for F as
follows.

1. v e L: m'(v) = T.f (my).

2. Otherwise: m'(v) = m(v).

Now, we first analyze the local opening security of ABR; proposed by [1] and then show
that no non-trivial opening of ABR can achieve birthday bound security.

4.1 Local Opening Analysis of ABR Hash due to [1]

We describe the by-pass hash corresponding to the message block m; for ABR;. It is based
on the full sub-tree F consisting of nodes {(¢,1) : ¢ € [[J} U{(4,2) : ¢ € [l — 1]} and
L ={(1,2),(2,2),...,(1—1,2)}. Refer to Figure 3. Note that the number of blocks in
Openg 1, (m) is 2, and in the sub-tree F corresponding to Openx ;(m), the number of calls
to underlying compression function f is [. According to Stam’s bound, there exists a collision
attack with at most 2"/2! queries. We give an attack that matches this bound.

Let I(i,1) = (us1,v;,1) be the input of f;; and let y; 1 be the output. Let h; 2 be the
message for node (7,2). Let h;j1 = y;1 ® hi—1,2 for i > 1 and hy 1 = y1,1. Then, h;; is the
output at node (i,1). Also, let m; 1 be the message associated with a non-leaf node (7, 1).
We wish to find a collision at the output of node (I,1), i.e. we need to find two messages m’
and m” for F such that F; 1y(m’) = F 1)(m”). Given any message for F, the output at
node (I,1) is given by hy 1.

Note that hy11 = f1,1(u1,1,v1,1). After computing h;_1 1, we proceed to compute h; 1.
We note that h;_1 2 is a message block for F. The input at node (4,1), I(i,1) = (hi—11 @
m;1, hi_172 D mi,l) = (Ui,lavi,l) and the output at node (i, 1) is:

hii=fi1(1(3,1)) ® hi—1,20 = fir(uwi1,vi1) S hi—12
= fi1(ui1,vi1) B U1 ®vin ®hi—1
=0;1(ui1,vi1) B hi—11
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Figure 3 A specific local opening of ABRs.

where g; 1(ui1,vi1) = fi,1(wi1,0i1) ®ui 1 ® v 1. By induction, the final hash computation is

hip =gia(wi,v1) ® g1, (Wi—11,0-11) ® ... B g1,1 (w11, v11)-

Since the functions f; 1 are random and independent so are g; 1’s. Thus h;; is the XOR of |
random functions. Thus, a collision is expected at node (I,1) with 27/2L queries. One can
also apply a generalized birthday attack with complexity 27/ (1+log2!1),

Now, let us look at the target collision resistance of the above local opening of ABR;.

Target Collision Resistance describes the ability of an adversary to find a second pre-image
for a fixed message. Target collision resistance has many practical applications. For example,
if a client sends a file F' to the server and then wants the server to send part of the file F;
along with a proof of correctness then, as long as the server does not control the choice of
the file F', the server would need to find a targeted collision to break security and reveal an
incorrect value F.

Here, for a fixed message m, the final hash computation h;; is fixed. Hence, for target
collision resistance we wish the XOR of [ random functions to collide with this value of h; ;.
This collision is expected with 2*/! queries.
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4.2 Decomposition of ABR Hash

Now we decompose ABR hash computation on 7 through a full binary proper sub-tree F
sharing the same root and a set L.

» Lemma 9 (decomposition lemma for any full binary tree). For all full binary sub-tree F of
a perfect binary tree T and a set of nodes Lx \ Ly C L C Lr, we have

T/ =Ffo OpenJ]c_-7L.

Proof. Let m be a message for 7. T7(m) represents the hash output based on the perfect
binary tree 7. For any node v of T, the restricted message over T, is m,. Hence, T/ (m)
computes T,/ (m,) for all nodes v € T.

For any full binary sub-tree F of 7, m' = Openg‘_-y 5, is defined as above. For any v € L:
m'(v) = TS (m,). We calculate the hash outputs for the restricted messages on these nodes
first. Since for all other v € F, m/(v) = m(v), and F is a sub-tree of 7, F/(m’) actually
computes 7. (m,) for all v € F\ Lx. Thus, F¥ o Opené-(m) also computes T,/ (m,,) for all
nodes v € T and produces the same output 77 (m). <

If # =7 and L = () then Opené_-’L(m) = m. For any other proper local opening we
cannot ensure birthday bound security. We prove the following theorem:

» Theorem 10. No non-trivial opening of ABR can achieve birthday bound security.
Proof. Stam’s bound states that there exists a collision attack with at most 27(A—(¢=0.5)/7)
queries on a t-to-1 block hash function making r calls to A-to-1 block compression functions.
We have \ = 2. If we want to achieve 2*/2 collision security, ¢ < 1.5r + 0.5. In other words,
if t > 1.5r + 0.5, then we have a collision attack with query complexity 22 (1=9/7)  § .=
t—1.5r — 0.5.

For ABR of height [, we have t = 2! +2!=1 —1 and r = 2/ — 1. This satisfies t = 1.5r +0.5,
and it is optimal. We show that for any non-trivial opening Openx ; of ABR, F satisfies
t > 1.574+0.5. Let us consider the simplest non-trivial opening, corresponding to L = {(1,1)}.
Then, for m = (mq, ma, m’), where my,ms are the first two message blocks and m’ is the
remaining part, Openz ; (m) = (f1,1(m1,m2),m’). Then, t = 2! + 271 — 2 and r = 2! — 2
(f1,1 is not called). This satisfies ¢ > 1.5r + 0.5. If Openz ; consists of only one sub-tree
computation of height h, then for F, we have t = (2! + 271 — 1) — (2" +2"=1 — 1) + 1 and
r = 2! — 2" which satisfies ¢ > 1.57 + 0.5.

A general opening Openz ;, of ABR may consist of more than one complete sub-tree
computation. Let the number of complete sub-tree computations in Openz ;, be k, and for
each 1 < i <k, let h; be the height of the i-th sub-tree. Then, for F, we have

k k
t=+27 - =Y @ )k r=2 -1 =) (2M 1),
i=1 i=1

It can be easily seen that ¢ > 1.5 4+ 0.5. Thus, no non-trivial opening of ABR can achieve
birthday bound security. <
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5 Collision Analysis of ABR hash

In this section, we first define certain items which will be required to analyze the collision.

» Definition 11 (input multi-collision). For any x € {0,1}", let MC (), called input multi-
collision set at v (with x as input multi-collision value), denote the set of all messages m at
v with in™(m) = x. also, let

me] () = [MC(z)[, mc] = max mc](x).
z€{0,1}™

When v is the root node, we skip the notation v.

We define the newly generated messages and the hashes at a node v due to addition of the
query-response (z,y) to the transcript 7 as

New (x,y) := dom’"@¥) \ dom?, NewH](z,y) := ran (¥ \ ran’.

Clearly, NewH7 (, y) = H™Y(®¥) (New] (, y)) (image set of H™(*) for the domain New] (z,y)).
Note that = need not be queried at v. However, to have a new computable message, x should
be queried at some node, say u, in 7,. Analyzing the behavior of the set New; (z,y) (or its
size) is easy when u = v or when w is one of the children of v. However, it becomes more
complex when u is far away from v.
Case u = v: New,, (z,y) = MC] (z) (and does not depend on y) and we call these messages
freshly generated immediate messages.

Case u € T, \ v: The newly generated messages at v is
New; (z,y) = {ml, : in"(m|u) = 2, m[y—y—n € domy_,,h =y SH (m[ye)}.

mcy () X |domy_,|

So, we have E, (|New;, (z, y)|) =

n
T

Now we discuss how the size of the computable message space |[dom;_,| can be written

when u is one of the children or grandchildren of v.
» Example 12. Suppose u = vg. In this case,
New[(z,y) ={ml, : in"(mR) = z,y = H" (mrr) S H" (mL) & 21 & 22,
| (v, (z1,22)) € dom(7),m(v) =x1 ®H (m)}.

mc] (x) X [ran] | X |7y
So, By ([New;, (z, y)]) < —*————=

transcript of the form ((v,x),y).

, where 7, denotes the set of elements in the

» Example 13. In the previous case, we could write the expectation of number of newly
generated messages in terms of input multi-collision and range size of tree hash. Now, we
consider u = vgR, i.e. u is a grandchild of v. Refer to Figure 4. Let h = y ® H (mggr)- First,
let us look at |dom] _,__|.

V—URR
|dom]_, .| ={ml|, : HH ®h=2a| @y, Hy &y & h =z ®al,
| Hy = H"(mg), Hy = H (my), (vr, (21, 75),y"), (v, (27, 25), %) € 7}
Note that this implies H; @ Ho @y = 2/ @z, where v/ = '}, @ 25, @ ¢'. Thus,
|domy_,, .| = mc(ran;, @ ran;, & for) X |70l
where ﬁ,R (u1,u2) = u1 ® ug @ fur(u1, uz). Hence,

mc]_(z) x me(ran], @ ran?, @ foi) X |70
IE N T < URR UL VURL .
J(New (2. ) < .
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Figure 4 The graph of 7,_, when u is the rightmost grandchild of v.

Adversary and Its Queries. Let £, denote the lists of all responses of f,, for all leaf node
v. We can assume that these lists are given to the adversary at the beginning of the game.
This is without loss of generality as the inputs to f,’s have no role in the collision event.
However, this is not true for all intermediate nodes (the non-leaf nodes) and so adaptivity
of intermediate nodes must be considered. We assume that an adversary makes exactly ¢
queries to each node. Let ¢’ := ¢r denote the total number of queries where r = |V*| and
V* is the set of non-leaf or intermediate nodes. Let @, denote the set of query numbers
for the node v, v € V*. So for all non-leaf node v, |Q,| = q. Let (z;,y;) denote the i-th
query-response pair made to the node v;. So given transcript 7¢~! (transcript after (i — 1)
queries), the distribution of y is uniform over {0, 1}". For notational simplicity, we use simply
i in a superscript instead of 7% (the transcript after i-th query) in all above notations defined
so far. For example, H (m) denotes the transcript based hash of m where the transcript is 7°.
We write New’ instead of Newfi1 (z4,v:), which represents the set of all newly generated
computable messages at node v immediately after obtaining i-th query-response. We also
ignore the superscript 7¢ completely when we all the queries have been made, i.e. i = ¢’. For
example, we write mc,(z) instead of mc] (), when 7 is the final transcript, obtained at the
end of all the queries.

For any computable message m at v, we write Fin(m) := i to encode the final query
index after which m is computable.

For all m for which my,mgr are 7-computable, we define Fin*(m) = i such that
max{Fin(m), Fin(mg)} = 4, (i.e. immediately after i-th query the final-input for the
message m is computable).
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5.1 Steps of Collision Analysis

Proper Internal Collision. We say that a proper internal collision happens at v = (4, b)
for a transcript 7 if for some distinct messages m,m’ at v, (i) H"(m) = H"(m/), (ii) in"(m) #
in"(m'), and (iii) no collision happens for H], for all u € V(7,), u # v. By using standard
reduction, a collision of ABR must have proper internal collision at some node. So it is
sufficient to bound the probability of a proper internal collision at the root node of ABR as
H, is identical to ABR, where s denotes the level of the node v. We write coll := coll; to
denote the proper internal collision at the root node of T of height I. The probability of
collision of ABR; can be then bounded as Y, _, 2!~ Pr(coll;).

Now, there are two types of collision which can happen for any proper collision at the
root. Let us consider the i-th query. This query itself can generate two new computable
messages for which the collision occurs. This is the first type of collision. Also, the hash
output of one among the new computable messages generated by the i-th query can match
with one of the hash outputs generated by the previous queries. We formalize them here:

» Definition 14 (types of collision).
We call a collision pair (M, M') twin at the i-th query, i € |¢'] if M, M’ € New'. In this
case in, (M) = iny, (M') = x;, where v; is the node where the i-th query is made.

The collision pair is called non-twin at the i-th query if exactly one of M and M’ is a

i—1

member of New', and the other message is 7'~ -computable.

We write coll’ to denote that the proper internal collision happens at the i-th query.

Moreover, if it is a twin-collision (or non-twin collision) we denote the event as coll”*™ (or

coll"™™ respectively). Thus,

coll = U (colli’ntW U colli’tw).
i€lq’]
It is easy to see that twin-collision at the root node is not possible as a collision at the right
child of the root node is necessary. In notation, coll®™ = (), whenever v; = w.

5.1.1 Non-Twin Collision Analysis

For any non-root, non-leaf node v, we consider cross-collision between H_,, and H,,. Let CCi
denote the set of all pairs (m,m’) such that (i) m is a complete message, m’ is a message
for T_, and (ii) H'(m) = H"  (m'). Now, a non-twin collision can happen at the i-th query
(to the node v;) if freshly generated hash of a message at v; matches with the v;-th message
block of m’ for a cross-collision pair (m,m’) of CCffl. Thus,

el (@) x |CCi?
2n '

Now, if v = w then the freshly generated hash at the root node is a hash. So, we have,

Pr(coll""™) <

(2)

me’ Y (z;) x L

- 3)

Pr(coll™™") <

5.1.2 Twin Collision Analysis

For any non-root, non-leaf node v and § € {0,1}™ \ {0"}, let Cs,, called d-collision, denote
the set of all pairs (m,m’) such that H” ,(m) = H” ,(m’) and m(v) & m/(v) = 6. We have
seen that no twin collision possible at the root node. We define a set

A" = {H" Y (mg) @ H T (mR) : m,m’ € MCf;l(xZ)}
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Now,

< Yoseame, ! (z) X |Cfs;,1

Pr(coll*™
r(co ) o

(4)

Note that the size of A can be at most (mc’~!(z;))?2.

Thus, we have seen a collision analysis requires to bound the following random variables.
mcé~!(z;) for all i (and so for all nodes v),

L: load of the hash,

|dom"~!|: load for 7, which is required to bound the load L,

|Ci71: size of d-collision, and

LA o A

|CC71: size of cross-collision.

In the following subsection, we present the collision analysis of ABR in which we only need
the input multi-collision and load (which is also bounded in terms of input multi-collision).
We also present a collision analysis of ABR3 for which the above terms are present.

5.2 Collision Analysis of ABR, by ABR

As discussed above, we can assume that all queries to the compression functions at the leaf
node have been made beforehand and let ¢ denote the number of queries to each oracle. Let
L1, L2 be two lists of outputs of the leaf node functions and let w := (2,1) denote the root
(the only non-leaf node for T of height 2). Note that the proper collision at height 1 is the
same as the collision of the lists £1, L2. The proper collision at a leaf node can happen with
probability at most ¢2/2".

So, we now consider collision at the root (2,1). For this, we now define a bad event mc,,
that mc? > n. Equivalently, the event can be expressed as mc(£1 @ L2) > n. Note that we
do not have any non-leaf node other than root node. So, the load for hash values L can be
upper bounded as ng, given that mcZ does not hold. Moreover, cross-collision and §-collision
is also not possible as we do not have any non-leaf, non-root node. Now, it is well known that

2
Pr(mc(L1 @ L2) > n) < g—n

(n*+2)q

(see [1] for details). Thus, the collision probability is bounded by =

5.3 Collision Analysis of ABR;,, h > 3 by [1]

The proof of [1] is divided into two main parts: (i) bounding the load and (ii) bounding proper
collision probability in terms of the load. ABR fix a parameter p (which is chosen to be n+1,
however, the exact value is not relevant to our discussion). Let L;, = >, <; ;co, INewH! |
represent the total number of generated hash values at v after all ¢ queries. If there is no
collision (which is true while we consider proper internal collision), L; , is same as the size of
the set [dom’,|. To bound load, ABR. considered the following bad events (in our notations):
1. bad; ,: mcg/ > p at v. Let bad; := U,bady ,.

2. bada i Ly > pg. Let bady := U,bads .

Given bad;, bads do not hold, clearly L < 2pq.
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5.3.1 Step-1: Bounding Pr(bad,)

Let bady <; = Uy p):j<;bad1 . So it is sufficient to bound Pr(bad; ;) A —bad; ;). Let us
fix a query x at v = (4,b). Now, ABR implicitly claimed the following:

> Claim ([1]). If MC((IM) () D {m1,...,m,} then ing_q op)(m;r)’s are distinct.

We note that this claim is not correct. As there can be p multi-collision at node (j — 1, 2b),
each query can potentially give at most p multi-collision at node (j,b). Hence we can have p?
multi-collision at node (j,b). Thus, a corrected version of the above claim requires to revise
the parameter p depending on the level. So, we may redefine bad; (;;): mc, > p’ which
could solve the issue. This is a fixable minor issue (but will have an impact on the claimed
bound).

Now to continue with the bound, let us assume that MC%I () 2 {m1,...,m,} such that
in(m; r)’s are distinct and « = (a,b). So we can choose p query indices out of ¢ queries to
vy 1= R in (Z) ways. For any such choices of p tuple (iy,42,...,1,) (all queried to vs), we
have
@

Pr(f(zi,) @ Himige) = b, f(wi,) ©H(mpre) =0) = 37

as there pg many choices of H(m; rr) values (as we assume the load at vgg is less than 2pq).

However, the above is true when we consider the cases where Fin®(m;) = j; where v;, = v,
for all . The most important case in which the input multi-collision is contributed due to
the final queries which are not on right child is not considered in the proof by [1].

5.3.2 Step-2: Bounding Pr(bad,)

Let bady <; = U(Lb):jgibadg,v. So it is sufficient to bound
Pr(bady (j4) A —~badi «; A =bad; A —coll).

The main idea to bound the above probability is to bound the expected number of newly
generated hash at v = (4, b) over all queries. Then the bad event probability can be bounded
by applying Markov’s inequality. We have already seen that

i
V—V;

P mc], (2;) x |[dom
B, (New} | | 7~1) = -

1

V—v;
v nor a child of v (see Example 13). [1] tried to argue in a different way. ABR showed a
bound expectation of load due to all queries of its children (see Example 12). Then, they
continued this argument for two levels up (i.e. for the queries on grandchildren as we consider
in Example 13). However, they did not analyze this case properly. In particular, they did
not consider to bound the mc(ran], @ ranj, @ ﬁ,R). Finally, they claimed the general case

by using induction which is clearly unverifiable.

Moreover, we have shown that bounding |[dom | becomes more complex when v; is neither

5.3.3 Step-3: Proving Collision in terms of Load

ABR stated that as analyzed for ABRj, given (i) no collision for all primitive, (ii) —bad; <;
and (iii) —bads <;, the proper internal collision probability at the root node is E(L?)/2"
where L is the total number computable hash values.
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There is a fundamental gap in the high level of the proof. As ABR did not explain anything
supporting his claim, we show that this statement is not true in general. In particular, we
show (in the next subsection) a hash mode based on 2-to-1 compression function whose load
is at most > (for any q-query adversary), however, a collision can be found in O(n) queries.
So the above claim cannot be made in general.

5.3.4 Missing Step: Twin-Collision Analysis

We find that the twin-collision analysis of the ABR hash is missed completely. The bound
for d-collision is not obvious and it requires bounding the probability of some more bad
events. In the following section, we have analyzed ABR3 in which the twin-collision analysis
requires a bad event dealing with the multi-collision of xor of random oracle compression
function outputs for two distinct inputs. We do not know any method to bound the number
of cross-collision pairs for a general height tree.

5.4 Relationship between Load and Collision Probability

A hash function with a high load is unlikely to be collision-resistant. For example,

xor(z1, ..., xr) = f1(x1) ® - D fr-(x,) has load 2" after 2 queries to each oracle f;. It is easy
to see that the hash function xor is not collision-resistant. Let r = n. Then, after making
two queries to each function, we have sufficiently many computable messages. It is then very
easy to find computable collision pairs by solving a linear system of equations. In general, if
the load becomes the order of 2"/2 then one may expect a collision. However, the converse
need not be true. In other words, we have a hash function where load can not be high, but
still, a collision pair can be generated efficiently.

Example of Collision Insecure Hash Functions with Low Load

Let M D’ be the MD hash which takes n blocks and initial value is also replaced by

one message block (so exactly n — 1 calls of f is required). We define MDJ (M) =

M D/ (M)]| - --||M D#» (M) which is n?-to-n? hash function. Now we define a hash function

H(M;, M) for My, My € {0,1}"":

1. Let (C1,C2) = (MD{(M;) & My, MDI(C1) @ M) (two round LR construction which is
invertible).

2. Let hq,...,h, be 2n-to-n functions. The final hash output is defined as hy(z1) ® - - &
hp(x,) where C1||Cy = 21| -+ - ||2n, x; € {0,1}%™.

Note that we cannot compute (Cy, Cy) for more than ¢? messages assuming there is no
collisions in f and g functions. So, L(q) < ¢? for any g-query adversary.

A Collision Attack. Now, we construct a collision finding algorithm for the above hash. It
first finds collision pair for xor function hy @ --- @ h,, (can be achieved easily by making 2n
queries altogether). Let (C,C") be a collision pair. We can easily invert C' and C’ to obtain
M and M’ respectively. Clearly, (M, M') is a computable collision pair.

6 Analysis of ABR of height 3

In this section, we show that the ABR3 construction achieves birthday security. In particular,
we prove the following theorem:
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Figure 5 ABR3 according to our new notation when the query u = (u1||uz) is made to fs.

» Theorem 15 (collision theorem for ABR3). For any adversary A making at most q queries
to each compression function modeled to be random oracle, we have

652 342 24 222 132
Advg(4) < ”q+”Q+;q+ G

()

Let £4,L5,L3,L4 be the four lists of size ¢ each corresponding to the outputs of
fi1, f1,2, f1,3, f1,4 respectively. We can assume that these lists are given to the adver-
sary at the beginning of the game. This is without loss of generality as the inputs to fi;’s
are independent from the rest of the transcripts. Also, for ease of notation, from now on
we denote fa1 by fi, fa2 by f2 and f31 by fs. If the input to any of the functions is
u = (ur,uz), we define u® = uy @ uy. Also, if f3(u) = v, then we define f3(u) = u® Gv. As
f5 is a random oracle, the output distributions of f3 are uniform and independent. Let Qj
be the set of queries to f;. We assume |Q;| = ¢ for j = 1,2,3. Also, let Q} denote the set of
queries to Q; up to the i-th query (including the i-th one). Let G; = O(2 1) denote the set of
intermediate hash outputs at node (2,1) and G, = O(2,2). Let H denote the set of final hash
outputs of ABR3. Refer to Figure 5 for a pictorial representation. We follow the general
approach as described before. We have already shown the collision bound for ABRy and so it
is sufficient to bound proper collision at the root for ABRj.

As we have seen above, the collision analysis requires us to bound some random variables.
We first define some bad events to bound these random variables.

» Definition 16 (list collision). The first bad event we consider is:
BO0: There exists a collision in at least one of the lists L1, Lo, L3, L4, {f1(u) :u € Q1},
{fa(uw) s v € @2}, {fs(u) : u € Qs}.
Since f is modeled as a random function, the collision probability in any of the lists is at
most ¢2/2". Hence, Pr(B0) < 7¢%/2™.

» Definition 17 (bad event on input multi-collision). We define the following bad events:
Bl: mc(Ly & L3) > n, or me(Ls @ Ly) > n,
B2 : mc(G; @ Ga) > n?.
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We now state some simple observations related to input multi-collision:
1. Given that B1 does not hold, mcs 1y, mc(2,2y < n and so |G1], |Ga| < ng.
2. Given that B2 does not hold, mc(3 1) < n? and so Ly < nq.
3. NOtC, |dom(T_(271))\, ‘dOm(T_(g)Q)N < nq2. SO, E(L(QJ)),E(L(ZQ)) < n2q3/2". By
Markov’s inequality, Pr(L > 3n?q) < 2¢®/2" (3n?q because we include L3 1) as well).
4. By using a similar argument as we applied for multi-collision, we have Pr(B1) < 2¢%/2".

5. Now, given that B1 does not hold and B2 holds, there must exist at least n distinct inputs
to fo leading to n? input multi-collision. So, we can similarly prove Pr(B2) < ¢?/2™.

We say that bad,,. holds if either B1 or B2 happens, or L > 3n2q. Then, from above,
Pr(bad,,.) < 3¢%/2". We now define bad events which would be used to bound cross-collision.

» Definition 18 (bad event on cross-collision). We define the following bad events:
B3: |{(Ga, f3(u), H) : G2 ® f3(u) ® H = 0; G2 € Go,u € Q3, H € H}| > 3n'q.
B4: [{(Gy, f3(u), H) : G1 @ f3(u) @ H =0;G, € G1,u € Qs3, H € H}| > 3nq.

We say that bad.. holds if any one of the above happens.

If the i-th query is made at f2, an intermediate hash output Ga generated at this level
due to this query can match with a query u already done to f3 to generate a final hash
output H which was already previously generated by the first ¢ — 1 queries. The event B3
implies that the number of such triplets (Ga, f3(u), H) is more than 3n*q. B4 has a similar
implication when we consider G; instead of G,.

» Lemma 19. Pr(bad.. A —bad,,.) < 2¢%/2".

Proof. Pr(mc(Gy ®ran(fs)) > n?) < ¢%/2". The proof is similar to that of event B2. Hence,
for a fixed H € H, we have

Pr[|[{(Ga, f3(u), H) : G2 & f3(u) ® H = 0;G> € Go,u € Q3}| > n®] < ¢*/2".

Now, there are 3n2q choices for H. Therefore, Pr(B3 A —bad,,.) < ¢?/2". A similar argument
works for B4. Hence,

Pr(bad.. A =bad,,.) < 2¢%/2". <

Given that bad.. does not hold, [CC(21)| < 3n%q (or |CC2,2)| < 3n*q respectively). We
finally define bad events which would be used to bound J-collision pairs.

» Definition 20 (bad event on §-collision). We define the following bad event:
B5: mc(f3(u) @ f3(u')) > n.
We say that bads holds if the above happens.

» Lemma 21. Pr(bads) < g—i,

Proof. Since f3(u) is random, fs(u) = f3(u) ® u® is also random. Therefore, bounding B5
is similar to bounding B1. <

Given that bads does not hold, |Cs| < n. Let bad = B0 U bad,,. U bad.. U bads. Then,
Pr(bad) < 134
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We assume that bad does not hold. Since coll = U (coll™™ U coll;™), we need to
A ‘ i€ql,veV\L
bound coll’;™™ and coll;™ for v = (2,1),(2,2),(3,1). In the following lemmas, we bound

them, assuming bad does not occur. We already know that collégvf) does not occur.

> Lemma 22. Pr(coll{;"}'|~bad) < 324,

i—1
li,ntw < mc(371)(xi) X L
(3,1) ) — on
3niq

Given —bad, mc(31) < n? and L < 3n?q. Hence, Pr(colléé“i?hbad) < TR <

Proof. As seen above in equation 3, Pr(col

» Lemma 23. Pr(collééﬁ%’hbad) < 3;‘—?1.

mefy 1y (@) * [CCo |

Proof. As seen above in equation 3, Pr(collzéﬁigv) <

< on
. 4 i,ntw 3n5q
Given —bad, mc(3 1) < n and [CC(y 1| < 3n*q. Hence, Pr(coll(m) |-bad) < O <
» Lemma 24. Pr(colligjgv)vhbad) < ggjq.
Proof. This proof is similar to that of the previous lemma.
i—1 i—1
. mey, o (z;) X |[CCPS o |
i,ntw (2,2)\ (2:2)
Pr(coll(z;) ) < on .
Given —bad < n and |CCla)| < 3ntq. Hence, Pr(coll 2% [<bad) < >
iven —bad, mc(3 2y < n and |CC )| < 3n*q. Hence, Pr(co (272)|—\ ad) < o <
» Lemma 25. Pr(collgﬁv)hbad) < ;L—:
. Sseamelst (x;) x |ChE
Proof. As seen above in equation 4, Pr(coll’}™,) < oed” @D 5@
i (271) 2”
Given —bad, mc(y 1) < n, [A] < (mcgj)(asi))2 < n? and |Cy (2,1)| < n. Hence,
4
7,tw n
Pr(colli,"|—bad) < o <
» Lemma 26. Pr(colligg)hbad) < g—i
Proof. This proof is similar to that of the previous lemma.
, Sseamely b(wy) x |Ct |
itw €A (2,2) 5,(2,2)
Pr(col|(272)) < on . .
Given —bad, mc(z ) < n, |A] < (mcaé) (z:))? < n? and |Cg (2,2)| < n. Hence,
4 4
Pr(colliy’y | <bad) < ;Ln <

From the above lemmas, we have
6n°¢> + 3nq® + 2ntq
2n '

Pr(coll|-bad) < > Pr(coll;"™|=bad) + Pr(coll;"™|~bad) <
i€[q),veV\L

Therefore, Pr(coll) < Pr(coll|=bad) 4+ Pr(bad) < 6n°q” + 30" + 2n'q + 13q2.

Note that we have bound the proper collision probability at the root for ABR3. Since
B0 does not occur, collision does not occur at the leaf node. As seen in section 5.2, ‘the
probability that proper collision occurs at node (2, 1) (resp. (2,2)) is bounded above by “5Z
Hence, the theorem is proved.

n
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7 Conclusion

In this paper, we revisit the collision security of the ABR hash. We found that there is a
serious gap in the analysis of collision security. Some missing and important cases have also
been identified. In this paper, we have shown collision security for level 3. Several new bad
events have been identified in ABR3 which were not considered for the general hash. We
leave the collision security analysis open for general hash. Thus, the optimality of Stam’s
bound remains open for an arbitrary domain hash.

We have also found that the ABR hash cannot have any non-trivial local opening which
can give birthday bound security. This shows a limitation in terms of applications in local
opening. In particular, the efficient local opening proposed by [1] can be broken in O(2"/%)
query complexity.
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