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—— Abstract

We introduce a new data structure for answering connectivity queries in undirected graphs subject
to batched vertex failures. Precisely, given any graph G and integer parameter k£, we can in fixed-
parameter time construct a data structure that can later be used to answer queries of the form:
“are vertices s and t connected via a path that avoids vertices u1,...,ux?” in time 20()  In the
terminology of the literature on data structures, this gives the first deterministic data structure for
connectivity under vertex failures where for every fixed number of failures, all operations can be
performed in constant time.

With the aim to understand the power and the limitations of our new techniques, we prove an
algorithmic meta theorem for the recently introduced separator logic, which extends first-order logic
with atoms for connectivity under vertex failures. We prove that the model-checking problem for
separator logic is fixed-parameter tractable on every class of graphs that exclude a fixed topological
minor. We also show a weak converse. This implies that from the point of view of parameterized
complexity, under standard complexity theoretical assumptions, the frontier of tractability of
separator logic is almost exactly delimited by classes excluding a fixed topological minor.

The backbone of our proof relies on a decomposition theorem of Cygan, Lokshtanov, Pilipczuk,
Pilipczuk, and Saurabh [SICOMP ’19], which provides a tree decomposition of a given graph into
bags that are unbreakable. Crucially, unbreakability allows to reduce separator logic to plain first-
order logic within each bag individually. Guided by this observation, we design our model-checking
algorithm using dynamic programming over the tree decomposition, where the transition at each
bag amounts to running a suitable model-checking subprocedure for plain first-order logic. This
approach is robust enough to provide also an extension to efficient enumeration of answers to a
query expressed in separator logic.
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the running time from double exponential to single exponential in Theorem 1.1 (see Theorem 2.4).

1 Introduction

1.1 Connectivity under vertex failures

In many applications, we do not need to answer a query once but rather need to repeatedly
answer queries over dynamically changing data. A prime example are databases, where a
database is repeatedly modified and queried by the users. In most cases, the modifications
to the database can be expected to be small compared to its size, which suggests that in
a preprocessing step, we can set up a data structure that is efficiently updated after each
modification and that allows for efficient querying. In 1997, Frigioni and Italiano introduced
the dynamic subgraph model [22], which allows to conveniently model such dynamic situations
in the particular case of connectivity in network infrastructures that are subject to node
or link failures. This model, which has been studied intensively in the data structures
community under the name of connectivity oracles under vertex failures, is as follows. We
are given a graph G and an integer k. We imagine that G is a network in which at every
moment, at most k vertices (or edges) are inactive (are subject to failures). The goal is
to construct a data structure that supports the following two operations. First, one can
update G by resetting the set of failed vertices to a given set of size at most k. Second, one
can query G by asking, for a given pair of vertices s and ¢, whether s and ¢ can be connected
by a path that avoids the failed vertices.

Following the introduction of the problem by Frigioni and Italiano [22] and the more
general problem of batched vertex or edge failures by Patragcu and Thorup [37]!, there has
been a long line of work on data structures for connectivity oracles under vertex and edge
failures. We refer to a remarkably comprehensive literature overview in the work of Duan
and Pettie [17], which also provides the currently best bounds for the problem as far as
combinatorial and deterministic data structures are concerned. Their data structure can be
initialized in time O(|G|||G] - log|G|), takes O(k||G||log|G|) space, and supports updates
in O(k*log® |G|) time and queries in O(k) time. Here |G| is the vertex count of G' and ||G|
is the joint number of edges and vertices in G. These bounds can be slightly improved at
the cost of allowing randomization, however, the polylogarithmic dependency on the size of
the graph in the update time persists. As noted in [17], from known results it is possible
to derive data structures with constant time complexity of operations for k¥ < 3 (or k < 4
for edge failures), but, citing their words, “scaling these solutions up, even to an arbitrarily
large constant k, becomes prohibitively complex, even in the simpler case of edge failures.”

Recently, van den Brand and Saranurak [42] proposed a very different approach to the
problem, using which they obtained a randomized data structure that can be initialized in
time O(|G|¥), takes O(|G|?log |G|) space, and supports updates in O(k“) time and queries
in O(k?) time (where w is the exponent for the boolean matrix multiplication).

In particular, the update and the query time are constant for constant k; to the best
of our knowledge, this is the only data structure that has this property known so far. The
approach is algebraic and, simplifying it substantially, boils down to storing a matrix of

L Strictly speaking, in [37] Patragcu and Thorup considered only edge failures. To the best of our
knowledge, (batched) vertex failures on general graphs were first investigated by Duan and Pettie [16].
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counts of walks between pairs of vertices and extracting answers to queries using algebraic
operations on those counts. To manipulate the counts efficiently, one needs to work on their
short hashes, for instance in the form of elements from a fixed finite field. This introduces
randomization and avoiding it within this methodology seems difficult. We remark that the
data structure of van den Brand and Saranurak [42] works even for the more general problem
of reachability in directed graphs under vertex failures, and can handle arc insertions.

As the first main contribution of this paper, we prove the following theorem. Note
that querying whether two vertices are connected by a path avoiding failed vertices is
equivalent to an update followed by a connectivity query in the terminology of previous
works [42, 16, 17, 37].

O(k)

-|GPIIG])
construct a data structure that may answer the following queries in time 2°%): given
s,t € V(G) and k vertices uy,...,u; of G, are s and t connected in G by a path that avoids
the vertices u1,...,ux? The space usage of the data structure is 227 - G|l

» Theorem 1.1. Given a graph G and an integer k, one can in time 22

Note that in Theorem 1.1, for every fixed k, all operations are supported in constant time
(which is exponential in k). Also, the data structure is entirely deterministic and purely
combinatorial. To the best of our knowledge, this is the first deterministic (non-randomized)
data structure with constant time queries. Note also that for a fixed k, the space usage of
our data structure is linear in the size of the graph, as opposed to the quadratic dependency
in the result of van den Brand and Saranurak [42].

We remark that in the first version of this paper [36], the query time in Theorem 1.1 is
stated as 227 instead of 2°*). The improved query time is due to an improvement in one

of the ingredients of our proof (see Theorem 2.4 below), provided by Wojciech Przybyszewski.

The doubly-exponential dependencies on k& may seem high, however we also derive two
variants of our data structure that achieve the following tradeoffs:

The space usage and the query time can be reduced to 2°¢*”) . ||G|| and k1), respectively,

while the construction time becomes 20¢+°) . |G|OM).

The space usage and the query time can be replaced with k9. |G|? and k™), respectively,

while the construction time becomes 20 1o8%) . |G|O(1),

Note the first statement offers both more efficient queries (the query time is even
polynomial in k), and smaller space usage. The slight drawback is that the polynomial factor
in the construction time becomes unspecified, but it is still of the form |G|©()
statement, the space usage becomes polynomial in k at the expense of making it quadratic
in |G|. The tradeoffs are obtained by a non-trivial replacement of particular components in
the proof of Theorem 1.1; see the discussion in Section 6 of the full version. We consider the
statement provided in Theorem 1.1 to be the cleanest formulation, hence we put a primary

. In the second

focus on it.

As for the proof of Theorem 1.1, our approach is completely new compared to the previous
approaches [42, 16, 17, 37]. Our key combinatorial observation is that connectivity queries
over a constant number k of vertex failures can be evaluated in constant time provided the
underlying graph G is sufficiently well-connected. The requirement on the well-connectedness
of G depends on the number k. Obviously, there is no guarantee that the input graph G
satisfies this property. We therefore use a decomposition theorem of Cygan, Lokshtanov,

Pilipczuk, Pilipczuk, and Saurabh [15] that (roughly) states the following (see Theorem 2.1).

For every graph G and fixed number k, there is a tree decomposition where every intersection
of adjacent bags has bounded size and every bag is well-connected for parameter k. Moreover,
such a tree decomposition can be computed in time 2°**)|G|2||G||. The data structure of
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Theorem 1.1 is constructed around the tree decomposition 7 provided by the theorem of
Cygan et al. [15]. Intuitively speaking, whether s and ¢ are connected via a path that avoids
the vertices uq,...,ur can be decided using dynamic programming over 7. We employ
known techniques developed for answering queries on trees in constant time, for instance a
deterministic variant of Simon’s factorization [12], to be able to compute the outcome of this
dynamic programming efficiently for any query given on input.

We provide a more detailed overview of the proof of Theorem 1.1 in Section 2. All proofs are
provided in the full version [36] (numbers referring to https://arxiv.org/abs/2111.03725v1).

1.2 Algorithmic meta theorems

Once an algorithmic technique has been applied to solve a specific problem, it is very desirable
to understand the power and the limitations of that technique, that is, to understand which
other problems can be solved with that technique and which problems cannot. An approach
to this very general goal is to prove an algorithmic meta theorem: a theorem that establishes
tractability for a whole class of problems, possibly on certain restricted input instances. As
logic allows to conveniently define classes of algorithmic problems, namely, the class of all
problems that can be expressed in the logic under consideration, algorithmic meta theorems
are often formulated as model-checking problems for a logic. In the model-checking problem
for a logic £ on a class of graphs ¥ we are given a graph G € € and a sentence ¢ € £, and
the task is to decide whether ¢ holds in G. The archetypal result of this form is a result of
Courcelle stating that every formula of monadic-second order logic (MSO3) can be evaluated
in linear time on all graphs whose treewidth is bounded by some fixed constant [13]. This
result has been extended to various other logics £ and graph classes % .

This approach to algorithmic meta theorems can be made precise in the language of
parameterized complexity, as follows. Say that L is tractable on € if the model-checking
problem for ¢ and L is fized-parameter tractable (fpt): it can be solved in time f(p) - |G|,
for some computable function f and a constant ¢, both depending only on €. Results about
tractability of a logic £ on a class ¥ imply the tractability of a vast array of problems
— namely all problems that can be expressed in the logic £ — on a given class of graphs.
For instance, if model-checking first-order logic (FO) is fpt on a class of graphs €, then in
particular the dominating set problem is fpt on %, since the existence of a dominating set
of size k can be expressed by a first-order sentence with k& 4+ 1 quantifiers that range over
the vertices of the graph. Similarly, the independent set problem is then also fpt on . On
the other hand, if the more powerful logic MSQOs is tractable on a class of graphs %, then
the 3-colorability problem, or the hamiltonicity problem are polynomial-time solvable on %,
since both those problems can be expressed using an MSO, sentence, whose quantifiers that
range over sets of vertices and edges of the graph.

There has been a long line of work on fixed-parameter tractability of model-checking FO,
as it is arguably the most fundamental logic. This culminated in the work of Grohe, Kreutzer
and Siebertz [24], who proved that this problem is fixed-parameter tractable on every class
that is nowhere dense. Those classes include for example the class of planar graphs, or every
class with bounded maximum degree, or of bounded genus. Without going into details,
nowhere denseness is a general notion of uniform sparseness in graphs, and it is broader
than most well-studied concepts of sparseness considered in structural graph theory, such
as excluding a fixed (topological) minor. As observed by Dvordk et al. [19], the result of
Grohe et al. is tight in the following sense: whenever % is not nowhere dense and is closed
under taking subgraphs, then FO model-checking on & is as hard as on general graphs, that
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is, AW[x]-hard. This means that as far as subgraph-closed classes are concerned, sparsity —
described formally through the notion of nowhere denseness — exactly delimits the area of
tractability of FO and the limits of the locality method for FO model-checking.

The aforementioned classic theorem of Courcelle [13] states that the model-checking
problem for MSQ, is fixed-parameter tractable on a class ¥ if ¥ has bounded treewidth.
The proof translates the given sentence into a suitable tree automaton working on a tree
decomposition of the input graph; this approach brings a wide range of automata-based tools
to the study of MSOs on graphs. Again, as shown by Kreutzer and Tazari [31] and Ganian et
al. [23], under certain complexity assumptions this is (almost) the most one could hope for: on
subgraph-closed classes whose treewidth is poly-logarithmically unbounded, model-checking
of MSO, becomes intractable from the parameterized perspective. So for MSO,, bounded
treewidth (almost) delimits the frontier of tractability, at least for subgraph-closed classes,
and automata-based techniques exactly explain what can be done algorithmically.

With the aim to provide a meta theorem that captures the essence of the techniques
developed to answer connectivity under vertex failures, we search for a logic that can express
these queries. It is easy to see that MSOy is strong enough, but in fact, MSOs is much
stronger and as explained above, it is intractable beyond graphs of bounded treewidth. On
the other hand, FO can only express local properties and in particular, it cannot even express
the very simple query of whether two vertices are in the same connected component. This
naturally leads to an extension of FO that may use connectivity under vertex failures as
atomic formulas. Such a logic was very recently introduced independently by Bojariczyk [6]
and by Schirrmacher et al. [39] under the name separator logic, and denoted FO+ conn.
This logic extends FO by predicates conng(s,t,uq,...,u;) (one for each k > 0) with the
following semantics: if s,¢,uy,...,u; are vertices of a graph G, then conng(s,t,uq,...,ux)
holds if and only if there is a path that connects s with ¢t and does not pass through any
of the vertices uq,...,u;. Thus, separator logic involves very basic connectivity queries
that have a global character, unlike plain FO, which is local. As a consequence, separator
logic can express many interesting algorithmic properties, such as acyclicity, k-connectivity,
the feedback vertex set problem parameterized by solution size and many recently studied
elimination distance problems [9]. On the other hand, while conn(s,t,uy, ..., us) predicates
are expressible in MSO,, it is no surprise that the expressive power of FO+conn is strictly
weaker than that of MSO,. For example, MSO4 can express bipartiteness, while FO+conn
cannot [39, Theorem 3.11]. Separator logic is also incomparable with the recently introduced
compound logic [20]. While compound logic can express the atomic connectivity predicates
under vertex failures, it is not closed under negation. On the other hand, compound logic
can express the exclusion of minors, a property not expressible in separator logic.

As the second main result of the paper, we prove an algorithmic meta theorem for
separator logic. We show that the frontier of tractability of FO+conn is almost exactly
delimited by classes of graphs that exclude a fixed topological minor. More precisely, we
prove the following complementary results.

» Theorem 1.2. Let € be a class of graphs that exclude a fixed graph as a topological minor.
Then given G € € and an FO+conn sentence ¢, one can decide whether ¢ holds in G in
time f(¢) - |G||®, where f is a computable function depending on €.

Our result implies e.g. the recent result about elimination distance to bounded degree [3],
but it is much more general as it unifies in particular all elimination distance problems to
classes definable in separator logic on classes that exclude a topological minor. Note that it
does not subsume the result of [27] as e.g. the elimination distance to bipartite graphs and
vertex planarization cannot be expressed by separator logic.

102:5
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FO— % 4 FO+conn — =5 MSO,
§[241 %*) §[13, 31
nowhere ) ezxcluded 2 bounded
dense top. minor treewidth

Figure 1 Correspondences between logics and properties of graph classes. An arrow L «w P
between a logic £ and a property P of graph classes denotes a correspondence: the logic £ is
tractable on a graph class ¢ if and, under additional assumptions, only if, the class € has the
property P. Our result is the central correspondence (x).

For the lower bound, we will need a technical assumption. We say that a class 4 admits
efficient encoding of topological minors if for every graph H there exists G € € such that H
is a topological minor of G, and, given H, such G together with a suitable topological minor
model can be computed in time polynomial in |H|. Note that in particular such G can be
only polynomially larger than H.

» Theorem 1.3. Let ¥ be a subgraph-closed class of graphs that admits efficient encoding of
topological minors. Then the model-checking of FO+conn on € is AW[*]-hard, even for the
fragment that uses only conny, predicates with k < 2.

On the one hand, these results show that separator logic is a natural logic whose expressive
power lies strictly between FO and MSO,, and which corresponds, in the sense described
above, to a natural property of classes of graphs that lies between bounded treewidth and
nowhere denseness, see Figure 1. On the other hand, the proof of Theorem 1.2 provides a
general meta-explanation of the technique of dynamic programming over tree decompositions
with unbreakable parts. In particular, the tractability result provided by Theorem 1.2
generalizes several recent algorithmic results for concrete problems expressible in separator
logic [3, 10, 32]. However, there are some concrete problems where the general methodology
non-trivially applies and which seem not to be captured by our meta-theorem [1, 27].

The proof of Theorem 1.3 is easy (see Section 3), so we focus on sketching the proof
of Theorem 1.2, which is the main technical contribution of the second part of the paper.
Let us fix an FO+conn sentence ¢, and let k + 2 be the maximum arity of connectivity
predicates appearing in ¢. Again, the key observation is that conny predicates can be
rewritten to plain FO provided the graph is well-connected, and the reason for this is the
same combinatorial observations that underlies the proof of Theorem 1.1. Coming back to
our dynamic programming on the tree decomposition, we choose to present it using a new
framework based on automata, as this brings us closer to the classic understanding of logic on
tree-decomposable graphs. Intuitively, the automaton processes a given tree in a bottom-up
manner, but we assume that on the children of every node there is an additional structure of
a graph. We say that such trees are augmented with graphs. When the automaton processes
a node x, it chooses a transition based on an FO query executed on the graph on the children
of x, where each child is labeled with the state computed for it before in the run. Then
testing whether a formula ¢ € FO+conn holds on a graph G is reduced to deciding whether
an automaton constructed from ¢ accepts such an augmented tree, constructed from the tree
decomposition provided by the theorem of Cygan et al. [15]. The run of the automaton can be
computed efficiently when the graphs augmenting the tree admit efficient FO model-checking,
which is the case when the input graph excludes a fixed topological minor.
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The benefit of this approach is that other questions related to the logic FO4conn can
be reduced in the same way to questions about tree automata over augmented trees. We
showcase this by proving that given an FO+ conn query ¢(Z) with free variables and a graph G
from a fixed topological-minor-free class ¢, the answers to ¢(Z) on G can be enumerated
with constant delay after fpt preprocessing (see Theorem 8.2 of the full version for a precise
statement). Similarly, the formula ¢(Z) can be queried in constant time after fpt preprocessing
(see Theorem 8.1 of the full version). In general, we believe that the framework of automata
over augmented trees may be of independent interest, as it seems to be a convenient model
for understanding dynamic programming procedures over tree-decomposable structures.

Similar fpt query-answering and enumeration algorithms for plain FO have been obtained
for classes with bounded expansion [30, 41], low degree [18], and nowhere dense classes [40]
and for MSO; on trees and graphs of bounded treewidth [5, 29, 4]. Our general approach
based on augmented trees allows us to generalize those results to trees that are augmented
with graphs coming from a nowhere dense class, and to a certain logic combining the power
of MSO on trees and FO on graphs.

Let us comment on the novelty of using the decomposition theorem of Cygan et al. [15].
The result of Cygan et al. [15] has been used several times for various graph problems [14,
15, 35, 33, 38]. Our application is the most similar to (and in fact, draws inspiration
from) the work of Lokshtanov et al. [34], who proved the following statement: for every
CMSOQ; sentence ¢ and k € N, model-checking ¢ on general graphs can be reduced to model-
checking ¢ on (g, k)-unbreakable graphs, where ¢ is a constant depending on ¢ and k. As
FO+ conn is subsumed by CMSQs, this result can be almost applied to establish Theorem 1.2.
The caveat is that the unbreakable graph output by the reduction needs to admit efficient FO
model-checking so that the considered FO+ conn sentence can be decided in fpt time after
rewriting it to plain FO. In essence, we show that it is possible to guarantee this provided
the input graph excludes a fixed topological minor. We remark that the work of Lokshtanov
et al. [34] does not use the decomposition theorem of Cygan et al. [15] directly, but relies on
its conceptual predecessor, the recursive understanding technique [11, 28].

Organization. In the extended abstract we give a detailed overview over the proofs of our
main results: Theorem 1.1, Theorem 1.2, and Theorem 1.3. We provide all formal definitions
and proofs in the full version [36]. The theorem numbers for references in the full version are
provided in parenthesis.

2  Connectivity under vertex failures: overview of Theorem 1.1

In this section we provide an overview of the proofs of Theorem 1.1. This proof exposes all
main ideas in a purely algorithmic setting. Then we discuss how the same methodology can
be used for Theorem 1.2. In this introduction we assume familiarity with basic terminology
of tree decompositions.

Unbreakability. As mentioned in Section 1, the central idea of this work is to tackle
problems involving connectivity predicates using a decomposition into well-connected — or,
more formally, unbreakable — parts. We first need to recall a few definitions.

A separation in a graph G is a pair (A, B) of vertex subsets such that AU B = V(G)
and there are no edges in G between A — B and B — A. The order of the separation is the
cardinality of the separator AN B. A vertex subset X is (g, k)-unbreakable in a graph G if
for every separation (A, B) in G of order at most k in G, either |AN X| < gor |[BNX| <q.

102:7
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So intuitively speaking, a separation of order k£ cannot break X in a balanced way: one of
the sides must contain at most ¢ vertices of X. For example, cliques and k + 1-connected
graphs are (k, k)-unbreakable, and square grids are (O(k?), k)-unbreakable.

The notion of unbreakability has been implicitly introduced in the context of parameterized
algorithms by Kawarabayashi and Thorup in their work on the k-WAy CUT problem [28]. This
work has brought about the method of recursive understanding, which was then made explicit
by Chitnis, Cygan, Hajiaghayi, Pilipczuk, and Pilipczuk in the technique of randomized
contractions [11]. Intuitively, recursive understanding is a Divide&Conquer scheme using
which one can reduce problems on general graphs to problems on suitably unbreakable graphs,
provided certain technical conditions are satisfied. The technique was also applied in the
context of model-checking: Lokshtanov, Ramanujan, Saurabh, and Zehavi [34] proved that
the problem of deciding a property expressed in CMSOs in fpt time on general graphs can
be reduced to the same problem on suitably unbreakable graphs. This result was used to
provide algorithms for computing elimination distance to certain graph classes [2, 21, 26],
which is very much related to separator logic (see [39, Example 3.5]).

In this work, we will not use recursive understanding or randomized contractions per se,
but their conceptual successor: the decomposition into unbreakable parts. Precisely, the
following theorem was proved by Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh [15].

» Theorem 2.1 ([15]). There is a function q(k) € 2°%) such that given a graph G and
k € N, one can in time 2°%) . |G|2||G|| construct a (rooted) tree decomposition T = (T, bag)
of G satisfying the following.

All adhesions in T are of size at most q(k); and

every bag of T, say at node x, is (q(k), k)-unbreakable in the subgraph of G induced by

the union of bags at all descendants® of x.

We remark that a different variant of Theorem 2.1 was later proved by Cygan, Komosa,
Lokshtanov, Pilipczuk, Pilipczuk, and Wahlstrom [14]. This variant provides much stronger
unbreakability guarantees — ¢(k) = k — at the cost of relaxing the unbreakability to hold
only in the whole graph G. See Section 3 of the full version for a discussion. The variant
of [14] can be also used in our context and this leads to improving some quantitative bounds,
however for simplicity, we focus on Theorem 2.1 in this overview.

A typical usage of Theorem 2.1 is to apply bottom-up dynamic programming on the
obtained tree decomposition 7 = (T, bag). The subproblem for a node x of T corresponds to
finding partial solutions in the subgraph of G induced by the union of bags at descendants
of z, for every possible behavior of such a partial solution on the adhesion connecting = with
its parent. That this adhesion has size at most ¢(k) gives an upper bound on the number
of different behaviors. To solve such a subproblem one needs to aggregate the solutions
computed for the children of x by solving an auxiliary problem on the subgraph induced
by the bag of x. In various problems of interest, the unbreakability of the bag becomes
helpful in solving the auxiliary problem. This general methodology has been successfully
used to give multiple fpt algorithms for cut problems [15, 14, 38], most prominently for
MiINIMUM BISECTION [15]. More recent uses include a parameterized approximation scheme
for the MIN k-CuT problem [35] and a fixed-parameter algorithm for GRAPH ISOMORPHISM
parameterized by the size of the excluded minor [33]. On a high level, we apply the same
methodology here.

2 We follow the convention that every node is its own ancestor and descendant.
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The case of totally unbreakable graphs. Let us come back to the problem of evaluating
connectivity queries: we are given a graph G and after some preprocessing of GG, we would like
to be able to quickly evaluate for given vertices s,t,uq, ..., u; whether conng(s,t, ui,...,ux)
holds. Counsider first the following special case: the whole G is (g, k)-unbreakable for some
parameter g (or more formally, V(G) is (g, k)-unbreakable in G). The key observation is
that then, whether conny(s,t, u1,...,u;) holds can be easily decided in time polynomial
in g and k as follows.

Run a breadth-first search from s in G — {uy, ..., ux}, but terminate the search once g+ 1
different vertices have been reached. If the search reached ¢, then for sure conng (s, t, u1, ..., uk)
holds. If the search finished before reaching ¢+ 1 different vertices and it did not reach ¢, then
for sure conng(s,t,uy,...,ur) does not hold. In the remaining case, perform a symmetric
procedure starting from ¢. The key observation is that if both breadth-first searches — from s
and from ¢ — got terminated after reaching g+1 different vertices, then the (g, k)-unbreakability

of G implies that {uq,...,ux} do not separate s from ¢t. So then conng(s,t,uy,...,us) holds.

It is straightforward to implement this procedure in time polynomial in ¢ and k given the
standard encoding of G through adjacency lists.

In the general case, we cannot expect the given graph G to be (g, k)-unbreakable for any
parameter ¢ bounded in terms of k. However, we can use Theorem 2.1 to compute a tree
decomposition T of G into parts that are (g, k)-unbreakable for ¢ € 2°*). The idea is that
then, a query conng(s,t,u1,...,ur) can be evaluated by bottom-up dynamic programming
on 7. By suitably precomputing enough auxiliary information about 7, this evaluation can
be performed in time depending only on ¢ and k.

Evaluating a query on the decomposition. Consider then the following setting: we are
given the decomposition 7 = (T, bag) provided by Theorem 2.1, and for given s,¢,uy, ..., ug
we would like to decide whether conng(s,t, ug, ..., ux) holds. So far let us not optimize the
complexity: the goal is only to design a general algorithmic mechanism which will be later
implemented efficiently using appropriate data structures.

For every node z of T, let adh(z) be the adhesion between x and its parent (or ()
if « is the root), let cone(x) be the union of the bags at the descendants of z, and let
comp(z) = cone(z) — adh(z). Call a node z affected if comp(z) contains a vertex of
{s,t,u1,...,ur}, and unaffected otherwise. Further, let D(x) = adh(x) U (comp(z) N {s,t});
note that |D(z)| < ¢+ 2. Our goal is to compute the following (connectivity) profile for every
node z of T

profile(z) = {{a, b} € (D;x)) ‘ a and b are connected in Glcone(z) — {u1, ..., Uk}]} :

We remark that the tree decomposition 7 can be chosen so that it satisfies the following
basic connectivity property: for every node z and vertices a,b € adh(x), there is a path
connecting a and b whose all internal vertices belong to comp(z). Thus, for every unaffected
node , we have that profile(z) = (P(*)~{urusk),

It is easy to see that the profile of x is uniquely determined by the profiles of the children
of z and the subgraph induced by the bag of x. The following lemma shows that this can be
done efficiently.

» Lemma 2.2 (informal statement, Lemma 4.4 in the full version). Let = be a node of T.
Suppose that for each affected child z of x we are given profile(z). Then, subject to suitable
preprocessing of G, one can compute profile(x) in time polynomial in q.
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Note that every node has at most k + 2 affected children, hence the input to the algorithm
of Lemma 2.2 is of size polynomial in g.

Let us sketch the proof of Lemma 2.2. In essence, we apply the same strategy as the
one from the case when the whole graph G is unbreakable. We define the bag graph of x,
denoted bgraph(z), as the graph® obtained from G|bag(z)] by turning the adhesion adh(z)
into a clique, for every child z of z. Note that bgraph(z) does not depend on the query, and
thus can be precomputed upon initialization. As bag(z) is (g, k)-unbreakable in G[cone(x)],
to test whether two vertices a,b € bag(z) are connected in Gcone(x) — {uq,...,ux}] it
suffices to apply breadth-first searches from a and b in bgraph(z) that are terminated after
reaching ¢ + 1 different vertices, except that these searches are forbidden to use vertices
from {uq,...,ur} Nbag(z) as well as those edges originating from contracting the adhesion
of affected children into cliques that are not in respective profiles. Provided bgraph(z) is
precomputed and a list of affected children together with their profiles is given on input, it
is easy to implement this algorithm so that it runs in time polynomial in q. Thus we can
decide for every pair {a,b} € (ath(z)) whether it should be included in profile(z). A similar
reasoning can be applied to pairs in (D ;z)) that include s or t.

By applying Lemma 2.2 bottom-up, we can compute all the profiles in
time ¢®M-|T| < ¢°M-|G|. Then we can read whether conny (s, t,u1, . . . , uz,) holds by checking
whether {s, ¢} belongs to the profile of the root of T. Hence, the query conng(s,t,u1, ..., ug)
can be evaluated in time ¢®) - |G|.

Data structure. Our final goal is to enrich the decomposition 7 with some additional
information so that the mechanism presented above can be executed in time depending only
on q.

For a vertex v of G, let top(v) be the unique top-most node of 7' whose bag contains v.
Let S := {s,t,u1,...,ux} and let X = {top(v): v € S}.

7N

@® nodeinX

@ nodeinYt

/?\ f.'\ (Ica closure of X)

nodein Y’

(image of f)

function f

® [ —> parent

Figure 2 The sets X,Y and Y’. Only the nodes from Y UY” are marked in the figure, wheras
the shaded areas indicate subtrees consisting of nodes which are not marked in the figure. Every
affected node lies on a path from some y € Y to f(y) € Y.

3 The bag graph bgraph(z) is actually defined slightly differently for technical reasons, as the graph
obtained from G[cone(x)] by contracting, for each y € children(z), the set comp(y) into a single vertex,
identified with y. See the full version for the details.
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Note that |X| < |S| < k + 2 and that a node of T is affected if and only if it is an
ancestor of a node from X. Let now Y be the lowest common ancestor closure of X: the set
comprising X and all lowest common ancestors of pairs of vertices of X. It is well-known
that then |Y] < 2|X| — 1 < 2k + 3. We also add the root of T to Y in case it is not already
present; thus |Y| < 2k + 4. Observe that if for every vertex v we store a pointer to top(v),
and we set up the data structure for lowest common ancestor queries of Harel and Tarjan [25]
on T, then for given s,¢,uq,...,u, the set Y can be computed in time polynomial in k. For
every node y in Y let f(y) denote the closest ancestor of y whose parent belongs to Y, or y if
no such ancestor exists (see Figure 2). Note that every affected node lies on a path joining y
with f(y), for some y € Y. Let Y = {f(y) | y € Y}. Then Y” is the set of all nodes that are
affected children of a node in Y. Note that every element in Y’ has exactly one preimage

under f, that is, there is an function f~!: Y’ — Y such that f(f~*(y')) =% for all ¢/ € Y.

In particular, |Y’| < [Y|. Using a slight modification of the data structure of Harel and
Tarjan [25], we can compute Y’ as well as the function f~': Y’ — Y in time polynomial
in k.

The idea is that when evaluating query conng(s, ¢, u1, ..., uy), we can compute the profiles
only for the nodes of Y UY”| instead of all affected nodes of T. Note that the root of T was
explicitly added to Y, so we will still be able to read the answer to conng(s,t,u1,. .., ux)
from the profile of the root.

We process the nodes of Y UY” in a bottom-up manner. Consider then any element
r € Y UY’; our task is to compute its profile based on the profiles of its strict descendants
belonging to Y UY’. We distinguish two cases. In the first case, z € Y, so we may compute
profile(x) using the algorithm of Lemma 2.2. The second case is of an element 2 € Y”’; then
x = f(y) where y = f~1(z). Observe that the path from y to x consists of affected nodes,
whose siblings are unaffected nodes. We now show how profile(x) can be computed from
profile(y).

For two nodes c,d of T, where c is an ancestor of d, let torso(c,d) be the set of all
pairs {a,b} c (adh(c)LQJadh(d))
vertices belong to comp(c) — cone(d). Then to compute profile(z) from profile(y), construct an
auxiliary graph with vertices (adh(z) U adh(y) and edges profile(y) U torso(z, y). Now observe

such that in G there is a path from a to b whose all internal

that profile(z) is the reachability relation in this graph restricted to adh(z) — {uq, ..., ux}.

The key point implying the correctness of this observation is that there are no vertices from X
in comp(x) — comp(y).

Observe now that the values of torso(c, d) for (¢, d) ranging over ancestor/descendants
pairs in T are independent of the query. Therefore, upon initialization we can compute a
data structure that can be queried for those valued efficiently. The statement below describes
two possible implementations.

» Lemma 2.3 (Lemmas 4.2 and 6.2 of the full version, combined and improved). Given T, one
can set up data structures that can answer torso(c, d) queries with the following specifications:

o@

1. dnitialization time ¢®Y) - |G|?||G||, memory usage ¢®1) - |G|?, query time ¢®1); or

2. initialization time 2°(@°) . |G|, memory usage 20(a*) . |G|, query time ¢®M).

The first point of Lemma 2.3 is actually straightforward: just compute and store all
W |G| using ¢°
applications of breadth-first search. The second point, which trades exponential dependency

the O(|T)?) = O(|G|?) answers to the torso queries, each in time ¢

on ¢ for obtaining linear memory usage and initialization time, is more interesting. Before
we discuss it, let us observe that we may now complete the proof of Theorem 1.1. Indeed,
using the data structure from the second point of Lemma 2.3, we can compute profile(x)
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from profile(y) for each x € Y’ and y = f~!(x). By performing this procedure for all the at
most 2(2k 4+ 4) nodes of Y UY” in a bottom-up manner, we eventually compute the profile
of the root of T', from which the answer to the query can be read. The running time is
dominated by ¢®M) calls to the data structure of the second point of Lemma 2.2, each taking
20(4) = 22 time.

Finally, let us discuss the proof of the second point of Lemma 2.3. We reduce this
problem to the problem of evaluating product queries in a semigroup-labeled tree, defined
as follows. Suppose T is a rooted tree whose edges are labeled with elements of a finite
semigroup S. The task is to set up a data structure that for given nodes x,y, where = is an
ancestor of y, outputs the product of the elements of S on the path in T from x to y. The
problem of evaluating torso queries can be reduced to this abstract setting by considering a
suitable semigroup of bi-interface graphs, which represent connectivity between corresponding
adhesions; see [7, 8] for the origins of this concept. This semigroup has size 20(4*) | So it
then suffices to use the following result.

» Theorem 2.4 (Przybyszewski). There is a data structure for the problem of evaluating
product queries in a tree T labeled with elements of a finite semigroup S that achieves query
time log(|S|)®M), memory usage |S|°Y) - |T|, and initialization time |S|°M) -|T).

Note that this formulation is an improvement over Theorem 5.1 in the first version of our
paper [36], as the query time |S|9™) is replaced by log(]S|)°™). This improvement is due to
Wojciech Przybyszewski.

This finishes the proof of Theorem 1.1. Note that in the argumentation there are two
modules that can be replaced with other solutions:

The decomposition of Theorem 2.1 can be replaced with the more recent variant from [14].
This allows us to have ¢ = k, implying that all the 22°" factors are replaced with 20(k*),
The cost is increasing the polynomial factor of the initialization time to an unspecified
term |G|°(") and several technical complications in the analysis, which nevertheless can
be overcome.

Instead of using the data structure of the second point of Lemma 2.3, we can use the
first point. This allows us to have polynomial dependency on ¢ in the query time and
space usage at the cost of quadratic dependence on |G| in the memory usage.

In particular, if only the first replacement is performed, then we obtain a data structure
with initialization time 20*+).|G|©(1) memory usage 2°*).||G||, and query time kM) and if
both are performed, then we obtain a data structure with initialization time 2€(*1ogk) . |G|O(1)
memory usage k°() . |G|?, and query time k©1),

3 Model-checking FO+conn: Theorems 1.2 and 1.3

We now turn to the proofs of Theorem 1.2 and Theorem 1.3. In those theorems, we fix a
class € and consider the model-checking problem for the logic FO+ conn, that is, the problem
of deciding whether a given FO+conn sentence holds in a given graph G € €.

Lower bound. First let us explain why we require % to exclude a fixed topological minor
in Theorem 1.2. Clearly, the model-checking problem for FO-+conn generalizes the model-
checking problem for FO, so € should be in particular a class for which it is known that
FO model-checking is FPT. This is the case not only for classes that exclude a topological
minor but also for all nowhere dense classes [24]. So let us see why it is not enough to merely
assume that % is nowhere dense.
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For a graph G and k € N, the k-subdivision G¥) of G is obtained from G by replacing
each edge by a path of length k£ + 1. It follows from the definition of nowhere denseness that
the class € of all graphs of the form G(™, where G is an arbitrary graph on n vertices, is
nowhere dense. However, a formula of FO+4conn can easily recover G from G, at least
when G has no vertices of degree 2. Indeed, the original vertices of G are precisely the
vertices of G(") that have degree at least 3, which can be expressed by an FO formula ov(x).
Furthermore, two such vertices u, v are adjacent in G if and only if there is some vertex z of
degree 2 in G™ such that for every vertex w of G(™, conna(z,w, u,v) holds only if w has
degree 2 in G(™. This condition can be written using an FO+conn formula ¢z (u,v). Using
this observation, any FO sentence ¢ can be replaced by an FO+conn sentence ¢, so that
for every graph G as above, ¢ holds in G if and only if ¢ holds in G(™. Essentially, ¢’ is
obtained from ¢ by replacing every atomic formula F(z,y) (denoting adjacency) by vg(x,y),
and guarding all quantifiers by ¢y (x). Therefore, if we could efficiently model-check ¢’ on
the nowhere dense class €, we could as well model-check ¢ on the class of all graphs (of
size at least 3 and minimum degree at least 3), as follows: given an arbitrary graph G, first
construct the graph G(™) € % (in time polynomial in n = [V(G)|) and then test ¢’ on G(™.
Hence, if FO+conn model-checking was fpt on %, then FO model-checking would be fpt
on the class of all graphs, implying FPT = AW[x]. So nowhere dense graph classes are too
general for the statement of Theorem 1.2 to hold. Intuitively, the notion of nowhere denseness
is not preserved under contracting long paths, which can be simulated in the logic FO+conn.

The same simple argument proves Theorem 1.3. Indeed, the argument works not only for
the graph G(™ obtained as the n-subdivision of G' but also for any subdivision G’ (obtained
by replacing each edge independently by any number of vertices) of G, as long as G’ can be
computed from G in polynomial time. The condition that % is subgraph-closed and admits
efficient encoding of topological minors guarantees precisely that for any given graph G we
can construct, in polynomial time, a graph G’ which is a subdivision of G and belongs to % .
This yields Theorem 1.3 (see Section 9 of the full version for details).

Upper bound. We now give some details concerning the proof of Theorem 1.2, which is the
second main contribution of the paper.

The starting observation is that for a (g,k)-unbreakable graph G, the query
conng(u, v, 21, ...,2x) can be expressed in plain FO. Indeed, this query fails if and only if
there is a set A of at most ¢ vertices which contains exactly one of the vertices u and v,
and such that all neighbors of vertices of A outside of A are contained in {z1,...,zr}. The
existence of such a set of ¢ vertices can be expressed using ¢ existential quantifiers followed
by a universal quantifier. So FO+conn with connectivity queries of arity at most k + 2 is
equally expressive as plain FO on (g, k)-unbreakable graphs, as long as ¢ is a constant.

Now, if the graph G is not (g, k)-unbreakable, we work with the tree decomposition into
(g, k)-unbreakable parts given by Theorem 2.1, where ¢ = ¢(k) is a constant depending on k.
The next observation is that the constant-time querying algorithm used in the proof of The-
orem 1.1 and explained above, can be seen as a formula on a suitably defined logical structure.
Indeed, if we look into the data structure answering the queries conng(u,v, 1, ..., zx), we
notice that each such query triggers a constant number of operations asking about the least
common ancestor of two nodes in the tree decomposition, or asking about the membership
of a vertex to a bag. Additionally, the algorithm may ask, for two vertices u, v belonging to
a bag x, whether v and v are adjacent in the original graph, or whether they are adjacent
in the bag graph bgraph(z). Finally, the algorithm also performs torso queries. We may
therefore construct a logical structure, corresponding to the data structure, such that this
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basic functionality is expressible by a first-order formula in this structure. Then the query
conng(u,v, 21, ..., x)) becomes expressible using a plain FO formula in the logical structure.
It will then remain to show that we can model check FO formulas in fpt on the resulting
logical structure.

It is convenient to abstract away the details of our logical structure, and represent it
in the following form: It is a tree T (possibly vertex-labeled), together with additional
edges (possibly labeled) between some nodes which are siblings in the tree. We call such
a structure an augmented tree. In such a tree, the set of children of any node v carries a
structure of a graph. In the particular case of our construction, those graphs will precisely
correspond to bag graphs. Recall that a bag graph is obtained from the subgraph induced
by a bag by turning all adhesions towards children into cliques. It is not difficult to show
(see Lemma 3.4 of the full version) that if the original graph G is H-topological-minor free,
then the resulting bag graphs are H’-topological-minor-free for some H’ depending on H
and on k.* Hence, we obtain a tree augmented with H’-topological-minor-free graphs. And
the original query conng(u,v,x1,...,x;) can be now represented as an FO formula in the
augmented tree, where the FO formula may use the ancestor relation < on the tree nodes,
as well as the adjacency relation between the siblings. Showing this basically amounts to
revisiting the proof of Lemma 2.2 and arguing that the atomic algorithmic operations can
now be simulated by FO formulas in the augmented tree.

Let us note here that the remainder of the argument would go through even if we assumed
that the resulting tree is augmented with graphs from a fixed nowhere dense class ¥’ which
is not necessarily topological-minor-free. However, if the original graph G merely belongs
to a nowhere dense class %, then the bag graphs, and hence the graphs in the augmented
tree, no longer need to belong to any fixed nowhere dense class. In fact, they may contain
arbitrarily large cliques.

Continuing with the proof, now it remains to show that we can solve FO model-checking
on trees augmented with H'-topological-minor-free graphs in fixed-parameter time, where
the FO formulas may use the ancestor relation in the tree as well as the edge relation among
the siblings. For this, we lift the usual, automata-based techniques for model-checking on
trees, to the case of augmented trees. We define automata that process augmented trees in
a bottom-up fashion, labeling the nodes of the tree with states from a finite set of states,
starting from the leaves and proceeding towards the root. At any node z, to determine
the state of the automaton at x, we consider the graph induced on the children of x in
the augmented tree, vertex-labeled by the states computed earlier. Then the state at x is
determined by evaluating a fixed collection of first-order sentences on this labeled graph.
In this way, all nodes of the tree are labeled by states, and the automaton accepts the
augmented tree depending on the state at the root.

By construction, it can be decided in fpt time whether or not a given such automaton
accepts a given tree that is augmented with graphs that come from, say, a nowhere dense
class. Additionally, using standard techniques, we show that for every first-order sentence ¢
on augmented trees there is such an automaton that determines whether ¢ holds in a given
augmented tree. Therefore, FO model-checking is fpt on trees augmented with graphs from a
nowhere dense class; this in particular applies to classes with excluded topological minors.

1 Here we refer to the bgraph as defined in Footnote 3.
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To summarize, to model-check a sentence ¢ of FO+conn on a H-topological-minor-free
graph G, we perform the following reasoning;:

1. Using Theorem 2.1, compute a tree decomposition T of G with (g, k)-unbreakable bags,
where k + 2 is the maximal arity of the connectivity predicates in ¢, and ¢ = g(k).

2. Turn 7 into a tree 7’ augmented with H’-topological-minor free graphs, where H’
depends on H and k.

3. In the augmented tree 7’, the connectivity predicate conng(u,v,z1,...,2) can be
expressed using a plain FO formula. This follows by analyzing how connectivity predicates
are evaluated in constant time, and observing that the atomic operations can be performed
using FO formulas in the augmented trees.

4. Therefore, also ¢ can be expressed as a plain FO formula ¢’, which is evaluated in 7.

5. Convert ¢ into an automaton A processing augmented trees, using standard automata-
based techniques.

6. Run A on 7" in a bottom-up fashion. This involves performing FO queries on the graphs
induced on the children of any given node, and uses one of the known algorithms for FO
model-checking on H’-topological-minor-free graphs.

In Section 7 of the full version we describe the basic toolbox of automata on augmented
trees, explaining in detail the last two steps above, abstracting away from the specific applic-
ation, and providing further results on augmented trees, e.g. concerning query enumeration.
In fact, with the same methods we can show that not only FO model-checking is fpt on
trees augmented with graphs from a nowhere dense class, but also a more general logic
FO(MSO(=, A) UX) combining the power of FO on the augmenting graphs with MSO on
trees can be solved in fpt on augmented trees. We then show in Section 8 (of the full
version) how to express the predicates conng on augmented trees using this more general
logic FO(MSO(x, A) UY).

4 Discussion

In this work we have added computational problems related to conn queries in graphs and
the logic FO+ conn to the growing list of applications of the decomposition theorem of Cygan
et al. [15]. Several questions can be asked about possible improvements of the obtained
complexity bounds, especially regarding the data structure of Theorem 1.1.

First, in both the model-checking algorithm of Theorem 1.2 and the construction algorithm
of the data structure of Theorem 1.1, the main bottleneck for the polynomial factor is the
running time of the algorithm to compute the tree decomposition of Cygan et al. (see
Theorem 2.1). This running time is cubic in the size of the graph, while in both applications
presented in this work, the remainder of the construction takes fpt time with at most quadratic
dependence on the graph size. Therefore, it seems imperative to revisit Theorem 2.1 with
the purpose of improving the time complexity of the construction algorithm.

Second, in Section 6 of the full version we showed how to improve the time complexity of
queries to polynomial in k& by using the weakly unbreakable tree decomposition provided
by [14]. The drawback is that the space usage of the data structure becomes k) - |G|2.
However, the quadratic dependence on |G| is caused only by the brute-force implementation
of the data structure for torso queries provided by Lemma 6.2 of the full version. So now we
have two implementations of this data structure:

Theorem 2.4 and Lemma 4.2 (of the full version) offers query time ¢®WM and space usage

20(@) .||

Lemma 6.2 (of the full version) offers query time ¢®(") and space usage ¢ - |T'|2.

Is it possible to design a data structure that would offer query time ¢©(!) while keeping the
space usage at ¢@1) - |T|?

o
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