Tight Approximation Algorithms for
Two-Dimensional Guillotine Strip Packing

Arindam Khan 24
Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India

Aditya Lonkar 24

Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India

Arnab Maiti 24
Indian Institute of Technology, Kharagpur, India

Amatya Sharma =24
Indian Institute of Technology, Kharagpur, India

Andreas Wiese 2 &
Technische Universitdat Miinchen, Germany

—— Abstract

In the STRIP PACKING problem (SP), we are given a vertical half-strip [0, W] x [0,00) and a set
of n axis-aligned rectangles of width at most W. The goal is to find a non-overlapping packing of
all rectangles into the strip such that the height of the packing is minimized. A well-studied and
frequently used practical constraint is to allow only those packings that are guillotine separable, i.e.,
every rectangle in the packing can be obtained by recursively applying a sequence of edge-to-edge
axis-parallel cuts (guillotine cuts) that do not intersect any item of the solution. In this paper, we
study approximation algorithms for the GUILLOTINE STRIP PACKING problem (GSP), i.e., the STRIP
PACKING problem where we require additionally that the packing needs to be guillotine separable.
This problem generalizes the classical BIN PACKING problem and also makespan minimization on
identical machines, and thus it is already strongly NP-hard. Moreover, due to a reduction from the
PARTITION problem, it is NP-hard to obtain a polynomial-time (3/2 — ¢)-approximation algorithm
for GSP for any ¢ > 0 (exactly as STRIP PACKING). We provide a matching polynomial time
(3/2 + ¢)-approximation algorithm for GSP. Furthermore, we present a pseudo-polynomial time
(1 + &)-approximation algorithm for GSP. This is surprising as it is NP-hard to obtain a (5/4 — £)-
approximation algorithm for (general) STRIP PACKING in pseudo-polynomial time. Thus, our results
essentially settle the approximability of GSP for both the polynomial and the pseudo-polynomial
settings.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms

Keywords and phrases Approximation Algorithms, Two-Dimensional Packing, Rectangle Packing,
Guillotine Cuts, Computational Geometry

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.80
Category Track A: Algorithms, Complexity and Games
Related Version Full Version: https://arxiv.org/pdf/2202.05989.pdf

Funding Arindam Khan: Arindam Khan was supported in part by Pratiksha Trust Young Investig-
ator Award, Google CSExplore Award, and Google India Research Award.
Andreas Wiese: Andreas Wiese was partially supported by the Fondecyt Regular grant 1200173.

Acknowledgements A part of this work was done when Arnab Maiti and Amatya Sharma were
undergraduate interns at Indian Institute of Science.

© Arindam Khan, Aditya Lonkar, Arnab Maiti, Amatya Sharma, and Andreas Wiese;
37 licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).

Editors: Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff;

Article No. 80; pp. 80:1-80:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:arindamkhan@iisc.ac.in
https://www.csa.iisc.ac.in/~arindamkhan/
https://orcid.org/0000-0001-7505-1687
mailto:adityaabhay@iisc.ac.in
http://www.myhomepage.edu
mailto:arnabmaiti@iitkgp.ac.in
https://sites.google.com/view/arnab-maiti/home
mailto:amatya65555@iitkgp.ac.in
https://aaysharma.github.io
mailto:andreas.wiese@tum.de
https://discrete.ma.tum.de/people/professors/andreas-wiese.html
https://orcid.org/0000-0003-3705-016X
https://doi.org/10.4230/LIPIcs.ICALP.2022.80
https://arxiv.org/pdf/2202.05989.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

80:2

Guillotine Strip Packing

1 Introduction

Two-dimensional packing problems form a fundamental research area in combinatorial
optimization, computational geometry, and approximation algorithms. They find numerous
practical applications in logistics [9], cutting stock [23], VLSI design [26], smart-grids [20],
etc. The STRIP PACKING problem (SP), a generalization of the classical BIN PACKING
problem and also the makespan minimization problem on identical machines, is one of the
central problems in this area. We are given an axis-aligned vertical half-strip [0, W] x [0, c0)
and a set of n axis-aligned rectangles (also called items) I := {1,2,...,n}, where for each
rectangle ¢ we are given an integral width w; < W, and an integral height h;; we assume
the rectangles to be open sets. The goal is to pack all items such that the maximum height
of the top edge of a packed item is minimized. The packing needs to be non-overlapping,
i.e., such a packing into a strip of height H maps each rectangle i € I to a new translated
open rectangle R(i) := (left(i), right(i)) x (bottom(i),top(i)) where right(i) = left(i) + w;,
top(i) = bottom(i) + h;, left(i) > 0, bottom(i) > 0, right(i) < W, top(i) < H and for any
i,7 € I, we must have R(i) N R(j) = (). We assume that items are not allowed to be rotated.

The best known polynomial time approximation algorithm for SP has an approximation
ratio of (5/3+¢) for any constant € > 0 [24] and a straight-forward reduction from PARTITION
shows that it is NP-hard to approximate the problem with a ratio of (3/2 — ¢) for any £ > 0.
Maybe surprisingly, one can approximate SP better in pseudo-polynomial time: there is a
pseudo-polynomial time (5/4 + ¢)-approximation algorithm [27] and it is NP-hard to obtain
a (5/4 — e)-approximation algorithm with this running time [25]. Hence, it remains open to
close the gap between (5/3 + ¢) and (3/2 — ¢) for polynomial time algorithms, and even in
pseudo-polynomial time, there can be no (1 +¢)-approximation for the problem for arbitrarily
small € > 0.

SP is particularly motivated from applications in which we want to cut out rectangular
pieces of a sheet or stock unit of raw material, i.e., metal, glass, wood, or, cloth, and we want to
minimize the amount of wasted material. For cutting out these pieces in practice, axis-parallel
end-to-end cuts, called guillotine cuts, are popular due to their simplicity of operation [46]. In
this context, we look for solutions to cut out the individual objects by a recursive application of
guillotine cuts that do not intersect any item of the solution. Applications of guillotine cutting
are found in crepe-rubber mills [42], glass industry [40], paper cutting [35], etc. In particular,
this motivates studying geometric packing problems with the additional constraint that the
placed objects need to be separable by a sequence of guillotine cuts (see Figure 1). Starting
from the classical work by Christofides et al. [10] in 1970s, settings with such guillotine cuts
are widely studied in the literature [16, 47, 6, 34, 15, 11, 17, 12]. In fact, many heuristics for
guillotine packing have been developed to efficiently solve benchmark instances, based on
tree-search, branch-and-bound, dynamic optimization, tabu search, genetic algorithms, etc.
Khan et al. [32] mentions “a staggering number of recent experimental papers” on guillotine
packing and lists several such recent experimental papers.

A related notion is k-stage packing, originally introduced by Gilmore and Gomory [23].
Here, each stage consists of either vertical or horizontal guillotine cuts (but not both). In
each stage, each of the pieces obtained in the previous stage is considered separately and
can be cut again by using either horizontal or vertical guillotine cuts. In k-stage packing,
the number of cuts to obtain each rectangle from the initial packing is at most k, plus an
additional cut to trim (i.e., separate the rectangles itself from a waste area). Intuitively, this
means that in the cutting process we change the orientation of the cuts k£ — 1 times.

A. Khan, A. Lonkar, A. Maiti, A. Sharma, and A. Wiese

T
= @y b
A
]
— l_
[]
(a) (b) (c)

Figure 1 Packing (a) is a 5-stage guillotine separable packing, packing (b) is a (n — 1)-stage
guillotine separable packing, packing (c) is not guillotine separable as any end-to-end cut in the
strip intersects a rectangle.

Therefore, in this paper, we study the GUILLOTINE STRIP PACKING problem (GSP). The
input is the same as for SP, but we require additionally that the items in the solution can be
separated by a sequence of guillotine cuts, and we say then that they are guillotine separable.
Like general SP without requiring the items to be guillotine separable, GSP generalizes BIN
PACKING (when all items have the same height) and makespan minimization on identical
machines (when all items have the same width). Thus, it is strongly NP-hard, and the same
reduction from PARTITION mentioned above yields a lower bound of (3/2 — ¢) for polynomial
time algorithms (see the full version [31] for more details). For asymptotic approximation,
GSP is well understood. Kenyon and Rémila [29] gave an asymptotic polynomial time
approximation scheme (APTAS) for (general) SP. Their algorithm produces a 5-stage packing
(hence, guillotine separable), and thus yields an APTAS for GSP as well. Later, Seiden et
al. [43] settled the asymptotic approximation status of GSP under k-stage packing. They gave
an APTAS for GSP using 4-stage guillotine cuts, and showed k = 2 stages cannot guarantee
any bounded asymptotic performance ratio, and k = 3 stages lead to asymptotic performance
ratios close to 1.691. However, in the non-asymptotic setting, approximation ratio of GSP is
not yet settled. Steinberg’s algorithm [45] yields a 2-approximation algorithm for GSP and
this is the best known polynomial time approximation algorithm for the problem.

In this paper we present approximation algorithms for GSP which have strictly better
approximation ratios than the best known algorithms for SP, and in the setting of pseudo-
polynomial time algorithms we even beat the lower bound that holds for SP. Moreover, we
show that all our approximation ratios are essentially the best possible.

1.1 OQOur Contribution

We present a polynomial time (3/2 + ¢)-approximation algorithm for GSP. Due to the
mentioned lower bound of (3/2 — ¢), our approximation ratio is essentially tight. Also, we
present a pseudo-polynomial time (1 + €)-approximation algorithm, which is also essentially
tight since GSP is strongly NP-hard.

For the pseudo-polynomial time (1 + ¢)-approximation, we first prove that there exists a
structured solution with height at most (1 + &)OPT (OPT denotes the height of the optimal
solution) in which the strip is divided into O(1) rectangular boxes inside which the items
are nicely packed, e.g., horizontal items are stacked on top of each other, vertical items
are placed side by side, and small items are packed greedily with the Next-Fit-Decreasing-
Height algorithm [13] (see Figure 2(a) and also Figure 4. Also, refer to Section 2 for item
classification). This result starkly contrasts SP (i.e., where we do not require the items to be
guillotine separable): for that problem, it is already unlikely that we can prove that there

80:3

ICALP 2022

80:4

Guillotine Strip Packing

(£ +€)OPT, S
ioPT

(1 + €)OPT,
OPT

1
lorti-HH1t

(a) (b)

Figure 2 (a) A guillotine separable structured packing (for the pseudo-polynomial time approx-
imation scheme) where all the items are packed nicely in containers. The tall items (dark-gray)
are stacked next to each other just like the vertical items (orange); the horizontal items (blue) are
stacked on top of each other, the small items (pink) are packed according to NFDH, and the large
containers contain single large items (brown). (b) A guillotine separable structured packing for the
polynomial time (3/2 + €)-approximation, where the packing from (a) is rearranged such that the
tall items are bottom-left-flushed and there is an extra empty box B* to accommodate some of the
vertical items which we are unable to pack in polynomial time in the rest of the guessed boxes. This
arises from the NP-hardness of the PARTITION problem. The yellow rectangular strip S on top of
both the packings is used for packing the medium and leftover horizontal and small items.

always exists such a packing with a height of less than 5/4 - OPT. If we could prove this,
we could approximate the problem in pseudo-polynomial time with a better ratio than 5/4,
which is NP-hard [25].

To construct our structured packing, we start with an optimal packing and use the
techniques in [32] to obtain a packing in which each item is nicely packed in one of a constant
number of boxes and L-shaped compartments. We increase the height of our packing by
eOPT in order to round the heights of the packed items and get some leeway within the
packing. Then, we rearrange the items placed inside the L-shaped compartments. Here, we
crucially exploit that the items in the initial packing are guillotine separable. In particular,
this property allows us to identify certain sets of items that we can swap, e.g., items on
the left and the right of a vertical guillotine cut to simplify the packing, and reduce the
number of boxes to O(1). Then, using standard techniques, we compute a solution with this
structure in pseudo-polynomial time and hence with a packing height of at most (1 +¢)OPT
(see Figure 2 (a)).

Note that we do not obtain a (1 + €)-approximation algorithm in polynomial time in this
way. The reason is that when we pack the items into the rectangular boxes, we need to solve
a generalization of PARTITION: there can be several boxes in which vertical items are placed
side by side, and we need that the widths of the items in each box sum up to at most the
width of the box. If there is only a single item that we cannot place, then we would need to
place it on top of the packing, which can increase our packing height by up to OPT.

For our polynomial time (3/2 + ¢)-approximation algorithm, we, therefore, need to be
particularly careful with the items whose height is larger than OPT/2, which we call the
tall items. We prove a different structural result which is the main technical contribution of

A. Khan, A. Lonkar, A. Maiti, A. Sharma, and A. Wiese

this paper: we show that there is always a (3/2 + ¢)-approximate packing in which the tall
items are packed together in a bottom-left-flushed way, i.e., they are ordered non-increasingly
by height and stacked next to each other with their bottom edges touching the base of the
strip. All remaining items are nicely packed into O.(1) boxes, and there is also an empty
strip of height OPT/2 and width Q. (W), see Figure 2 (b). Thus, it is very easy to pack the
tall items correctly according to this packing. We pack the remaining items with standard
techniques into the boxes. In particular, the mentioned empty strip allows us to make slight
mistakes while we pack the vertical items that are not tall; without this, we would still need
to solve a generalization of PARTITION.

In order to obtain our structural packing for our polynomial time (3/2 + €)-approximation
algorithm, we build on the idea of the packing for the pseudo-polynomial time (1 + ¢)-
approximation. Using that it is guillotine separable, we rearrange its items further. First, we
move the items such that all tall items are at the bottom. To achieve this, we again argue
that we can swap certain sets of items, guided by the guillotine cuts. Then, we shift certain
items up by OPT/2, which leaves empty space between the shifted and the not-shifted items,
see Figure 2 (b). Inside this empty space, we place the empty box of height OPT/2. Also,
we use this empty space in order to be able to reorder the tall items on the bottom by their
respective heights. During these changes, we ensure carefully that the resulting packing stays
guillotine separable.

It is possible that also for (general) SP there always exists a structured packing of height at
most (3/2+ ¢)OPT, similar to our packing. This would yield an essentially tight polynomial
time (3/2 + ¢)-approximation for SP and thus solve the long-standing open problem to find
the best possible polynomial time approximation ratio for SP. We leave this as an open
question.

1.2 Other related work

In the 1980s, Baker et al. [2] initiated the study of approximation algorithms for strip packing,
by giving a 3-approximation algorithm. After a sequence of improved approximations [13, 44],
Steinberg [45] and Schiermeyer [41] independently gave 2-approximation algorithms. For
asymptotic approximation, Kenyon and Rémila [29] settled SP by providing an APTAS.

SP has rich connections with important geometric packing problems [9, 30] such as 2D bin
packing (2BP) [4, 33], 2D geometric knapsack (2GK) [19, 28], dynamic storage allocation [7],
maximum independent set of rectangles (MISR) [22, 1], sliced packing [14, 18], etc.

In 2BP, we are given a set of rectangles and square bins, and the goal is to find an
axis-aligned non-overlapping packing of all items into a minimum number of bins. The
problem admits no APTAS [3], and the present best approximation ratio is 1.406 [4]. In 2GK,
we are given a set of rectangular items and a square knapsack. Each item has an associated
profit, and the goal is to pack a subset of items in the knapsack such that the profit is
maximized. The present best polynomial time approximation ratio is 1.89 [19]. There is a
pseudo-polynomial time (4/3 + ¢)-approximation [21] for 2GK. In MISR, we are given a set of
(possibly overlapping) rectangles we need to find the maximum cardinality non-overlapping
set of rectangles. Recently, Mitchell [36] gave the first constant approximation algorithm for
the problem. Then Galvez et al. [22] obtained a (2 + ¢)-approximation algorithm for MISR.
Their algorithms are based on a recursive geometric decomposition of the plane, which can
be viewed as a generalization of guillotine cuts, more precisely, to cuts with O(1) bends.
Pach and Tardos [38] even conjectured that for any set of n non-overlapping axis-parallel
rectangles, there is a guillotine cutting sequence separating €(n) of them.

80:5

ICALP 2022

80:6

Guillotine Strip Packing

2BP and 2GK are also well-studied in the guillotine setting [39]. Caprara et al. [8] gave an
APTAS for 2-stage SP and 2-stage BP. Later, Bansal et al. [5] showed an APTAS for guillotine
2BP. Bansal et al. [4] conjectured that the worst-case ratio between the best guillotine 2BP
and the best general 2BP is 4/3. If true, this would imply a (3 + ¢)-approximation algorithm
for 2BP. For guillotine 2GK, Khan et al. [32] recently gave a pseudo-polynomial time
approximation scheme.

2 Pseudo-polynomial time approximation scheme

In this section, we present our pseudo-polynomial time approximation scheme (PPTAS)
for GSP.

Let € > 0 and assume w.l.o.g. that 1/e € N. We denote by OPT the height of the optimal
solution. We classify the input items into a few groups according to their heights and widths
similar to the classification in [32]. For two constants 1 > § > p > 0 to be defined later, we
classify each item i € [as:

tall if h; > OPT/2;

large if w; > 0W and OPT/2 > h; > §OPT;

horizontal if w; > 6W and h; < uOPT;

vertical w; < W and OPT/2 > h; > §OPT;

medium if

either 6OPT > h; > pOPT;
or OW > w; > uW and h; < uOPT;
small if w; < uW and h; < pOPT;

OPT -

1
EOPT
SOPTF
Medium
HOPT—
Sl Horszonital
uw w w

Figure 3 Item Classification: x-axis represents width and y-axis represents height.

See Figure 3 for a picture of item classification. Let Irqai, Liarge, Thor, Lver,
Iedium, Lsman be the set of tall, large, horizontal, medium, and small rectangles in I,
respectively.

Using the following lemma, one can appropriately choose p, § such that the medium items
occupy a marginal area. This effectively allows us to ignore them in our main argumentation.

» Lemma 2.1 ([37]). Lete > 0 and f(.) be any positive increasing function such that f(x) < x
for all x € (0,1]. Then we can efficiently find §, u € Qe (1), with e > f(e) >0 > f(0) > p so
that the total area of medium rectangles is at most e(OPT - W).

We will specify how we choose the function f(z) later. In our PPTAS, we will use a packing,
which is defined solely via boxes.

A. Khan, A. Lonkar, A. Maiti, A. Sharma, and A. Wiese

» Definition 2.2. A box B is an axis-aligned open rectangle that satisfies B C [0, W] x [0, 00).
We denote by h(B) and w(B) the height and the width of B, respectively.

Inside each box B, we will place the items nicely, meaning that they are either stacked
horizontally or vertically, or B contains a single large item, or only small items, or only
medium items. This is useful since in the first two cases, it is trivial to place a given set
of items into B, and in the last two cases, it will turn out that it suffices to pack the
items greedily using the Next Fit Decreasing Height (NFDH) algorithm [13] and Steinberg’s
algorithm [45], respectively. There will be one box with height at most 26OPT that contains
all medium items.

» Definition 2.3 (Nice packing). Let B be a box and let Ig C I be a set of items that are
placed non-overlappingly inside B. We say that the packing of I in B is nice if the items in
Ip are guillotine separable and additionally

Ip contains only one item, or

Ip C I}, and the items in Ig are stacked on top of each other inside B, or

Ip C Ligy U Lyer and the items in Ip are placed side by side inside B, or

IB g Imedium; or

Ip C Ismau and for each item i € Ig it holds that w; < e-w(B) and h; < e - h(B).
We will use the term container to refer to a box B that contains a nice packing of some set
of items Ip. See Figure 4 for nice packings in different types of containers. We say that a set
of boxes B is guillotine separable if there exists a sequence of guillotine cuts that separates
them and that does not intersect any box in B.

We now state the structural lemma for the PPTAS. Intuitively, it states that there exists
a (1+¢)-approximate solution in which the input items are placed into O.(1) boxes such that
within each box the packing is nice. We remark that we will crucially use that in the optimal
packing the items in I are guillotine separable. In fact, if one could prove that there exists such
a packing with O.(1) boxes and a height of «OPT for some a < % also in the non-guillotine
case (where neither the optimal solution nor the computed solution needs to be guillotine
separable), then one would obtain a pseudo—polynomial time (a4 ¢)-approximation algorithm
also in this case, by using straightforward adaptations of the algorithms in, e.g., [37, 20, 27]
or our algorithm in section 2.2. However, this is not possible for a < 2, unless P = NP [25].

» Lemma 2.4 (Structural lemma 1). Assume that p is sufficiently small compared to 6. Then
there exists a set B of O:(1) pairwise non-overlapping and guillotine separable bozes all placed
inside [0, W] x [0, (1 4+ 16e)OPT) and a partition I =gz Ip such that for each B € B the
items in Ig can be placed nicely into B.

We choose our function f due to Lemma 2.1 such that p is sufficiently small compared to ¢, as
required by Lemma 2.4. We will prove Lemma 2.4 in the next subsection. In its packing, let
Bhors Buer, Brail, Biarge, Bsmair and Bp,eq denote the set of boxes for the horizontal, vertical,
tall, large, small and medium items, respectively. Let Biajitver := Bratt U Buer-

2.1 Proof of Structural Lemma 1

In this section we prove Lemma 2.4. We have omitted a few proofs which can be found in the
full version [31]. Our strategy is to start with a structural lemma from [32] that guarantees
the existence of a structured packing of all items in Iparq := Itau U Ligrge U Tpor U Iyer. This
packing uses boxes and L-compartments. Note that, for now we ignore the items Ig,q1. We
will show how to pack them later.

80:7

ICALP 2022

80:8

Guillotine Strip Packing

[
l)
' I
|
(a) (b) (c) (d)

Figure 4 Nice packing of vertical, horizontal, large and small items in their respective containers.

» Definition 2.5 (L-compartment). An L-compartment L is an open sub-region of [0, W] x
[0,00) bounded by a simple rectilinear polygon with siz edges eg,e1, ..., es such that for each
pair of horizontal (resp. vertical) edges e;, es—; with i € {1,2} there exists a vertical (resp.
horizontal) line segment £; of length less than (5% (resp. 6%) such that both e; and eg_;
intersect £; but no other edges intersect {;.

Note that for an L-compartment, no item i € Ij,, can be packed in its vertical arm and
similarly, no item i € I, U I14; can be packed in its horizontal arm.

The next lemma follows immediately from a structural insight in [32] for the guillotine
two-dimensional knapsack problem. It partitions the region [0, W] x [0, OPT] into non-
overlapping boxes and L-compartments that admit a pseudo-guillotine cutting sequence. This
is a sequence of cuts in which each cut is either a (normal) guillotine cut, or a special cut that
cuts out an L-compartment L from the current rectangular piece R in the cutting sequence,
such that R\ L is a rectangle, see Figure 6. So intuitively L lies at the boundary of R.

(a) (b) (c)

Figure 5 Using an extra eOPT height, we convert a packing of items I in an L-compartment
into another packing such that the items in I are packed in boxes C' = V U H, which are guillotine
separable and |C’'| = O(1), where V = U!Z3V; and H = UIZS H;.

» Lemma 2.6 ([32]). There exists a partition of [0, W] x [0, OPT] into a set By of O-(1)

bozes and a set L of O.(1) L-compartments such that

= the bozes and L-compartments in By U L are pairwise non-overlapping,

= By UL admits a pseudo-guillotine cutting sequence,

= the items in Ipqrq can be packed into By U L such that for each B € By it either contains
only items i € Itqy U Ljgrge U Iyer o7 it contains only items i € Ipop.

Our strategy is to take the packing due to Lemma 2.6 and transform it step by step until we

obtain a packing that corresponds to Lemma 2.4. First, we round the heights of the tall,

large, and vertical items such that they are integral multiples of §20OPT. Formally, for each

item i € Iian U liarge U Iper we Tound its height to hf := [5257 | 620PT. Let Inqrq denote

A. Khan, A. Lonkar, A. Maiti, A. Sharma, and A. Wiese

the resulting set of items. By a shifting argument, we will show that we can still pack Ixqrq
into O.(1) guillotine separable boxes and L-compartments if we can increase the height of
the packing by a factor 1 + ¢ which also does not violate guillotine separability. Then, we
increase the height of the packing by another factor 1 4 €. Using this additional space, we
shift the items inside each L-compartment L such that we can separate the vertical items
from the horizontal items (see Figure 5). Due to this separation, we can partition L into
Oc(1) boxes such that each box contains only horizontal or only vertical and tall items. Note
however, that they might not be packed nicely inside these boxes.

» Lemma 2.7. There exists a partition of [0, W] x [0, (1 + 2e)OPT] into a set By of O-(1)
bozxes such that

the bozes in By are pairwise non-overlapping and admit a guillotine cutting sequence,

the items in Iparq can be packed into By such that they are guillotine separable and each

box B € By either contains only items from ILiqu U ligrge U Lver, 0or contains only items
from Inop.

Any item i € Liay U Ligrge U Tyer has height b = k;620OPT for integer k;, k; < 1/8% + 1.
Let By be the set of boxes due to Lemma 2.7. Consider a box B € B and let Ijq.-q(B)
denote the items from I,,.q that are placed inside B in the packing due to Lemma 2.7. Our
goal is to partition B into O.(1) smaller containers, i.e., the items in Ipq.q(B) are packed
nicely into these smaller boxes. If B contains horizontal items, then this can be done using
standard techniques, e.g., by 1D resource augmentation (only in height) in [32]. This resource
augmentation procedure maintains guillotine separability.

» Lemma 2.8 ([32]). Given a box B € By such that B contains a set of items Ingra(B) C Ihor-
There exists a partition of B into O (1) containers B’ and one additional box B’ of height
at most e'h(B) and width w(B) such that the containers B’ are guillotine separable and the
containers B'U{B'} contain Ipqrqi(B).

We apply Lemma 2.8 to each box B € By that contains a horizontal item. Consider the
items which are contained in their respective boxes B’. In order to avoid any confusions
between constants of our algorithm and resource augmentation, we denote the constant used
for resource augmentation as €. We choose ¢ = ¢ and then their total area is at most
eOPT - W and therefore, all such items can be packed in a box of height at most 2¢OPT
and width W using Steinberg’s algorithm [45]. But since this will possibly not result in a
nice packing we apply resource augmentation (only along height) again to ensure that we get
a nice packing of such horizontal items in O, (1) containers which can all be packed in a box
of height at most 3eOPT and width W.

Consider now a box B € B; that contains at least one item from ;o U ljarge U Iper. Let
Thara(B) C Ligy U Tiarge U Ier denote the items packed inside B. We argue that we can
rearrange the items in Ipq-q¢(B) such that they are nicely placed inside O.(1) containers. In
this step we crucially use that the items in Ip4.q(B) are guillotine separable.

Consider the guillotine cutting sequence for Ipq-q(B). It is useful to think of these cuts
as being organized in stages: in the first stage we do vertical cuts (possibly zero cuts). In
the following stage, we take each resulting piece and apply horizontal cuts. In the next stage,
we again take each resulting piece and apply vertical cuts, and so on. Since the heights of
the items in I},4.q(B) are rounded to multiples of 20PT we can assume w.l.o.g. that the
y-coordinates of the horizontal cuts are all integral multiples of §20PT (possibly moving
the items a little bit). Assume here for the sake of simplicity that ¢ = 1/62 is an integer.
Because of the rounding of heights of the items in I}, ,(B), there are at most (1/§% — 1)
y-coordinates for making a horizontal cut. For a horizontal stage of cuts, for a rectangular

80:9

ICALP 2022

80:10

Guillotine Strip Packing

Uy

‘
2 ¢

Ly

-
=

0
(a) (b)

Figure 6 (a) A pseudo-guillotine cutting sequence. The first cut is l1, and then the resulting left
piece is further subdivided by /2, ¢35 and ¢4. Similarly, s, £7 subdivide the right piece. Note that ¢3
and {7 are not guillotine cuts, but they cut out the corresponding L-compartments. (b) Step by step
pseudo-guillotine cutting sequence corresponding to Figure (a). Dashed line at each level indicates a
partition of a rectangle into two regions (two boxes, or one box and one L).

piece we define a configuration vector (x1,...,x¢4—1): For each i € [t — 1] if there is a horizontal
cut in the piece at y = ¢ - ¢, then x; = 1, otherwise x; = 0. Consider y = 0 to be the bottom
of the rectangular piece. Therefore, in each horizontal stage, for each piece there are at most
K = (2(1/52)) possible configurations. Consider the first stage (which has vertical cuts). If
there are more than K vertical cuts then in two of the resulting pieces, in the second stage
the same configuration of horizontal cuts is applied (see Figure 7).

We reorder the resulting pieces and their items such that pieces with the same configuration
of horizontal cuts are placed consecutively. Therefore, in the first stage we need only K
vertical cuts and we can have at most (%2(1/ 52)) resulting pieces. We apply the same
transformation to each stage with vertical cuts. Now observe that there can be at most
O(1/6) stages since there are at most 1/6 possible tall, vertical or large items stacked on
top of the other and thus at most 1/6 stages with horizontal cuts. Therefore, after our
transformations, we apply only (%2(1/ 52))% cuts in total, in all stages in all resulting pieces.
Thus, we obtain O.(1) boxes at the end, in which the items are nicely packed. This leads to
the following lemma.

» Lemma 2.9. Given a box B € By such that B contains a set of items Ipqrqa(B) C
Liait U Ligrge U Iyer. There exists a partition of B into OL(1) containers B' such that the
containers B’ are guillotine separable and contain the items Ipqrq(B).

We apply Lemma 2.9 to each box B € B; that contains an item from Iy U ljgrge U Lyer-
Thus, we obtain a packing of Ij4q into a set of O.(1) guillotine separable containers in which
these items are nicely placed; we denote these containers by Bpqrq. This yields directly a
packing for the (original) items I}4.¢ (without rounding). Finally, we partition the empty
space of the resulting packing into more boxes, and one additional box that we place on top

A. Khan, A. Lonkar, A. Maiti, A. Sharma, and A. Wiese

(a) (b)

Figure 7 (a) 2 stages of guillotine cuts for a box containing vertical rectangles. (b) Since rounded
heights of vertical rectangles are integral multiples of 6%, merge configurations with same set of
horizontal cuts to get Os(1) configurations.

of the current packing. We pack the items in Ig,,qy inside all these boxes. We might not
be able to use some parts of the empty space, e.g., if two boxes are closer than puWW to each
other horizontally; however, if y is sufficiently small compared to the number of boxes, this
space is small and compensated by the additional box.

» Lemma 2.10. Assume that p is sufficiently small compared to 6. There exists a set of Oz(1)
bozes Bsmail, all contained in [0, W] x [0, (14 14e)OPT], such that the boxes in Bhrard U Bsmai
are non-overlapping and guillotine separable and the items in Isnq can be placed nicely into
the boxes Bsmall-

Finally, we show the following lemma by using the fact that the medium items have area
at most e(OPT - W) and by applying Steinberg’s algorithm [45]. This completes the proof of
Lemma 2.4.

» Lemma 2.11. In time n°Y we can find a nice placement of all items in Inedgium inside
one container Bpeq of height 2e0PT and width W .

2.2 Algorithm

We describe now our algorithm that computes a packing of height at most (1 + O(e))OPT.

First, we guess OPT and observe that there are at most n - hyax possibilities, where
hmax := max;es h;. Then, we guess the set of containers B due to Lemma 2.4 and their
placement inside [0, W] x [0, (1 + O(g))OPT). For each container B € B we guess which
case of Definition 2.3 applies to B, i.e., whether I contains only one item, Ig C I,
Ip C Ligy U lyer, IB C Inedium, O Ip C Isman. For each box B € B for which Ig contains
only one item i € I, we guess ¢. Observe that for the remaining containers this yields
independent subproblems for the sets Ijor, Ltai U Lver, Imedium, and Igmaqi. We solve these
subproblems via similar routines as in [37, 20, 27].

We pack all medium items in I,,edium into one single container B, 4 of height 2eOPT
by Lemma 2.11. Then, for the sets I and Iy, U Lo we pack their respective items into
their containers using a standard pseudo-polynomial time dynamic program; we denote these
containers by By and Bigiitver, respectively. We crucially use that |Bjer| < O:(1) and
|Btaii+ver| < Oc(1). See the full version [31] for the details of packing of items in Ij,, and
Itall) I'uer~

Finally, we pack the small items. From the proof of Lemma 2.10, apart from some items
I i C Isman which have area at most eOPT - W, the other items can be packed nicely
in the containers in Bgpan \ Bsmail, where Bgpan has height 9¢OPT and width W. Thus,

80:11

ICALP 2022

80:12

Guillotine Strip Packing

we use NFDH for packing the remaining small items. It can be shown that the small items
which remain unpacked can be packed nicely in Bgpqi, which is placed on the top of our
packing.

» Theorem 2.12. There is a (1 + €)-approximation algorithm for the guillotine strip packing
problem with a running time of (nW)©=(1).

3 Polynomial time (% + €)-approximation

In this section, we first present the structural lemma for our polynomial time (3/2 + ¢)-
approximation algorithm for guillotine strip packing. Then we describe our algorithm. We
have omitted a few proofs which can be found in the full version [31].

To derive our structural lemma, we start with the packing due to Lemma 2.4. The
problem is that with a polynomial time algorithm (rather than a pseudo-polynomial time
algorithm) we might not be able to pack all tall items in their respective boxes. If there
is even one single tall item ¢ that we cannot pack, then we need to place ¢ on top of our
packing, which can increase the height of the packing by up to OPT.

Ra
R
Ra Ra

(a) (b) (c) (d)

Figure 8 R4 and Rp are tall containers and by swapping the respective boxes (forming as a
results of guillotine cuts) that contain them, they can be packed such that the bottoms of both
containers intersect the bottom of the strip.

Therefore, we make our packing more robust to small errors when we pack the items into
their boxes. In our changed packing, the tall items are bottom-left-flushed (see Figure 9(f)), the
remaining items are packed into O, (1) boxes, and there is one extra box B* of height OPT/2
and width Q. (W) which is empty. We will use the extra box B* in order to compensate
small errors when we pack the vertical items.

Formally, we say that in a packing, a set of items I’ is bottom-left-flushed if they are
ordered non-increasingly by height and stacked next to each other in this order within the
strip [0, W] x [0, 00) starting at the left edge of the strip, such that the bottom edge of each
item ¢ € I’ touches the line segment [0, W] x {0}. We now state the modified structural
lemma for our polynomial time (3/2 + ¢)-approximation algorithm formally.

» Lemma 3.1 (Structural lemma 2). There exists a packing of the items I within [0, W] X
[0,(3/24 O(e))OPT) such that
The items I;q; are bottom-left-flushed,
There is a set B of O-(1) containers that are pairwise non-overlapping and do not intersect
the items in Iiq,
There is a partition of I\ Liqy = UB€B Ip such that for each B € B the items in Ig can
be placed nicely into B,
There is a container B* € B of height OPT/2 and width e1W such that Ig- = 0,
The items I and the containers B together are guillotine separable.

We now prove Lemma 3.1 in the following subsection.

A. Khan, A. Lonkar, A. Maiti, A. Sharma, and A. Wiese

3.1 Proof of Structural Lemma 2

We start with the packing due to Lemma 2.4 and transform it step by step. To obtain our
packing, we first argue that we can ensure that all tall items are placed on the bottom of
the strip, i.e., their bottom edges touch the bottom edge of the strip. Here we use that the
initial packing is guillotine separable. Then we place the box B* as follows. Suppose that
there are initially C' containers that cross the horizontal line with y = OPT/2. Note that
C = O.(1) and C > 1 since at least one container is required to pack given non-zero number
of items. Then, by an averaging argument we can show that there is a line segment [* of
length at least Q(%) which is the top edge of one of the containers B in the packing at some
height h* > OPT/2. We push all the containers which completely lie above the line y = h*
vertically upward by OPT/2 and this creates enough space to pack B* on top of B. After
that, we take advantage of the gained extra space in order to ensure that the tall items are
bottom-left-flushed.

Now we describe the proof formally. First, we define some constants. Let g(d,¢) = O(1)
denote an upper bound on the number of containers in the packing obtained using Lemma 2.4,
depending on ¢ and 4. Let e; = 39(13,5)’ €9 = 4\Bfm\’ €3 = %, €4 =, €5 = %, €g = %S.

Our first goal is to make sure that the tall items are all placed on the bottom of the strip
[0, W] x [0,00). For this, we observe the following: suppose that in the guillotine cutting
sequence a horizontal cut is placed. This cut separates the current rectangular piece R into
two smaller pieces Ry and Ry. Suppose that R; lies on top of Re. Then only one of the two
pieces Ry, Ro can contain a tall item. Also, we obtain an alternative guillotine separable
packing if we swap R; and Ry — together with the items contained in them — within R. We
perform this swap if Ry contains a tall item. We apply this operation to each horizontal cut

in the guillotine cutting sequence. As a result, we obtain a new packing in which all tall
items are placed on the bottom of the strip (but possibly not yet bottom-left-flushed) as
shown in Fig 8.

» Lemma 3.2. There exists a set B of O:(1) pairwise non-overlapping and guillotine separable
bozes that are all placed inside [0, W] x [0, (1 4 16e)OPT) and a partition I = |Jp.pzIp such
that for each B € B the items in Ig can be placed nicely into B. Also, for each box B € B
with Ip N Iqy # 0 we have that the bottom edge of B intersects the line segment [0, W] x {0}.

Let B be the set of containers due to Lemma 3.2. We want to move some of them up in
order to make space for the additional box B*. To this end, we identify a horizontal line
segment £* in the following lemma.

» Lemma 3.3. There is a horizontal line segment €* of width at least e1W that does not
intersect any container in B, and such that the y-coordinate of £* is at least OPT/2.

Proof. Consider the containers in B that intersect with the horizontal line segment ¢ :=
[0, W] x {OPT/2} and let p1,...px be the maximally long line segments on ¢ that do not
intersect any container. Since the line segments {p1,...pr} are between containers in B, we
have that k£ < |B| 4+ 1. Therefore by an averaging argument we can find a horizontal line
segment £* of width at least 2(9(5‘?;)”1 > 391(/[(;6) > &1 W that either contains the top edge of
one of these containers such that ¢* does not intersect any other container in 55 or £* is one of
the line segments in the set {p, ..., pr.}. Hence, the y-coordinate of £* is at least OPT/2. <«

Let h* be the y-coordinate of £*. We take all containers in B that lie “above h*”, i.e., that lie
inside [0, W] x [h*, 00). We translate them up by OPT/2. We define a container B* which
has height OPT/2 and width ;W to be packed such that ¢* is the bottom edge of B* (see
Figure 9(b)). We then make the following claim about the resulting packing of BU{B*} (we
call this packing Py).

80:13

ICALP 2022

80:14

Guillotine Strip Packing

(a) (b) (c)

3O0PT s0PT, 20PT

——r ——=0 =l
A

(d) (e) M

Figure 9 (a) A guillotine separable packing with items nicely packed in containers. The gray
colored rectangles are the tall items and the light-gray rectangles are containers with items nicely
packed inside. The blue line segment indicates {* at height h*. (b) Items completely packed in
[h*,OPT] are shifted by OPT vertically upward. The thick red line indicates y = h* + 1OPT
which separates the items shifted up from the items below. The dashed red line indicates the height
h* and B* is packed in the strip of sufficient width and lowest height A*. (c) The containers of type
1 (colored blue) are moved accordingly so they do not intersect y = h*. (d) The containers of type 2
(colored yellow) are moved accordingly so they do not intersect y = h*. (e) The containers in B
are bottom-left-flushed while other non-tall containers are moved accordingly to the right. The blue

vertical dashed line x = x¢ separates containers in B;” to its left hand side from other containers to

the right. (f) Final packing where tall items are bottom-left-flushed and the blue vertical dashed line
x = x1 separates items ¢ € I 4 with h; > h* to the left from other items and containers to the right.

» Lemma 3.4. The packing Py is feasible, guillotine separable and has height (3/2 +
O(e))OPT.

Proof. Since h* > OPT/2, observe that no containers are intersecting the line [0, W] x {h* +
OPT/2}. This is because any containers which were lying above the line [0, W] x {h*} before
were pushed up by OPT/2 and the height of such containers is at most OPT/2. Thus, the
first guillotine cut is applied at y = h* + OPT/2 so that we get two pieces R and Ry,p. For
the guillotine separability of the top piece R:.,, we use the fact that the packing to begin
with was guillotine separable and we have moved a subset of the items in the initial packing
vertically upwards by the same height. For the bottom piece R, which has a subset of the
initial packing, we have packed B* on the top edge (which is part of the line [0, W] x {h*}) of
another container (say B) whose width is more than the width of B*. In the guillotine cutting
sequence of this piece without the addition of B*, consider the horizontal cuts at height at
least h*. Note that there is no container lying completely above the line [0, W] x {h*} in R.

A. Khan, A. Lonkar, A. Maiti, A. Sharma, and A. Wiese

Hence, we can remove such horizontal cuts and extend the vertical cuts that were intercepted
by these horizontal cuts until they hit the topmost horizontal edge of R. Now, if we follow
this new guillotine cutting sequence, we would finally have a rectangular region with only the
container B. As there is no container in the region [le ft(B), right(B)] x [h*, h* + OPT/2],
we can pack B* in this region without violating the guillotine separability condition. Now,
observe that the height of the piece Ry, is (1 + O(g))OPT — h* and height of the piece R is
h* 4+ OPT/2. Hence the height of the packing P; is (3/2 4+ O(e))OPT. |

Our next goal is to rearrange the tall items and their containers such that the tall items
are bottom-left flushed. Let By € B denote the containers in B that contain at least one tall
item. Consider the line segment £ := [0, W] x {h*} and observe that it might be intersected
by containers in Byiqy. Let £, 0a, ..., £ be the connected components of £\ UBGBm” B. For
each j € {1,...,t} we do the following. Consider the containers in B\ By,; whose bottoms
are contained in ¢; x [OPT/2,h*] (we call them type 1 containers). We move them up
by h* — OPT/2 units. There is enough space for them since the top edge of any of these
containers lies below the line segment [0, W] x {h* + OPT/2} after shifting.

Then we take all containers in B\ By that intersect ¢; and also the line segment
[0, W] x {OPT/2} (type 2 containers). We move them up such that their respective bottom
edges are contained in £;. Again there is enough space for this since the containers have height

at most OPT/2 and hence, their top edges cannot cross the line segment [0, W]x{h*+OPT/2}.

Note that in this step we do not necessarily move the affected containers uniformly. See
Figure 9(c) and Figure 9(d) for a sketch. Note that due to the way ¢* is defined, no type 1
or type 2 container after being shifted overlaps with the region occupied by B*.

One can show that the resulting packing is still guillotine separable. In particular, there
is such a sequence that starts as follows: the first cut of this sequence is a horizontal cut
with y-coordinate h* + OPT/2. For the resulting bottom piece R, there are vertical cuts
that cut through the vertical edges of the containers in B;q;; whose height is strictly greater
than h*, denote these containers by B;z”. Let Ry, ..., Ry denote the resulting partition of
R. We can rearrange our packing by reordering the pieces Ry, ..., Ry. We reorder them
such that on the left we place the pieces containing one container from B;{;” each, sorted
non-increasingly by their heights. Then we place the remaining pieces from {Ry, ..., Ry}
(which hence, do not contain any containers in B;;”), denote their union by R’. Let the left
end of R’ be z = xg. We can assume that the guillotine cutting sequence places a vertical
cut that separates R’ from the other pieces in {Ry,..., Ry} at = 9. From Lemma 3.3,
we know that there is a container B (or possibly the case when h* = OPT/2 and we have
a line segment ¢ of width at least £;W on top of which we can pack B*) whose top is at
height h*, has width at least £* which now lies to the right of zg in R’. Thus, the region
[left(B),left(B) +e1W] x [h*,h* + OPT/2] is empty and can be used to place B*.

We change now the placement of the containers within R’. Due to our rearrangements,
no container inside R’ intersects the line segment [0, W] x {h*}, so we can assume that R’
is cut by the horizontal cut [0, W] x {h*}, let R” be the resulting bottom piece and R" be
the piece above. We first show why R is guillotine separable. First, we separate B* using
vertical guillotine cuts at its left and right edges. Then we prove that the shifting operation
for type 2 and type 1 containers does not violate guillotine separability of the packing for
any region defined by some horizontal segment [; for j € [t]. Consider any type 2 container
B’. Tts top edge was initially lying above y = h* and its bottom below OPT/2. Hence,
before shifting this container no item could have been packed such that it was in the region
[0, W] x [h*, h* + OPT/2] and was intersecting the vertically extended line segments from the
left and right edges of B’ because any item packed in [0, W] x [h*, 00) initially was shifted

80:15

ICALP 2022

80:16

Guillotine Strip Packing

upward by OPT/2. Hence, after shifting B’ such that its bottom touches y = h*, after
considering the cut y = h* in [;, extend its left and right edges vertically upward to separate
B’ using guillotine cuts. For the type 1 containers, after the aforementioned cuts observe that
all such containers have been shifted by an equal amount vertically upward and using the
fact that they were guillotine separable initially, we claim that they are guillotine separable
afterward. This is proved by considering the initial guillotine cuts that were separating such
items and shifting the horizontal cuts upward by h* — OPT/2 (equal to the distance the
type 1 containers were shifted upward by).

To show that R” is guillotine separable, observe that due to our rearrangements there
are no containers that are completely contained in R” N ([0, W] x [OPT/2, h*]). Therefore,
we can assume that the next cuts for R” are vertical cuts that contain all vertical edges of
the boxes in B,y that are contained in R”. Let RY, ..., R}, denote the resulting pieces. Like
above, we change our packing such that we reorder the pieces in RY, ..., R}, non-increasingly
by the height of the respective box in By, contained in them, and at the very right we place
the pieces from RY, ..., R}, that do not contain any container from B,y (see Figure 9(e))

Finally, we sort the tall items inside the area [J BeB,,, B non-increasingly by height so
that they are bottom-left-flushed, and we remove the containers Byqy; from B (see Figure 9(f)).
We now prove that the tall items can be sorted inside the area |5, B, B non-increasingly by
height without violating guillotine separability and feasibility. Note that the area |z, Beun B
can possibly contain some vertical items. Now, we reorder the tall items within R’ such
that they are sorted in non-increasing order of their heights. We do the same for all the
tall items on the left of R’. There may be tall items (or vertical items) on the left hand
side of R’ such that for any such item, its height is less than the the tallest tall item in R’.
Note that such tall items have to have a height of at most h*. Such items can be repeatedly
swapped with their neighboring tall item till they are in the correct position according to
the bottom-left-flushed packing of the tall items, while maintaining guillotine separability.
Such a swap operation between consecutive tall items ensures that all of the tall items and
possibly some vertical items which were initially packed in tall containers remain inside
the area g, , B- We ensure that the vertical items which were packed to the left of R’
get swapped so that they are packed on the right of all the tall items in a container. Now,
to prove that guillotine separability of the packing is maintained after all such swapping
operations, that is, after all tall items are sorted according to their heights in a non-increasing
order consider the z-coordinate (say x1) of the right edge of the shortest tall item which has
height strictly greater than h*. Observe that there were no tall containers of height strictly
greater than h* beyond = = z(, which implies x; < zy and hence, now, for the guillotine
cutting sequence, we can have a vertical guillotine cut at x = x; instead of at © = z¢, the
rest being the same as mentioned before. This yields the packing claimed by Lemma 3.1.

3.2 Algorithm for polynomial time (g + €)-approximation

First we guess a value OPT’ such that OPT < OPT’ < (1 +)OPT in n® () time (see the
full version [31] for the details). In order to keep the notation light we denote OPT’ by OPT.
We want to compute a packing of height at most (2 + O(¢))OPT using Lemma 3.1.

Intuitively, we first place the tall items in a bottom-left-flushed way. Then we guess
approximately the sizes of the boxes, place them in the free area, and place the items inside
them via guessing the relatively large items, solving an instance of the generalized assignment
problem (GAP), using NFDH for the small items, and invoking again Lemma 2.11 for the
medium items. This is similar as in, e.g., [19, 28].

A. Khan, A. Lonkar, A. Maiti, A. Sharma, and A. Wiese

Formally, first we place all items in I,y inside [0, W] x [0, (3/2 4+ ¢)OPT) such that they
are bottom-left-flushed. Then, we guess approximately the sizes of the containers in B. Note

that in polynomial time we cannot guess the sizes of the containers exactly. Let B € B.

Depending on the items packed inside B, we guess different quantities for B.

If there is only one single large item ¢ € I packed inside B then we guess i.

If B contains only items from I, then we guess the widest item packed inside B.

This defines our guessed width of B. Also, we guess all items packed inside B whose
height is at least e¢2OPT (at most O(1/e2) many), denote them by Iz. We guess the
total height of the remaining items I \ Iz approximately by guessing the quantity

h(B) := {%J €20PT. Our guessed height for B is then Zielg h(i) + h(B).

Similarly, if B contains only items from I, then we guess the highest item packed inside
B, which defines our guessed height of B. Also, we guess all items packed inside B
whose width is at least e3W (at most O(1/e3) many), denote them by I. We guess
the total width of the remaining items I \ Ij; approximately by guessing the quantity

w(B) := L%}D{?)J e3OPT and our guessed width of B is then Zielg w(i) +w(B).

If B contains only small items, then our guessed heights and widths of B are

L%@TJ e40PT and {%J e4W, respectively.

Note that here 5 = 4\Biw|’ €3 = 4‘511”' and €4 = p are chosen so that the unpacked
horizontal items, unpacked vertical items and unpacked small items due to container rounding
can be packed in containers By, (defined below), B* and Bgpau, respectively.

We have at most O(1) containers and for each container B € B we guess the type of
container B and its respective width and height (depending on the type) in n% (") time.

Additionally, we guess three containers By,.q of height 2e6OPT, By, of height eOPT,
and Bgpman of height 27eOPT and width W each that we will use to place all medium items,
and to compensate errors due to inaccuracies of our guesses for the sizes of the containers
for horizontal and small items, respectively. Let B’ denote the guessed containers (including
Bined, Bhor, and Bgpman). Since |B'| = O.(1) and the containers in B’ are not larger than
the containers in B, we can guess a placement for the containers B’ such that together with
T4y they are guillotine separable. We place the containers B,,eq, Bhor, and Bgmqy on top of
the packing of rest of the containers in B’, and I ;.

» Lemma 3.5. In time n9) we can compute a placement for the containers in B’ such
that together with the items Iy, they are guillotine separable.

Next, we place the vertical items. Recall that for each container B € B containing items
from I,., we guessed the items packed inside B whose width is at least e3W. For each such
container B we pack these items into the container B’ € B’ that corresponds to B. With a
similar technique as used for the generalized assignment problem (GAP) [19], we place all but
items with width at most e3W for each container in I,e,. Further using the PTAS for this

variant of GAP, we can ensure that items of total area at most 3¢5 - OPT - W are not packed.

Hence, items of total width at most (3e5/d)W remain unpacked as each such item has height
at least JOPT. We pack these remaining items into B*, using that each of them has a height of

at most OPT/2 and that their total width is at most |B’|-2e3W 4 (3e5/0)W < e1W = w(B*).

In other words, we fail to pack some of the vertical items since we guessed the widths of the
containers only approximately and since our polynomial time approximation algorithm for
GAP might not find the optimal packing. We use a similar procedure for the items in I},
where instead of B* we use By, in order to place the unassigned items.

80:17

ICALP 2022

80:18

Guillotine Strip Packing

» Lemma 3.6. In time n°) we can compute a placement for all items in Iyer U Ihor in

B*, Bhor, and their corresponding bozes in B'.

For the medium items we invoke again Lemma 2.11 and we place By,eq on top of the
containers in B which increases the height of the packing only by 2¢OPT.

Finally, we use NFDH again to pack the small items into their corresponding containers
in B’, which we denote by B, .,;, and Bgspau. We need Bgpqu due to inaccuracies of NFDH
and of our guesses of the container sizes.

» Lemma 3.7. In time n°M) we can compute a placement for all items in Isman in B, .
and Bsmall-

» Theorem 3.8. There is a (3/2+ ¢€)-approzimation algorithm for the guillotine strip packing
problem with a running time of n9=(1).

4 Conclusion and Open problems

We were able to show essentially tight approximation algorithms for GSP in both the
polynomial and the pseudo-polynomial settings. This was possible due to the structure of
the respective optimal packings since they are guillotine separable. However, it is unclear
how to obtain such a structured packing in the general case of SP, and the question remains
to close the gap between the best approximation guarantee of (5/3 4 ¢) and the lower bound
of 3/2. Another interesting open problem related to guillotine cuts is to find out whether
there exists a PTAS for the 2D guillotine geometric knapsack (2GGK) problem.

—— References

1 Anna Adamaszek, Sariel Har-Peled, and Andreas Wiese. Approximation schemes for inde-
pendent set and sparse subsets of polygons. J. ACM, 66(4):29:1-29:40, 2019.

2 Brenda S Baker, Edward G Coffman, Jr, and Ronald L Rivest. Orthogonal packings in two
dimensions. SIAM Journal on computing, 9(4):846-855, 1980.

3 Nikhil Bansal, Jose R Correa, Claire Kenyon, and Maxim Sviridenko. Bin packing in multiple
dimensions: inapproximability results and approximation schemes. Mathematics of Operations
Research, 31:31-49, 2006.

4 Nikhil Bansal and Arindam Khan. Improved approximation algorithm for two-dimensional
bin packing. In SODA, pages 13-25, 2014.

5 Nikhil Bansal, Andrea Lodi, and Maxim Sviridenko. A tale of two dimensional bin packing.
In FOCS, pages 657-666, 2005.

6 Istvdn Borgulya. An eda for the 2d knapsack problem with guillotine constraint. Central
European Journal of Operations Research, 27(2):329-356, 2019.

7 Adam L. Buchsbaum, Howard J. Karloff, Claire Kenyon, Nick Reingold, and Mikkel Thorup.
OPT versus LOAD in dynamic storage allocation. SIAM J. Comput., 33(3):632-646, 2004.

8 Alberto Caprara, Andrea Lodi, and Michele Monaci. Fast approximation schemes for two-stage,
two-dimensional bin packing. Mathematics of Operations Research, 30(1):150-172, 2005.

9 Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation
and online algorithms for multidimensional bin packing: A survey. Computer Science Review,
24:63-79, 2017.

10 Nicos Christofides and Charles Whitlock. An algorithm for two-dimensional cutting problems.
Operations Research, 25(1):30-44, 1977.

11 Francois Clautiaux, Ruslan Sadykov, Frangois Vanderbeck, and Quentin Viaud. Combining
dynamic programming with filtering to solve a four-stage two-dimensional guillotine-cut
bounded knapsack problem. Discrete Optimization, 29:18-44, 2018.

A. Khan, A. Lonkar, A. Maiti, A. Sharma, and A. Wiese

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Francois Clautiaux, Ruslan Sadykov, Frangois Vanderbeck, and Quentin Viaud. Pattern-based
diving heuristics for a two-dimensional guillotine cutting-stock problem with leftovers. FURO
Journal on Computational Optimization, 7(3):265-297, 2019.

Edward G. Coffman, Jr, Michael R. Garey, David S. Johnson, and Robert E. Tarjan. Per-
formance bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on
Computing, 9:808-826, 1980.

Max A Deppert, Klaus Jansen, Arindam Khan, Malin Rau, and Malte Tutas. Peak demand
minimization via sliced strip packing. In APPROX/RANDOM, volume 207, pages 21:1-21:24,
2021.

Alessandro Di Pieri. Algorithms for two-dimensional guillotine packing problems. Master’s
thesis, University of Padova, Italy, 2013.

Mohammad Dolatabadi, Andrea Lodi, and Michele Monaci. Exact algorithms for the two-
dimensional guillotine knapsack. Computers & Operations Research, 39(1):48-53, 2012.
Fabio Furini, Enrico Malaguti, and Dimitri Thomopulos. Modeling two-dimensional guillotine
cutting problems via integer programming. INFORMS Journal on Computing, 28(4):736-751,
2016.

Waldo Gélvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Kamyar Khodamoradi. Approx-
imation algorithms for demand strip packing. In APPROX/RANDOM, volume 207, pages
20:1-20:24, 2021.

Waldo Gélvez, Fabrizio Grandoni, Salvatore Ingala, Sandy Heydrich, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via L-packings. ACM Trans. Algorithms,
17(4):33:1-33:67, 2021.

Waldo Gaélvez, Fabrizio Grandoni, Salvatore Ingala, and Arindam Khan. Improved pseudo-
polynomial-time approximation for strip packing. In FSTTCS, pages 9:1-9:14, 2016.

Waldo Gaélvez, Fabrizio Grandoni, Arindam Khan, Diego Ramirez-Romero, and Andreas
Wiese. Improved approximation algorithms for 2-dimensional knapsack: Packing into multiple
l-shapes, spirals, and more. In SoCG, volume 189 of LIPIcs, pages 39:1-39:17, 2021.

Waldo Gélvez, Arindam Khan, Mathieu Mari, Tobias Mémke, Madhusudhan Reddy Pittu, and
Andreas Wiese. A (2+¢)-approximation algorithm for maximum independent set of rectangles.
CoRR, abs/2106.00623, 2021. arXiv:2106.00623.

P. C. Gilmore and Ralph E. Gomory. Multistage cutting stock problems of two and more
dimensions. Operations research, 13(1):94-120, 1965.

Rolf Harren, Klaus Jansen, Lars Priadel, and Rob van Stee. A (5/3 + ¢)-approximation for
strip packing. Computational Geometry, 47(2):248-267, 2014.

Soren Henning, Klaus Jansen, Malin Rau, and Lars Schmarje. Complexity and inapproxim-
ability results for parallel task scheduling and strip packing. Theory of Computing Systems,
64(1):120-140, 2020.

Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM, 32(1):130-136, 1985.

Klaus Jansen and Malin Rau. Closing the gap for pseudo-polynomial strip packing. In ESA,
volume 144 of LIPIcs, pages 62:1-62:14, 2019.

Klaus Jansen and Guochuan Zhang. On rectangle packing: maximizing benefits. In SODA,
pages 204-213, 2004.

Claire Kenyon and Eric Rémila. A near-optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research, 25(4):645-656, 2000.

Arindam Khan. Approximation algorithms for multidimensional bin packing. PhD thesis,
Georgia Institute of Technology, 2015.

Arindam Khan, Aditya Lonkar, Arnab Maiti, Amatya Sharma, and Andreas Wiese. Tight
approximation algorithms for two dimensional guillotine strip packing. arXiv preprint, 2022.
arXiv:2202.05989.

80:19

ICALP 2022

http://arxiv.org/abs/2106.00623
http://arxiv.org/abs/2202.05989

80:20

Guillotine Strip Packing

32

33

34

35

36

37

38
39

40

41

42

43

44

45

46

47

Arindam Khan, Arnab Maiti, Amatya Sharma, and Andreas Wiese. On guillotine separable
packings for the two-dimensional geometric knapsack problem. In SoCG, volume 189, pages
48:1-48:17, 2021.

Arindam Khan and Eklavya Sharma. Tight approximation algorithms for geometric bin
packing with skewed items. In APPROX/RANDOM, volume 207 of LIPIcs, pages 22:1-22:23,
2021.

Andrea Lodi, Michele Monaci, and Enrico Pietrobuoni. Partial enumeration algorithms for
two-dimensional bin packing problem with guillotine constraints. Discrete Applied Mathematics,
217:40-47, 2017.

Michael L McHale and Roshan P Shah. Cutting the guillotine down to size. PC Al, 13:24-26,
1999.

Joseph S. B. Mitchell. Approximating maximum independent set for rectangles in the plane.
CoRR, abs/2101.00326, 2021. arXiv:2101.00326.

Giorgi Nadiradze and Andreas Wiese. On approximating strip packing with a better ratio
than 3/2. In SODA, pages 1491-1510, 2016.

Janos Pach and Gabor Tardos. Cutting glass. In SoCG, pages 360-369, 2000.

Enrico Pietrobuoni. Two-dimensional bin packing problem with guillotine restrictions. PhD
thesis, University of Bologna, Italy, 2015.

Jakob Puchinger, Glinther R Raidl, and Gabriele Koller. Solving a real-world glass cutting
problem. In Furopean Conference on Evolutionary Computation in Combinatorial Optimization,
pages 165—176. Springer, 2004.

Ingo Schiermeyer. Reverse-fit: A 2-optimal algorithm for packing rectangles. In European
Symposium on Algorithms, pages 290-299. Springer, 1994.

W Schneider. Trim-loss minimization in a crepe-rubber mill; optimal solution versus heuristic
in the 2 (3)-dimensional case. Furopean Journal of Operational Research, 34(3):273-281, 1988.
Steven S. Seiden and Gerhard J. Woeginger. The two-dimensional cutting stock problem
revisited. Mathematical Programming, 102(3):519-530, 2005.

Daniel Dominic Sleator. A 2.5 times optimal algorithm for packing in two dimensions. Inf.
Process. Lett., 10(1):37-40, 1980.

A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM Journal
on Computing, 26(2):401-409, 1997.

Paul E. Sweeney and Elizabeth Ridenour Paternoster. Cutting and packing problems: a
categorized, application-orientated research bibliography. Journal of the Operational Research
Society, 43(7):691-706, 1992.

Lijun Wei and Andrew Lim. A bidirectional building approach for the 2d constrained guillotine
knapsack packing problem. FEuropean Journal of Operational Research, 242(1):63-71, 2015.

http://arxiv.org/abs/2101.00326

	1 Introduction
	1.1 Our Contribution
	1.2 Other related work

	2 Pseudo-polynomial time approximation scheme
	2.1 Proof of Structural Lemma 1
	2.2 Algorithm

	3 Polynomial time (3/2+epsilon)-approximation
	3.1 Proof of Structural Lemma 2
	3.2 Algorithm for polynomial time (3/2+epsilon)-approximation

	4 Conclusion and Open problems

