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Abstract
Lovász (1967) showed that two graphs G and H are isomorphic if and only if they are homomorphism
indistinguishable over the class of all graphs, i.e. for every graph F , the number of homomorphisms
from F to G equals the number of homomorphisms from F to H. Recently, homomorphism
indistinguishability over restricted classes of graphs such as bounded treewidth, bounded treedepth
and planar graphs, has emerged as a surprisingly powerful framework for capturing diverse equivalence
relations on graphs arising from logical equivalence and algebraic equation systems.

In this paper, we provide a unified algebraic framework for such results by examining the
linear-algebraic and representation-theoretic structure of tensors counting homomorphisms from
labelled graphs. The existence of certain linear transformations between such homomorphism tensor
subspaces can be interpreted both as homomorphism indistinguishability over a graph class and
as feasibility of an equational system. Following this framework, we obtain characterisations of
homomorphism indistinguishability over several natural graph classes, namely trees of bounded
degree, graphs of bounded pathwidth (answering a question of Dell et al. (2018)), and graphs of
bounded treedepth.
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1 Introduction

Representations in terms of homomorphism counts provide a surprisingly rich view on
graphs and their properties. Homomorphism counts have direct connections to logic [14,
17, 27], category theory [12, 34], the graph isomorphism problem [13, 14, 27], algebraic
characterisations of graphs [13], and quantum groups [32]. Counting subgraph patterns
in graphs has a wide range of applications, for example in graph kernels (see [24]) and
motif counting (see [1, 33]). Homomorphism counts can be used as a flexible basis for
counting all kinds of substructures [11], and their complexity has been studied in great detail
(e.g. [8, 9, 11, 39]). It has been argued in [18] that homomorphism counts are well-suited as
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70:2 Homomorphism Tensors and Linear Equations

a theoretical foundation for analysing graph embeddings and machine learning techniques
on graphs, both indirectly through their connection with graph neural networks via the
Weisfeiler–Leman algorithm [14, 35, 46] and directly as features for machine learning on
graphs. The latter has also been confirmed experimentally [4, 25, 37].

The starting point of the theory is an old result due to Lovász [27]: two graphs G, H
are isomorphic if and only if for every graph F , the number hom(F,G) of homomorphisms
from F to G equals hom(F,H). For a class F of graphs, we say that G and H are
homomorphism indistinguishable over F if and only if hom(F,G) = hom(F,H) for all
F ∈ F . A beautiful picture that has only emerged in the last few years shows that
homomorphism indistinguishability over natural graph classes, such as paths, trees, or planar
graphs, characterises a variety of natural equivalence relations on graphs.

Broadly speaking, there are two types of such results, the first relating homomorphism
indistinguishability to logical equivalence, and the second giving algebraic characterisations
of homomorphism equivalence derived from systems of linear (in)equalities for graph iso-
morphism. Examples of logical characterisations of homomorphism equivalence are the
characterisation of homomorphism indistinguishability over graphs of treewidth at most k
in terms of the (k + 1)-variable fragment of first-order logic with counting [14] and the
characterisation of homomorphism indistinguishability over graphs of treedepth at most k in
terms of the quantifier-rank-k fragment of first-order logic with counting [17]. Results of this
type have also been described in a general category theoretic framework [12, 34]. Examples
of equational characterisations are the characterisation of homomorphism indistinguishability
over trees in terms of fractional isomorphism [13, 14, 44], which may be viewed as the LP
relaxation of a natural ILP for graph isomorphism, and a generalisation to homomorphism
indistinguishability over graph of bounded treewidth in terms of the Sherali–Adams hierarchy
over that ILP [3, 13, 21, 14, 31]. Further examples include a characterisation of homomorph-
ism indistinguishability over paths in terms of the same system of equalities by dropping
the non-negativity constraints of fractional isomorphism [13], and a characterisation of
homomorphism indistinguishability over planar graphs in terms of quantum isomorphism [32].
Remarkably, quantum isomorphism is derived from interpreting the same system of linear
equations over C*-algebras [2].

1.1 Results
Two questions that remained open in [13] are (1) whether the equational characterisation
of homomorphism indistinguishability over paths can be generalised to graphs of bounded
pathwidth in a similar way as the characterisation of homomorphism indistinguishability over
trees can be generalised to graphs of bounded treewidth, and (2) whether homomorphism
indistinguishability over graphs of bounded degree suffices to characterise graphs up to
isomorphism. In this paper, we answer the first question affirmatively.

▶ Theorem 1. For every k ≥ 1, the following are equivalent for two graphs G and H:
1. G and H are homomorphism indistinguishable over graphs of pathwidth at most k.
2. The (k+ 1)-st level relaxation Lk+1

iso (G,H) of the standard ILP for graph isomorphism has
a rational solution.

The detailed description of the system Lk+1
iso (G,H) is provided in Section 5. In fact, we also

devise an alternative system of linear equations PWk+1(G,H) characterising homomorphism
indistinguishability over graphs of pathwidth at most k. The definition of this system turns
out to be very natural from the perspective of homomorphism counting, and as we explain
later, it forms a fruitful instantiation of a more general representation-theoretic framework
for homomorphism indistinguishability.
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Moreover, we obtain an equational characterisation of homomorphism indistinguishability
over graphs of bounded treedepth. The resulting system TDk(G,H) is very similar to
Lkiso(G,H) and PWk(G,H), except that variables are indexed by (ordered) k-tuples of
variables rather than sets of at most k variables, which reflects the order induced by the
recursive definition of treedepth.

▶ Theorem 2. For every k ≥ 1, the following are equivalent for two graphs G and H:
1. G and H are homomorphism indistinguishable over graphs of treedepth at most k,
2. The linear systems of equations TDk(G,H) has a non-negative rational solution,
3. The linear systems of equations TDk(G,H) has a rational solution.

Along with [17], the above theorem implies that the logical equivalence of two graphs
G and H over the quantifier-rank-k fragment of first-order logic with counting can be
characterised by the feasibility of the system TDk(G,H) of linear equations.

We cannot answer the second open question from [13], but we prove a partial negative
result: homomorphism indistinguishability over trees of bounded degree is strictly weaker
than homomorphism indistinguishability over all trees.

▶ Theorem 3. For every integer d ≥ 1, there exist graphs G and H such that G and H

are homomorphism indistinguishable over trees of degree at most d, but G and H are not
homomorphism indistinguishable over the class of all trees.

In conjunction with [13], the above theorem yields the following corollary: counting
homomorphisms from trees of bounded degree is strictly less powerful than the classical
Colour Refinement algorithm [20], in terms of their ability to distinguish non-isomorphic
graphs.

To prove these results, we develop a general theory that enables us to derive some of
the existing results as well as the new results in a unified algebraic framework exploiting a
duality between algebraic varieties of “tensor maps” derived from homomorphism counts
over families of rooted graphs and equationally defined equivalence relations, which are based
on transformations of graphs in terms of unitary or, more often, pseudo-stochastic or doubly-
stochastic matrices. (We call a matrix over the complex numbers pseudo-stochastic if its row
and column sums are all 1, and we call it doubly-stochastic if it is pseudo-stochastic and all
its entries are non-negative reals.) The foundations of this theory have been laid in [13] and,
mainly, [32]. Some ideas can also be traced back to the work on homomorphism functions
and connection matrices [15, 28, 29, 40], and a similar duality, called Galois connection there,
that is underlying the algebraic theory of constraint satisfaction problems [6, 7, 42, 47].

1.2 Techniques
To explain our core new ideas, let us start from a simple and well-known result: two symmetric
real matrices A, B are co-spectral if and only if for every k ≥ 1 the matrices Ak and Bk

have the same trace. If A, B are the adjacency matrices of two graph G, H, the latter can
be phrased graph theoretically as: for every k, G and H have the same number of closed
walks of length k, or equivalently, the numbers of homomorphisms from a cycle Ck of length
k to G and to H are the same. Thus, G and H are homomorphism indistinguishable over
the class of all cycles if and only if they are co-spectral. Note next that the graphs, or
their adjacency matrices A, B, are co-spectral if and only if there is a unitary matrix U (or
orthogonal matrix, but we need to work over the complex numbers) such that UA = BU .
Now, in [14, 13] it was proved that G, H are homomorphism indistinguishable over the class
of all paths if and only if there is a pseudo-stochastic matrix X such that XA = BX, and
they are homomorphism indistinguishable over the class of all trees if and only if there is
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70:4 Homomorphism Tensors and Linear Equations

a doubly-stochastic matrix X such that XA = BX. From an algebraic perspective, the
transition from a unitary matrix in the cycle result to a pseudo-stochastic in the path result
is puzzling: where unitary matrices are very natural, pseudo-stochastic matrices are much
less so from an algebraic point of view. Moving on to the tree result, we suddenly add
non-negativity constraints – where do they come from? Our theory presented in Section 3
provides a uniform and very transparent explanation for the three results. It also allows us
to analyse homomorphism indistinguishability over d-ary trees, for every d ≥ 1, and to prove
that it yields a strict hierarchy of increasingly finer equivalence relations.

Now suppose we want to extend these results to edge coloured graphs. Each edge-coloured
graph corresponds to a family of matrices, one for each colour. Theorems due to Specht [41]
and Wiegmann [45] characterise families of matrices that are simultaneously equivalent
with respect to a unitary transformation. Interpreted over coloured graphs, the criterion
provided by these theorems can be interpreted as homomorphism indistinguishability over
coloured cycles. One of our main technical contributions is a variant of these theorems
that establishes a correspondence between simultaneous equivalence with respect to pseudo-
stochastic transformations and homomorphism indistinguishability over coloured paths. The
proof is based on basic representation theory, in particular the character theory of semisimple
algebras.

Interpreting graphs of bounded pathwidth in a “graph-grammar style” over coloured
paths using graphs of bounded size as building blocks, we give an equational characterisation
of homomorphism indistinguishability over graphs of pathwidth at most k. After further
manipulations, we even obtain a characterisation in terms of a system of equations that are
derived by lifting the basic equations for paths in a Sherali–Adams style. (The basic idea of
these lifted equations goes back to [3].) This answers the open question from [13] stated above.
In the same way, we can lift the characterisations of homomorphism indistinguishability over
trees to graphs of treewidth k, and we can also establish a characterisation of homomorphism
indistinguishability over graphs of “cyclewidth” k, providing a uniform explanation for all these
results. Finally, we combine these techniques to prove a characterisation of homomorphism
indistinguishability over graphs of treedepth k in terms of a novel system of linear equations.

2 Preliminaries

We briefly state the necessary definitions and, along the way, introduce our notation. We
assume familiarity with elementary definitions from graph theory and linear algebra. As
usual, let N = {1, 2, 3, . . . }, [n] = {1, . . . , n}, and (n) = (1, . . . , n). All mentioned graphs are
simple, loopless, and undirected.

2.1 Labelled Graphs and Tensor Maps
Labelled and Bilabelled Graphs. For ℓ ∈ N, an ℓ-labelled graph F is a tuple F = (F,v)
where F is a graph and v ∈ V (F )ℓ. The vertices in v are not necessarily distinct, i.e. vertices
may have several labels.

The operation of gluing two ℓ-labelled graphs F = (F,u) and F ′ = (F ′,u′) yields the
ℓ-labelled graph F ⊙ F ′ obtained by taking the disjoint union of F and F ′ and pairwise
identifying the vertices ui and vi to become the i-th labelled vertex, for i ∈ [ℓ], and removing
any multiedges in the process. In fact, since we consider homomorphisms into simple graphs,
multiedges can always be omitted. Likewise, self-loops can also be disregarded since the
number of homomorphisms F → G where F has a self-loop and G does not is always zero.
We henceforth tacitly assume that all graphs are simple.
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For ℓ1, ℓ2 ∈ N, an (ℓ1, ℓ2)-bilabelled graph F is a tuple (F,u,v) for u ∈ V (F )ℓ1 , v ∈
V (F )ℓ2 . If u = (u1, . . . , uℓ1) and v = (v1, . . . , vℓ2), it is usual to say that the vertex ui, resp.
vi, is labelled with the i-th in-label, resp. out-label.

The reverse of an (ℓ1, ℓ2)-bilabelled graph F = (F,u,v) is defined to be the (ℓ2, ℓ1)-
bilabelled graph F ∗ = (F,v,u) with roles of in- and out-labels interchanged. The concat-
enation or series composition of an (ℓ1, ℓ2)-bilabelled graph F = (F,u,v) and an (ℓ2, ℓ3)-
bilabelled graph F ′ = (F ′,u′,v′), ℓ3 ∈ N, denoted by F · F ′ is the (ℓ1, ℓ3)-bilabelled graph
obtained by taking the disjoint union of F and F ′ and identifying for all i ∈ [ℓ2] the vertices
vi and u′

i. The in-labels of F · F ′ lie on u while its out-labels are positioned on v′. The
parallel composition of (ℓ1, ℓ2)-bilabelled graphs F = (F,u,v) and F ′ = (F ′,u′,v′) denoted
by F ⊙ F ′ is obtained by taking the disjoint union of F and F ′ and identifying ui with u′

i,
and vj with with v′

j for i ∈ [ℓ1] and j ∈ [ℓ2].

Tensors and Tensor Maps. For a set V and k ∈ N, the set of all functions X : V k → C
forms a complex vector space denoted by CV k . We call the elements of CV k the k-dimensional
tensors over V . We identify 0-dimensional tensors with scalars, i.e. CV 0 = C. Furthermore,
1-dimensional tensors are vectors in CV , 2-dimensional tensors are matrices in CV×V , et
cetera.

A k-dimensional tensor map on graphs is a function φ that maps graphsG to k-dimensional
tensors φG ∈ CV (G)k . A k-dimensional tensor map φ is equivariant if for all isomorphic
graphs G and H, all isomorphisms f from G to H, and all v ∈ V (G)k it holds that
φG(v) = φH(f(v)).

Homomorphism Tensors and Homomorphism Tensor Maps. For graphs F and G, let
hom(F,G) denote the number of homomorphisms from F to G, i.e. the number of mappings
h : V (F ) → V (G) such that v1v2 ∈ E(F ) implies h(v1)h(v2) ∈ E(G). For an ℓ-labelled graph
F = (F,v) and w ∈ V (G)ℓ, let hom(F , G,w) denote the number of homomorphisms h from
F to G such that h(vi) = wi for all i ∈ [ℓ]. Analogously, for an (ℓ1, ℓ2)-bilabelled graph
F ′ = (F ′,u,v) and x ∈ V (G)ℓ1 , y ∈ V (G)ℓ2 , let hom(F ′, G,x,y) denote the number of
homomorphisms h : F ′ → G such that h(ui) = xi and h(vj) = yj for all i ∈ [ℓ1], j ∈ [ℓ2].
More succinctly, we write FG ∈ CV (G)ℓ for the homomorphism tensor defined by letting
FG(w) := hom(F , G,w) for all w ∈ V (G)ℓ. Similarly, for a bilabelled graph F ′, F ′

G ∈
CV (G)ℓ1 ×V (G)ℓ2 is the matrix defined as F ′

G(x,y) := hom(F , G,x,y) for all x ∈ V (G)ℓ1 ,
y ∈ V (G)ℓ2 .

Letting this construction range over all right-hand side graphs G, the map G 7→ FG

becomes a tensor map, the homomorphism tensor map induced by F . It is easy to see that
homomorphism tensor maps are equivariant.

Homomorphism tensors give rise to the complex vector spaces of our main interest
and their endomorphisms. For a set R of ℓ-labelled graphs, the tensors RG for R ∈ R
span a subspace of CV (G)ℓ , which is denoted by CRG. Moreover, the tensors SG for an
(ℓ, ℓ)-bilabelled graph S induces an endomorphisms of CV (G)ℓ .

▶ Example 4. For k ≥ 1, let 1k denote the labelled graph consisting of k isolated vertices
with distinct labels (1, . . . , k). Then, 1kG is the uniform tensor in CV (G)k with every entry
equal to 1. Let A denote the (1, 1)-bilabelled graph

(
1 2 , (1), (2)

)
. For every graph G, the

matrix AG is the adjacency matrix of G.

ICALP 2022
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Algebraic and Combinatorial Operations on Homomorphism Tensor Maps. Tensor maps
naturally admit a variety of algebraic operations. These include linear combination, complex
conjugation, and permutation of coordinates, which are readily defined. Crucially, many oper-
ations when applied to homomorphism tensor maps correspond to operations on (bi)labelled
graphs. This observation due to [30, 32] is illustrated by the following examples.

Sum of Entries = Dropping Labels. Given a k-labelled graph F = (F,u), let soe(F )
denote the 0-labelled graph (F, ()). Then, for every graph G, soe(F )G = hom(F,G) =∑

v∈V (G)k FG(v) =: soe(FG).
Matrix Product = Series Composition. Let an (ℓ1, ℓ2)-bilabelled graph F = (F,u,v) and
an (ℓ2, ℓ3)-bilabelled graph F ′ = (F ′,u′,v′) be given. Then for every graph G, vertices
x ∈ V (G)ℓ1 , and y ∈ V (G)ℓ2 , (F · F ′)G(x,y) =

∑
w∈V (G)ℓ2 FG(x,w)F ′

G(w,y) =:
(FG · F ′

G)(x,y). A similar operation corresponds to the matrix-vector product, where
F ′ is assumed to be ℓ2-labelled.
Schur Product = Parallel Composition. The parallel composition F ⊙ F ′ of two k-
labelled graphs F = (F,u) and F ′ = (F ′,u′) corresponds to the Schur product of the
homomorphism tensors. That is, for every graph G and v ∈ V (G)k, (F ⊙ F )G(v) =
FG(v)F ′

G(v) =: (FG ⊙ F ′
G)(v). Moreover, the inner-product of ℓ-labelled graphs F , F ′

can be defined by
〈
F ,F ′〉 := soe(F ⊙ F ′). It corresponds to the standard inner-product

on the tensor space.

2.2 Representation Theory of Involution Monoids
We recall standard notions from representation theory, cf. [26]. A monoid Γ is a possibly
infinite set equipped with an associative binary operation and an identity element denoted
by 1Γ. An example for a monoid is the endomorphism monoid EndV for a vector space V
over C with composition as binary operation and idV as identity element. A monoid
representation of Γ is a map φ : Γ → EndV such that φ(1Γ) = idV and φ(gh) = φ(g)φ(h)
for all g, h ∈ Γ. The representation is finite-dimensional if V is finite-dimensional. For every
monoid Γ, there exists a representation, for example the trivial representation Γ → End{0}
given by g 7→ id{0}.

Let φ : Γ → End(V ) and ψ : Γ → End(W ) be two representations. Then φ and ψ are
equivalent if there exists a vector space isomorphism X : V → W such that Xφ(g) = ψ(g)X
for all g ∈ Γ. Moreover, φ is a subrepresentation of ψ if V ≤ W and ψ(g) restricted to V equals
φ(g) for all g ∈ Γ. A representation φ is simple if its only subrepresentations are the trivial
representation and φ itself. The direct sum of φ and ψ denoted by φ⊕ ψ : Γ → End(V ⊕W )
is the representation that maps g ∈ Γ to φ(g) ⊕ ψ(g) ∈ End(V ) ⊕ End(W ) ≤ End(V ⊕W ).
A representation φ is semisimple if it is the direct sum of simple representations.

Let φ : Γ → EndV be a representation with subrepresentations ψ′ : Γ → EndV ′ and
ψ′′ : Γ → EndV ′′. Then the restriction of φ to V ′ ∩ V ′′ is a representation as well, called the
intersection of ψ′ and ψ′′. For a set S ⊆ V , define the subrepresentation of φ generated by S
as the intersection of all subrepresentations ψ′ : Γ → EndV ′ of φ such that S ⊆ V ′.

The character of a representation φ is the map χφ : Γ → C defined as g 7→ tr(φ(g)). Its
significance stems from the following theorem, which can be traced back to Frobenius and
Schur [16]. For a contemporary proof, consult [26] from whose Theorem 7.19 the statement
follows.

▶ Theorem 5 (Frobenius–Schur [16]). Let Γ be a monoid. Let φ : Γ → End(V ) and ψ : Γ →
End(W ) be finite-dimensional semisimple representations. Then φ and ψ are equivalent if
and only if χφ = χψ.
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The monoids studied in this work are equipped with an additional structure which ensures
that their finite-dimensional representations are always semisimple: An involution monoid
is a monoid Γ with a unary operation ∗ : Γ → Γ such that (gh)∗ = h∗g∗ and (g∗)∗ = g for
all g, h ∈ Γ. Note that EndV is an involution monoid with the adjoint operation X 7→ X∗.
Representations of involution monoids must preserve the involution operations. Thereby,
they correspond to representations of ∗-algebras.

▶ Lemma 6. Let Γ be an involution monoid. Every finite-dimensional representation of Γ is
semisimple.

Proof. Let φ : Γ → EndV be a finite-dimensional representation of Γ. It suffices to show
that for every subrepresentation ψ : Γ → EndW of φ there exists a subrepresentation
ψ′ : Γ → EndW ′ of φ such that φ = ψ ⊕ ψ′, i.e. φ acts as ψ on W and as ψ′ on W ′. Set
W ′ to be the orthogonal complement of W in V . It has to be shown that φ(g) ∈ EndV
for every g ∈ Γ can be restricted to an endomorphism of W ′. Let w ∈ W and w′ ∈ W ′ be
arbitrary. Then ⟨φ(g)w′, w⟩ = ⟨w′, φ(g)∗w⟩ = ⟨w′, φ(g∗)w⟩ = 0 since φ(g∗) maps W → W

and W ⊥ W ′. Hence, the imφ(g) is contained in the orthogonal complement of W , which
equals W ′. Clearly, φ = ψ ⊕ ψ′. ◀

2.3 Path and Cycle Decompositions of Bilabelled Graphs
We recall the well-studied notions of path and tree decompositions. For illustrating subsequent
arguments, we introduce cycle decompositions.

▶ Definition 7. A decomposition of a graph G is a pair (F, β) where F is a graph and β is
map V (F ) → 2V (G) such that
1. the union of the β(v) for v ∈ V (F ) is equal to V (G),
2. for every edge e ∈ E(G) there exists v ∈ V (F ) such that e ⊆ β(v),
3. for every vertex u ∈ V (G) the set of vertices v ∈ V (F ) such that u ∈ β(v) is connected

in F .
The sets β(v) for v ∈ V (F ) are called the bags of (F, β). The width of (F, β) is the maximum
over all |β(v)| + 1 for v ∈ V (F ). A decomposition (F, β) is called a tree decomposition if F is
a tree, a path decomposition if F is a path, and a cycle decomposition if F is a cycle. The tree-
/ path- / cyclewidth of a graph G is the minimum width of a tree/path/cycle decomposition
of G.

Let k ∈ N. A leaf bag of a path decomposition (P, β) is a bag β(v) such that v ∈ V (P )
has degree 1. A path decomposition of a (k + 1, k + 1)-bilabelled graph F = (F,u,v) is a
path decomposition (P, β) of the underlying graph F such that the leaf bags consist precisely
of the vertices occurring (possibly repeatedly) in u and in v, respectively. A (k + 1, k + 1)-
bilabelled graph F is said to be of pathwidth at most k if its underlying graph admits a path
decomposition of width at most k with this property.

Let PWk denote the set of all (k + 1, k + 1)-bilabelled graphs of pathwidth at most k.
Every unlabelled graph F of pathwidth at most k can be turned into a (k+1, k+1)-bilabelled
graph F = (F,u,v) of pathwidth at most k by assigning labels to the vertices u,v ∈ V (F )k+1

in the leaf bags. The set PWk is closed under concatenation and taking reverses. The
identity graph I = (I, (1, . . . , k + 1), (1, . . . , k + 1)) with V (I) = [k + 1], E(I) = ∅ is the
multiplicative identity under concatenation. Hence, PWk forms an involution monoid. A
generating set for PWk under these operations is called a k-basal set:

ICALP 2022
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...

1 1

2 2

k k

k + 1 k + 1

(a) Identity graph I.

...

...

1 1

i i

j j

k + 1 k + 1

(b) Adjacency graph Aij .

...

...

...

1 1

i i

j − 1 j − 1

j j

j + 1 j + 1

k + 1 k + 1

(c) Identification graph Iij .

...

...

1 1

i− 1 i− 1

i i

i+ 1 i+ 1

k + 1 k + 1

(d) Forgetting graph F i.

Figure 1 Basal graphs from Lemma 9 in wire notation of [32]: A vertex carries in-label (out-label)
i if it is connected to the number i on the left (right) by a wire. Actual edges and vertices of the
graph are depicted in black.

▶ Definition 8. A finite set Bk of (k + 1, k + 1)-bilabelled graphs is called a k-basal set if it
satisfies the following properties:
1. Bk ⊆ PWk,
2. the identity graph I is contained in Bk,
3. for every B ∈ B, the reverse graph B∗ also belongs to B, and,
4. every P ∈ PWk can be obtained by concatenating a sequence of elements from B.

Concrete examples of k-basal sets can be constructed for every k as described in Lemma 9
and Figure 1. In fact, in all what follows, every k-basal set can be assumed to be this
particular k-basal set.

▶ Lemma 9. The set Bk consisting of the following (k+ 1, k+ 1)-bilabelled graphs is k-basal.
For 1 ≤ i ̸= j ≤ k + 1,

the identity graph I = (I, (1, . . . , k + 1), (1, . . . , k + 1)) with V (I) = [k + 1], E(I) = ∅,
the adjacency graphs Aij = (Aij , (k+ 1), (k+ 1)) with V (Aij) = [k+ 1] and E(A) = {ij},
the identification graphs Iij = (Iij , (1, . . . , i, i+1, . . . , j−1, i, j+1, . . . , k+1), (1, . . . , i, i+
1, . . . , j − 1, i, j + 1, . . . , k + 1)) with V (Iij) = [k + 1] \ {j} and E(Iij) = ∅, and
the forgetting graphs F i = (F i, (1, . . . , k + 1), (1, . . . , i − 1, i′, i + 1, . . . , k + 1)) with
V (F i) = [k + 1] ∪ {i′} and E(F i) = ∅.

Proof. Items 1 and 3 of Definition 8 are clear. For Item 4, observe that every P = (P,v,v) ∈
PWk such that all vertices of P are labelled with corresponding in- and out-labels coinciding
can be written as the concatenation of

∏
ij∈I Aij for I = E(P ) with the Iij for all i ̸= j

such that vi = vj . Arbitrary Q ∈ PWk can then be obtained as the concatenation of such
P interleaved with F i for certain i. This corresponds to linking adjacent bags of the path
decomposition together. ◀

Crucial is the following proposition which is immediate from the above observations:

▶ Proposition 10. Let Bk denote a k-basal set. If F is a graph of pathwidth at most k then
there exist B1, . . . ,Br ∈ Bk such that hom(F,G) = soe(B1

G · · · Br
G) for all graphs G.

The constructions for graphs of bounded pathwidth carry over to graphs of bounded
cyclewidth (Definition 7). Let F = (F,u,v) be a (k+ 1, k+ 1)-bilabelled graph of pathwidth
at most k. Let F id denote the (k + 1)-labelled graph obtained by identifying the elements
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of u and v element-wise. Every unlabelled graph C of cyclewidth k can be associated with
a (k + 1, k + 1)-bilabelled graph C of pathwidth k such that C is the unlabelled graph
underlying C id. Observe that soe(F id) = tr(F ).

▶ Proposition 11. Let Bk denote a k-basal set. If F is a graph of cyclewidth at most k then
there exist B1, . . . ,Br ∈ Bk such that hom(F,G) = tr(B1

G · · · Br
G) for all graphs G.

3 Homomorphisms from Trees, Paths, and Trees of Bounded Degree

Two graphs G, H with adjacency matrices AG, AH are isomorphic if and only if there is
a matrix X over the non-negative integers such that XAG = AHX and X1 = XT1 = 1,
where 1 is the all-ones vector. Writing the constraints as linear equations whose variables are
the entries of X, we obtain a system Fiso(G,H) that has a non-negative integer solution if
and only if G and H are isomorphic. A combination of results from [44] and [14] shows that
Fiso(G,H) has a non-negative rational solution if and only if G and H are homomorphism
indistinguishable over the class of trees, and by [13], Fiso(G,H) has an arbitrary rational
solution if and only if G and H are homomorphism indistinguishable over the class of
paths. We devise a more general framework connecting homomorphism indistinguishability
and Fiso(G,H)-style equations, with paths and trees as two special cases. On the way, we
characterise homomorphism indistinguishability over trees of bounded degree.

The prime objects of our study are sets R of 1-labelled graphs. For a fixed target
graph G, the corresponding homomorphism tensors yield a subspace CRG ≤ CV (G). Since
algebraic operations on 1-dimensional tensors (i.e. vectors) and combinatorial operations on
1-labelled graphs correspond to each other, cf. Section 2.1, the existence of linear transform-
ations X : CRG → CRH respecting these algebraic operations is central to conceptualising
homomorphism indistinguishability of G and H as solvability of linear equations.

▶ Definition 12. Recall the definition of A from Example 4. Let R denote a set of 1-labelled
graphs containing the one-vertex graph.
1. The set R is A-invariant if for all R ∈ R also A · R ∈ R. Combinatorially, A-invariance

means that for every labelled graph R = (R, u) ∈ R, the labelled graph A · R obtained by
adding a fresh vertex u′ to R, adding the edge uu′, and placing the label on u′, is also
in R.

2. The set R is inner-product compatible if for all R,S ∈ R there exists T ∈ R such that
⟨R,S⟩ = soe(T ). Combinatorially, the homomorphism counts from the graph obtained by
gluing R and S and forgetting labels, are equal to the homomorphism counts from another
graph in R.

Examples of sets satisfying the above two properties include the set P of 1-labelled paths
where the label is placed on a vertex of degree at most 1, the set T of 1-labelled trees where
the label is placed on an arbitrary vertex, and the set T d of 1-labelled d-ary trees with label
on a vertex of degree at most 1, where a tree is d-ary if its vertices have degree at most d+ 1.

▶ Theorem 13. Let R be an inner-product compatible set of 1-labelled graphs containing the
one-vertex graph. Let G and H be two graphs. Then the following are equivalent:
1. G and H are homomorphism indistinguishable over R, that is, for all R = (R, u) ∈ R,

hom(R,G) = hom(R,H).
2. There exists a unitary1 map U : CRG → CRH such that URG = RH for all R ∈ R.

1 A map U : V → W is unitary if U∗U = idV and UU∗ = idW for U∗ : W → V the adjoint of U .
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3. There exists a pseudo-stochastic2 map X : CRG → CRH such that XRG = RH for all
R ∈ R.

If furthermore R is A-invariant then the conditions above are equivalent to the following:
4. There exists a pseudo-stochastic matrix X ∈ QV (H)×V (G) such that XAG = AHX and

XRG = RH for all R ∈ R.

Proof. Suppose that Item 1 holds. Since R is inner-product compatible, for all R,S ∈ R
there exists T = (T, v) ∈ R such that

⟨RG,SG⟩ = ⟨R,S⟩G = (soe T )G = hom(T,G) = hom(T,H) = ⟨RH ,SH⟩ .

Thus, by a Gram–Schmidt argument, there exists U with the properties in Item 2. Conversely,
supposing that Item 2 holds, let R = (R, u) ∈ R. It holds that U1G = 1H , because R
contains the one-vertex graph 1. Since U is unitary, 1G = U∗1H . Hence,

hom(R,G) = ⟨1G,RG⟩ = ⟨1H , URG⟩ = ⟨1H ,RH⟩ = hom(R,H).

This shows that Items 1 and 2 are equivalent. Inspecting the above arguments more closely
shows that Item 3 is also equivalent with these.

Now suppose additionally that R is A-invariant. It remains to show that in this case
Item 4 is equivalent with the first three assertions. For all graphs G, CRG is an AG-invariant
subspace of CV (G). Since AG is symmetrical, it preserves the direct sum decomposition
CV (G) = CRG ⊕ (CRG)⊥. Given U as in Item 2, define X as the map acting like U on CRG

and annihilating (CRG)⊥. Let R ∈ R be arbitrary. Then A · R ∈ R and hence,

XAGRG = UAGRG = AHRH = AHURG = AHXRG.

For v ∈ (CRG)⊥, XAGv = 0 = AHXv. Thus, XAG = AHX.
Finally, X1G = U1G = 1H since R contains the one-vertex graph, and XT1H = U∗1H =

1G = 1G, so X is pseudo-stochastic. The just constructed matrix X may a priori have
non-rational entries. However, since Item 4 is essentially a linear system of equations with
rational coefficients, it holds that whenever it has a complex solution, it also has a solution
over the rationals. This is a consequence of Cramer’s rule. The converse, i.e. that Item 4
implies Item 1, follows analogously to the implication from Item 2 to Item 1. ◀

As an easy application of Theorem 13, we recover the characterisation of indistinguishab-
ility with respect to path homomorphisms [13].

▶ Corollary 14. Two graphs G and H are homomorphism indistinguishable over the class of
paths if and only if there exists a pseudo-stochastic X ∈ QV (H)×V (G) such that XAG = AHX.

The classical characterisation [43] of homomorphism indistinguishability over trees involves
a non-negativity condition on the matrix X. While such an assumption appears natural
from the viewpoint of solving the system of equations for fractional isomorphism, it lacks
an algebraic or combinatorial interpretation. Using Theorem 13, we reprove this known
characterisation and give an alternative description that emphasises its graph theoretic origin.

2 Let I and J be finite sets. Fix vector spaces V ≤ CI and W ≤ CJ such that the all-ones vectors 1I ∈ V
and 1J ∈ W . Then a map X : V → W is pseudo-stochastic if X1I = 1J and X∗1J = 1I for X∗ the
adjoint of X.
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▶ Corollary 15. Let G and H be two graphs. G and H are homomorphism indistinguishable
over the class of trees if and only if there exists a pseudo-stochastic matrix X ∈ QV (H)×V (G)

such that XAG = AHX and one of the following equivalent conditions holds:
1. X ≥ 0 entry-wise,
2. XTG = TH for all 1-labelled trees T ∈ T ,
3. X preserves the Schur product on CTG, i.e. X(u⊙ v) = (Xu) ⊙ (Xv) for all u, v ∈ CTG.

The key graph-theoretic observation is the following: Every labelled tree can be obtained
from the one-vertex graph 1 by adding edges and identifying trees at their labels. Put
algebraically, the set T of 1-labelled trees is the closure of {1} under Schur products and
multiplication with A. Hence, Items 2 and 3 are equivalent. Moreover, Theorem 13 implies
the equivalence between Item 2 and homomorphism indistinguishability over the class of
trees. The missing equivalence between Items 1 and 2 is deferred to the full version.

Finally, Theorem 13 also gives a characterisation of homomorphism indistinguishability
over the class of bounded degree trees. Let d ≥ 1. The set T d of d-ary trees with label on a
vertex of degree one or zero is closed under guarded Schur products, i.e. the d-ary operation ⊛d

defined as ⊛d(R1, . . . ,Rd) := A · (R1 ⊙ · · · ⊙ Rd) for R1, . . . ,Rd ∈ T d. This operation
induces a d-ary operation on CT d

G for every graph G, i.e. ⊛dG(u1, . . . , ud) := AG(u1 ⊙· · ·⊙ud)
for u1, . . . , ud ∈ CT d

G .

▶ Corollary 16. Let d ≥ 1. Let G and H be graphs. Then the following are equivalent:
1. G and H are homomorphism indistinguishable over the class of d-ary trees.
2. There exists a pseudo-stochastic matrix X ∈ QV (H)×V (G) such that XAG = AHX and

XTG = TH for all T ∈ T d.
3. There exists a pseudo-stochastic matrix X ∈ QV (H)×V (G) such that X preserves ⊛d

on CT d
G , i.e. X(⊛dG(u1, . . . , ud)) = ⊛dH(Xu1, . . . , Xud) for all u1, . . . , ud ∈ CT d

G .

The systems of equations in Corollary 16 are parametrised by the nested subspaces CT d
G

for d ≥ 1. The following theorem asserts that there exist graphs G for which the inclusions
in the chain

CPG = CT 1
G ⊆ CT 2

G ⊆ · · · ⊆ CT d
G ⊆ CT d+1

G ⊆ · · · ⊆ CTG ⊆ CV (G)

are strict. Conceptually, this is due to the fact that T d is only closed under the guarded
Schur product ⊛d while T is closed under arbitrary Schur products.

▶ Theorem 17. For every integer d ≥ 1, there exists a graph H such that CT d
H ̸= CT d+1

H .

The proof of the above theorem can be modified to show that homomorphism indistin-
guishability over trees of bounded degree is a strictly weaker notion than homomorphism
indistinguishability over trees. As a consequence, it is not possible to simulate the 1-
dimensional Weisfeiler–Leman algorithm (also known as Colour Refinement, [19]) by counting
homomorphisms from trees of any fixed bounded degree.

▶ Theorem 3. For every integer d ≥ 1, there exist graphs G and H such that G and H

are homomorphism indistinguishable over trees of degree at most d, but G and H are not
homomorphism indistinguishable over the class of all trees.

The key step underlying the proofs of Theorems 3 and 17 is the construction of graphs
whose (adjacency matrix) eigenspaces behave nicely with respect to the Schur product. Both
proofs are deferred to the full version.
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4 Representations of Involution Monoids and Homomorphism
Indistinguishability

Let F 1, . . . ,Fm be (ℓ, ℓ)-bilabelled graphs for some ℓ ∈ N. The closure of {F 1, . . . ,Fm} under
concatenation and taking reverses gives rise to an involution monoid F . If a target graph G
is fixed, every bilabelled graph F ∈ F yields a homomorphism tensor FG. The association
F 7→ FG is thus a representation3 of the involution monoid F . This representation-theoretic
viewpoint constitutes a compelling framework for analysing homomorphism tensors.

Recall from Section 2.3 that for an (ℓ, ℓ)-bilabelled graph F , the ℓ-labelled graph obtained
from F by identifying the in- and out-labels pairwise is denoted by F id. Let F id denote the set
of all unlabelled graphs underlying graphs of the form F id, F ∈ F . Then, the character χG
of the representation of F induced by G tabulates all homomorphism numbers of the form
hom(F,G) for F ∈ F id. Given two target graphs G and H, the equality of characters χG
and χH coincides thus with homomorphism indistinguishability over the class F id.

On the other hand, equality of characters is, under mild representation-theoretic assump-
tions, a necessary and sufficient condition for two representations to be equivalent. The
equivalence of the representation induced by G and H, when explicitly stated, yields a system
of linear equations XFG = FHX with F ∈ {F 1, . . . ,Fm} where the desired solution X is
a unitary matrix. This interpretation forms a useful template for homomorphism indistin-
guishability results: homomorphism indistinguishability over the class F id is equivalent to
the existence of a unitary matrix satisfying a suitably defined system of linear equations.
Indeed, this template yields Theorem 19 below, a characterisation of homomorphism indis-
tinguishability over graphs of bounded cyclewidth, by setting the generators F 1, . . . ,Fm to
form a k-basal set.

The following theorem about involution monoid representations due to Specht [41], in
particular its generalisation due to Wiegmann [45], forms the main tool for obtaining the
results of this section. Let A = (A1, . . . , Am) be a sequence of matrices in CI×I for some
finite index set I. Let Σ2m denote the finite alphabet {xi, yi | i ∈ [m]}. Let Γ2mdenote the
infinite set of all words over Σ2m. Equipped with the extension to Γ2m of the map swapping
xi and yi for all i ∈ [m], Γ2m can be thought of as a free involution monoid. For a word
w ∈ Γ2m, let wA denote the matrix obtained by substituting xi 7→ Ai and yi 7→ A∗

i for all
i ∈ [m] and evaluating the matrix product. The substitution w 7→ wA is a representation
of Γ2m.

▶ Theorem 18 (Specht [41], Wiegmann [45]). Let I and J be finite index sets. Let A =
(A1, . . . , Am) and B = (B1, . . . , Bm) be two sequences of matrices such that Ai ∈ CI×I and
Bi ∈ CJ×J for i ∈ [m]. Then the following are equivalent:
1. There exists a unitary U ∈ CJ×I such that UAi = BiU and UA∗

i = B∗
i U for every

i ∈ [m].
2. For every word w ∈ Γ2m, tr(wA) = tr(wB).

Note that the given matrices need not be symmetric. Moreover, it is easy to see that
trace equality for words of length at most O(n2) suffice to imply trace equality for all words
in Γ2m. See [38] for a tighter bound. Finally note that although Theorem 18 is stated as a
result involving matrices, the underlying bases are in fact irrelevant.

3 Phrased in the language of [28], this representation of an involution monoid is a representation of the
concatenation algebra F .
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Our first result follows by applying Wiegmann’s theorem to the (k + 1, k + 1)-bilabelled
graphs of a k-basal set (Definition 8). This yields an equational characterisation of homo-
morphism indistinguishability over the class of graphs of cyclewidth at most k.

▶ Theorem 19. Let k ≥ 1. Let Bk denote a k-basal set. Let G and H be a graphs. Then the
following are equivalent:
1. G and H are homomorphism indistinguishable over the class of cyclewidth at most k.
2. There exists a unitary matrix U ∈ CV (H)k+1×V (G)k+1 such that UBG = BHU for all

B ∈ Bk.

Proof. Let B1, . . . ,Bm be an enumeration of the finite set Bk. Define A and B by setting
Ai := Bi

G and Bi := Bi
H for i ∈ [m]. Recall that the k-basal set Bk is closed under taking

reverses. The theorem immediately follows by an application of Theorem 18 on the matrix
sequences A and B, along with Proposition 11. ◀

In contrast to F id, let Fun denote the set of all unlabelled graphs underlying graphs F ∈ F .
Although the class Fun is combinatorially more natural than F id, it invokes the operator soe
on the representations instead of the tr operator, which is algebraically better understood.
This technical difficulty is overcome by considering, instead of the original involution monoid
representation, its subrepresentation generated by the all-ones vector. In this manner, the
useful spectrum used in [13] to characterise homomorphism indistinguishability over paths
receives an algebraic interpretation. The equivalence of these subrepresentations amounts to
the desired solutions being pseudo-stochastic matrices instead of unitary matrices. Formally,
we prove the following sum-of-entries analogue of Theorem 18.

▶ Theorem 20. Let I and J be finite index sets. Let A = (A1, . . . , Am) and B = (B1, . . . , Bm)
be two sequences of matrices such that Ai ∈ CI×I and Bi ∈ CJ×J for i ∈ [m]. Then the
following are equivalent:
1. There exists a pseudo-stochastic matrix X ∈ CJ×I such that XAi = BiX and XA∗

i = B∗
iX

for all i ∈ [m].
2. For every word w ∈ Γ2m, soe(wA) = soe(wB).

Theorem 20 is implied by Lemma 21, which provides a sum-of-entries analogue of
Theorem 5. As it establishes a character-theoretic interpretation of the function soe, it may
be of independent interest.

▶ Lemma 21. Let Γ be an involution monoid. Let I and J be finite index sets. Let
φ : Γ → CI×I and φ : Γ → CJ×J be representations of Γ. Let φ′ : Γ → V and ψ′ : Γ → W

denote the subrepresentations of φ and of ψ generated by 1I and 1J , respectively. Then the
following are equivalent:
1. For all g ∈ Γ, soeφ(g) = soeψ(g).
2. There exists a unitary pseudo-stochastic U : V → W such that Uφ′(g) = ψ′(g)U for all

g ∈ Γ.
3. There exists a pseudo-stochastic X ∈ CJ×I such that Xφ(g) = ψ(g)X for all g ∈ Γ.

Proof. Suppose that Item 1 holds. The space V is spanned by the vectors φ(g)1I for g ∈ Γ
while W is spanned by ψ(g)1J for g ∈ Γ. For g, h ∈ Γ it holds that

⟨φ(g)1I , φ(h)1I⟩ = ⟨1I , φ(g∗h)1I⟩ = soeφ(g∗h) = soeψ(g∗h) = ⟨ψ(g)1J , ψ(h)1J⟩ .
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Hence, V and W are spanned by vectors whose pairwise inner-products are respectively the
same. Thus, by a Gram–Schmidt argument, there exists a unitary U : V → W such that
Uφ(g)1I = ψ(g)1J for all g ∈ Γ. This immediately implies that Uφ′(g) = ψ′(g)U for g ∈ Γ.
Furthermore, U1I = Uφ(1Γ)1I = ψ(1Γ)1J = 1J and U∗1J = 1I since U is unitary. Thus,
Item 2 holds.

Suppose now that Item 2 holds. By Lemma 6, write φ = φ′ ⊕ φ′′ and ψ = ψ′ ⊕ ψ′′. By
assumption, there exists a unitary U : V → W such that Uφ′(g) = ψ′(g)U for all g ∈ Γ.
Extend U to X by letting it annihilate V ⊥. Then Xφ(g) = (U⊕0)(φ′⊕φ′′)(g) = Uφ′(g)⊕0 =
ψ′(g)U⊕0 = ψ(g)X for all g ∈ Γ. Since U is pseudo-stochastic and 1I ∈ V and 1J ∈ W , X is
pseudo-stochastic as well. Hence, Item 3 holds. That Item 3 implies Item 1 is immediate. ◀

Paralleling Theorem 19, we now apply the sum-of-entries version of Specht’s theorem
to characterise homomorphism indistinguishability over the class of graphs of bounded
pathwidth.

▶ Theorem 22. Let k ≥ 1. Let Bk denote a k-basal set. Let G and H be a graphs. Then the
following are equivalent:
1. G and H are homomorphism indistinguishable over the class graphs of pathwidth at

most k,
2. There exists a pseudo-stochastic matrix X ∈ QV (H)k+1×V (G)k+1 such that XBG = BHX

for all B ∈ Bk.

Let PWk+1(G,H) denote the system of linear equations in Item 2 above with the basal
set from Lemma 9. It comprises nO(k2) variables and

∣∣Bk∣∣ ·nO(k2) = O(k2 ·nO(k2)) equations.

5 Comparison with Known Systems of Linear Equations

Towards understanding the power and limitations of convex optimisation approaches to the
graph isomorphism problem, the level-k Sherali–Adams relaxation of Fiso(G,H), denoted
by Fkiso(G,H), was studied in [3]. The system Lk+1

iso (G,H) is another closely related system
of interest [21]. Every solution for Fk+1

iso (G,H) yields a solution to Lk+1
iso (G,H), and every

solution to Lk+1
iso (G,H) yields a solution to Fkiso(G,H) [21]. In [3, 21], it was shown that the

system Lk+1
iso (G,H) has a non-negative solution if and only if G and H are indistinguishable

by the k-dimensional Weisfeiler–Leman algorithm. Following the results of [14, 13], the
feasibility of Lk+1

iso (G,H) is thus equivalent to homomorphism indistinguishability over graphs
of treewidth at most k.

Dropping non-negativity constraints in Fiso(G,H) yields a system of linear equations
whose feasibility characterises homomorphism indistinguishability over the class of paths [13].
It was conjectured ibidem that dropping non-negativity constraints in Lk+1

iso (G,H) analogously
characterises homomorphism indistinguishability over graphs of pathwidth at most k. One
direction of this conjecture was shown in [13]: the existence of a rational solution to Lk+1

iso (G,H)
implies homomorphism indistinguishability over graphs of pathwidth at most k.

We resolve the aforementioned conjecture by showing that the system of equations
Lk+1

iso (G,H) is feasible if and only if the system of equations PWk+1(G,H) stated in The-
orem 22 is feasible. The proof repeatedly makes use of the observation that the equations
in Lk+1

iso (G,H) can be viewed as equations in PWk+1(G,H) where specific k-basal graphs
model the continuity and compatibility equations of Lk+1

iso (G,H). Building on Theorem 22,
we obtain the following theorem implying Theorem 1.
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▶ Theorem 23. For k ≥ 1 and graphs G and H, the following are equivalent:
1. G and H are homomorphism indistinguishable over the class of graphs of pathwidth at

most k.
2. The system of equations PWk+1(G,H) has a rational solution.
3. The system of equations Lk+1

iso (G,H) has a rational solution.

Moreover, we show that PWk+1(G,H) has a non-negative rational solution if and only
if Lk+1

iso (G,H) has a non-negative rational solution. Consequently, the system of linear
equations PWk+1(G,H) has a non-negative rational solution if and only if G and H are
homomorphism indistinguishable over graphs of treewidth at most k. Hence, the systems of
equations PWk+1(G,H), for k ∈ N, form an alternative well-motivated hierarchy of linear
programming relaxations of the graph isomorphism problem. The details are deferred to the
full version.

6 Multi-Labelled Graphs and Homomorphisms from Graphs of
Bounded Treewidth and -depth

By considering k-labelled graphs, we complete the picture emerging in Sections 3 and 4, where
respectively 1-labelled and (k, k)-bilabelled graphs were considered. In virtue of a generalisa-
tion of Theorem 13, a representation-theoretic characterisation of indistinguishability with
respect to the k-dimensional Weisfeiler–Leman algorithm (k-WL, see [19] for its definition)
is obtained. Amounting [14] to a characterisation of homomorphism indistinguishability
over the class of graphs of treewidth at most k, this goal is achieved by constructing, given
a k-WL colouring, a representation-theoretic object, the colouring algebra, such that two
graphs are not distinguished by k-WL if and only if the associated colouring algebras are
isomorphic. It turns out that the well-known algebraic characterisation of 2-WL indistin-
guishability formulated in the language of coherent algebras [10] is a special case of this
correspondence. Finally, a combination of the techniques developed in this article yields an
equational characterisation of homomorphism indistinguishability over graphs of bounded
treedepth. We set off by generalising Definition 12:

▶ Definition 24. A set of k-labelled graphs R is inner-product compatible if 1k ∈ R and for
all R,S ∈ R there exists T ∈ R such that ⟨R,S⟩ = soe T .

For example, the class T Wk of k-labelled graphs of treewidth k with all labels in a single
bag is inner-product compatible. Another example is the class of 2-labelled planar graphs
with labels placed on neighbouring vertices of the boundary of a single face. The following
main theorem for k-labelled graphs can be derived analogously to Theorem 13.

▶ Theorem 25. Let k ≥ 1. Let R be an inner-product compatible set of k-labelled graphs.
Let G and H be two graphs. Then the following are equivalent:
1. G and H are homomorphism indistinguishable over R, that is for all R = (R,v) ∈ R,

hom(R,G) = hom(R,H).
2. There exists a unitary U : CRG → CRH such that URG = RH for all R ∈ R.
3. There exists a pseudo-stochastic X ∈ QV (H)k×V (G)k such that XRG = RH for all R ∈ R.

It turns out that Theorem 25 yields a characterisation of 2-WL indistinguishability in
terms of coherent algebras (see [10, 23]): Given a graph G, let X = (V (G);R1, . . . , Rs)
denote the binary relational structure encoding the 2-WL colouring of G. More precisely, each
relation Ri ⊆ V (G)×V (G) corresponds to one of the 2-WL colour classes of G. The adjacency
algebra CAG of G is the C-span of the matrices Ai with Ai(u, v) = 1 iff (u, v) ∈ Ri and zero
otherwise. It follows from the properties of 2-WL [10, Theorem 2.3.6] that CAG is closed
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under matrix products, Schur products, and Hermitian conjugations. In other words, it forms
a coherent algebra. This construction yields the following algebraic characterisation of 2-WL
indistinguishability [10, Proposition 2.3.17]: Two graphs G and H are 2-WL indistinguishable
if and only if CAG and CAH are isomorphic as coherent algebras, i.e. there exists a vector
space isomorphism X : CAG → CAH such that X respects the matrix and the Schur product.
That is, for all A,B ∈ CAG, X(A ·B) = X(A) ·X(B) and X(A⊙B) = X(A) ⊙X(B).

Along these lines, it may be argued that adjacency algebras as coherent algebras are
the adequate algebraic objects to capture 2-WL indistinguishability. For higher-dimensional
WL we propose a similar construction: Informally, G and H are k-WL indistinguishable
if and only if certain involution monoid representations closed under Schur products are
isomorphic. The aforementioned characterisation of 2-WL will be recovered as a special case
in Corollary 28.

More precisely, given a graph G with k-ary relational structure X = (V (G);R1, . . . , Rs)
corresponding to its k-WL colouring, define its k-WL colouring algebra CAk

G as the C-span
of the tensors Ai ∈ CV (G)k with Ai(u) = 1 iff u ∈ Ri and zero otherwise. The colouring
algebra has a rich algebraic structure and is closed under various operations. In particular,
it has an interpretation in terms of homomorphism tensors: Let T Wk denote the set of all
k-labelled graphs of treewidth at most k where the labelled vertices all lie in the same bag.
Furthermore, let PWSk denote the set of (k, k)-bilabelled graphs F = (F,u,v) such that
F has a path decomposition of width at most k with u and v representing respectively the
vertices in the leaf bags.4 As before, PWSk forms an involution monoid under concatenation
and taking reverses. These observations are summarised in the following Theorem 26.

▶ Theorem 26. Let G be a graph and let k ≥ 1. Then
1. CT Wk

G = CAk
G,

2. CT Wk
G is closed under Schur products,

3. The map PWSk → End(CAk
G) is a subrepresentation of the involution monoid represent-

ation PWSk → CV (G)k×V (G)k defined as P 7→ PG.

The involved proof of Theorem 26 is deferred to the full version. Finally, a representation-
theoretic characterisation of k-WL indistinguishability extending [14] can be obtained.

▶ Theorem 27. Let k ≥ 1. Let G and H be two graphs. Then the following are equivalent:
1. G and H are k-WL indistinguishable.
2. G and H are homomorphism indistinguishable over the class of graphs of treewidth at

most k.
3. There exists an isomorphism of PWSk-representations X : CAk

G → CAk
H respecting the

Schur product. That is, for all A,B ∈ CAk
G and P ∈ PWSk, X(A⊙B) = X(A) ⊙X(B)

and X(PGA) = PHX(A).

To illustrate that the colouring algebra for 2-WL coincides with the coherent algebra, we
conclude with inferring Corollary 28 from Theorem 27.

▶ Corollary 28 (e.g. [10, Proposition 2.3.17]). Let G and H be graphs. Then G and H are 2-
WL indistinguishable if and only if there exists a vector space isomorphism X : CAG → CAH

such that X respects the matrix and the Schur product. That is, for all A,B ∈ CAG,
X(A ·B) = X(A) ·X(B) and X(A⊙B) = X(A) ⊙X(B).

4 Observe that this is in contrast to Section 2.3, where the set PWk of (k + 1, k + 1)-bilabelled graphs
with underlying graphs of pathwidth at most k was considered. There, the labels are carried by vertices
in the intersection of two adjacent bags, while here the labelled vertices must only lie in the same bag.
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As a final application of our theory, we infer an equational characterisation of homomorph-
ism indistinguishability over graphs of bounded treedepth. The treedepth [36] of a graph F

is defined as the minimum height of an elimination forest of F , i.e. of a rooted forest T with
V (T ) = V (F ) such that every edge in F connects vertices that are in an ancestor-descendent
relationship in T . In [17], it was shown that homomorphism indistinguishable over graphs of
treedepth at most k corresponds to equivalence over the quantifier-rank-k fragment of first
order logic with counting quantifiers. We extend this characterisation by proposing a linear
system of equations very similar to the one for bounded pathwidth.

Let k ≥ 1. For graphs G and H, consider the following system of equations TDk(G,H)
with variables X(w,v) for every pair of tuples w ∈ V (H)ℓ and v ∈ V (G)ℓ for 0 ≤ ℓ ≤ k. A
length-ℓ pair (w,v) is said to be a partial pseudo-isomorphism if vi = vi+1 ⇐⇒ wi = wi+1
for all i ∈ [ℓ − 1] and {vi,vj} ∈ E(G) ⇐⇒ {wi,wj} ∈ E(H) for all i, j ∈ [ℓ]. Note that
in contrary to the partial isomorphisms appearing in [13], partial pseudo-isomorphism only
need to preserve the equality of consecutive vertices in the domain tuple.

TDk(G,H)∑
v′∈V (G)

X(ww,vv′) = X(w,v) for all w ∈ V (H) and v ∈ V (G)ℓ, w ∈
V (H)ℓ where 0 ≤ ℓ < k.

(TD1)

∑
w′∈V (H)

X(ww′,vv) = X(w,v) for all v ∈ V (G) and v ∈ V (G)ℓ, w ∈
V (H)ℓ where 0 ≤ ℓ < k.

(TD2)

X((), ()) = 1 (TD3)
X(w,v) = 0 whenever (w,v) is not a partial pseudo-

isomorphism
(TD4)

The proof of the following theorem is deferred to the full version.

▶ Theorem 2. For every k ≥ 1, the following are equivalent for two graphs G and H:
1. G and H are homomorphism indistinguishable over graphs of treedepth at most k,
2. The linear systems of equations TDk(G,H) has a non-negative rational solution,
3. The linear systems of equations TDk(G,H) has a rational solution.

7 Concluding Remarks

We have developed an algebraic theory of homomorphism indistinguishability that allows us
to reprove known results in a unified way and derive new characterisations of homomorphism
indistinguishability over bounded degree trees, graphs of bounded treedepth, graphs of
bounded cyclewidth, and graphs of bounded pathwidth. The latter answers an open question
from [13].

Homomorphism indistinguishabilities over various graph classes can be viewed as similarity
measures for graphs, and our new results as well as many previous results show that these are
natural and robust. Yet homomorphism indistinguishability only yields equivalence relations,
or families of equivalence relations, and not a “quantitative” distance measure. For many
applications of graph similarity, such quantitative measures are needed. Interestingly, we
can derive distance measure both from homomorphism indistinguishability and from the
equational characterisations we study here. For a class F of graphs, we can consider the
homomorphism embedding that maps graphs G to the vector in RF whose entries are the
numbers hom(F,G) for graphs F ∈ F . Then a norm on the space RF induces a graph
(pseudo)metric. Such metrics give a generic family of graph kernels (see [18]). On the

ICALP 2022
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equational side, a notion like fractional isomorphism induces a (pseudo)metric on graphs
where the distance between graphs G and H is minX ∥XAG − AHX∥, where X ranges over
all doubly-stochastic matrices. It is a very interesting question whether the correspondence
between the equivalence relations for homomorphism indistinguishability and feasibility of
the systems of equations can be extended to the associated metrics. In the special case of
isomorphism and homomorphism indistinguishability over all graphs, the theory of graph
limits provides some answers [28]. This has recently been extended to fractional isomorphism
and homomorphism indistinguishability over trees [5].
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