
The Fine-Grained Complexity of Graph
Homomorphism Parameterized by Clique-Width
Robert Ganian #

Algorithms and Complexity Group, TU Wien, Austria

Thekla Hamm #

Algorithms and Complexity Group, TU Wien, Austria

Viktoriia Korchemna #

Algorithms and Complexity Group, TU Wien, Austria

Karolina Okrasa #

Faculty of Matematics and Information Science, Warsaw University of Technology, Poland
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

Kirill Simonov #

Algorithms and Complexity Group, TU Wien, Austria

Abstract
The generic homomorphism problem, which asks whether an input graph G admits a homomorphism
into a fixed target graph H, has been widely studied in the literature. In this article, we provide a
fine-grained complexity classification of the running time of the homomorphism problem with respect
to the clique-width of G (denoted cw) for virtually all choices of H under the Strong Exponential
Time Hypothesis. In particular, we identify a property of H called the signature number s(H) and
show that for each H, the homomorphism problem can be solved in time O∗(s(H)cw). Crucially, we
then show that this algorithm can be used to obtain essentially tight upper bounds. Specifically, we
provide a reduction that yields matching lower bounds for each H that is either a projective core
or a graph admitting a factorization with additional properties – allowing us to cover all possible
target graphs under long-standing conjectures.
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1 Introduction

A homomorphism from a graph G to a graph H is an edge-preserving mapping from the
vertices of G to the vertices of H. Homomorphisms are fundamental constructs which have
been studied from a wide variety of perspectives [2, 3, 13]. Our focus here will be on the
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class of problems which ask whether an input n-vertex graph G admits a homomorphism to
a fixed target graph H. This “meta-problem” – which we simply call Hom(H) – captures,
among others, the classical c-Coloring problems when H is set to the complete graph on c

vertices. Famously, Hell and Nešetřil [15] proved that Hom(H) is polynomial-time solvable if
H is bipartite or has a loop, and NP-complete otherwise.

While the aforementioned result provides a basic classification of the complexity of
Hom(H), it does not say much in terms of how quickly one can actually solve these problems.
Indeed, the usual assumption that P ̸= NP is not sufficient to obtain tight bounds for
the running times of algorithms. While upper bounds can be straightforwardly obtained
by designing a suitable algorithm, the corresponding lower bounds usually rely on the
Exponential Time Hypothesis (ETH) or the Strong Exponential Time Hypothesis (SETH),
which allows for even tighter bounds [18, 19, 23]. It is not difficult to design a brute-force
algorithm for the homomorphism problem that runs in time O∗(|V (H)|n) for every choice of
H, and thanks to the breakthrough result of Cygan et al. we now know that this running
time is essentially tight under the Exponential Time Hypothesis (ETH) [6] as long as one
considers only the dependency on n and |V (H)|.

Still, it is often possible to circumvent this lower bound and obtain significantly better
runtime guarantees. One approach to do so is to consider restrictions on the class of targets:
if H is a complete graph then Hom(H) can be solved in time O∗(2n), and there are also
several algorithms that achieve running times of the form O∗(α(H)n) where α(H) is some
structural parameter of H [12, 29, 30]. The other is to exploit the properties of the input
graph G, which are commonly captured by a suitably defined structural parameter. The
most commonly used graph parameter in this respect is treewidth [28], which informally
measures how “tree-like” a graph is.

When considering treewidth, it is once again not difficult to obtain an algorithm that
runs in time O∗(|V (H)|tw), where tw is the treewidth of G; as before, it was much more
difficult to show that this is essentially optimal. The first SETH-based tight lower bound in
this setting was actually shown for special cases of the related problem of LHom(H), where
each vertex in the graph G comes with a list of admissible targets for the homomorphism [9];
this was later lifted to a full classification [24]. A nearly-complete SETH-based lower bound
result for Hom(H) itself was only obtained recently by Okrasa and Paweł Rzążewski [25]; in
particular, the result covers all targets which are so-called projective cores. It is known that
almost all graphs are projective cores [16, 25, 31], and it is worth noting that the authors
showed that their result can be lifted to all targets under long-standing conjectures on the
properties of projective cores [21,22].

While treewidth is the most prominent structural graph parameter, it is not the most
general1 one that can be used to efficiently solve Hom(H). Indeed, standard dynamic
programming techniques can be used to obtain a O∗((2|V (H)|)cw) time algorithm for the
problem, where cw stands for clique-width [4]: a well-studied graph parameter that is bounded
not only on all graph classes of bounded treewidth, but also on well-structured dense classes
such as complete graphs. But is this basic algorithm generally optimal (mirroring the
situation for treewidth [25]), or can one obtain better runtime dependencies on clique-width?

Contribution. Our aim is to obtain a detailed understanding of the fine-grained complexity
of Hom(H) in terms of the clique-width of G and the fixed target H. As a starting point for
our investigation, we note that Lampis used the SETH to obtain tight bounds for c-Coloring

1 There is a hierarchy of graph parameters (see, e.g., [1, Figure 1]), where parameter A is more general
than parameter B if there are graph classes of bounded A and unbounded B but the opposite is not true.
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with respect to clique-width [20]. Interestingly, already for this special case, the upper and
lower bounds differ from those of the aforementioned simple dynamic programming algorithm:
if H is a complete graph, then Hom(H) can be solved in time O∗((2|V (H)| − 2)cw) [20] and
this is tight under the SETH. However, as noted by Piecyk and Rzążewski [27], it was not at
all obvious how these bounds can be lifted to general choices of H.

In order to achieve our goals we need to improve upon the basic dynamic programming
idea to identify a “hopefully correct” base of the exponent for every choice of H. Towards our
first result, we identify a structural property of H called the signature number (denoted s(H))
which, intuitively, captures the number of non-trivial neighborhood classes of vertex subsets
in H (the signature set). We then obtain a non-trivial dynamic programming algorithm that
solves Hom(H) in time where the base of the exponent is precisely the signature number.
We note that s(H) is 2|V (H)| − 2 for complete graphs H, and so this result also provides a
succinct and broader explanation for the running time of Lampis’ algorithm [20].

▶ Theorem 1. Let H be a fixed graph. Hom(H) can be solved in time O∗(s(H)cw(G)) for
each input graph G, assuming an optimal clique-width expression of G is provided as part of
the input.

With this upper bound, we proceed to the main technical contribution of this paper:
establishing a corresponding lower bound under the SETH. The main difficulty here is that we
need a reduction that is delicate on one hand, since it needs to preserve the clique-width, but
is on the other hand also flexible enough to work for many different choices of H; moreover,
the reduction has to rely on the signature numbers of these graphs in some way.

To provide an intuitive description of the reduction, let us focus for now on the case
where H is a projective core. On a high level, the main building block is an S-gadget which,
given an arbitrary set S of pairs of vertices in H and two vertices p and q of the input
graph G, ensures that every homomorphism f satisfies (f(p), f(q)) ∈ S. After providing
a generic construction for such S-gadgets which is clique-width preserving and works for
every valid choice of H, we use these to obtain implication gadgets and or gadgets which
restrict how a solution homomorphism can behave on a selected set of vertices in G. The
formalization of these gadgets is the main technical hurdle towards the desired result; once
that is done, we can lift the idea used in the earlier reduction of Lampis [20] that established
clique-width lower bounds for c-Coloring by reducing from Constraint Satisfaction
(CSP) to Hom(H). One crucial distinction in our reduction is that we use elements of the
signature set (as opposed to color sets) to represent domain values in the CSP instance.

To lift these considerations to cases where H is not a projective core, we unfortunately
need to add an extra layer of complexity. Similarly as in the previous treewidth-based lower
bound for Hom(H) [25], one can base this step on conjectures of Larose and Tardif [21, 22]
that classify all remaining targets as certain graph products with special properties (notably,
all of the factors must be “truly projective”). The approach used for treewidth [25] was then
to essentially repeat all steps of the proof for projective cores, with the added difficulty that
one uses the properties of products instead of dealing directly with projective cores.

While this approach could be used here as well, instead we unify the two cases (H being
a projective core, and H being a product) by defining the notion of W -projectivity for some
factor W of H. In particular, if H is a projective core then it itself is H-projective, while if
H is a product with truly projective factor Hi then it is Hi-projective. As our main result,
we obtain an SETH-based lower bound which essentially shows that for each W -projective
graph H, s(W ) is the optimal base of the clique-width exponent for solving Hom(H):

ICALP 2022
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▶ Theorem 2. Let H be a fixed non-trivial core with prime factorization H1 × . . . × Hm.
Assume that H is Hi-projective for some i ∈ [m]. Then there is no algorithm solving Hom(H)
in time O∗((s(Hi) − ε)cw(G)) for any ε > 0, unless the SETH fails.

By also deliberately considering prime factorizations in the algorithm which we provide
for Theorem 1, we can obtain an upper bound on the complexity of Hom(H) that matches
the lower bound from Theorem 2. For a discussion explicitly relating these complexity bounds
in the context of the aforementioned conjectures of Larose and Tardif, we refer to Section 6.

2 Preliminaries

We use standard terminology for graph theory [7]. Let [i] denote the set {1, . . . , i}. For a
mapping f : A → B and A′ ⊆ A, let f |A′ denote the restriction of f to A′. We will use the
O∗(·) notation to suppress factors polynomial in the input size.

Homomorphisms and Cores
For two graphs G and H, a homomorphism from G to H is a mapping h : V (G) → V (H),
such that for every uv ∈ E(G) we have h(u)h(v) ∈ E(H). If there exists a homomorphism
from G to H, we denote this fact by G → H, and if h is a homomorphism from G to
H, we denote that by h : G → H. If there is no homomorphism from G to H, we write
G ̸→ H. If G → H and H → G, we say that G and H are homomorphically equivalent.
In particular, since the composition of homomorphisms is a homomorphism, if G and H

are homomorphically equivalent, then for every graph F we have that F → G if and only
if F → H. It is straightforward to verify that homomorphic equivalence is an equivalence
relation on the class of all graphs. On the other hand, if G ̸→ H and H ̸→ G for some graphs
G, H, we say that G and H are incomparable.

We say that a graph H is a core if every homomorphism h : H → H is an automorphism.
Equivalently, H is a core if for every proper induced subgraph H ′ of H it holds that H ̸→ H ′.
We say that a core H ′ is a core of H if H ′ is an induced subgraph of H and H → H ′. Clearly,
each core graph is a core of itself. Each graph has a unique (up to isomorphism) core, and
the core of H can be equivalently defined as the smallest (with respect to the number of
vertices) graph that is homomorphically equivalent with H [16].

A graph H is ramified if N(u) ̸⊆ N(v) for every two distinct vertices u, v of H. Observe
that each core is ramified; otherwise one could define f : H → H that is an identity on all
vertices of H but u and set f(u) = v. This would be a homomorphism to a proper subgraph
of H, contradicting the fact that H is a core.

We say that a graph H is trivial if its core has at most two vertices.

▶ Observation 3 ([15]). A graph H is trivial if and only if it is either bipartite or contains a
vertex with a loop.

Proof. It is straightforward to observe that there exist three trivial cores: K1, K2, and K∗
1 ,

where by K∗
1 we denote the graph that consists of one vertex with a loop.

If H contains a vertex with a loop, then K∗
1 is the core of H. If H is bipartite, then the

core of H is either K1 (if H has no edges) or K2 (since mapping the vertices of one bipartition
class to one vertex of K2, and another bipartition graph to the other, is a homomorphism).

For the other direction, assume that H is a non-bipartite loopless graph. Since it is
loopless, K∗

1 cannot be its core. Clearly, H has at least one edge, and therefore H ̸→ K2
Moreover, H contains an odd cycle C2k+1 as a subgraph, hence, C2k+1 → H. If now H → K2,
composition of these homomorphism gives that C2k+1 → K2, which is equivalent to stating
that C2k+1 is 2-colorable, a contradiction. ◀
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Observe that trivial cores H correspond precisely to the polynomial cases of the Hom(H)
problem. Since our aim is to focus on the NP-hard cases of the problem, from here onward
we will assume that the target graph is non-trivial.

Signature Sets
For a vertex v of a graph H, let NH(v) denote the set of neighbors of v in H. If the graph is
clear from the context, we will omit the subscript H and write N(v).

For a non-empty set T ⊆ V (H) we say that S(T ) is the signature set of T if S(T ) =⋂
t∈T N(t). We say that a non-empty set S ⊆ V (H) is a signature set, if there exists T such

that S = S(T ). We denote by S(H) the set of all signature sets of H, and we note that
{V (H), ∅} ∩ S(H) = ∅.

▶ Observation 4. If T is a proper non-empty subset of V (H), and a ∈ T , b ∈ S(T ), then
ab ∈ E(H). Moreover, for non-empty subsets A, B ⊆ V (H), S(A ∪ B) = S(A) ∩ S(B).

We note that the operation of taking a signature set is reversible on S(H):

▶ Observation 5. For every A ∈ S(H), S(S(A)) = A.

Proof. By the definition of signature set, A × S(A) ⊆ E(H), so A ⊆ S(S(A)). For the
converse direction observe that as A ∈ S(H), there exists a non-empty subset T of V (H) such
that A = S(T ). Pick any x ∈ S(S(A)), then E(H) ⊇ {x}×S(A) = {x}×S(S(T )) ⊇ {x}×T .
Hence by definition x ∈ S(T ) = A. ◀

Let the signature number of H, denoted s(H), be defined as |S(H)|. As mentioned in the
introduction, the signature number will play a crucial role in our upper and lower bounds.

Observe that, if H is a target and hence non-trivial, for every nonempty T ⊆ V (H) we
have that S(T ) ∩ T = ∅. From that it is easy to see that V (H) never belongs to S(H). Since,
by definition, ∅ /∈ S(H), we get the following bounds for s(H).

▶ Observation 6. Let H be a graph with no loops. Then s(H) ⩽ 2|V (H)| − 2.

Notice that since 2|V (H)| − 2 is the number of all proper non-empty subsets of V (H), the
equality in Observation 6 holds if and only if H is a clique.

If S ∈ S(H), we call T such that S(T ) = S a witness of S. Clearly, we can have distinct
T1, T2 such that S(T1) = S(T2), however, notice that in such a case there exists T = T1 ∪ T2
such that S(T ) = S(T1) = S(T2). Hence, there exists a unique maximal (with respect to
inclusion) witness of S, and we denote it by M(S). In fact, it is not difficult to see that
M(S) = {v ∈ V (H) | S ⊆ NH(v)}; for S(M(S)) = S to hold, it is clearly necessary that
S ⊆ NH(v) for all v ∈ M(S). On the other hand, as M(S) is maximal all v for which this is
true are contained in M(S).

In this way signature sets and their witnesses are in one-to-one correspondence. While
not necessary to obtain our algorithmic and lower bounds for Hom(H) parameterized by
clique-width, this offers an alternative perspective on the role of signatures in our results.

In fact, the signature number could equivalently be defined as the “maximal witness
number” and signature sets could be replaced by maximal witnesses in all our proofs: Let
M(H) = {M(S) : S ∈ S(H)}.

▶ Observation 7. S(H) = M(H).

ICALP 2022
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Proof. Let T be a fixed non-empty subset of V (H) such that S(T ) ̸= ∅. Observe that the
definition and the maximality of M(S(T )) implies that S(S(T )) =

⋂
t∈S(T ) N(t) = M(S(T ))

Since T and S(T ) are non-empty, we get that S(H) ⊃ M(H). For the other direction
observe that M(M(S(T ))) = S(T ). Assume the contrary, then there exists a vertex v /∈ S(T )
such that N(v) ⊃ M(S(T )). However, T ⊂ M(S(T )) ⊂ N(v) meaning that v ∈ S(T ), a
contradiction. Thus, S(H) = M(H). ◀

We note that if H is a core graph, we can also bound the minimum cardinality of S(H).

▶ Observation 8. Let H be a core graph, H ̸= K1. Then s(H) ⩾ |V (H)|.

Proof. Observe that if H is a core distinct from K1, then it does not contain isolated vertices.
Therefore, for each v ∈ V (H) we have N(v) ∈ S(H). On the other hand, since H is a core,
it is ramified. In particular, for every distinct v, w ∈ V (H) we have N(v) ̸= N(w). Hence
different vertices give rise to different signature sets. ◀

Clique-Width and Clique-Width Expressions
For a positive integer k, we let a k-graph be a graph whose vertices are labeled by [k]. For
convenience, we consider a graph to be a k-graph with all vertices labeled by 1. We call the
k-graph consisting of exactly one vertex v (say, labeled by i) an initial k-graph and denote it
by i(v).

The clique-width of a graph G is the smallest integer k such that G can be constructed
from initial k-graphs by means of iterative application of the following three operations:
1. Disjoint union (denoted by ⊕);
2. Relabeling: changing all labels i to j (denoted by ρi→j);
3. Edge insertion: adding an edge from each vertex labeled by i to each vertex labeled by j

(i ̸= j; denoted by ηi,j).
A construction of a k-graph G using the above operations can be represented by an algebraic
term composed of ⊕, pi→j and ηi,j (where i ≠ j and i, j ∈ [k]). Such a term is called a
k-expression defining G, and we often view it as a tree with each node labeled with the
appropriate operation. Conversely, we call the k-graph that arises from a k-expression its
evaluation. The clique-width of G is the smallest integer k such that G can be defined by a
k-expression which we then also call a clique-width expression of G.

Many graph classes are known to have constant clique-width; examples include all graph
classes of constant treewidth and co-graphs [5]. Moreover a fixed-parameter algorithm is
known to compute a k-expression of the input where k is bounded in f(cw) [26].

3 Algorithm

As our first contribution, we obtain an algorithm that will play a crucial role for upper-
bounding the fine-grained complexity of Hom(H).

▶ Theorem 1. Let H be a fixed graph. Hom(H) can be solved in time O∗(s(H)cw(G)) for
each input graph G, assuming an optimal clique-width expression of G is provided as part of
the input.

Proof. Assume, w.l.o.g., that G is connected and |V (G)| > 1. We will describe a dynamic
program that proceeds in a leaf-to-root fashion along the provided k-expression σ of G. For
a subexpression τ ⊆ σ, we denote the evaluation of τ by Gτ , and by V i

τ ⊆ V (Gτ ) the vertex
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set that has label i in Gτ . We say that i is a live label in τ if there is an edge of G which is
incident to V i

τ and does not appear in Gτ . Denote the set of live labels in τ by Lτ . Since G

is connected, Lτ ̸= ∅ for any proper subexpression τ of σ.
For each subexpression τ of σ, we will compute a set Pτ consisting of functions p : Lτ →

S(H) where p ∈ Pτ if and only if there exists a homomorphism hp from Gτ to H such that
p(i) ⊆ S(hp(V i

τ )), i ∈ Lτ . We will say that p ∈ Pτ describes the homomorphism hp in τ or,
equivalently, that hp witnesses p in τ . Intuitively, we will use p(i) to preemptively store the
images of the neighbors of V i

τ in the final graph G – that is why we store not only the exact
signature, but all signatures that occur as subsets. We remark that storing the “current”
images of the neighbors of V i

τ in Gτ would be sufficient to obtain a conceptually simpler
fixed-parameter algorithm parameterized by clique-width, but in that case it is not obvious
how one can avoid a quadratic dependency on clique-width in the exponent.

Observe that for any homomorhism h : Gτ → H, images of vertices with live labels should
be connected in H with images of their future neighbors. In particular, for any i ∈ Lτ ,
S(h(V i

τ )) ̸= ∅ and hence S(h(V i
τ )) ∈ S(H). Therefore h is described in τ by some p ∈ Pτ . By

definition, Lσ = ∅ and hence G is homomorphic to H if and only if Pσ contains the empty
mapping, i.e., if Pσ = {∅} (as opposed to Pσ = ∅). It remains to show how to correctly
compute each Pτ . To do so, we distinguish based on the outermost operation of τ :

(a) τ = i(v) for some i ∈ [cw(G)]. In this case Lτ = {i}, and Pτ contains all functions
p : {i} 7→ S(H) such that p(i) ⊆ NH(u) for some u ∈ V (H).

(b) τ = ρi→j(τ ′) and Pτ ′ has already been computed. If i ̸∈ Lτ ′ , we can correctly set
Lτ = Lτ ′ and Pτ = Pτ ′ . If i ∈ Lτ ′ and j ̸∈ Lτ ′ , then Lτ = (Lτ ′ \ {i}) ∪ {j} and

Pτ =
{

p : Lτ → S(H) | ∃p′ ∈ Pτ ′ : p(ℓ) =
{

p′(ℓ) if ℓ ̸= j

p′(i) if ℓ = j

}
.

Finally, if {i, j} ⊆ Lτ ′ , then Lτ = Lτ ′ \ {i} and Pτ = {p′|Lτ
| p′ ∈ Pτ ′ ∧ p′(i) = p′(j)}.

For correctness in the last case, let h be a homomorphism from Gτ to H and Sℓ ∈ S(H) be
such that Sℓ ⊆ S(h(V ℓ

τ )), ℓ ∈ Lτ . Observe that V ℓ
τ = V ℓ

τ ′ for ℓ ∈ Lτ \ {j} and V j
τ = V j

τ ′ ∪ V i
τ ′ .

In particular, Sj ⊆ S(h(V i
τ ′)) and Sj ⊆ S(h(V j

τ ′)). By definition of Pτ ′ , there exists p′ ∈ Pτ ′

such that p′(ℓ) = Sℓ for ℓ ∈ Lτ \ {j} and p′(i) = p′(j) = Sj . The function p ∈ Pτ , defined by
p = p′|Lτ

, satisfies p′(ℓ) = Sℓ, ℓ ∈ Lτ .
On the other hand, fix some p ∈ Pτ . Let p′ ∈ Pτ ′ be a function such that p arises

from p′ in the construction of Pτ . Consider a witness h of p′ in τ ′. For every ℓ ∈ Lτ \ {j}
we have V ℓ

τ = V ℓ
τ ′ and so p(ℓ) = p′(ℓ) ⊆ S(h(V ℓ

τ )). Moreover, p(j) = p′(j) ⊆ S(h(V j
τ ′))

and p(j) = p′(i) ⊆ S(h(V i
τ ′)). By Observation 4, we have p(j) ⊆ S(h(V i

τ ′)) ∩ S(h(V j
τ ′)) =

S(h(V i
τ ′ ∪ V j

τ ′)) = S(h(V j
τ )). Hence p witnesses h in τ .

(c) τ = τ (1) ⊕ τ (2) where Pτ (1) and Pτ (2) have already been computed. In this case
Lτ = Lτ(1) ∪ Lτ(2) . We define

Pτ = {p = p1 ∪ p2 | p1 ∈ Pτ(1) ∧ p2 ∈ Pτ(2) ∧ (∀ℓ ∈ Lτ(1) ∩ Lτ(2) : p1(ℓ) = p2(ℓ))}

Intuitively, we construct a homomorphism on the disjoint union of two subgraphs by
“gluing together” the homomorphisms on the subgraphs. If the subgraphs share any live
labels, after this step they will all be treated equally. For this reason we require the images
of the neighbors of such labels to be the same in both subgraphs.

ICALP 2022
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For correctness, let h be a homomorphism from Gτ to H and Sℓ ∈ S(H) be such
that Sℓ ⊆ S(h(V ℓ

τ )), ℓ ∈ Lτ . Observe that for every ℓ ∈ Lτ(1) ∩ Lτ(2) , V ℓ
τ ⊇ V ℓ

τ(i) , so
Sℓ ⊆ S(h(V ℓ

τ(i))), i = 1, 2. By definition, there exists pi ∈ Pτ(i) such that pi(ℓ) = Sℓ for
ℓ ∈ Lτ(i) , i = 1, 2. For p = p1 ∪ p2 we have p(ℓ) = Sℓ, ℓ ∈ Lτ .

For the converse, fix some p ∈ Pτ . Let p1 ∈ Pτ(1) , p2 ∈ Pτ(2) be functions such that
p = p1 ∪ p2. Let hi be a witness of pi in τ (i), i = 1, 2. We define h = h1 ∪ h2. Since Gτ

doesn’t contain edges between V (Gτ(1)) and V (Gτ(2)), h is a homomorphism from Gτ to
H. For all ℓ ∈ Lτ(1) \ Lτ(2) , we have p(ℓ) = p1(ℓ) ⊆ S(h1(V ℓ

τ )) = S(h(V ℓ
τ )), similarly for

ℓ ∈ Lτ(1) \ Lτ(2) . For ℓ ∈ Lτ(1) ∩ Lτ(2) , we have p(ℓ) = pi(ℓ) ⊆ S(hi(V ℓ
τ(i))), i = 1, 2, so

p(ℓ) ⊆ S(h1(V ℓ
τ(1))) ∩ S(h2(V ℓ

τ(2))) = S(h(V ℓ
τ )). Hence h is a witness of p in τ .

(d) τ = ηi,j(τ ′) and Pτ ′ has already been computed. In this case Lτ = Lτ ′ \ I where
I ⊆ {i, j} is the set of live labels in τ ′ that are no longer live labels in τ . We set Pτ = {p : Lτ →
S(H) | ∃p′ ∈ Pτ ′ :

(
p′(i) ⊇ S(p′(j)) ∧ p|Lτ \{i,j} = p′|Lτ \{i,j} ∧ p(i) ⊆ p′(i) ∧ p(j) ⊆ p′(j)

)
}.

Intuitively, we can add the edges between two live labels if and only if there are edges
between their images in H. Our restriction on p′ is an expression of this condition in terms of
images of neighbors and their signatures. Indeed, for correctness, let h be a homomorphism
from Gτ to H and Sℓ ∈ S(H) be such that Sℓ ⊆ S(h(V ℓ

τ )), ℓ ∈ Lτ . There exists p′ ∈ Pτ ′

such that p′(ℓ) = Sℓ for all ℓ ∈ Lτ \ {i, j}, p′(i) = S(h(V i
τ )) and p′(j) = S(h(V j

τ )). As h is
a homomorphism, we have h(V i

τ ′) × h(V j
τ ′) ⊆ E(H), which means that S(h(V j

τ ′)) ⊇ h(V i
τ ′),

i.e. p′(j) ⊇ h(V i
τ ′). Then S(p′(j)) ⊆ S(h(V i

τ ′)) = p′(i) and hence p′ gives rise to p ∈ Pτ such
that p(ℓ) = Sℓ, ℓ ∈ Lτ .

On the other hand, let p ∈ Pτ arise from p′ ∈ Pτ ′ . Consider a witness h : Gτ ′ → H of
p′ in τ ′. To see that h preserves edges between V i

τ ′ and V j
τ ′ , recall that p′(i) ⊇ S(p′(j)),

so S(h(V i
τ ′)) ⊇ p′(i) ⊇ S(p′(j)) ⊇ S(S(h(V j

τ ′))) ⊇ h(V j
τ ′). Hence h(V i

τ ′) × h(V j
τ ′) ⊆ E(H)

and h is a homomorphism from Gτ to H. By construction, for every ℓ ∈ Lτ it holds that
p(ℓ) ⊆ p′(ℓ) ⊆ S(h(V ℓ

τ )), so h witnesses p in τ .
It is easy to verify that |Pτ | ⩽ s(H)cw(G) for each subexpression τ of σ. This means that

in each step, the computation requires time O(cw(G)s(H)2s(H)cw((G))). Overall this yields
a complexity of O(|V (G)|cw(G)s(H)2s(H)cw((G))) ⊆ O∗(s(H)cw(G)). ◀

4 On Products and Projectivity

While Theorem 1 will serve as the upper bound that will match our target SETH-based
lower bounds for Hom(H) for the “most difficult” choices of H, in many cases one can in
fact supersede the algorithm’s runtime by exploiting well-known properties of target graphs.

As a simple example showcasing this, consider the wheel graph W6 (see Figure 1). Since
W6 is 3-colorable, it holds that W6 → K3, and since K3 is a core and an induced subgraph
of W6, it is the core of W6. We recall that if H is a core of H ′, then for every graph G it
holds that G → H if and only if G → H ′. Hence, having an instance G of Hom(W6), we can
compute a core of W6 (since we assume that the target graph is fixed, this can be done in
constant time), and use Theorem 1 for H = K3 to decide whether G → W6 in total running
time O∗(s(K3)cw(G)). As s(K3) < s(W6) (as showcased in Figure 1), this yields a better
running time bound than the direct use of Theorem 1. While this example shows that the
signature number can decrease by taking an induced subgraph, we remark that it can never
increase.

▶ Observation 9. Let H and H ′ be graphs such that H is an induced subgraph of H ′. Then
s(H) ⩽ s(H ′).
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Figure 1 The graphs W6 (left) and K3 (right). Colors on the vertices of W6 indicate the
homomorphism h : W6 → K3. We note that {{0}} ∪ {{0, i} | i ∈ [6]} ⊆ S(W6). Since K3 is a clique,
we have s(K3) = 6 < 7 ⩽ s(W6).

Proof. Given a connected graph Q without loops, one may consider an equivalence relation
∼Q on the set of proper nonempty subsets of V (Q) defined as follows: V1 ∼Q V2 if and
only if V1 and V2 have the same signature sets in Q. Observe that s(Q) is equal to the
number of equivalence classes of ∼Q. Hence to prove the claim, it suffices to show that
whenever two sets belong to different equivalence classes of ∼H , they also belong to different
equivalence classes of ∼H′ . For this, consider any two proper non-empty subsets V1 and
V2 of V (H) such that V1 ≁H V2. Without loss of generality, we assume that there exists
v ∈ (

⋂
t∈V1

NH(t)) \ (
⋂

t∈V2
NH(t)). Then vt ∈ E(H) ⊆ E(H ′) for every t ∈ V1, i.e., v

belongs to the signature set of V1 in H ′. On the other hand, vt0 /∈ E(H) for some t0 ∈ V2.
As H is induced subgraph of H ′, it means that vt0 /∈ E(H ′), so v doesn’t belong to the
signature set of V2 in H ′ and hence V1 ≁H′ V2. ◀

At this point, we may ask whether the procedure of simply computing the unique core H

of the fixed target H ′ and then applying Theorem 1 for H could yield a tight upper bound
for Hom(H ′). Unfortunately, the situation is more complicated than that, and we need to
introduce a few important notions in order to capture the problem’s fine-grained complexity.

Let the direct product H1 × H2 of graphs H1, H2 be the graph defined as follows:

V (H1 × H2) = V (H1) × V (H2),
E(H1 × H2) = {(x1, x2)(y1, y2) : xiyi ∈ E(Hi) for every i ∈ {1, 2}}.

We call H1 and H2 the factors of H1 × H2. Clearly, the operation × is commutative, and
since it is also associative, we can naturally extend the definition of direct product to more
than two factors, i.e., H1 × H2 × . . . × Hm = H1 × (H2 × . . . × Hm). Note that for every
graph H that contains at least one edge, it holds that H × K∗

1 = H.
In the remaining part of the paper we will often consider vertices that are tuples. If such

a vertex is an argument of some function and in cases where this does not lead to confusion,
we omit one pair of brackets; similarly, we omit internal brackets in nested tuples where this
does not lead to confusion. Moreover, for any graph H and for an integer ℓ, we denote by Hℓ

the graph
ℓ︷ ︸︸ ︷

H × . . . × H. As an example, instead of writing ((x1, x2), y1) ∈ ((H1 × H1) × H2),
we write (x1, x2, y1) ∈ (H2

1 × H2).
If H = H1 × . . . × Hm for some graphs H1, . . . , Hm, we say that H1 × . . . × Hm is a

factorization of H. A graph H on at least two vertices is prime if the fact that H = H1 × H2
for some graphs H1, H2 implies that H1 = K∗

1 or H2 = K∗
1 . If H has a factorization

H1 × . . . × Hm such that for every i ∈ [m] the graph Hi is prime, we call H1 × . . . × Hm a
prime factorization of H.

▶ Theorem 10 ([8, 14]). Any connected non-bipartite graph with more than one vertex has a
unique prime factorization (into factors with possible loops).
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Consider a graph H1×. . .×Hm, and let i ∈ [m]. A mapping πi : V (H1×. . .×Hm) → V (Hi)
such that πi(x1, . . . , xℓ) = xi is called the (i-th) projection of H1 × . . . × Hm. Clearly, such a
mapping is always a homomorphism.

▶ Observation 11. Let G, H1, . . . , Hm be graphs. Then G → H1 × . . . × Hm if and only if
for every i ∈ [m] we have G → Hi.

Proof. Let f : G → H1×. . .×Hm. Then for every i ∈ [m] (by [m] we denote the set of integers
{1, . . . , m}) we have a homomorphism fi : G → Hi. Conversely, if for every i ∈ [m] we have
gi : G → Hi, then we can define g : G → H1 × . . . × Hm as g(x) = (g1(x), . . . , gm(x)). ◀

Crucially, in some cases Observation 11 allows us to improve the bounds given by
Theorem 1 even if H is a core, simply by considering all possible factorizations of H.

▶ Corollary 12. Let H be a graph with factorization H1 × . . . × Hm, and let G be an instance
graph of Hom(H). Assuming that the clique-width expression σ of G of width cw(G) is given,
the Hom(H) problem can be solved in time maxi∈[m] O∗(

s(Hi)cw(G)).

Proof. Observe that if G is an instance of Hom(H), by Theorem 1 for every i ∈ [m] we can
decide whether G → Hi in time O∗(

s(Hi)cw(G)). Then, if G is a yes-instance of Hom(Hi) for
every i ∈ [m], we return that G is a yes-instance of Hom(H). Otherwise, we return that G is
a no-instance of Hom(H). The correctness of this procedure follows from Observation 11. ◀

On the other hand, the notion of signature sets we introduced in the previous section
behaves multiplicatively with respect to taking direct product of graphs.

▶ Observation 13. Let H = H1 × H2. Then S(H) = S(H1) × S(H2).

Proof. We prove that S(H) is of form {S(T1) × S(T2) : Ti ⊆ V (Hi), S(Ti) ̸= ∅ for i = 1, 2}.
Let T1 and T2 be some subsets of, respectively, V (H1) and V (H2). Clearly,

S(T1) × S(T2) = [
⋂

t∈T1

N(t)] × [
⋂

t′∈T2

N(t′)] =
⋂

(t,t′)∈T1×T2

N(t, t′) = S(T1 × T2). (1)

Therefore, if S(T1) and S(T2) are non-empty, we get that S(T1) × S(T2) ∈ S(H).
To see that S(H) ⊆ S(H1) × S(H2), we show that for every T ⊆ V (H) set S(T ) is of

the form S(T1) × S(T2) for some T1, T2. Define T1 and T2 to be minimal sets such that
T ⊆ T1 ×T2. Hence, by (1), S(T1)×S(T2) = S(T1 ×T2) ⊆ S(T ). On the other hand, for every
(s, s′) ∈ S(T ) we have s ∈

⋂
t∈T1

N(t) and s′ ∈
⋂

t′∈T2
N(t′), so the equality follows. ◀

It follows from Observation 13 that if H is a graph with factorization H1 × . . . × Hm,
then s(H) = s(H1) · . . . · s(Hm). Therefore if there exist at least two factors Hi, Hj such that
s(Hi), s(Hj) > 1, Corollary 12 yields a better running time than Theorem 1.

In order to analyze the possible matching lower bounds for our algorithms, in the remaining
part of the section, we focus only on connected non-trivial cores H that are provided with
their unique prime factorization H1 × . . . × Hm; if H is prime, we technically consider this
factorization to be H × K∗

1 (noting that this is not a prime factorization, and that K∗
1 is the

only non-simple graph in this article). We note that the factors of a core must satisfy some
necessary conditions.

▶ Observation 14 ([25]). Let H be a connected, non-trivial core with factorization H =
H1 × . . . × Hm such that Hi ̸= K∗

1 for all i ∈ [m]. Then for every i ∈ [m] the graph Hi is a
connected non-trivial core, incomparable with Hj for j ∈ [m] − {i}.
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Observation 14 in particular implies that if H is a connected non-trivial graph with
factorization H1 × . . . × Hm, then at least one of the factors Hi must be non-trivial, and
that K1 and K2 never appear as factors of a connected non-trivial graph.

In the remaining part of this section we introduce a few more important definitions, in
particular, the well-established notion of projectivity for non-trivial graphs H.

We say that a homomorphism f : Hℓ → H, for some ℓ ⩾ 2, is idempotent if for each
x ∈ V (H) it holds that f(x, . . . , x) = x. Graph H is projective if for every ℓ ⩾ 2, every
idempotent homomorphism f : Hℓ → H is a projection. We note that every projective graph
on at least three vertices must be connected, ramified, non-bipartite and prime [22].

Here, we introduce a generalization of the projectivity property for non-trivial cores,
which turns out to be the central component required to establish the lower bound for our
problem. As a first step towards this, we lift the notion of idempotency as follows. Let H be
a connected, non-trivial prime core, and let W be either a connected core on at least three
vertices incomparable with H, or the graph K∗

1 . Let f : A → H be a homomorphism where
A = Hℓ ×W ; observe that ℓ is uniquely determined by either W being incomparable with the
prime core H, or W being K∗

1 . We say that f is H-idempotent if for each x ∈ V (H), y ∈ V (W )
it holds that f(x, . . . , x, y) = x.

Now, let us consider a non-trivial core H which admits a prime factorization H1 ×. . .×Hm

and let i ∈ [m]. We say that H is Hi-projective if Hi is non-trivial and every Hi-idempotent
homomorphism f : H1×. . .×Hi−1×Hℓ

i ×Hi+1×. . .×Hm → Hi is a projection. In other words,
for every homomorphism f : H1 × . . . Hi−1 × Hℓ

i × Hi+1 × . . . × Hm → Hi such that for every
x ∈ V (Hi), yj ∈ V (Hj) for j ∈ [m]−{i} it holds that f(y1, . . . , yi−1, x, . . . , x, yi+1, . . . , ym) =
x, we must have that there exists q ∈ {i, . . . , i + ℓ − 1} such that f ≡ πq. Recall that if
H is a non-trivial projective core, then it must be prime, so H × K∗

1 is its only possible
factorization. It is straightforward to verify that in a such case H is H-projective.

Since the direct product of graphs is commutative, if H = H1 × . . . × Hm is Hi-projective
for some i ∈ [m], to simplify the notation we will often assume w.l.o.g. that i = 1.

5 Hardness

In this section, we focus on establishing the desired lower bounds, stated below.

▶ Theorem 2. Let H be a fixed non-trivial core with prime factorization H1 × . . . × Hm.
Assume that H is Hi-projective for some i ∈ [m]. Then there is no algorithm solving Hom(H)
in time O∗((s(Hi) − ε)cw(G)) for any ε > 0, unless the SETH fails.

We divide our proof into two main steps. First, we show that in our setting, instead
of considering the Hom(H) problem, we may focus on the Homomorphism Extension
problem, denoted HomExt(H). For a fixed H, HomExt(H) takes as an instance a pair
(G′, h′), where h′ : V ′ → V (H) is a mapping from some V ′ ⊆ V (G′). We ask whether there
exists an extension of h′ to G′, i.e., a homomorphism h : G′ → H such that h|V ′ ≡ h′.

The HomExt(H) is clearly a generalization of the Hom(H) problem. However, as the
first step of our proof, we show that if H is a fixed non-trivial core, each instance (G′, h′) of
HomExt(H) can be transformed in polynomial time into an instance G of Hom(H), such
that cw(G′) and cw(G) differ only by a constant.

▶ Theorem 15. Let H be a fixed non-trivial core. Given an instance (G′, h′) of HomExt(H),
we can construct an equivalent instance G of Hom(H) such that cw(G) ⩽ cw(G′) + |V (H)|.
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Proof. Let V ′ ⊆ V (G′) be the domain of h′. We construct G by taking a copy Ĝ′ of G′ and
a copy Ĥ of H. Then, for every v ∈ V ′ we add all the edges with one endpoint in v and
another one in NĤ(h′(v)).

Observe that if there exists an extension h : G′ → H of h′, then h can be also extended
to G, by setting h(v) = v for every v ∈ V (Ĥ). Indeed, let uv ∈ E(G). If u, v ∈ V (Ĝ′), then
h(u)h(v) ∈ E(H), by definition of the extension of h′ to G′. If u, v ∈ V (Ĥ), then h(u)h(v) =
uv ∈ E(H). Finally, assume that u ∈ V (Ĝ′), v ∈ V (Ĥ). Note that, by definition of G, this
can happen only if u ∈ V ′ and v is adjacent to h′(u). Hence, h(u)h(v) = h′(u)v ∈ E(H).

For the reverse direction, assume that there exists a homomorphism f : G → H. We
show that there exists an extension h : G′ → H of h′. Let σ : H → H be a restriction of f

to H. Since H is a core, σ is an automorphism of H. We claim that g = σ−1 ◦ f : G → H,
restricted to G′, is an extension of h′. Clearly, g is a composition of homomorphisms, so also
a homomorphism. Therefore, it remains to show that for every v ∈ V ′ we have h′(v) = g(v).
Since H is a core, and NH(h′(v)) ⊆ NG(v), we have that f(v) = f(h′(v)). It follows that
g(v) = σ−1 ◦ f(v) = σ−1 ◦ f(h′(v)) = g(h′(v)). However, recall that for every u ∈ V (H) we
have that g(u) = u, so in particular, g(h′(v)) = h′(v).

To see that cw(G) ⩽ cw(G′) + |V (H)|, observe that we added exactly |V (H)| vertices to
G′. This means we can modify a clique-width expression σ for G′ to obtain a clique-width
expression of G as follows. Each added vertex is introduced with a designated label that is
distinct from all labels used in σ. Then each subexpression of σ that introduces a vertex of
G′ can be replaced by an expression that introduces the vertex and inserts all required edges
to the added vertices. Finally, one can insert the missing edges between added vertices. ◀

As the second step, we prove the following theorem.

▶ Theorem 16. Let H be a fixed non-trivial core with prime factorization H1 × . . . × Hm.
Assume that H is Hi-projective for some i ∈ [m]. Then there is no algorithm solving
HomExt(H) in time O∗((s(Hi) − ε)cw(G′)) for any ε > 0, unless the SETH fails.

Before we proceed to the proof of Theorem 16, we show that it implies Theorem 2.
Theorem 16 → Theorem 2: Let H be a non-trivial core with a prime factorization
H1 × . . . × Hm. W.l.o.g. assume that H is H1-projective. Suppose that Theorem 2 does
not hold, i.e., there exists an algorithm A that solves every instance G of Hom(H) in time
O∗((s(H1) − ε)cw(G)).

Let (G′, h′) be an instance of HomExt(H). We use Theorem 15 to transform (G′, h′)
into an equivalent instance G of Hom(H), such that cw(G) ⩽ cw(G′) + |V (H)|. Then, we
use A to decide whether G → H in time

O∗ ((s(H1) − ε)cw(G) = O∗
(

(s(H1) − ε)cw(G′) · (s(H1) − ε)|V (H)|
)

.

Since H is a fixed graph, (s(H1)−ε)|V (H)| is a constant, and therefore O∗ (
(s(H1) − ε)cw(G)) =

O∗
(

(s(H1) − ε)cw(G′)
)

. Since G → H if and only if (G′, h′) is a yes-instance of HomExt(H),
we get a contradiction with Theorem 16.

We will prove Theorem 16 for i = 1, which covers other cases by commutativity of direct
products. We begin by constructing certain gadgets that will be used later. Let H be a fixed
core with factorization H1 × . . . ×Hm. We define W = H2 × . . . × Hm if m ⩾ 2, and W = K∗

1
otherwise. Clearly, H1 × W is a (not necessarily prime) factorization of H. Moreover, if for
some graph G we have a homomorphism f : G → H1 × . . . , ×Hm, for i ∈ [m] we denote by
fi the homomorphism πi ◦ f : G → Hi.
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Let S be a set of pairs of vertices of H1, and let w, w′ ∈ V (W ). We say that a tuple
(F, h′, p, q), such that F is a graph, h′ : V ′ → H is a mapping with domain V ′ ⊆ V (F ), and
p, q ∈ V (F ), is an (S, w, w′)-gadget if
(S1) for every extension h : F → H of h′, it holds that (h1(p), h1(q)) ∈ S,
(S2) for every pair (s1, s2) ∈ S there exists an extension h : F → H of h′ such that

h(p) = (s1, w) and h(q) = (s2, w′).

▶ Lemma 17. Let H be a non-trivial connected core with factorization H1 × W , let S ⊆
V (H1)2, and let w, w′ ∈ V (W ). Assume that H is H1-projective. Then there exists an
(S, w, w′)-gadget.

Proof. Let S = {(s1
1, s1

2), . . . , (sℓ
1, sℓ

2)}. Define

F = Hℓ
1 × W, and p = (s1

1, . . . , sℓ
1, w), and q = (s1

2, . . . , sℓ
2, w′).

Let V ′ = {(x, x, . . . , x, y) | x ∈ V (H1), y ∈ V (W )}, and let h′(x, . . . , x, y) = (x, y). We claim
that (F, h′, p, q) is an (S, w, w′)-gadget.

The condition 1 follows from the fact that H is H1-projective. Indeed, observe that
if h : F → H1 × W is an extension of h′, then h1 must be H1-idempotent, and hence a
projection on one of the ℓ first coordinates. Therefore, we must have (h1(p), h1(q)) ∈ S.

For (S2), take any (si
1, si

2) ∈ S and let h : F → H1 × W , h(x) = (πi(x), πℓ+1(x)). Clearly,
h is an extension of h′, and it is easy to verify that h(p) = (si

1, w) and h(q) = (si
2, w′). ◀

We say that S ⊆ V (H1)2 is proper, if for every coordinate there exist two elements is S that
differ on that coordinate, i.e., S is not of the form {s} × U nor U × {s} for some s ∈ V (H1)
and U ⊆ V (H1). Note that if S is proper and (F, h′, p, q) is an (S, w, w′)-gadget, then neither
p nor q belong to the domain of h′.

For fixed vertices a, b ∈ V (H1), let Sa,b = {(a′, b′) : a′ ̸= a, b′ ∈ V (H1)} ∪ {(a, b)}. We
call the (Sa,b, w, w′)-gadget (F, h′, p, q) an ((a, b), w, w′)-implication-gadget. Intuitively, an
((a, b), w, w′)-implication-gadget works as the implication a ⇒ b, since in every homomorphism
h : F → H that extends h′, if h1(p) = a, then h1(q) = b.

Let a, b, c ∈ V (H1), w ∈ V (W ), and let t be an integer. A triple (F, h′, R) such that F is
a graph, h′ : V ′ → H1 × W is a partial mapping from some V ′ ⊆ V (F ), and R is a subset of
V (F ) of cardinality t is an t-or-gadget with domain ((a, b, c), w) if
(O1) for every homomorphism h : F → H that is an extension of h′, and for every u ∈ R we

have that h1(u) ∈ {a, b, c} and there exists v ∈ R such that h1(v) = a,
(O2) for every v ∈ R there exists a homomorphism h : F → H that is an extension of h′,

such that h(v) = (a, w) and for every u ∈ R − {v} it holds that h(u) ∈ {(b, w), (c, w)}.

▶ Lemma 18. Let H be a non-trivial core with factorization H1 × W . Assume that H is
H1-projective. Then for every distinct a, b, c ∈ V (H1), every w ∈ V (W ) and every t, there
exists a t-or-gadget (F, h′, R) with domain ((a, b, c), w).

Proof. We consider separately the cases t = 1 and t = 2. Observe that in case t = 1 our
gadget needs to be a graph that has a vertex r ∈ R that is always mapped to (a, w). Hence,
we set F = K1, R = V (F ), and h′(v) = (a, w) for v ∈ V (F ).

If t = 2, let S = {(a, b), (b, a), (a, a)}, we introduce an independent set R = {r1, r2} and
(S, w, w)-gadget (F, h′, r1, r2). To see that (F, h′, R) satisfies 1, consider any extension f : F →
H of h′. As (F, h′, r1, r2) is (S, w, w)-gadget, we have (f1(r1), f1(r2)) ∈ {(a, b), (a, a), (b, a)}.
For 2, recall that by the property 2 of S-gadget there exist extensions f (1) and f (2) of h′

such that (f (1)
1 (r1), f

(1)
1 (r2)) = (a, b) and (f (2)

1 (r1), f
(2)
1 (r2)) = (b, a).
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Assume then that t ⩾ 2, and let

S = {a, b, c}2 − {(b, c), (c, b)},

Sleft = {(a, a), (a, b), (a, c), (c, a), (c, c)},

Sright = {(a, a), (a, b), (b, a), (b, b), (c, a)}

be subsets of V (H1)2. We introduce an independent set R = {r1, . . . , rt} of t vertices and
one copy of (Sleft, w, w)-gadget (F1, h′

1, p1, q1) from r1 to r2. Then, for j ∈ {2, . . . , t − 2}, we
introduce an (S, w, w)-gadget (Fj , h′

j , pj , qj) from rj to rj+1 (we note that if t ⩽ 3, we do not
introduce these). Last, we introduce one copy of (Sright, w, w)-gadget (Ft−1, h′

t−1, pt−1, qt−1)
from rt−1 to rt. We note that sets S, Sleft, and Sright are proper, so the domains of the partial
mappings h′

j , j ∈ {1, . . . , t − 1}, are pairwise disjoint. In particular, the union h′ =
⋃t

j=1 h′
j

is a well-defined mapping. We define F to be the union of all the graphs from the introduced
gadgets and claim that (F, h′, R) is a t-or-gadget. We first show that 1 holds. Assume
that there exists an extension f : F → H of h′, and j′ ∈ [t] such that f1(rj′) /∈ {a, b, c}.
This implies that there exists j ∈ {j′ − 1, j′} such that (f1(rj), f1(rj+1)) /∈ S′ for any
S′ ∈ {Sleft, S, Sright}. This is a contradiction with (F,h

′
j , pj , qj) being an (S′, w, w)-gadget,

as it violates 1.
Now assume that there exists an extension f : F → H of h′ such that for every j ∈ [t]

we have that f1(rj) ∈ {b, c}. The definition of Sleft and Sright, respectively, implies that
f1(r1) = c and f1(rt) = b. Hence, there exists j ∈ [t−1] such that f1(rj) = c and f1(rj+1) = b.
However, observe that the pair (c, b) does not belong to set S′, for S′ ∈ {Sleft, S, Sright}, and
since we introduced an S′-gadget from rj to rj+1, this leads to a contradiction.

To see that 2 holds as well, fix some rj ∈ R and define

f ′(rℓ) =


(a, w), if ℓ = j,

(c, w), if ℓ < j,

(b, w), if ℓ > j,

If j = 1, then since (a, b) ∈ Sleft, (b, b) ∈ S and (b, b) ∈ Sright, the property 2 asserts that we
can construct a homomorphism f : F → H that extends h′ and f ′. The same holds also if
j = t, (since (c, c) ∈ Sleft, (c, c) ∈ S and (c, a) ∈ Sright), and if 1 < j < t (since (c, c) ∈ Sleft,
(c, c), (c, a), (a, b), (b, b) ∈ S and (b, b) ∈ Sright). ◀

Finally, all that remains is to prove Theorem 16. Our reduction generalizes the construction
used by Lampis [20] to reduce an SETH lower-bounded constraint satisfaction problem to
k-Coloring. Intuitively speaking, in that construction possible variable assignments are
encoded by mapping specified vertices to arbitrary non-trivial subsets of the colors. The
straightforward generalization of this approach to our setting would be to map to non-trivial
subsets of V (H). However, the structure of H allows only certain configurations of subsets
as images for the specified vertices in a solution for Hom(H) – which is precisely where the
signature sets come into play.

Let q, B ⩾ 2 be integers. We will reduce from the q-CSP-B problem that is defined as
follows. An instance of q-CSP-B consists of a set X of variables and a set C of q-constraints.
A q-constraint c ∈ C is a q-tuple of elements from X and a set P (c) of q-tuples of elements
from [B] (i.e., P (c) ⊆ [B]q). The q-CSP-B problem asks whether there exists an assignment
γ : X → [B], such that each constraint is satisfied, i.e., if c = ((x1, . . . , xq), P (c)) ∈ C, then
(γ(x1), . . . , γ(xq)) ∈ P (c). Note that we can assume that q-constraints in our q-CSP-B
instance may have less than q vertices, as it is always possible to add at most q − 1 dummy
variables to X and add them to constraints that are of smaller size.
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We will use the following theorem.

▶ Theorem 19 ([20]). For any B ⩾ 2, ε > 0 we have the following: assuming the SETH,
there exists q such that n-variable q-CSP-B cannot be solved in time O∗((B − ε)n).

We have all the tools to perform the final reduction.

Proof of Theorem 16. Recall that it is sufficient to prove the theorem when H = H1 × W

is non-trivial H1-projective core (W = K∗
1 if H = H1). Fix ε > 0 and set B = s(H1). As H

is H1-projective, H1 is non-trivial and hence contains at least three distinct vertices a, b and
c. In particular, B ⩾ 3 by Observation 8. Since H = H1 × W is a non-trivial core, W must
have at least one edge ww′ (it may happen that w = w′). From now on a, b, c, w and w′ are
fixed. Let q be the smallest number such that q-CSP-B on n variables cannot be solved in
time O∗((B − ε)n) assuming the SETH, given by Theorem 19.

Let φ be an instance of q-CSP-B, where X = {x1, . . . , xn} is the set of variables and
C = {c0, . . . , cm−1} is the set of constraints. For every j ∈ {0, . . . , m − 1} denote by Xj the
set of variables that appear in the constraint cj . Let P (cj) = {f j

1 , . . . , f j
pj

} be the set of
assignments from Xj to [B] that satisfy the constraint cj . Let L = m(n|H1| + 1), and let
λ : [B] → S(H1) be some fixed bijection.

We construct the instance Gφ of HomExt(H). For each j ∈ {0, . . . L − 1}, let j′ = j

mod m. Let Rj = {rj
1, . . . , rj

pj′ }, where each vertex rj
k corresponds to the assignment f j′

k .
We introduce the pj′ -or-gadget (Fj , h′

j , Rj) with domain ((a, b, c), w).
For each xi ∈ Xj′ , and for each f j′

k ∈ P (cj′) we do the following:
1. Let y = f j′

k (xi) ∈ [B]. Construct an independent set V j,k
i of |λ(y)| vertices and an

independent set U j,k
i of |S(λ(y))| vertices.

2. For each d ∈ λ(y) select a distinct vertex z ∈ V j,k
i and add an ((a, d), w, w′)-implication-

gadget from rj
k to z. For each d ∈ S(λ(y)) select a distinct vertex z ∈ U j,k

i and add an
((a, d), w, w′)-implication-gadget from rj

k to z.
3. Connect all vertices of U j,k

i with all vertices of previously constructed sets V ℓ,k′

i for ℓ < j

and k′ ∈ [pℓ].

The partial mapping h′ is the union of all the partial mappings that are introduced by
all the gadgets. This finishes the construction of the instance (Gφ, h′) of HomExt(H).

▷ Claim 20. If φ is a yes-instance of q-CSP-B, then there exists a homomorphism h : Gφ → H

that extends h′.

Proof of Claim. If φ is a yes-instance of q-CSP-B, then there exists an assignment γ : X → [B]
satisfying each constraint. We define h : Gφ → H as follows.

Fix j ∈ {0, . . . , L − 1}, and consider the or-gadget (Fj , h′
j , Rj). Recall that the set P (cj′)

consists of all assignments of variables in Xj′ that satisfy the constraint cj′ . Therefore,
there exists an assignment f j′

k ∈ P (cj′) such that γ|Xj′ ≡ f j′

k . Consider the vertex rj
k that

corresponds to that assignment. By the property 2 of the or-gadget, we know that there exists
a H-coloring of Fj that extends h′, such that (i) h1(rj

k) = a and (ii) for every rj
k′ ∈ Rj , k′ ̸= k

we have that h1(rj
k′) ∈ {b, c}.

Let xi ∈ Xj′ and let y = f j′

k (xi) ∈ [B]. Since for each d ∈ λ(y) there exists a vertex
z ∈ V j,k

i such that there is an ((a, d), w, w′)-implication-gadget from rj
k to z, the condition (i)

implies that h1(V j,k
i ) = λ(y). We color the vertices of V j,k

i in a way that h(V j,k
i ) = λ(y)×{w}.

Also, since for each d ∈ S(λ(y)) there exists a vertex z ∈ U j,k
i such that there is an

(a, d)-implication-gadget from rj
k to z, the condition (i) implies that h1(U j,k

i ) = S(λ(y)). We
color the vertices of U j,k

i in a way that h(U j,k
i ) = S(λ(y)) × {w′}.
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Because of (ii), the implication gadgets from rk′ to the vertices of V j,k′

i ∪ U j,k′

i do not
put any constraints on the coloring of the sets V j,k′

i and U j,k′

i . Therefore, for each v ∈ V j,k′

i

we set h(v) to be any vertex from λ(y). Similarly, for each u ∈ U j,k′

i we set h(u) to be any
vertex from S(λ(y)). Since (b, x), (c, x) ∈ Sa,b for any x ∈ V (H1), property 2 applied to the
implication gadgets asserts that since h(rk′) ∈ {b, c}, we can always extend this mapping to
a homomorphism of the whole gadget to H.

It remains to argue that the edges between the sets V j1,k1
i and U j2,k2

i are mapped to
edges of H, for any j1 < j2 and k1, k2. However, observe that since γ is an extension of some
f

j′
1

k1
∈ Sj′

1
and f

j′
2

k2
∈ Sj′

2
, we must have f

j′
1

k1
(xi) = f

j′
2

k2
(xi) = y. Hence, h maps every v ∈ V j1,k1

i

to some element of λ(y) × {w}, and every u ∈ U j2,k2
i to some element of S(λ(y)) × {w′}. By

Observation 4, and since ww′ ∈ E(W ), we get that h(v)h(u) ∈ E(H). That concludes the
proof of the claim. ◁

▷ Claim 21. If there exists a homomorphism h : Gφ → H that extends h′, then φ is a
yes-instance of q-CSP-B.

Proof of Claim. We will define the assignment γ : X → [B] that makes every constraint from
C satisfied.

Fix j ∈ {0, . . . , L − 1}, and consider the pj′-or-gadget (Fj , h′
j , Rj). By the property 1

of the or-gadget, there exists kj ∈ [pj′ ] such that h1(rj
kj

) = a. Implication gadgets whose
p-vertices were identified with rj

kj
assert that h1(V j,kj

i ) ∈ S(H) and h1(U j,kj

i ) is the signature
of h1(V j,kj

i ). Then, by Observation 5, h1(V j,kj

i ) is a signature of h1(U j,kj

i ). Denote h1(U j,kj

i )
by T j

i , then h1(V j,kj

i ) = S(T j
i ) and S(S(T j

i )) = T j
i Let yj

i = f j′

kj
(xi) be the candidate

assignment for xi ∈ Xj′ at index j, recall that yj
i = λ−1(S(T j

i )).
Let i ∈ [n] be fixed and let j1, j2 ∈ [L], j1 < j2 be such that xi ∈ Xj′

1
∩ Xj′

2
. Observe that

in such case T j1
i ⊇ T j2

i . Indeed, denote k1 = kj1 , k2 = kj2 , then we have (1) h1(V j1,k1
i ) =

S(T j1
i ) and h1(U j1,k1

i ) = T j1
i , and (2) h1(V j2,k2

i ) = S(T j2
i ) and h1(U j2,k2

i ) = T j2
i . Recall

that each vertex from U j2,k2
i is adjacent to each vertex from V j1,k1

i . Since h1 is a homomor-
phism, the same holds for their images: each vertex from T j2

i is adjacent to each vertex from
S(T j1

i ). Then S(T j2
i ) ⊇ S(T j1

i ), so T j1
i = S(S(T j1

i )) ⊇ S(S(T j2
i )) ⊇ T j2

i .
We say that the index j1 ∈ {0, . . . , L − 1} is problematic for i if there is j2 > j1 such that

xi ∈ Xj′
1

∩ Xj′
2

and T j1
i ̸= T j2

i . Since for each variable we have at most |Hi| problematic
indices, there are at most |Hi|·n problematic indices for all variables. Since L = m(|Hi|·n+1),
by pigeonhole principle we get that there exists a set J ⊆ {0, . . . , L − 1} of m consecutive
indices such that none of them is problematic for any i. For every i ∈ [n], we fix some j ∈ J

such that xi ∈ Xj′ and set γ(xi) = yj
i (observe that the choice of j does not matter).

We claim that γ is an assignment that satisfies every constraint from φ. Indeed, for
any j′ ∈ [m] there exists j ∈ J such that j′ = j mod m. For every i ∈ Xj′ , we have
γ(xi) = yj

i = f j′

kj
(xi), so γ satisfies the constraint cj′ . ◁

Finally, it remains to adapt the arguments of Lampis [20] to establish the desired linear
clique-width bound.

▷ Claim 22. Gφ can be constructed in time polynomial in |φ|, and we have cw(Gφ) ⩽
n + f(ε, ν) for some function f , where ν = |V (H)|.

Proof of Claim. Observe that any (S, w, w′)-gadget constructed as in Lemma 17 for i = 1
has at most |V (Hi)||S|−1 · |V (H)| ⩽ ν|S| vertices. In particular, we can ensure that every
implication gadget in Gφ has at most νO(ν2) vertices. Moreover, we will assume that all the
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or-gadgets of Gφ are constructed as in Lemma 18 and the subgadgets for S, Sleft and Sright
contain at most ν7 vertices. Then for every j ∈ {0, . . . , L − 1}, pj′ -or-gadget (Fj , h′

j , Rj) has
at most (pj′ − 1) · ν7 vertices.

For fixed H and ε > 0 we have that B = s(Hi) ⩽ 2|V (Hi)| − 2 and q is a constant that
only depends on B, ε (that is, on |V (Hi)|, ε). Each constraint of the q − CSP − B instance
has at most Bq satisfying assignments. In particular, the number of vertices in each or-gadget
is upper-bounded by Bq · ν7. Therefore, it is not hard to see that the whole construction can
be performed in polynomial time, if H is fixed and ε is a constant. For clique-width we use
the following labels:
1. n main labels, representing the variables of φ.
2. A single done label. Its informal meaning is that a vertex that receives this label will not

be connected to anything else not yet introduced in the graph.
3. Bq · ν7 constraint work labels.
4. qBq · νO(ν2) variable-constraint incidence work labels.
To give a clique-width expression we will describe how to build the graph, following essentially
the steps given in the description of the construction by maintaining the following invariant:
before starting iteration j, all vertices of the set W j

i =
⋃

j′<j

⋃
k∈[pj′ ] V j′,k

i have label i, and
all other vertices have the done label. This invariant is vacuously satisfied before the first
iteration, since the graph is empty. Suppose that for some j ∈ {0, . . . , L − 1} the invariant is
true. We use the Bq · ν7 constraint work labels to introduce the vertices of the pj′ -or-gadget
(Fj , h′

j , Rj), giving each vertex a distinct label. We use join operations to construct the
internal edges of the or-gadget. Then, for each variable xi that appears in the current
constraint we do the following: we use Bq · νO(ν2) of the variable-constraint incidence work
labels to introduce for all k ∈ [pj′ ] the vertices of V j,k

i and U j,k
i as well as the implication

gadgets connecting these to rj
k . Again we use a distinct label for each vertex, but the number

of vertices (including internal vertices of the implication gadgets) is Bq · νO(ν2), so we have
sufficiently many labels to use distinct labels for each of the q variables of the constraint.
We use join operations to add the edges inside all implication gadgets. Then we use join
operations to connect U j,k

i to all vertices W j
i . This is possible, since the invariant states that

all the vertices of W j
i have the same label i. We then rename all the vertices of U j,k

i for all k

to the done label, and do the same also for internal vertices of all implication gadgets. We
proceed to the next variable of the same constraint and handle it using its own Bq · νO(ν2)

labels. Once we have handled all variables of the current constraint, we rename all vertices
of each V j,k

i to label i for all k. We then rename all vertices of the pj′ -or-gadget (Fj , h′
j , Rj)

gadget to the done label and increase j by 1. It is not hard to see that we have maintained
the invariant and constructed all edges induced by the vertices introduced in steps up to j,
so repeating this process constructs the graph. ◁

Together the claims imply Theorem 16 in the following way: For an arbitrary instance of
q-CSP-B, our construction produces an instance of HomExt(H), and the instances are
equivalent by Claim 20 and Claim 21. If one could solve HomExt(H) in O∗((s(Hi)−ε)cw(G))
for some ε > 0, one could use our construction to solve q-CSP-B, and by our choice of B

and Claim 22 this procedure would have complexity O∗((B − ε)n+c) for some constant c. By
our choice of q according to Theorem 19, this contradicts the SETH. ◀

6 Summary and Concluding Remarks

Extensions and Corollaries. We observe that Corollary 12 can be combined with Theorem 2
to obtain the following statement, which summarizes our results.
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▶ Theorem 23. Let H ′ be a fixed graph with the non-trivial connected core H. Let H1 ×
. . . × Hm be the prime factorization of H. Let i ∈ [m] be such that s(Hi) = maxj∈[m] s(Hj).
Let G be an instance of Hom(H ′).
1. Assuming a clique-width expression σ of G of width cw(G) is given, the Hom(H ′) problem

can be solved in time maxi∈[m] O∗(s(Hi)cw(G)).
2. Assuming that H is Hi-projective, there is no algorithm to solve Hom(H ′) in time

maxi∈[m] O∗((s(Hi) − ε)cw(G)) for any ε > 0, unless the SETH fails.

We note that the restriction to connected targets can be avoided by known properties of
homomorphisms to disconnected graphs [25]; on the algorithmic side, one branches over all
connected components of H, while for the lower bound one considers the component with
maximum signature number.

It is clear that obtaining a full complexity classification with respect to clique-width may
require weakening the assumption in the second statement of Theorem 23. We recall that
an analogous situation occurs in the work of Okrasa and Rzążewski [25]; as mentioned in
the introduction, the authors obtain the SETH-conditioned tight complexity bound for the
Hom(H) problem parameterized by treewidth for all targets H, assuming two conjectures of
Larose and Tardif [21,22]. The notion of Hi-projectivity allows us to restate these conjectures
as one, which is not only sufficient in our setting but is also weaker in the sense of it being
implied by the former two conjectures, but not necessarily equivalent to them.

▶ Conjecture 1. Let H be a non-trivial core with prime factorization H1 × . . . × Hm and let
i ∈ [m]. Then H is Hi-projective.

Using Conjecture 1, we can restate our main result as follows.

▶ Theorem 24. Let H ′ be a fixed graph with the non-trivial connected core H. Let H1 ×
. . . × Hm be the prime factorization of H. Let G be an instance of Hom(H ′).
1. Assuming the clique-width expression σ of G of width cw(G) is given, the Hom(H ′)

problem can be solved in time maxi∈[m] O∗(s(Hi)cw(G)).
2. Assuming that Conjecture 1 holds, there is no algorithm to solve Hom(H ′) in time

maxi∈[m] O∗((s(Hi) − ε)cw(G)) for any ε > 0, unless the SETH fails.

We also observe that since each non-trivial projective core H is H-projective, in this case
we already obtain a tight complexity bound.

▶ Corollary 25. Let H ′ be a fixed graph with the non-trivial connected projective core H. Let
G be an instance of Hom(H ′).
1. Assuming the clique-width expression σ of G of width cw(G) is given, the Hom(H ′)

problem can be solved in time O∗(s(H)cw(G)).
2. There is no algorithm to solve Hom(H ′) in time O∗((s(H) − ε)cw(G)) for any ε > 0,

unless the SETH fails.

Generalizations and Other Research Directions. We remark that our hardness reduction
is via HomExt(H), and in fact our algorithm can also easily be adapted to this setting
(by removing all records that do not adhere to the partial mapping from the input graph
to H) without an increase in complexity. However, since the dichotomy between P and
NP-complete cases of HomExt(H) is more complicated (see [11], studied as the graph-retract
problem) there exist target graphs H that are not covered by Theorem 24. On a similar
note, let us also point out that setting up the SETH-conditioned tight complexity bounds
for clique-width for a more general list problem LHom(H) [10,27] is widely open.
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Another direction that is very closely related to our results is to determine similarly
tight complexity bounds for the rank-width (rw) of the input graph: rank-width [17, 26] is a
graph parameter that is known to be asymptotically equivalent to clique-width and is in fact
used as an approximation of clique-width that can be computed in fixed-parameter tractable
time. Our results together with the known relationship between clique-width and rank-width
imply an upper bound of O∗(s(H)2rw +1) and a SETH lower bound of (s(H) − ε)rw on the
complexity of Hom(H) for projective H parameterized by the rank-width of the input.
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