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—— Abstract

Counting and sampling small subgraphs are fundamental algorithmic tasks. Motivated by the need
to handle massive datasets efficiently, recent theoretical work has examined the problems in the
sublinear time regime. In this work, we consider the problem of sampling a k-clique in a graph
from an almost uniform distribution. Specifically the algorithm should output each k-clique with
probability (1 & €)/nk, where nj denotes the number of k-cliques in the graph and € is a given
approximation parameter. To this end, the algorithm may perform degree, neighbor, and pair queries.
We focus on the class of graphs with arboricity at most «, and prove that the query complexity of
the problem is
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where n is the number of vertices in the graph, and ©*(-) suppresses dependencies on (logn/e)

O(k)

Our upper bound is based on defining a special auxiliary graph Hy, such that sampling edges
almost uniformly in Hj, translates to sampling k-cliques almost uniformly in the original graph G.
We then build on a known edge-sampling algorithm (Eden, Ron and Rosenbaum, ICALP19) to
sample edges in Hj. The challenge is simulating queries to Hy while being given query access only
to G. Our lower bound follows from a construction of a family of graphs with arboricity « such
that in each graph there are ny k-cliques, where one of these cliques is “hidden” and hence hard to
sample.
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Sublinear-Time Sampling of k-Cliques in Bounded Arboricity Graphs

1 Introduction

We consider the problem of sampling k-cliques in sublinear-time. Sampling subgraphs is a
fundamental computational task in randomized algorithms, statistics, data science, and many
other disciplines. Sampling k-cliques, and triangles in particular, has numerous applications
across various fields, see, e.g. [38, 7, 19, 47, 16] and references therein. The best exact
combinatorial algorithm for this task is an O((n/logn)¥)-time algorithm by Vassilevska [46],
and Chen et al. [14] proved that, under the exponential time hypothesis, there is no n°®*)-time
algorithm.

Motivated by the need to handle massive datasets efficiently, we consider algorithms that
are given query access to the graph, in the form of degree, neighbor and pair queries.® We
refer to this model as the general query model. Our goal is to design an algorithm that
samples k-cliques while performing as few queries as possible.

Fichtenberger, Gao, and Peng [32] recently studied the problem of sampling arbitrary
subgraphs. They assumed access to the above queries, as well as access to uniform edge
samples. Thus, they considered a strictly stronger model. Specifically, for sampling k-cliques
uniformly at random, their algorithm has expected complexity® O(m*/2/n;,), where m and
ny denote the number of edges and k-cliques in the graph, respectively. Their result is known
to be essentially tight, due to a lower bound by Eden and Rosenbaum [28].

However, the lower bound of [28] only holds when considering the worst-case over all
possible inputs. In this work we ask whether the lower bound can be circumvented when
considering graphs with bounded arboricity. The arboricity of a graph G, denoted «(G),
is the minimal number of forests required to cover its edge set. Up to a factor of 2, it
is equivalent to the average degree of the densest subgraph in G. Hence, arboricity is
a natural and useful measure of density “everywhere”. Graphs with bounded arboricity
constitute an important and rich family of graphs, including planar graphs, minor-closed
graphs, graphs with bounded treewidth, and preferential attachment graphs. On the applied
side, in most real-world graphs the arboricity is at most an order of magnitude larger
than the average degree, while the maximum degree could be up to three or four orders of
magnitude larger [34, 30, 43]. Many applied algorithms exploit the property of bounded
arboricity in order to design faster algorithms for clique and dense subgraph counting and
listing [30, 33, 41, 37, 17, 9]. Furthermore, in a recent work, Eden, Mossel and Ron presented
an algorithm for approximating the arboricity in sublinear time [21], whose output can be
used as input to our algorithm (as an upper bound on the arboricity of the graph).

We seek algorithms that, given a parameter o and query access to a graph whose arboricity
is upper bounded by «, “beat” the aforementioned lower bound when « is sufficiently bounded
away from /m (recall that the arboricity of a graph is always at most /m).

Such an algorithm was recently designed for the special case of sampling edges (2-cliques)
almost uniformly. Here and elsewhere, when we say “almost uniformly” we mean in the strong
sense of pointwise-close to uniform. Namely, where each element is returned with almost
equal probability. We further discuss the benefits of this notion as compared to the strictly
weaker notion of proximity with respect to the total variation distance in Section 1.1.2.

Degree queries return the degree, d(v), of a given vertex v; neighbor queries return the i*" neighbor of v
for any given vertex v and 1 < ¢ < d(v); and pair queries return whether there is an edge between a
given pair of vertices.

Throughout the introduction, when we discuss the “complexity” of previous results, we mean the running
time of the algorithm. The query complexity is always bounded by the minimum between the running
time and n + m < na.
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Specifically, it is shown in [23] that the complexity of the almost-uniform edge sampling
problem is ©*(na/m).> Comparing this to the ©*(n/y/m) complexity of the problem in
general graphs [29, 45], exhibits an improvement by (roughly) a factor of /m/a. In particular,
for graphs with constant arboricity, this implies an exponential improvement, from O*(y/n) to
O*(1). Similar improvements were obtained for the related question of approximately counting
the number of k-cliques in the graph, where Eden, Ron and Seshadhri [26] obtained significant
improvements for the class of bounded arboricity graphs, compared to the (essentially optimal)
result for the general case [27].

In this work we show that, indeed, the complexity of the task of sampling k-cliques for
any constant k > 3, is significantly better for the class of graphs of bounded arboricity, as
compared to general graphs.

» Theorem 1.1. Let ¢ € (0,1) be a constant. There exists an almost uniform sampling
algorithm for k-cliques in graphs with arboricity at most «, that returns each k-clique in the
graph with probability % Given a constant factor estimate of ny,,* the query complexity
of the algorithm is

o (oo (22) 7 1Y)

The running time is the same as the second term of the minimum.

While our upper bound on the complexity might seem unnatural at first glance, we also
prove an almost-matching lower bound, thus resolving the complexity of the problem up to
(logn/e)P*) factors.

» Theorem 1.2. Let A be an algorithm that given query access to a graph with arboricity at
most a, returns each k-clique with probability © (nik) Then the query complexity of A is

)

We note that we chose not to parameterize our bounds in terms of m, but rather, only in
terms of n, a, k and ng. Hence, both the upper bound and the lower bound are stated for
worst case m, which is na. We note that it is possible to obtain a finer expression that does

depend on m for both bounds. However, for the sake of exposition, we chose not to include
an additional parameter.

1.1 Discussion of the results
1.1.1 Comparison to previous results

For simplicity, assume that € and k are constants, and ignore lower order terms. To compare
the complexity of our algorithm to the upper bound of [32], consider, for example, the family
of graphs G with n vertices, m = n3? edges and arboricity a = n'/2, and assume that

3 We use O*, Q* and ©* to suppress a dependence on functions g(logn, k,1/¢), which are at most
(logn/e)°™) | where ¢ is the given approximation parameter.

4 If the algorithm is not provided with an estimate of ng, then an estimate of ny can be obtained
by applying the algorithm of [26] whose expected query complexity is dominated by the runtime of
Theorem 1.1.
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k = 3 and n3 = n?. Then the complexity of the problem in the general case grows like®
O(m?/? /n3) = O(n'/*), while we get ©*(n'/®). That is, we obtain a quadratic improvement,
despite the fact that we work in a strictly weaker query model.

If we also allow access to uniform edge queries, then our algorithm can be adapted to

1
run in time O* (max { (mm) A W}) . To compare this to the O(m*/2/n;) upper

Nk Nk

bound of [32] (for k-cliques), observe that if the first term in our bound is the dominant one,
then we get the bound of [32] taken to the power of 1/(k — 1). If the second term is the
dominant one, then we improve on the bound of [32] by a factor of (y/m/a)¥~=2 (recall that
for every graph, a < y/m).

1.1.2 The importance of point-wise uniform sampling

In our results we measure “almost uniformity” with respect to pointwise distance between
distributions. This notion of approximately uniform is a very strong one, as it requires every
element to be returned with almost equal probability. In contrast, one could also consider
the strictly weaker requirement that the distribution is close to uniform with respect to
total variation distance (TVD). Here, it might be the case that the distributions assigns zero
probability to an e-fraction of the domain elements.

Sampling almost uniformly with respect to TVD may be sufficient in some contexts.
However, there are scenarios in which the stronger notion of pointwise almost uniform
sampling is crucial. Consider a domain in which each element has some significance score
attributed to it, and assume that a small fraction of the domain elements have non-zero
score and the others have score zero. If we have access to a distribution whose TVD distance
to uniform is larger than the fraction of elements with positive score, then it is useless if
we want to get any information regarding the (non-zero) significance scores of the elements.
This is in contrast to having access to a distribution that is point-wise close to uniform, even
for constant point-wise distance, where each element is returned with probability ©(1/N),
where N is the size of the domain. In the latter case, the probability of hitting non-zero
score elements is slightly reduced as compared to uniform sampling, but does not fall to zero
as in the former case.

For a more concrete example, consider protein networks, where cliques correspond to
folding sites [18, 13, 1]. Omne can use point-wise sampling in order to get access to the
folding sites of the protein at question, and then continue to further study their surrounding
neighborhood. In TVD sampling however, it might be the case that exactly the folding sites
of interest are the ones “missed” by the TVD sampler. Furthermore, as biological networks
tend to huge and sparse [3, 39], allowing for improved results in bounded arboricity graphs
is of major interest.

1.1.3 Approximate counting vs. point-wise sampling

We first observe that the complexities of approximately counting edges and point-wise almost
uniformly sampling edges (in both bounded arboricity and general graphs) are of the same
order. In contrast, for k > 3, the two complexities might differ significantly in bounded
arboricity graphs. For example, consider the case of triangles (k = 3), a = O(1), and

% We note that the Q(m*/2 /n;) lower bound of [28] also holds for the task of sampling k-cliques almost
uniformly.
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n3 = ©(n). The complexity of sampling triangles almost uniformly is ©*(n'/4), while the
complexity of approximately counting problem, is O*(1). This implies an exponential gap
between the complexities of counting and sampling for certain ranges of parameters.® 7

1.2 The high level ideas behind the clique-sampling algorithm

We start by briefly describing the ideas behind the algorithm of [23] for sampling edges
almost uniformly, which we employ both as a subroutine and as a starting point of our
algorithm for sampling k-cliques. We then turn to describe our algorithm. Throughout, we
assume that an upper bound « on the arboricity of the input graph is known.

1.2.1 The edge sampling algorithm

Let Lo be the set of all vertices in the graph with degree at most (roughly) « (so that almost
all the vertices in the graph belong to Lg). The edge sampling algorithm samples a vertex vg
uniformly at random, and if vy is in Ly, it performs a short random walk vg,v1,...,v; of
length j, for an index j chosen uniformly in [logn]. If at any point the walk returns to Ly,
then the algorithm aborts, and otherwise, it returns the last edge traversed.

The analysis of the algorithm relies on a layered decomposition of the graph vertices. The
vertices in Ly comprise the first layer. Subsequent layers are defined inductively: a vertex v
is in L; if (1) it is not in any of the layers L; for ¢ < j, and (2) most of its neighbors are
in layers Lo, Lo, ..., L;j_1. While the algorithm is completely oblivious to the levels of the
encountered vertices v; for ¢ > 0, using the aforementioned layering, it can be shown that
each edge is sampled with almost equal probability ~ i

1.2.2 The auxiliary graph H; and the clique-sampling algorithm

In order to sample k-cliques in G, we first define an auxiliary graph Hj, whose edges
correspond to k-cliques of G. Specifically, for each (k — 1)-clique @ in G, there is a node vg
in Hy, and for each k-clique C' in G, there is a single edge in Hy between a pair of nodes
v, vg corresponding to two of its (k — 1)-cliques, @ and @’'. Specifically, the first two

(k — 1)-cliques according to an ordering on all (k — 1)-cliques, which will be defined later on.

We say that C' is assigned to Q and Q'. When k = 2, this assignment is uniquely determined

(since every 2-clique (edge) contains exactly two 1-cliques (vertices)), and we have Hy = G.

For larger values of k, the assignment rule is such that @ and @’ both contain the vertex
in C' that has minimum degree in G. In general, since there is a one-to-one correspondence
between the edges in Hy and the k-cliques of G, sampling an almost uniform edge in Hy, is
equivalent to sampling an almost uniform k-clique in G. An important observation is that if
G has arboricity at most «, then so does Hy.

Given the aforementioned relation between k-cliques in G and edges in Hy, the basic
underlying idea of our algorithm is emulating the edge sampling algorithm of [23] on the
graph Hy, while only having query access to the graph G. Indeed this approach is natural
(having defined Hy). However, emulating the edge sampling algorithm by performing random
walks on Hj, requires us to overcome several challenges:

5 We note that the separation between approximately counting triangles and sampling triangles almost
uniformly was already mentioned in [23] in passing as a preliminary result. However, [23] did not include
any proof details nor a full characterization of the complexity of the sampling problem (for any k& > 3).

7 We believe that the algorithm of [26] can be adapted to sample a k-clique almost uniformly with respect
to TVD with essentially the same complexity. However, this is not immediate.
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1. We do not have query access to uniformly random nodes of Hy;

2. Determining whether a node in Hy, is in layer Ly cannot be performed by a single degree
query (as was the case in [23]);

3. In order to sample a random neighbor of a node vg in Hy, we must sample a k-clique
in G that is assigned to @. (In [23] this could be implemented by a single neighbor
query.) The emulation is “noisy” in the sense that it obtains only approximate answers
to queries on Hy. In particular, it only estimates the degrees of nodes in Hy and selects
nodes according to a distribution that is close to uniform. This is in contrast to the [23]
algorithm, which gets precise answers to its queries. Hence, we must prove that the new
algorithm still returns an edge (in Hy) that is close to uniform.

4. Emulating each query on Hy, is implemented by performing multiple queries on G. Hence,
one of the main challenges of this work is in bounding the query complexity of the
clique-sampling algorithm.

We now outline how we address these challenges.

Addressing the challenges

Challenge 1: Emulating uniform node queries. The algorithm of [23] starts by sampling
vertices uniformly at random in G. As stated previously, we do not have direct access
to uniform node samples in Hy. Instead, in order to sample nodes in Hy, we recursively
invoke our algorithm for sampling (k — 1)-cliques in G almost uniformly. This results in a
distribution that is only close to uniform, but we prove that this is sufficient for our needs.

Challenge 2: Determining whether a node belongs to Lo(Hy). Recall that in the edge
sampling algorithm of [23], Ly is the set of all vertices with degree roughly a. Therefore,
in that algorithm, checking if a vertex belongs to Ly requires a single degree query. In our
setting, the degree of a node Vg in Hj, is equivalent to the number of k-cliques that are
assigned to @ in G. Hence,

given a sampled node vg in Hj, we implement a procedure to check whether vg € Lo =
Lo(Hy), by trying to approximate the number of k-cliques that are assigned to @ in G. To
do so efficiently, we replace the threshold a used to define Lg in [23], by a value 7 > «, where
we will explain how 7 is chosen later in the presentation.

Challenge 3: Emulating a random neighbor query. We next explain how we emulate a
random neighbor query for a node vg in Hj, (so as to emulate a random walk on Hj). Let
A(Q) denote the set of k-cliques assigned to (). By the definition of Hy, sampling an edge
incident to vg translates to sampling a k-clique C' in A(Q). Let v be the minimum degree
vertex in @, and define d(Q) = d(u), where d(u) is u’s degree (in G). As explained above,
for k > 2, the assignment rule is such that if a k-clique C' is assigned to @, then u is also
the minimum degree vertex in C. Hence, in order to select a random neighbor of vg in
Hj, we need only consider k-cliques C obtained from @ by adding a vertex with degree at
least d(u) = d(Q) (that neighbors all vertices in Q). By dealing separately with the case
that d(Q) < y/na and the case that d(Q) > v/na, we can design a procedure that for every
(k —1)-clique @ samples each k-clique in A(Q) with probability (roughly) W (and
may fail to output any k-clique).

Given the above, to emulate a random neighbor query from a node vg in Hj, such that
min{d(Q),v/na}

T

vg ¢ Lo (so that |A(Q)| > T), we repeat the above sampling attempts O* ([
times. This process succeeds in obtaining a uniformly distributed k-clique in A(Q) with high
probability. For a node vg in Ly (where we don’t have a lower bound on |A(Q)|), performing
this number of attempts implies that each k-clique in A(Q) is obtained with probability 1/7.
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An inductive analysis shows that a single invocation of the above emulation of the random
walk on Hj, returns each k-clique in G' with probability roughly —2—. The (na) term

na-7k=2"
in the denominator comes from the base of the induction, i.e., sampling a uniform 2-clique
(edge) in G, and the term 7%~2 stems from the k — 2 recursive calls, where in each level of
recursion, we “lose” a factor of 1/7. Therefore, the overall success probability of a single
N
na-tk—

sufficient so that, with high probability, an almost uniformly distributed k-clique in G is

attempt to sample an edge in Hy is roughly =. Hence, O*(%) repetitions are

returned.

Challenge 4: Proving correctness. Given the above approach, we are able to emulate the
basic algorithm of [23] on the auxiliary graph Hj. Hence, to prove correctness we follow the
ideas of [23]. However, since the emulation on Hj, results in “noisy” answers to node, degree
and neighbor queries, so that we cannot immediately rely on the correctness of the algorithm
of [23]. Hence, we must (re-)prove that the emulation algorithm induces a distribution on
the edges (of Hy) that is close to uniform. This is done by carefully keeping track of the
divergence from uniformity that is caused due to the noisy answers to queries throughout
the execution of the algorithm. We note that the main challenge lies not in the proof of
correctness, but rather in bounding the complexity of the clique-sampling algorithm, as
discussed next.

Challenge 5: Bounding the query complexity. As discussed above, to sample a k-clique
in G with high probability, we perform ¢t = O* (%) repetitions of the random walk
emulation on Hy. In each such emulation, there is a sequence of k — 1 recursive calls to
sample i-cliques for ¢ € [2,..., k] by performing a random walk on the graph H;. Whenever
a random neighbor query is emulated on a node in H; for ¢ > 2, r = O* (M)
queries are performed in GG. Conditioned on 7 being sufficiently larger than «, we get that
the expected number of queries in each such emulation is just O*(1) (while the maximum is

o* (\/m>) This implies that the expected total query complexity is O* (M) As for

T Ng

na-7*"2 4 Vno

Nk T

the maximum running time, we can get an upper bound of O* ( ) by aborting
the algorithm if it performs a larger number of queries, while still obtaining an output
distribution as desired.

Hence, we get a certain tradeoff between the expected query complexity and the maximum

one (for “hard to sample” cliques). In particular, if we set 7 = ©*(«), we get that the

nak*l
Nk

expected query complexity is O* ( ), as in the case of counting, while the maximum

query complexity is O* (%’:1 ++/n/ a) . The upper bound in Theorem 1.1 is derived by

setting 7 so that the two summands in the expression O* (% + 7V:a) are equal.

1.3 A discussion of related random-walk based sampling algorithms

The idea of sampling k-subgraphs (i.e., subgraphs of size k) from a graph G using random
walks on an auxiliary graph (in which nodes and edges correspond to subgraphs), is not new,
see, e.g., [7, 47, 42, 12, 11]. However, our approach, and in particular our definition of the
auxiliary graph Hy, differs from previous ones in several ways, which are crucial for sampling
k-cliques according to a distribution that is e-pointwise close to uniform, with sublinear
query complexity. Below we discuss the main aspects of difference between our approach
and the aforementioned previous works.

56:7
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1. The task. We start by noting that in the aforementioned random-walk based works, the
focus was on sampling from a distribution whose support is all connected k-subgraphs,
while we focus on sampling from a distribution whose support is the set of k-cliques. An
algorithm for sampling k-subgraphs can be directly adapted to output only k-cliques
using rejection sampling, however this could significantly increase the complexity.

2. The distance measure. In most previous works, the considered distance measure is the
total variation distance, while our result considers the strictly stronger pointwise distance
measure.

3. The definition of the auxiliary graph. The auxiliary graph considered in the aforementioned
works, which we denote here by Hj, is defined as follows. There is a node in Hj, for
each subgraph of size k — 1 in G, and there is an edge between two nodes in Hj, if the
two corresponding (k — 1)-subgraphs differ by a single vertex. Hence, similarly to our
auxiliary graph, Hj, edges in the auxiliary graph correspond to the objects that we would
like to sample (k-subgraphs in previous works, and k-cliques in ours). However, the way
we define the edge-set of Hj, is pivotal to the analysis of our algorithm. In particular, we
put an edge between two nodes in Hy not only if the union between the corresponding
(k — 1) cliques is a k-clique, but also if this k-clique is assigned to the two (k — 1)-cliques.
Our assignment rule is tailored to bound the query complexity of the algorithm (based on
the degrees of vertices in the cliques). Also note that if the original graph G is connected,
then so is Hj,, while Hy, is typically not connected.

4. Performing random walks on the auxiliary graph. Recall that in our context, where we
are given only query access to G and would like to minimize the number of queries, we
have to overcome several challenges in the emulation of random walks on Hy. These do
not arise in previous works: The random walk starts from an arbitrary node in Hj, (an
arbitrary (k — 1)-subgraph), and each step in the walk is simply implemented by selecting
a random neighbor of one of the vertices in the current (k — 1)-subgraph.

5. The complexity of the sampling algorithm. As noted above, our focus is on bounding the
query complexity of the algorithm, and indeed we get an almost tight bound based on
our definition of Hy and the details of the emulation of random walks on Hj, given query
access to G. In the aforementioned works, the complexity of the algorithms was shown to
depend on the mixing time of H},, and one of the main challenges of these works is in
analyzing it. Indeed, in [11] it is proved that even if the mixing time of G is relatively
small, the mixing time of H}, may be a factor of p(G)*~2 larger, where p(G) is the ratio
between the maximum and minimum degree in G' (and hence may be large (e.g., ©2(n))
even in bounded-arboricity graphs).

1.4 Overview of the lower bound

The first and last terms in the lower bound of Theorem 1.2 follow directly from a lower
-1

bound of * (min {na, na* }) by [26] for the task of approximately counting the number

Nk

of k-cliques. They prove that any algorithm that performs fewer queries than the above
expression cannot distinguish with high probability between two families of graphs, one with
ny k-cliques, and one with no k-cliques. It follows that any uniform sampling algorithm cannot

1
k/2\ To1
perform fewer queries. Therefore, our main focus is on proving the term * (((ni)k) : 1)

. . % Y k—1
(which, as noted previously, may be much larger than the (”O‘T) term).

8 In [11], Bressan combined a random-walk based approach with a (linear in m) preprocessing of the
graph, in order to obtain an exact uniform sampler.
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To this end, we construct a family of graphs (with arboricity at most «), such that
in each graph, among the njy k-cliques that it contains, there is one “hidden” k-clique.
This clique is hidden in the sense that any algorithm that (always) performs less than

1
k/2\ &

(na) - /¢ queries (for a sufficiently large constant ¢) cannot sample this clique with

ng
probability Q(1/ny).°

The above idea is formalized by defining a process that answers the queries of a sampling
algorithm “on the fly” while constructing a random graph in the family. All graphs in the
family have the same underlying structure, and they differ in the choice of clique vertices
and in the labeling of (part of) the edges. Here we give the high-level idea of the underlying
structure, and the intuition for the lower-bound expression.

In each graph in the family, the hidden clique is over a subset S of k vertices that all
have (high) degree ©(¢) where £ = \/na. The total number of high-degree vertices is ©(¢) as
well (so that all graphs graphs in the family have ©(¢2) = O(na) edges'®). Other than the
clique edges, there are no other edges between the high-degree vertices. See Figure 1 for an
illustration. Intuitively, in order to reveal the hidden clique, the algorithm must first reveal
one edge (u,u’) in the clique and then reveal k — 2 additional edges between u and the other
edges in the clique.!' We prove that in each query, the probability of revealing the first edge
of the clique is O(k?/¢?), and the probability of revealing any consecutive edge is O(k/f).*?

n’ vertices,
©(ng) cliques,
arboricity< o

Figure 1 The underlying structure of the graphs in the lower bound construction for k£ = 4. For
a more detailed description and figure, see the full version of this paper [24].

The intuition for the upper bound O(k?/¢?) on the probability of revealing the first edge
is that the number of clique edges is (’;), while the total number of edges is ©(¢?). Similarly,
the rough intuition for the upper bound of O(k/¢) on revealing each additional edge in
the clique is that each clique vertex has k — 1 neighbors in the clique and a total of ©(¥)
neighbors. In order to provide a formal argument, we define an auxiliary bipartite graph

9 We note that this does not preclude the possibility that the expected complexity of the algorithm is
smaller (as discusses in Subsection 1.2.2).

10 A5 stated in the introduction, we note that since all of the graphs have na edges, our lower bound does
not exclude the possibility of a refined upper bound that also depends on the number of edges m. (And
indeed, it is possible to replace some of the na terms in the upper bound with m terms. However, we
chose not to further complicate the exposition of the algorithm and therefore we also present the lower
bound in terms of worst-case m.)

H The algorithm may alternatively try to reveal k/2 edges in the clique that do not have common endpoints
(or some other combination of edges that together reveals all clique vertices), but this is not advantageous

for the algorithm.
(na)k/(Q(kfl))

PRIy dominates the last term in the lower bound of Theorem 1.2,
ny

12We note that whenever the term

it is smaller than /n/a.
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whose nodes correspond to graphs that are consistent with all previous queries (and answers)
and either contain a “witness” clique edge that corresponds to the query of the algorithm
(one side of the graph), or do not (the other side). The edges of the bipartite graph are
defined by certain transformations from witness graphs to non-witness graphs. By analyzing
the degrees of nodes on both sides of this auxiliary graph, we obtain the aforementioned
bounds on the probability of revealing edges in the hidden clique.

Given these probability upper bounds, if an algorithm performs T queries, then the

kK2

probability that it reveals the hidden clique is upper bounded by T - ’Lf—j . (T . If we

2\ 1/(k=1)
want this expression to be ©(1/ny), the number of queries T' must be Q* <<(”°‘)k/2) ) .

ngk

1.5 Related Work

The works most related to ours were mentioned in earlier subsections of the introduction.
In Appendix A, we give a broader view of recent advances on sublinear-time approximate
counting and uniform sampling algorithms.

1.6 Organization

We start with some preliminaries in Section 2. Due to the page limitation, in this extended
abstract we only describe the algorithm and a sketch of the analysis for the case of k = 3
(triangles) — see Section 3.

The full algorithm and analysis for the general case, as well as the lower bound, can be
found in the full version of this paper [24].

2 Preliminaries

Let G = (V, E) be a graph over n vertices and arboricity at most «. Each vertex v € V has
a unique id in [n], denoted id(v). Let Cj denote the set of k-cliques of G, and let ny = |Cy].
For a vertex v, let I'(v) = I'¢(v) denote its set of neighbors and let d(v) = dg(v) = |T'(v)].
We sometimes refer to edges as oriented, meaning that we consider each edge from both its
endpoints.

Access to G is given via the following types of queries: (1) A degree query, deg(v), returns
the degree d(v) of the vertex v; (2) A neighbor query, nbr(v,i) for i € [d(v)], returns the ‘!
neighbor of v; (3) A pair query, pair(v,v’), returns whether (v,v") € E.

» Definition 2.1 (Ordering of the vertices.). We define an ordering on the graph’s vertices,
where u < v if d(u) < d(v) or if d(u) = d(v) and id(u) < id(v).

» Definition 2.2 (Cliques’ degree and neighbors). For a k-clique C, let v be the minimal
vertezx in vo according to <. We define the degree of C' in G to be d(C) = d(v). We define
the neighbor-set of C, denoted I'(C') = T'(v), to be the set of v’s neighbors in G.

» Definition 2.3 (Cliques id and an ordering of cliques). For a k-clique C, let its id, id(C) be
a concatenation of its vertices ordered by <. We extend the order < to cliques, so that for
two k cliques C,C", C < C" if d(C) < d(C") or if d(C) = d(C") and id(C) < id(C").

» Definition 2.4 (Assignment of k-cliques to (k — 1)-cliques). We assign each k-clique C' to
its two first (k — 1)-cliques according to <. For every (k — 1) clique QQ, we denote its set of
assigned k-cliques by A(Q), and let a(Q) = |A(Q)|. We refer to a(Q) as the assigned cliques
degree of Q.

Note that for every k > 3, a(Q) < d(Q).
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» Observation 2.5. By Definition 2.4, for k > 3, if Q and Q' are assigned a k-clique C,
then d(Q) = d(Q') = d(C). Hence, if a k-clique C is assigned to a (k — 1)-cliques Q such
that C' = Q U {w}, then d(Q) = d(C) < d(w).

We shall sometimes abuse notation and let {Q,u} denote Q U {w}.
We are now ready to define the auxiliary graph Hj, which is central to our algorithm.

» Definition 2.6 (The graph Hy). Given a graph G, we define the graph Hp(G) = H), =
(Vu,, En,) as follows. For every (k — 1)-cliqgue Q in G there is a node vg in Vi, . For every
k-clique C in G, there is an edge in Hy between the two (k — 1)-cliques that C' is assigned to,
as defined in Definition 2.4.

For the sake of clarity, throughout the paper, we refer to the vertices of Hy as nodes. Note
that for the special case of k = 2, we have that Ho(G) = G, and each edge (2-clique) in
G, is assigned to both its endpoints. More generally, Definition 2.6 implies a one-to-one
correspondence between the set of edges incident to a node vg in Hy(G) and the set A(Q)
of k-cliques assigned to @ in G. This in turn implies that the degree of a node vg in Hy(G)
equals the assigned cliques degree of @, a(Q). By the comment following Definition 2.4, the
degree of vg in Hy(G) is upper bounded by the degree of @ in G.
The last claim in this section concerns the arboricity of Hg(G).

> Claim 2.7. Let G be a graph of arboricity at most a. Then Hy(G) has arboricity at
most a.

3 The case of k = 3: sampling triangles

As a warmup, in this section we describe our algorithm for the case of sampling triangles and
provide the structure of its analysis. To ease readability, some of the claims we present are

loosely stated (the precise and general claims appear (and are proved) in the next section).
Since the graph G is fixed throughout the presentation, we use the shorthand Hj for H3(G).

In addition to receiving as input n, «, and €, as well as being given query access to G,
the sampling algorithm, Sample-Triangle, receives the parameter 73, which is assumed to be
a constant factor estimate of the number of triangles, nz. Such an estimate can be obtained
by running the algorithm of [26], without asymptotically increasing the expected complexity
of our algorithm.

To sample a triangle in G, the algorithm Sample-Triangle repeatedly invokes the procedure
Sample-Edge-Auxiliary-Tri on the graph Hgs, while ensuring that the number of queries does
not exceed a certain threshold. For the sake of conciseness, from this point on we view the
parameters that Sample-Triangle receives, as global variables for all other procedures.

Sample-Triangle(n, a, £,713)

1. Set 7 :max{ﬁ,a}.

2. While the number of queries does not exceed r = ¢ - min {na, max { ‘/:Ta, "%T }} for
a sufficiently large constant c:
a. Invoke Sample-Edge-Auxiliary-Tri(7), and if an edge in Hj is returned, then return

the corresponding 3-clique (triangle) in G.

» Theorem 3.1 (loosely stated). The algorithm Sample-Triangle is a pointwise e-close to
uniform sampling algorithm for triangles (3-cliques) in graphs with arboricity at most o. The

query complexity of the algorithm is O* (min {na, max { (%) , "n—(f}}) .
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We defer the proof of the theorem to the end of this section, and continue to describe the
procedure Sample-Edge-Auxiliary-Tri. This procedures (tries to) return an (almost) uniformly

distributed edge in the auxiliary graph Hjs (corresponding to a triangle in G), so that each
1+0(¢e)

nat ’

edge is returned with probability (roughly) and it is the main procedure used in
order to prove Theorem 3.1.

As will be explained in more detail momentarily, the setting of 7 in Sample-Triangle
(together with the random coins of the algorithm) determines a set Ly(Hs) of nodes in Hs.
Recall that the degree of a node vg in Hs (where @ is a 2-clique, i.e., an edge in G) is the
number of triangles (3-cliques) that are assigned to @ according to the assignment rule of
Definition 2.4 (denoted a(@)). With high probability over the randomness of the algorithm,
all nodes vg € Hs whose degree (in Hj) at most 7 belong to Lo(Hs), and all nodes vg € Hs
with degree greater than 27 do not belong to Lo(Hs) (the rest of the nodes can belong
to either set). We use F(Lg(Hs)) to denote the edges in Hj that are incident to nodes in
Lo(H3).

Sample-Edge-Auxiliary-Tri first invokes the subroutine Sample-Edge-Lo-Auxiliary-Tri that
either returns a (close to) uniform edge (vg,v1) among the edges of E(Lg(H3)) or returns
FAIL. The procedure then chooses an index j in [0,...,log(na)] uniformly at random, and
performs a random walk of length j on Hj, by traversing at each step to a uniformly selected
neighbor of the last visited node. This is done by invoking the procedure Sample-Neighbor-
Auxiliary-Tri. If at any point the last visited node belongs to Lo(Hs) (which is verified by the
procedure Define-Lg-Auxiliary-Tri), then the procedure fails. Otherwise, the last traversed
edge in the walk is returned.

Sample-Edge-Auxiliary-Tri(7).

1. Set s = log(na) and set 8 =¢/(2s + 2).

2. Invoke Sample-Edge-Lo-Auxiliary-Tri(3,7), and let eq = (vg,,vq,) be the returned
edge if one was returned. Otherwise, return FAIL.

3. Choose j € [0,.. ., s] uniformly at random.

4. For i =1 to j do:
a. If Define-Lo-Auxiliary-Tri(vg,,d = B/ms, 8, 7)=YES, then return FAIL.
b. Invoke Sample-Neighbor-Auxiliary-Tri(vg,, 3, 7) to sample an edge (vg,,vq,,,) in

H3.
5. Return (vg,,vq,,,)-

» Lemma 3.2 (loosely stated). The procedure Sample-Edge-Auxiliary-Tri returns an edge in
Hs so that each edge is returned with probability (roughly) (fe) Furthermore, the expected

nat

running time of a single invocation of the procedure is O*(1), and the mazimum running

time is O*(y/na/7).

Before presenting the subroutines Sample-Edge- Lo-Auxiliary-Tri, Sample-Neighbor-Auxiliary-
Tri and Define-Lo-Auxiliary-Tri invoked in Sample-Edge-Auxiliary-Tri, we describe a simple
procedure, Samp-High-Deg-Nbr, used by these subroutines. The procedure gets a 2-clique
(edge) @ as input, and tries to sample a higher degree neighbor of @ in G, so that each such
neighbor is returned with probability 1/ min{d(Q), v/na}. As mentioned in the introduction,
we shall make use of the procedure Sample-Basic-Edge by [29], that returns every edge in G
with probability (roughly) (1 £ §)/(n«), given an approximation parameter f3.
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Samp-High-Deg-Nbr(Q, /3).
1. Let u be the min degree vertex of @, and query d(u)(= d(Q)).
2. If d(Q) < /na, then query the i** neighbor of v in G, for a uniformly selected index
i € d(u). If d(w) > d(Q), then return w.
3. If d(Q) > v/na, then:
a. Invoke Sample-Basic-Edge(3) and if an edge is returned then denote it (w,z).
Otherwise, return FAIL.
b. Query d(w) and if d(w) > d(Q), then return the endpoint w with probability
d(w)/y/na. Otherwise, return FAIL.

> Claim 3.3 (loosely stated). Let @ be a 2-clique (edge) in G. The procedure Samp-High-
Deg-Nbr either returns a neighbor of @ in G (that is, a neighbor in G of the min-degree
vertex of @), or fails. Each w € I'(Q) such that d(w) > d(Q) is returned with (roughly) equal
probability (1 + )/ min{d(Q), v/na}. The query and time complexity of the procedure are
O*(logn).

We turn to present the subroutines used by Sample-Edge-Auxiliary-Tri, starting with the
subroutine Define-Lo-Auxiliary-Tri, that defines the aforementioned set Lo(Hs) C V(Hs).
Namely, Lo(Hs) is determined according to the output of the subroutine, so that

Ly(H3) = {vg € Vi, : Define-Lo-Auxiliary-Tri(vg, 0, 5,7) = YES }

(where we assume that the randomness of the subroutine is uniquely determined for each
vg). Hence Define-Lo-Auxiliary-Tri can be thought of as an oracle that returns whether a
given vg belongs to Lo(Hs) or not.

Define- Lo-Auxiliary-Tri(vg, 6, 5, T).

1. Let @ be the 2-clique (edge) in G corresponding to vg.

2. Fori=1tor= M -1n(1/6) do:
a. Invoke Samp-High-Deg-Nbr(Q, 5/10) to (try and) sample a neighbor w; of Q.
b. If @ and w; form a triangle C, and C is assigned to @, then let x,,, = 1.

3. Leta=1%7 xu,-

4. If a < 1.57/d(Q) then return YES. Otherwise, return NO.

Recall that A(Q) is the set of cliques assigned to @, and a(Q) = |A(Q)|-

> Claim 3.4 (loosely stated). With high probability Define-Lo-Auxiliary-Tri determines a set
Ly(Hs) so that the following holds for every vg € Hs.

If a(Q) < 7, then vg € Lo(Hs) and the subroutine returns YES.

If a(Q) > 27, then vg ¢ Lo(Hs) and the subroutine returns NO.

Furthermore, the query and time complexities of the subroutine are O* (M)

Given Claim 3.4, from here on we assume that for every Q € Lo(Hs), dt(Q) < 27, and
for every Q ¢ Lo(H3),a(Q) > 7.

We now present the subroutine Sample-Edge-Lo-Auxiliary-Tri that is used for sampling
edges in Hj that are incident to nodes in Lo(H3). In order to sample a uniform edge
in E(Lo(Hs)), we first need to sample a node in Lg(H3). Recall that the nodes of Hj
correspond to edges in G. Hence, to sample a node in Ly(Hjs), the procedure first invokes
Sample-Basic-Edge to sample an edge in G (almost) uniformly at random, and then checks if
the corresponding node is in Lo(Hjz) (by invoking Define- Lo-Auxiliary-Tri).
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Sample-Edge-Lo-Auxiliary-Tri(3, 7).
1. Invoke Sample-Basic-Edge(8/4). Let @ be the returned 2-clique if one was returned.

Otherwise FAIL.
2. If Define-Lo-Auxiliary-Tri(vg, d, /4, 7)=NO then FAIL.
3. Repeat at most r = O* (%W
a. Invoke Samp-High-Deg-Nbr(Q, 8/10) to (try and) sample a neighbor w of Q.

4. If no neighbor is sampled, then return FAIL.
5. Check if {Q,w} is a triangle assigned to Q. If so, return C' = {Q, w}.

) times or until a neighbor is sampled:

> Claim 3.5. Consider an invocation of Sample-Edge-Ly-Auxiliary-Tri with parameters (3
and 7. The subroutine Sample-Edge-Lo-Auxiliary-Tri returns every edge in E(Lo(H3)) with

probability (roughly) (1 &+ 8)/(2nar). The expected query and time complexity of the

subroutine are O*(1) and the maximum query and time complexity are O* (@)

Finally, the subroutine Sample-Neighbor-Auxiliary-Tri (tries to) sample a neighbor of a
node v in the auxiliary graph Hz. That is, it tries to sample a triangle C' € A(Q).

Sample-Neighbor-Auxiliary-Tri(vg, 3).

1. Let @ be the 2-clique (edge) in G corresponding to vg.
2. Repeat at most r = M -In(1/p) times:
a. Invoke Samp-High-Deg-Nbr(Q, 5/10) to (try and) sample a neighbor w of Q.

b. If @ and w form a triangle C, and C' is assigned to @, then return the edge

(vg,vgr) in Hs that corresponds to C.

> Claim 3.6 (loosely stated). For a given node vg € V(Hs) such that Q ¢ Lo(Hs), with
probability at least 1 — 3, the subroutine Sample-Neighbor-Auxiliary-Tri returns a neighbor of
vg in Hs, so that each neighbor of vg is returned with probability (roughly) (1 £ §)/a(Q).

The query and time complexity of the subroutine are O* (M)

Finally, we sketch the proof of (the loosely stated) Theorem 3.1.

Proof sketch of Theorem 3.1. By Lemma 3.2, Sample-Edge-Auxiliary-Tri returns every spe-
cific edge in Hjz with probability (roughly) (1 £ ¢€)/(nar). Since there is a one-to-one
correspondence between edges in Hs to triangles in G, this implies that each triangle is
returned with probability (roughly) (1 £ €)/(na7), and that with probability (roughly)
ns/(nar), some triangle is returned. Hence, the expected number of invocations of the loop
is O(nat/n3). Furthermore, by Claim 3.2, the expected complexity of each invocation is
O*(1). It can be proven using standard concentration bounds, that with high probability, a
triangle will be returned before the number of allowed queries r is exceeded. Therefore, with
high probability, a triangle is returned, and since all triangle are almost equally likely to be
the returned one, it holds that each triangle is returned with probability (roughly) 1/ns.
Furthermore, since the expected complexity of each invocation of Sample-Edge-Auxiliary
is O*(1) and the maximum is O*(y/na/7), it follows that the query and time complexity

of Sample-Triangle is O*(r + /na/7) = O* (min {na,max { V/na "O‘T}}). Plugging 7 =

T 7 n3

max {%, a}, we get that the query complexity of Sample-Triangle is bounded by

0 (i e { 252 101 1)

as claimed. <
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A Related Work

We note that some of the works were mentioned before, but we repeat them here for the
sake of completeness. In recent years, there has been an increasing interest in the questions
of subgraph approximate counting and uniform sampling in sublinear-time. These works
differ by the query model, graph class of G and the subgraph H at question.

The general graph query model. The first works on estimating the number of subgraph
counts were by Feige [31] and Goldreich and Ron [35], who presented algorithms for approx-
imately counting the number of k-cliques in a graph for k = 2 (edges).'® Later, Gonen, Ron
and Shavitt [36] gave essentially optimal bounds for the problem of approximately counting
the number of stars in a graph. In [20, 27], Eden, Levi, Ron and Seshadhri and Eden, Ron
and Seshadhri presented essentially optimal query complexity bounds for the problems of
approximately counting triangles and k-cliques. In [44], Tétek gave improved running time
bounds for the regime where the query complexity is linear in previous works.

In [28], Eden and Rosenbaum presented a framework for proving subgraph counting lower
bounds using reduction from communication complexity, which allowed them to reprove the
lower bounds for all of the variants listed above.

Augmented model. 1In [2], Aliakbarpour, Biswas, Gouleakis, Peebles, and Rubinfeld and
Yodpinyanee suggested a model that also allows for uniform edge samples. In that model
they presented improved bounds for the approximate star counting problem. In that model,
Assadi, Kapralov and Khanna [4] considered the problem of approximate counting of arbitrary

subgraphs H. The expected query complexity of their algorithm is O (min {m, m? }),

ng
where p(H) is the fractional edge cover of H,'* and ny is the number of copies of H
in G. In particular, for the case of k-clique (and odd-cycle counting) the complexity of
their algorithm is O(m*/?), and this is optimal. In [10], Biswas, Eden and Rubinfeld
have refined the complexity of approximating and uniformly sampling arbitrary motifs to
O* (min {m, decomp-cost(G, H, D*(H))}), where D*(H) is an optimal decomposition of H,
and decomp-cost is the decomposition cost of H in G.

Set query model. In [5], Beame, Har-Peled, Ramamoorthy and Sinha suggested two new
models that allow what they refer to as independent set (IS) and bipartite independent
set (BIS) queries. They considered the problem of estimating the number of edges and
gave O*(n?/?) and O*(1) algorithms for this problem using IS and BIS queries, respectively.
The first result was later improved by Chen, Levi and Waingarten [15] who settled the
complexity of the problem to ©*(n/y/m). In [6], Bhattacharya, Bishnu, Ghosh, and Mishra
later have generalized the BIS model to tripartite set queries, where they considered the
problem of triangle counting, and in [8], Bishnu, Ghosh, and Mishra settled the complexity
of approximately counting triangles using BIS queries to ©* (min {%, %/2}), where T
denotes the number of triangles.

13 Feige considered a model that only allows for degree queries, and presented a factor 2 approximation
algorithm, and also proved that with no additional queries this approximation factor cannot be improved
in sublinear time. Goldreich and Ron then considered this question allowing also for neighbor queries.
In this model the proved an (1 + ¢)-factor approximation algorithm with the same complexity as the
previous one (as well as a matching lower bound).

M The fractional edge cover of a graph H = (Vi, Ex) is a mapping v : Eg — [0, 1] such that for each
vertex a € Vg, ZeGEH,aEG 1(e) > 1. The fractional edge-cover number p(H) of H is the minimum

value of Ze €Ex 1 (e) among all fractional edge covers 1.
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Uniform sampling. In [29], Eden and Rosenbaum initiated the study of sampling subgraphs
(almost) uniformly at random. They considered the general graph query model, and presented
upper and matching lower bounds for the problem of sampling edges almost uniformly. Their
algorithm matches the complexity of the counting variant of the problem. Their algorithm’s
dependency on e was later improved by Tétek and Thorup [45] to log(1/e), so that for
all practical purposes the new algorithm allows to sample from essentially the uniform
distribution. They also present an algorithm that works in a stronger model that allows for
hash-based neighbor queries, and outputs an edge from ezactly the uniform distribution.
In [32], Fichtenberger, Gao and Peng proved that in the augmented edge model, ezact

mP(H)

uniform sampling of arbitrary subgraphs can be performed in O ( m time. This matches

the upper bound of [4] for the counting variant. The aforementioned bound of [10], also
holds for this setting, refining over the complexity of [32].

In [22], Eden, Mossel and Rubinfeld presented an algorithm for sampling multiple edges
efficiently. Their algorithm was later shown to be optimal by Tétek and Thorup [45].

Graphs G with bounded arboricity. In [25, 26], Eden, Ron and Seshadhri first studied the
problem of sublinear approximate counting in bounded arboricity graphs. They presented
improved algorithm for edges, star and k-clique counting in the general graph model,
parameterized by the arboricity. In [23], Eden Ron and Rosenbaum presented an improved
algorithm for almost uniform sampling of edges in bounded arboricity graphs, in the general
graph query model.

Approximating the arboricity in sublinear time. In [21], Eden, Mossel and Ron presented
an algorithm for approximating the arboricity in (~)(n/ «) time. Their algorithm returns a
value & such that, with high probability, & € [a, a - clog? n], for some constant ¢. It can also
be shown that the algorithm of McGregor, Tench, Vorotnikova and Vu [40] can be adapted
to the adjacency list query model,'® resulting in a (1 & ¢)-multiplicative approximation in
O(m /) complexity. The output of these algorithms can be used as input to our algorithm
(as well as all aforementioned sublinear-time algorithms that rely on getting an upper bound
on the arboricity as input).

15 This requires some care, as their algorithm relies on sampling edges uniformly at random, which is not
immediately implementable in the adjacency list model. However, it can be shown that only edges with
high degree endpoints (roughly ones with degree above «) are of interest, and these can be sampled
uniformly with an additive overhead of O(m/a).
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