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—— Abstract

This paper considers additive approximation algorithms for All-Pairs Shortest Paths (APSP) and
Shortest Cycle in undirected unweighted graphs. The results are as follows:
We obtain the first +2-approximation algorithm for APSP in n-vertex graphs that improves
upon Dor, Halperin and Zwick’s (SICOMP’00) O(n"/?) time algorithm. The new algorithm

2-29) time and is obtained via a reduction to Min-Plus product of bounded difference

runs in O(n
matrices.

We obtain the first additive approximation scheme for Shortest Cycle, generalizing the approxim-
ation algorithms of Itai and Rodeh (SICOMP’78) and Roditty and Vassilevska W. (SODA’12).
For every integer r > 0, we give an O(n 4 n**"/m") time algorithm that returns a +(2r + 1)-
approximate shortest cycle in any n-vertex, m-edge graph.
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1 Introduction

The all-pairs shortest paths problem (APSP) is among the most fundamental problems in
algorithms. The fastest algorithms for the problem in n vertex, m edge graphs with integer
edge weights and no negative cycles, run in n3 /2901987 time [22] and in O(mn+n?loglogn)
time [14]. These running times are believed to be optimal, up to n°() factors (see [19, 12]).

APSP in unweighted graphs has long been known to admit faster algorithms. In undirected
graphs, Seidel [16] gave an O(n®) time algorithm, where w < 2.373 [2] is the exponent of
square matrix multiplication. This running time is believed to be optimal, as APSP in
undirected unweighted graphs is at least as hard as Boolean Matrix Multiplication (BMM). !

1 In fact, later algorithms by Shoshan and Zwick [17] imply that undirected unweighted APSP is equivalent
to BMM.
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Due to the impracticalities of fast matrix multiplication and since it is unavoidable for the
exact computation of APSP, it is natural to consider approximation algorithms, trying to get
running times as close to n? as possible (n? is the size of the output). There is significant work
on multiplicative approximations of APSP and distance oracles (e.g. [18, 6, 1]). However, for
unweighted undirected graphs, more desirable fast additive approximations are also possible.
In a +C-approximation to APSP, one returns estimates d’(u,v) for the distance d(u,v)
between any pair of vertices u, v, so that d(u,v) < d’'(u,v) < d(u,v) + C. We let +C-APSP
denote the problem of computing a +C-approximation to APSP in an undirected unweighted
graph.

Following work of Aingworth et al. [1], so far the best approximation-running time
tradeoff for unweighted undirected APSP is achieved by Dor, Halperin and Zwick [7]: For
every even integer k > 2, there is an O(n?t2/(3*=2)) time algorithm for +k-APSP. (For
sparser graphs, the improved running time O(n?~2/(:+2)m2/(k+2)) is also given.)

In particular, Dor, Halperin and Zwick provide a +2-approximation algorithm that runs
in O(n™/3) time. The algorithm is simple and “combinatorial”, and notably is faster than the
fastest exact algorithm for APSP by Seidel for the current bounds on w. Aignworth et al. [1]
showed that +1-approximating APSP is at least as hard as BMM, and thus likely requires

nwfo(l)

time, so beating n“ is only possible if the additive approximation is at least 2.
There are no known conditional lower bounds for +2-approximations of APSP, and the

Dor, Halperin and Zwick running time has remained unchallenged for over three decades.
Is n7/3=°0) time necessary for +2-APSP? Or, can one do better?
Our first result is the first éimprovement over the +2-approximation algorithm of [7].

» Theorem 1. There is an O(n?2857) time algorithm that returns a +2-approximation to
APSP in undirected unweighted n vertex graphs.

We obtain the new tradeoff by reducing the +2-APSP problem to Min-Plus product
of (rectangular) Bounded Difference Matrices. While Min-Plus product for n x n matrices
is believed to require n®>~°() time (see e.g. [19]), a string of recent papers has developed
faster and faster truly subcubic time algorithms for Min-Plus product for Bounded Difference
Matrices [4, 5, 8, 21]. Our reduction is completely black-box, so that if there is an improved
algorithm for the Min-Plus product of an integer matrix with a matrix with bounded
difference columns or rows, then this improvement would immediately translate into an
improved algorithm for 4+2-APSP.

Vassilevska W. and Williams [20] showed that APSP in weighted graphs is fine-grained
equivalent to the Girth problem, which asks to compute the length of the shortest cycle in a
given undirected graph. The same paper [20] shows that the Girth problem in undirected
unweighted graphs is at least as hard as triangle detection, and is known to be subcubically
equivalent to undirected unweighted APSP. As triangle detection in n vertex graphs is believed
to require n~°M) time (e.g. [19]), so is Girth, and thus faster approximation algorithms for
the Girth are also well-motivated and well-studied. Multiplicative approximation schemes are
well-understood (e.g. [10, 13, 15]). Meanwhile, unlike for APSP, there is no known tradeoff
of additive approximation algorithms for the girth of undirected unweighted graphs.

There are only two known additive approximation results for Girth in undirected un-
weighted graphs. First, Itai and Rodeh [9] showed that a +1-approximation to the girth
can be obtained in O(n?) time. Then, Roditty and Vassilevska W. [15] showed that a
+3-approximation to the girth in n vertex, m edge graphs, can be computed in O(n®/m)
time. Can one generalize these two algorithms to a scheme?

Our second result is to obtain the first additive approximation scheme for the girth.
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» Theorem 2. Let G = (V, E) be an unweighted, undirected graph with |V| = n,|E| = m.
+T) .
— | time

2
nrn
algorithm that returns with high probability a cycle of length § that satisfies g < § < g+(2r+1).

Let r be an integer and denote the (unknown) girth of G by g. There is an O (n +

T

Thus, for instance, there is an O(n + n*/m?) time +5-approximation algorithm. This
running time is always better than the previously known additive approximations as long as
m > Q(n'*¢) and m < O(n'*~¢) for some ¢ > 0. More generally, as r grows, each +(2r + 1)
approximation is always faster than the approximations for smaller r for the sparsity range
m € [Qn'*e),0(n'T1/7=#)] for any arbitrarily small £ > 0.

2 Additive Approximation Algorithm for APSP

We first formally define +C-approximation of APSP and (min, +) matrix product.

» Definition 3 (APSP +C-approximation). For an undirected unweighted simple graph
G=(V,E), output d : V xV — N such that d(u,v) < d(u,v) < d(u,v) + C, where d(u,v) is
the distance from u to v in graph G.

» Definition 4 ((min, +) matrix product). (min, +) matriz product between matriz A and B
is defined as C = A% B where C[i, j] = ming{A[i, k] + Bk, j|}.

While in general, no sub-cubic algorithm has been found for (min, +) matrix product,
many special cases have been addressed (e.g. [4] [21] [5]). Specifically, we consider the case
between column bounded-difference and row bounded-difference matrix.

» Definition 5 (Column bounded-difference, Row bounded-difference). A matriz A is column
bounded-difference if there exists some constant C' so that |Ali,j] — Ali + 1,4]] < C for
all valid (i,j7)’s. Symmetrically, a matriz A is row bounded-difference if there exists some
constant C' so that |Ali, j] — Ali,j + 1| < C for all valid (3, j)’s.

» Definition 6 ((min, +) matrix product between column bounded-difference matrix and row
bounded-difference matrix). Given column bounded-difference matriz A of size n x m and row
bounded-difference matriz B of size m x n, calculate their (min,+) matriz product A * B.
Call the time complexity for such a problem MPCRBD(n,m).

A similar case was previously addressed by Bringmann et al. [4] and an algorithm of
runtime O(n?9217) is given (Theorem 1.3, [4]). By adapting the method of Chi, Duan and
Xie [5], we can get the following bound.

We want to point out that since our reduction is black-box, the use of the following
lemma is not necessary and applying the algorithm in Bringmann et al. [4] also gives a
O(n™/3=2(M) algorithm. Therefore, we defer the proof of this lemma to Appendix A.

» Lemma 7 (Appendix A). Let M (n,u,n) be the time to multiply nXu and uxn matrices. For
parameters o, 3,7 > 0, MPCRBD(n,m) = O(n*m/a® +n?B + M(n,y,n)am/B +n*m?/7).
Specifically, MPCRBD(n,n) = O(n*%1).

We start with Dor, Halperin and Zwick’s original algorithm, used as a black-box.

» Lemma 8 (Theorem 3.1, [7]). There is an algorithm for APSP +2-approzimation that
runs in O(|V|3/2|E|"/?) time on input graph G = (V, E).

For a graph G = (V, E), define N(v) = {u | (u,v) € E} as the set of adjacent vertices of
v for v € V. We also use the following lemma.
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» Lemma 9 (e.g. Theorem 1, [1]). For a graph G = (V,E) and a parameter s, let Vs, =
{v|v eV, |NWw)|> s}t we can deterministically compute a hitting set D C 'V where
|D| = O(|V|log|V|/s) and N(v)N D #0 for allv € Vs in O(|V|?) time.

Crucial to our algorithm is to consider an FEuler tour of a spanning tree.

» Definition 10 (Euler Tour). For a spanning tree T C E of a connected graph G = (V, E), an
FEuler tour of T' is a sequence of vertices vi,va, -+ ,vay|—1, where each vertex of G appears
at least once and the edges (v;,vi11) €T for all 1 <i <2|V| —2.

Given a tree T', an Euler tour of T' could be easily found by running depth-first search on
T in O(|T]) time.

We first give a high-level overview of our improvement. In Theorem 3.2, 7], a hitting
set D; is computed to update the distance between all pairs of nodes (u,v) € V2. That
is, for all u,v € V, we update d(u,v) with minsep, (d(u,t) + d(t,v)). Notice that if we
consider V, Dy, V as three dimensions in a matrix multiplication, the updating process is
essentially a min-plus matrix product. Now if we arrange u, v in the order of an Euler tour,
the matrices would then be (row/column) bounded difference. Thus, we can gain a speedup
by aforementioned algorithms. To calculate distances between D; and V efficiently, we
partition nodes in V' by their degree.

For a graph G = (V, E), let n = |V|, m = |E|. We set a parameter | = O(logn) to be
determined, and define s; = n/2'! for i € [1,1]. Specifically, let so =n + 1.

By Lemma 9, we can find hitting sets D; of size O(n/s;) for all vertices with degree > s;
in G in O(n?) time. Let f;(u) be any element in D; NN (u) for degu > s;, let F; be the set of
edges (u, f;(u)) where degu > s; (degv stands for the degree of vertex v), and F = U!_, F}.
Thus |F;| = O(n),|F| = O(n).

We define a series of graphs Go, G1,Ga, -+ ,G). Define Gy = G, and G; = (V, E;) where
E;,=FU{(u,v) € E|degu < s; or degv < s;} for 1 < i <. Let d;(u,v) be the distance
from w to v on graph Gj;.

We then run breadth-first search on graph G;_1 from each vertex in set D; to obtain
the distances d;_1(t,v) for all pairs (¢,v) € D; x V. Define w;(u,v) = mingep,{d;—1(t,u) +
di—1(t,v)} Let g(u,v) to be the output of algorithm in Lemma 8 on input G;. Let h(u,v) =
min(mint_, {w;(u,v)}, g(u,v)).

We now argue that h is the desired approximation to distances, i.e. d(u,v) < h(u,v) <
d(u,v) + 2 for all u,v € V. Note that w;(u,v), g(u,v) > d(u,v) since their values all arise
from valid paths, thus A(u,v) > d(u,v).

Now we show that d(u,v)+2 > h(u,v). Consider the shortest path p from u to v in graph
G. Let r be the node with maximum degree on p. If degr > s;, assume that s, < degr < s4_1
for some 1 < a <. Since all nodes on p have degree < s,_1, d(u,v) = dg—1(u,v). In G4_1,
consider g = f,(r), we have h(u,v) < wq(u,v) < dg—1(u,g) + do—1(9,v) < dg—1(u,7) + 1+
do—1(r,v) +1=ds—1(u,v) + 2 < d(u,v) + 2. Otherwise (if degr < s;), p is preserved in the
graph G; and g(u,v) < d(u,v) + 2 by Lemma 8. Therefore, h(u,v) < d(u,v) + 2.

We now show how to compute w; for a given 1 < i < [. Without loss of generality, assume
G;_1 is connected (otherwise we can treat each connected component separately), and let T
be any spanning tree of G;_1. Let t1,ts,t3,--- ,t2,—1 be an arbitrary FEuler tour of T and
suppose D; = {x1,22,--- ,7|p,}. Define A to be a matrix of size (2n — 1) x |D;|, where
A(i,§) = di—1(ti,zj). Let B = Ax AT then by definition, w;(u,v) = B[pos(u), pos(v)] where
tpos(a) = a (any suffice).

Note that |A[a,j]—A[a—|—l,j]| < 1 since |di_1(ta, dj)—di_l(ta_;,_l,dj)‘ < dz’—l(tayta-&-l) = 1,
so A is column bounded-difference, AT is row bounded-difference. The time complexity to
compute f(u,v) for all u,v € V is then O(n? + MPCRBD(n, | D;])).
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The total runtime of the above algorithm consists of three parts.

1. The computation of {D;}, {G;}, {F;} takes O(n?) time.

2. Compute w; for all 1 <4 <[. Constructing the depth-first search tree and Euler tour
takes O(n?) time. Since |F;| < s;n, the breadth-first search for each D; in G;_; takes
O(|D;|sin) = O(n?) time, so this part also takes O(n?) time. The (min,+) matrix
products takes time O(n? + MPCRBD(n, |D;|)) since |D;| > |D;| for any 1 < i < 1.

3. The computation of g takes time N3/2|Fj|'/? = O(ngsll/Q).

Let s; be the power of 2 closest to t, we obtain the following result:

» Theorem 11. For a parameter t > 1, there is an algorithm for APSP +2-approximation
on input graph G = (V,E) that runs in O(n*t'/?> + MPCRBD(n,n/t)) time, where n =
V], m=|E|

By Lemma 7, we could obtain an upper bound for MPCRBD(n, m).

» Theorem 12. There is an algorithm for APSP +2-approzimation on input graph G = (V, E)

that runs in O(n?2857) time where n stands for |V|.

0.57339 0.07006 B —
)

Proof. In Theorem 11, set t = n , and apply Lemma 7 with a = n
n0-28662 1 — p0-56688 = N (n vy, n) = M(n,n%%%88 n) = O(n?076433) by [11]. The claimed

bound then follows from a direct computation. <

We also provide the following simpler bound using square MPCRBD. Plugging in Theorem
1.3 in Bringmann et al. [4] gives an algorithm of O(n?32416),

» Corollary 13. Suppose MPCRBD(n,n) = O(n**t%) for constant «, there is an algorithm
for APSP +2-approzimation on input graph G = (V, E) that runs in O(|V|** %) time.

Proof. Let n = [V|. MPCRBD(n,n/t) = O(t>MPCRBD(n/t,n/t)) = O(n2® /t*). Set
t = n®/(1/2+2) “the total runtime would then be O(n?" T2 ), <

3 Additive Approximation Algorithm for Girth

The first additive approximation algorithm for the girth of a graph was presented by Itai
and Rodeh in 1978 [9]. In their paper they showed an O(n?) time algorithm that, given a
graph of girth g, returns a cycle of length at most g + 1.

The next improvement, an additive approximation algorithm running in subquadratic
time, was presented in 2012 by Roditty and Vassilevska W. [15]. Their algorithm provided a
+3 approximation of the girth in O(n®/m) time.

Both algorithms use a subroutine which we will call BFS-cycle. This subroutine runs BFS
from a given vertex s until it reaches some vertex v for a second time. When v is reached for
the second time, BFS-cycle returns the cycle enclosed by the two paths between s and v. We
will use the following result regarding this algorithm:

» Lemma 14 (e.g. [9, 13]). BFS-cycle(v) runs in O(n) time. If a vertex v is at distance £
from a vertex on a simple cycle of length k, then BFS-cycle(v) reports a cycle of length at
most k + 20 + 1. If k is even, BFS-cycle(v) reports a cycle of length at most k + 2.

Another tool used in Roditty and Vassilevska W'.s algorithm is a result in extremal graph
theory proved by Bondy and Simonovits [3], regarding even cycles in a graph:

» Theorem 15 ([3]). Let k > 2 be an integer. If an n-node graph G has at least 100kn*+1/%
edges then G contains a 2k-cycle.

50:5
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As a result of this theorem, for any graph with at least 200kn't'/* edges, at least half of
the edges are part of some 2k-cycle. Therefore, if we uniformly sample an edge, it is part of
a 2k-cycle with probability > % By running BFS-cycle from each sampled edge and taking
the lowest result, we obtain a randomized algorithm with efficient runtime:

» Lemma 16 (e.g. [23]). If an n-node graph G has at least 200kn'T/* edges, then there
exists an O(nlogn) time algorithm that finds a cycle of length at most 2k with high probability.

Using these methods, we provide an algorithm for any odd additive approximation. In
the following theorem we generalize the algorithm of Roditty and Vassilevska W. [15] to
provide an additive +(2r + 1) approximation to the girth for any integer r.

» Theorem 17. Let G(V, E) be an unweighted, undirected graph with |V| = n,|E| =m. Let

n2+r

time algorithm

m”

r be an integer and denote the girth of G by g. There is an O (n +
that returns with high probability a cycle of length g that satisfies g < § < g+ 2r + 1.

Proof. First we consider the case where m < 200Ln' T/ for L = Log)ign—‘. This implies
that m < O(n). We can use the O(n?) time algorithm of Itai and Rodeh to obtain an
additive +1 approximation of the girth of G. Notably, in this case O(n?) < O (”;;T)

Suppose now that m > 200Ln'*/L. Then there exists an integer k < L such that

200(k + )n' T < m < 200kn' k.

It follows from Lemma 16 that in O(nlogn) time we can find a cycle of length at most 2k + 2
with high probability. If g > 2k — 2r, this cycle is an additive +(2r + 1) approximation of
the girth.

We are left to handle the case when g < 2k — 2r. For any non-negative integer p, denote
by T, (v) :={u € V : d(u,v) < p} the vertices in the graph of distance < p from v. Let A be
a degree parameter; we will refer to vertices with |T).(v)| < A as low r-degree vertices and
vertices with |T,.(v)| > A as high r-degree vertices.

We sample a set S of O (% log n) vertices uniformly at random. With high probability,
any high degree vertex v satisfies T,.(v) NS # . We now run BFS-cycle from each vertex
of S. If the shortest cycle in the graph contains some node v such that 7,.(v) intersects S,
Lemma 14 implies that the shortest cycle the algorithm finds is of length at most g + 2r 4 1.

The running time of this is O ("22# .

Now we only need to handle the case where the shortest cycle contains only vertices v for
which T,.(v) NS = 0, or equivalently v ¢ T,.(s) Vs € S. To do so, we remove from the graph
all vertices in T,.(s) for any s € S. With high probability the remaining vertices are all of
low r-degree.

For each remaining vertex v, consider performing BFS from v up to ¢ levels for some
k —r < /¢ < k, while keeping track of the cumulative size of the layers. We break at the first
¢ >k —r for which |Ty(v)| < A®="/"|T,_ 4, (v)|. Since we are assuming g < 2k — 2r, if
there is a vertex u € Ty_(,_y)(v) which is part of the shortest cycle, then the BFS from v up
to ¢ levels must have found a +2(¢ — (k — r)) + 1 approximation of this. In Lemma 18, we
justify why we break before £ = k. Then, we discard all vertices in Tj_ ;) (v) from further
consideration. We do this for all v, and the total time complexity is O (nA(k_T)/T).

The proof that this algorithm is valid is deferred to Lemma 18. So if the shortest cycle in
G is comprised of only low r-degree vertices, we will have found a +2r 4+ 1 approximation of
it. The full algorithm for this is described in Algorithm 1.
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Algorithm 1 All Low BFS-Cycle.

for s € V do
Lo + {S}
Soé—l
for 0 <i< k do
for u € L; do
for (u,v) € E do
if d, # 0 then
Cycle < cycle formed by backtracking ancestors until LCA of u,v
return Cycle
end if
Lit1 + Liv1 U{v}
end for

end for
Sit1 < Si + |Liy1]
if i >k—randS; <AS; i, then
for0<j;<i—k+rdo
for w € L; do
for (u,v) € E do
E + FE—{(u,v)}
end for
end for
end for
end if
end for
end for

To minimize the runtime, we set A = n’/*

Since m = © (nlﬂ/k),

247 247
3, 2=r/k) _ A n _Al"
0 (n )_O(n(1+1/k)'T> _O( mr )

This gives us the desired runtime. |

» Lemma 18. The time complezity of Algorithm 1 is O (nA(k’T)/”) and it is guaranteed to
return a cycle of length < 2k if g < 2k — 2r and if there is a shortest cycle where all vertices
have low r-degree.

Proof. Firstly, we show that for any low r-degree vertex v, we will find an ¢ > k — r
such that |[Ty(v)| < A®="/"|T,_4_,y| and £ < k. Assume the contrary, that |T,(v)| >
A(k_r)/r|Tg_(k_T)\ for all k —r < /¢ < k. Multiplying these inequalities for all ¢ in this range
gives

r—1 k—1

AT ) < [T 1T()l.

j=0 i=k—r
For any non-negative integer ¢, denote t to be the unique integer such that ¢t = ¢ (mod r)
and 0 <t < r. Since all vertices w in this subgraph have the property that |T,.(w)| < A, for
any non-negative integer ¢ and any vertex v we have

IT:(0)| A7 > | Ty (v)].

and obtain a running time of O (nzfr/k).
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Now note that {k—r,k—r+1,...,k—1} is exactly {0,1,2,...,r — 1} as these are r
consecutive integers. Thus we can bound the right-hand side of the inequality like so:

r—1 k—1
ATTTIT ) < I 1T()]
=0 i=k—r
k—1 .
< AT Ty(w))|

k

S ) (D) e

SA( ) ( ) 11175 )]
=0

S ki) 71

J=0

A= [[mw)

r—1
= AT (o)
7=0

So we reach a contradiction as desired and we conclude that there is some ¢ < k and so
—(k—r)<r. If Ty__(v) contains a vertex in the shortest cycle, we indeed obtain a
+(2r — 1) approximation. Furthermore, we now no longer need to BFS from any vertex in
Ty—(k—ry(v) so we can discard all of these. So although we had to do O(|T¢(v)|) work for
BFSing from this v, we were able to discard |T;_(—)(v)| vertices. Thus, the amortized time
complexity per vertex is O(A®*~7)/7) and so the total time complexity is O(nA*=")/),

Note that we only guarantee returning a cycle of length < 2k rather than of length
< g+ 2r+1 as it is possible we find a longer cycle first, in which case we must terminate
immediately to guarantee that the BFS-Cycle subroutine step is still linear only in terms of
the number of vertices and not edges. This is fine as we now have a shorter cycle and we can
repeat the algorithm with smaller k. To make this efficient, we can binary search, incurring
only an additional log k factor. |

—— References

1 Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of
diameter and shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167—
1181, 1999.

2 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522-539. STAM, 2021.

3 John A. Bondy and Miklds Simonovits. Cycles of even length in graphs. Journal of Combinat-
orial Theory, pages 16:97-16:105, 1974.

4  Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia Vassilevska Williams. Truly
subcubic algorithms for language edit distance and RNA folding via fast bounded-difference
min-plus product. SIAM J. Comput., 48(2):481-512, 2019.

5  Shucheng Chi, Ran Duan, and Tianle Xie. Faster algorithms for bounded-difference min-plus
product. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1435-1447, 2022.

6  Edith Cohen and Uri Zwick. All-pairs small-stretch paths. J. Algorithms, 38(2):335-353, 2001.

7  Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM J. Comput.,
29(5):1740-1759, 2000.



M. Deng, Y. Kirkpatrick, V. Rong, V. Vassilevska Williams, and Z. Zhong

10

11

12

13

14

15

16

17

18
19

20

21

22

23

A

Yuzhou Gu, Adam Polak, Virginia Vassilevska Williams, and Yinzhan Xu. Faster monotone
min-plus product, range mode, and single source replacement paths. In 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021,
Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 75:1-75:20. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM J. Comput.,
7(4):413-423, 1978.

Avi Kadria, Liam Roditty, Aaron Sidford, Virginia Vassilevska Williams, and Uri Zwick.

Algorithmic trade-offs for girth approximation in undirected graphs. In Proc. SODA 2022,
pages 1471-1492, 2022.

Frangois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the Coppersmith-Winograd tensor. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1029-1046. STAM, Philadelphia, PA,
2018.

Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for
shortest cycles and paths in sparse graphs. In Artur Czumaj, editor, Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, January 7-10, 2018, pages 1236-1252. STAM, 2018.

Andrzej Lingas and Eva-Marta Lundell. Efficient approximation algorithms for shortest cycles
in undirected graphs. Inf. Process. Lett., 109(10):493-498, 2009.

Seth Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. Theor.
Comput. Sci., 312(1):47-74, 2004.

Liam Roditty and Virginia Vassilevska Williams. Subquadratic time approximation algorithms
for the girth. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
833-845. STAM, 2012.

Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. J.
Comput. Syst. Sci., 51(3):400-403, 1995.

Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer weights.

In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 605—615. IEEE Computer Society, 1999.
Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1-24, 2005.

Virginia Vassilevska Williams. On Some Fine-Grained Questions in Algorithms and Complexity.

In Proceedings of the International Congress of Mathematicians ICM 2018, volume 3, pages
3447-3487, 2019.

Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,
matrix, and triangle problems. J. ACM, 65(5):27:1-27:38, 2018.

Virginia Vassilevska Williams and Yinzhan Xu. Truly subcubic min-plus product for less
structured matrices, with applications. In Shuchi Chawla, editor, Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 12-29. STAM, 2020.

R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,
47(5):1965-1985, 2018.

Raphael Yuster and Uri Zwick. Finding even cycles even faster. SIAM J. Discret. Math.,
10(2):209-222, 1997.

Fast (min, +) Product between Column and Row
Bounded-Difference Matrices

In this section, we adapt the method of Chi, Duan and Xie [5] for bounded difference min-plus

matrix product for our case, thus proving Lemma 7. The main difference in our method is

that we can no longer divide matrices into square blocks since differences are only bounded
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in one direction. Instead, we divide them into rectangular blocks. Most terminologies and
analysis in their work can be adapted to our case, so we only sketch the needed modifications
here.

Suppose the matrices to multiply are A, By with size n x m and m x n. For simplicity, we
transpose By to be B = BI. Our assumption is that for some constant A, |A;; — Aiy1j] <
A, |B;; — Bit1,;| < A for valid indexes. We want to compute C; ; = ming{A4; r + Bj i }.

We divide the rows of A and B into blocks of size . The main difference from [5] is that
we can no longer divide columns into blocks. For each pair of blocks (one block of columns
in A and one block of columns in B), we pick any ¢ and j from each block and compute C; ;.
This step takes O(n?m/a?) time.

By locality, we know for any (4’, j') in these two blocks, |Cy j» — C; ;| < 2aA (Since Cy
equals to Ay + Bj i for some k, and |Ay , + Bjr i — Ai kx — Bjx| < 2aA for all k’s by the
property of bounded-difference within columns). We call k so that |A; ; + Bjr — C; ;| < 4aA
candidates, and only these k’s could contribute to (¢, j')’s in these two blocks.

For block pairs with no more than 5 candidates, we simply enumerate through these k’s
for every (i’,j), taking O(n?3) time.

For block pairs with more than 8 candidates, we use the method in Section 2, [5]. Sample
a set of columns S with size Q(mlogn/B), then reduce via these columns, mapping resulting
segments to v columns. Computing the bounded min-plus matrix product after mapping
would take time O(M (n,~,n)am/B) where M(n,~,n) is the complexity of multiplying n x
and v x n matrices. For each of the n?/a? blocks in C, each of the m? column pairs has
probability 1/ to collide (mapped to the same column), and subtracting each collision takes
O(a?) time. Thus, subtracting the contribution of all collisions would take O(n?m?2/v) time.

The total time complexity is O(n?m/a? + n?8 + M(n,v,n)am/B + n*m? /7).

Particularly when m = n, let a = n0-094513 3 = 0810974 "y — )y 1189026 © pp(
O(n?527435) [11], we can get the complexity of O(n?811).

n,y,n) =
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