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Abstract
An extensive research effort targets optimal (in)approximability results for various NP-hard op-
timization problems. Notably, the works of (Creignou’95) as well as (Khanna, Sudan, Trevisan,
Williamson’00) establish a tight characterization of a large subclass of MaxSNP, namely Boolean
MaxCSPs and further variants, in terms of their polynomial-time approximability. Can we obtain
similarly encompassing characterizations for classes of polynomial-time optimization problems?

To this end, we initiate the systematic study of a recently introduced polynomial-time analogue
of MaxSNP, which includes a large number of well-studied problems (including Nearest and
Furthest Neighbor in the Hamming metric, Maximum Inner Product, optimization variants of
k-XOR and Maximum k-Cover). Specifically, for each k, MaxSPk denotes the class of O(mk)-time
problems of the form maxx1,...,xk #{y : ϕ(x1, . . . , xk, y)} where ϕ is a quantifier-free first-order
property and m denotes the size of the relational structure. Assuming central hypotheses about
clique detection in hypergraphs and exact Max-3-SAT, we show that for any MaxSPk problem
definable by a quantifier-free m-edge graph formula ϕ, the best possible approximation guarantee in
faster-than-exhaustive-search time O(mk−δ) falls into one of four categories:

optimizable to exactness in time O(mk−δ),
an (inefficient) approximation scheme, i.e., a (1 + ε)-approximation in time O(mk−f(ε)),
a (fixed) constant-factor approximation in time O(mk−δ), or
an mε-approximation in time O(mk−f(ε)).

We obtain an almost complete characterization of these regimes, for MaxSPk as well as for an
analogously defined minimization class MinSPk. As our main technical contribution, we show
how to rule out the existence of approximation schemes for a large class of problems admitting
constant-factor approximations, under a hypothesis for exact Sparse Max-3-SAT algorithms posed
by (Alman, Vassilevska Williams’20). As general trends for the problems we consider, we observe:
(1) Exact optimizability has a simple algebraic characterization, (2) only few maximization problems
do not admit a constant-factor approximation; these do not even have a subpolynomial-factor
approximation, and (3) constant-factor approximation of minimization problems is equivalent to
deciding whether the optimum is equal to 0.
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1 Introduction

For many optimization problems, the best known exact algorithms essentially explore the
complete search space, up to low-order improvements. While this holds true in particular for
NP-hard optimization problems such as maximum satisfiability, also common polynomial-time
optimization problems like Nearest Neighbor search are no exception. When facing such
a problem, the perhaps most common approach is to relax the optimization goal and ask
for approximations rather than optimal solutions. Can we obtain an approximate value
significantly faster than exhaustive search, and if so, what is the best approximation guarantee
we can achieve?

Even considering polynomial-time problems only, the study of such questions has led to
significant algorithmic breakthroughs, such as locality-sensitive hashing (LSH) [49, 41, 11],
subquadratic-time approximation algorithms for Edit Distance [56, 18, 17, 19, 14, 12, 26,
55, 21, 43, 13], scaling algorithms for graph problems [37, 70, 34], and fast approximation
algorithms via the polynomial method [5, 6] (which lead to the currently fastest known
exponential-time approximation schemes for MaxSAT).

These algorithmic breakthroughs have recently been complemented by exciting tools for
proving hardness of approximation in P: Most notably, the distributed PCP framework [4]
has lead to strong conditional lower bounds, including fundamental limits for Nearest
Neighbor search [62], as well as tight approximability results for the Maximum Inner Product
problem [28]. Other technical advances include evidence against deterministic approximation
schemes for Longest Common Subsequence [1, 3, 29], strong (at times even tight) problem-
specific hardness results such as [61, 22, 16, 25, 52], the first fine-grained equivalences of
approximation in P results [30, 29], and related works on parameterized inapproximability [27,
51, 59], see [36] for a survey.

These strong advances from both sides shift the algorithmic frontier and the frontier of
conditional hardness towards each other. Consequently, it becomes increasingly important
to generalize isolated results – both algorithms and reductions – towards making these
frontiers explicit: A more comprehensive description of current techniques might enable us
to understand general trends underlying these works and to highlight the most pressing
limitations of current methods. In fact, we view this as one of the fundamental tasks and
uses of fine-grained algorithm design & complexity.

Optimization Classes in P. To study (hardness of) approximation in P in a general way,
we study a class MaxSPk recently introduced in [23] (see the full version of this paper for a
comparison to the classic class MaxSNP, which motivated the definition of MaxSPk). This
class consists of polynomial-time optimization problems of the form:

max
x1,...,xk

#{y : ϕ(x1, . . . , xk, y)},

https://arxiv.org/abs/2204.11681
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where ϕ is a quantifier-free first-order property.1 One obtains an analogous minimization
class MinSPk by replacing maximization by minimization. A large number of natural and
well-studied problems can be expressed this way: In particular, we may think of each xi

ranging over a set Xi of n vectors in {0, 1}d, and the task is to maximize (or minimize) the
number of coordinates y satisfying an arbitrary Boolean function over the coordinate values
x1[y], . . . , xk[y] (here, ϕ is defined using a binary relation R ⊆ (X1 ∪ · · · ∪ Xk) × Y that
expresses whether the y-th coordinate of xi is 0 or 1; see Section 2 for details). In particular,
this class of problems includes:

(Offline) Furthest/Nearest Neighbor search in the Hamming metric
(maxx1,x2 /minx1,x2 dH(x1, x2)),
Maximum/Minimum Inner Product; the latter is the optimization formulation of the
Most-Orthogonal Vectors problem [2]
(maxx1,x2 /minx1,x2⟨x1, x2⟩),
A natural similarity search problem that we call Maximum k-Agreement
(maxx1,...,xk #{y : x1[y] = · · · = xk[y]}),
Maximum k-Cover [35, 31, 59] and its variation Maximum Exact-k-Cover [54]
(maxx1,...,xk #{y : xi[y] = 1 for some i}, maxx1,...,xk #{y : xi[y] = 1 for exactly one i})2,
The canonical optimization variants of the k-XOR problem [50, 33]
(maxx1,...,xk /minx1,...,xk #{y : x1[y] ⊕ · · · ⊕ xk[y] = 0}).

By the standard split-and-list technique [66], it is easy to see that any c-approximation for
Maximum k-XOR or Minimum k-XOR in time O(nk−δ poly(d)) gives a c-approximation
for Max-LIN (maximize the number of satisfied constraints of a linear system over F2,
see [45, 66, 6]) or the Minimum Distance Problem3 (finding the minimum weight of a
non-zero code word of a linear code over F2, see [63]), respectively, in time O(2n(1−δ′)).

By a simple baseline algorithm, all of these problems can be solved in time O(mk), where
m denotes the input size (for the above setting of k sets of n vectors in {0, 1}d we have
m = O(nd)). A large body of work addresses problems with k = 2, typically inventing or
adapting strong techniques to each specific problem as needed:

Abboud, Rubinstein, and Williams introduced the distributed PCP in P framework and
ruled out almost-polynomial approximations for the Maximum Inner Product problem
assuming the Strong Exponential Time Hypothesis (SETH). Subsequently, Chen [28]
strengthened the lower bound and gave an approximation algorithm resulting in tight
bounds on the approximability in strongly subquadratic time, assuming SETH. Corre-
sponding inapproximability results for its natural generalization to k-Maximum Inner
Product have been obtained in [51].
In contrast, strong approximation algorithms have a rich history for the Nearest Neigh-
bor search problem: Using LSH, we can obtain an (1 + ε)-approximation in time
O(n2−Θ(ε)) [44, 9, 10, 15]. Using further techniques, the dependence on ε has been
improved to O(n2−Ω(

√
ε)) [64] and O(n2−Ω̃( 3√ε)) [5, 6]. On the hardness side, Rubin-

stein [62] shows that the dependence on ε cannot be improved indefinitely, by proving
that for every δ, there exists an ε such that (1 + ε)-approximate Nearest Neighbor search
requires time Ω(n2−δ) assuming SETH. In particular, this rules out poly(1/ε)n2−δ-time
algorithms with δ > 0.

1 Note that [23] more generally defines classes MaxSPk,ℓ for ℓ ≥ 1. We focus on MaxSPk = MaxSPk,1,
as it was determined as computationally harder than MaxSPk,ℓ with ℓ ≥ 2, and contains many natural
problems (see below).

2 These problems are typically studied in the setting where k is part of the input, while we consider them
for a fixed constant k.

3 In fact, even for the Nearest Codeword Problem over F2.
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For the dual problem of Furthest Neighbor search (i.e., diameter in the Hamming metric),
[20] gives a O(n2−Θ(ε2))-time algorithm, which was improved to O(n2−Θ(ε)) via reduction
to Nearest Neighbor search in [47]. Following further improvements [42, 48], also here
[5, 6] give an O(n2−Ω̃( 3√ε))-time algorithm. Analogous inapproximability to Rubinstein’s
result are given in [30].
For Minimum Inner Product, the well-known Orthogonal Vectors hypothesis [65] (which
is implied by SETH [66]) is precisely the assumption that already distinguishing whether
the optimal value is 0 or at least 1 cannot be done in strongly subquadratic time.
Interestingly, Chen and Williams [30] show a converse: a refutation of the Orthogonal
Vectors hypothesis would give a subquadratic-time constant-factor approximation for
Minimum Inner Product.

In the above list, we focus on the difficult case of moderate dimension d = no(1) (when
measuring the time complexity with respect to the input size). Lower-dimensional settings
such as d = Θ(logn), d = Θ(log logn) or even lower are addressed in other works [69, 30].

While the above collection of results gives a detailed understanding of isolated problems,
we know little about general phenomena of (in)approximability in MaxSPk and MinSPk

using faster-than-exhaustive-search algorithms: Are there problems for which constant-factor
approximations are best possible? Is maximizing (or minimizing) Inner Product the only
problem without a constant-factor approximation? Which problems can we optimize exactly?

There are precursors to our work that show fine-grained equivalence classes of approxima-
tion problems in P [29, 30]. However, establishing membership of a problem in these classes
requires a problem-specific proof, while we are interested in syntactically defined classes,
where class membership can be immediately read off from the definition of a problem. Our
aim is to understand the approximability landscape of such classes fully. Finally, the previous
works either focus on lower-dimensional settings [30]4, or target more powerful problems
than we consider, such as Closest-LCS-Pair [29].

MaxSPk as Polynomial-Time Analogue of MaxSNP. Investigating NP-hard optimization
problems, Papadimitriou and Yannakakis [60] introduced the class MaxSNP, which motivates
the definition of MaxSPk as a natural polynomial-time analogue (see [23] and the full
version of this paper for details). As a general class containing prominent, constant-factor
approximable optimization problems, MaxSNP was introduced to give the first evidence
that Max-3-SAT does not admit a PTAS, by proving that Max-3-SAT belongs to the
hardest-to-approximate problems in MaxSNP.

Ideally, one would like to understand the approximability landscape in MaxSNP fully
and give tight approximability results for each such problem. Major advances towards this
goal have been achieved by Creignou [32] and Khanna, Sudan, Trevisan, and Williamson [53]
who gave a complete classification of a large subclass of MaxSNP, namely, maximum
Boolean Constraint Satisfaction Problems (MaxCSP): Each Boolean MaxCSP either is
polynomial-time optimizable or it does not admit a PTAS unless P = NP, rendering a
polynomial-time constant-factor approximation best possible. For minimization analogues,
including Boolean MinCSPs, the situation is more diverse with several equivalence classes
needed to describe the result [53].

We initiate the study of the same type of questions in the polynomial-time regime. Our
aim is to achieve a detailed understanding of MaxSPk and MinSPk akin to the classification
theorems achieved for MaxCSPs and MinCSPs [32, 53].

4 Chen and Williams also give some results for the moderate-dimensional case; we discuss these in
Section 3.
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1.1 Our Results
We approach the classification of MaxSPk and MinSPk by considering the simplest, yet
expressive case of a single, binary relation involved in the first-order formula; this route was
also taken in earlier classification work for first-order properties [24]. We may thus view the
relational structure as a graph, and call such a formula a graph formula. Note that despite its
naming, this includes problems not usually viewed as graph problems, such as all examples
given in the introduction, which are natural problems on sets of vectors in {0, 1}d.

We obtain a classification of each graph formula into one of four regimes, assuming central
fine-grained hardness hypotheses whose plausibility we detail in the full version of this paper.
All of our hardness results are implied by the Sparse Max-3-SAT hypothesis [7], which
states that for all δ > 0 there is some c > 0 such that Max-3-SAT on n variables and cn

clauses has no O(2n(1−δ))-time algorithm.5 (Actually, most of our hardness results already
follow from weaker assumptions.)

▶ Theorem 1. Let ψ be a MaxSPk or MinSPk graph formula. Assuming the Sparse
Max-3-SAT hypothesis, ψ belongs to precisely one of the following regimes:
R1 Efficiently optimizable:

There is some δ > 0 such that ψ can be solved exactly in time O(mk−δ).
R2 Admits an approximation scheme, but not an efficient one:

For all ε > 0, there is some δ > 0 such that ψ can be (1 + ε)-approximated in time
O(mk−δ). However, for all δ > 0, there is some ε > 0 such that ψ cannot be (1 + ε)-
approximated in time O(mk−δ).

R3 Admits a constant-factor approximation, but no approximation scheme:
There are ε, δ > 0 such that ψ can be (1 + ε)-approximated in time O(mk−δ). However,
there also exists an ε > 0 such that for all δ > 0, ψ cannot be (1 + ε)-approximated in
time O(mk−δ).

R4 Arbitrary polynomial-factor approximation is best possible (maximization):
For every ε > 0, there is some δ > 0 such that ψ can be O(mε)-approximated in time
O(mk−δ). However, for every δ > 0, there exists some ε > 0 such that ψ cannot be
O(mε)-approximated in time O(mk−δ).
No approximation at all (minimization):
For all δ > 0, we cannot decide whether the optimum value of ψ is 0 or at least 1 in time
O(mk−δ).

Note that the characteristics of the fourth (i.e., hardest) regime differ between the
maximization and the minimization case.

This theorem has immediate consequences for the approximability landscape in MaxSPk

and MinSPk, based on fine-grained assumptions: In particular, while any MaxSPk graph
formula can be approximated within a subpolynomial factor O(mε), we can rule out optimal
approximation ratios that grow with m but are strictly subpolynomial (i.e., there are no
graph formulas whose optimal approximability within O(mk−Ω(1)) time is Θ(log logm),
Θ(log2 m) or 2Θ(

√
log m)). Furthermore, there are no graph formulas with an f(1/ε)mk−Ω(1)

approximation scheme that cannot already be optimized to exactness in time mk−Ω(1).
In fact, beyond Theorem 1 we even give an almost complete characterization of each regime:

Specifically, we introduce integer-valued hardness parameters 0 ≤ Hand(ψ) ≤ Hdeg(ψ) ≤ k

(defined in Section 3). As illustrated in Figure 1, we show how to place any graph formula ψ

5 This hypothesis is a stronger version of the Max-3-SAT hypothesis [58].
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R1:
exact solvable

R2:
AS
no efficient AS

R2 or R3:
constant approx.
no efficient AS

R3:
constant approx.
no AS

R4:
poly. approx.
no subpoly. approx.

M
ax

(ψ
)

R1:
exact solvable

R2:
AS
no efficient AS

R2 or R3:
constant approx.
no efficient AS

R4:
no approximation

M
in

(ψ
)

Hdeg(ψ) ≤ 2
(Hdeg(ψ) ≤ 1)

3 ≤ Hdeg(ψ) ≤ k

(Hdeg(ψ) = 2)

Hand(ψ) ≤ 1
(Hand(ψ) ≤ 1)

Hand(ψ) = 2
(empty)

3 ≤ Hand(ψ) < k

(empty)

Hand(ψ) = k

(Hand(ψ) = 2)

Figure 1 Visualizes our classification of first-order optimization problems Max(ψ) and Min(ψ)
for all k ≥ 3, in terms of the hardness parameters Hand and Hdeg (as defined in Definitions 4 and 6).
See Definition 10 for the precise definition of an (efficient) approximation scheme (AS). The pale
labels indicate how to change the conditions to obtain the picture for k = 2.

Table 1 Some interesting examples classified according to Figure 1. For each problem ψ, an
instance consists of k sets of n vectors X1, . . . , Xk ⊆ {0, 1}d. We write ψ = maxx1,...,xk /minx1,...,xk ϕ

and only list the inner formulas ϕ in the table.

Problem ψ ϕ Hdeg(ψ) Hand(ψ) Hardness regime

Maximum/Minimum
2-Agreement #{y : x1[y] = x2[y]} 2 1 R2

Maximum/Minimum
3-Agreement #{y : x1[y] = x2[y] = x3[y]} 2 2 R1

Maximum
k-Agreement, k ≥ 4 #{y : x1[y] = · · · = xk[y]} 2⌊ k

2 ⌋ k − 1 R3

Minimum
k-Agreement, k ≥ 4 #{y : x1[y] = · · · = xk[y]} 2⌊ k

2 ⌋ k − 1 R4

Maximum/Minimum
k-XOR #{y : x1[y] ⊕ · · · ⊕ xk[y]} k 1 R2

Maximum
k-Inner Product #{y : x1[y] ∧ · · · ∧ xk[y]} k k R4

Minimum
k-Inner Product #{y : x1[y] ∧ · · · ∧ xk[y]} k k R4
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into its corresponding regime depending solely on Hand(ψ) and Hdeg(ψ) – with the single
exception of formulas ψ with Hand(ψ) = 2 and Hdeg(ψ) ≥ 3. For these formulas (e.g.,
Maximum Exact-3-Cover), it remains open whether they belong to Regime 2 or 3, i.e.,
whether or not they admit an approximation scheme (see Open Problem 1).

In the full version we give natural problems for each regime (showing in particular that
each regime is indeed non-empty). A particular highlight is that we can prove existence of
constant-factor approximable formulas that do not admit an approximation scheme, such as
Maximum-4-Agreement (see Section 3, Theorem 11 for a technical discussion of the lower
bound). In the full version of this paper, we give the details on how to calculate the hardness
parameters Hand(ψ) and Hdeg(ψ) for each example in Table 1.

While the approximability of problems in the third and fourth regime seem rather
unsatisfactory, we also consider the setting of additive approximation, and show that for
every MaxSPk and MinSPk graph formula, there is an additive approximation scheme;
however, assuming the Sparse MAX-3-SAT hypothesis it cannot be an efficient one unless we
can optimize the problem exactly.

▶ Theorem 2 (Additive Approximation). For every ψ, we give an additive approximation
scheme, i.e., for every ε > 0, there is a δ > 0 such that we compute the optimum value up to
an additive ε|Y | error in time O(mk−δ).

If ψ does not belong to Regime 1, we show that unless the Sparse Max-3-SAT hypothesis
fails, for every δ > 0, there is some ε > 0 such that we cannot compute the optimum value
up to an additive ε|Y | error in time O(mk−δ).

Finally, we remark that our classification identifies general trends in MaxSPk and
MinSPk, including that exact optimizability is described by a simple algebraic criterion,
and that constant-factor approximation for minimization problems is equivalent to testing
whether the optimum is 0. We address these trends in Section 3.

On Plausibility of the Hypotheses. As tight unconditional lower bounds for polynomial-
time problems are barely existent, we give conditional lower bounds, based on established
assumptions in fine-grained complexity theory, such as SETH (see [65] for an excellent
survey). The essentially only exception is the only recently introduced Sparse Max-3-SAT
hypothesis [7]; we use this hypothesis only for giving evidence against approximation schemes
and for ruling out certain additive approximation schemes. While it is possible that this
hypothesis could ultimately be refuted, our classification describes the frontier of the current
state of the art. At the very least, our conditional lower bound for approximation schemes
reveals a rather surprising connection: To obtain an approximation scheme for polynomial-time
problems such as Maximum 4-Agreement, we need to give an exponential-time improvement
for exact solutions for Sparse Max-3-SAT!

1.2 Further Related Work
Parameterized Inapproximability. The problem settings we consider are related to a recent
and strong line of research on parameterized inapproximability, including [27, 51, 31, 59, 57]
(see [36] for a recent survey). In these contexts, one seeks to determine optimal approximation
guarantees within some running time of the form f(k)ng(k) (such as FPT running time
f(k) poly(n) or running time no(k)) for some parameter k (such as the solution size). Unfor-
tunately, many of these results do not immediately establish hardness for specific values of k.
An important exception is work by Karthik, Laekhanukit, and Manurangsi [51], which among
other results establishes inapproximability of k-Dominating Set and the Maximum k-Inner
Product within running time O(nk−ε), assuming SETH. We give a detailed comparison of
our setting to notions used in Karthik et al.’s work in the full version of this work.

ICALP 2022
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Fine-Grained Complexity of First-Order Properties. Studying the fine-grained complexity
of polynomial-time problem classes defined by first-order properties has been initiated
in [68, 40], with different settings considered in [39, 38]. In particular, for model-checking
first-order properties, [40] provides a completeness result (a fine-grained analogue of the
Cook-Levin Theorem) and [24] provides a classification theorem (a fine-grained analogue of
Schaefer’s Theorem, see also Section 3.1).

For optimization in P, [23] provides completeness theorems for MaxSPk (a fine-grained
analogue of MaxSNP-completeness of Max-3-SAT [60]). In contrast, the present paper gives
a classification theorem (building a fine-grained analogue of the approximability classifications
of optimization variants of CSPs [32, 53]).

2 Preliminaries

For an integer k ≥ 0, we set [k] = {1, . . . , k}. For a set A and integer k ≥ 0 we denote by
(

A
k

)
the set of all size-k subsets of A. Let ϕ(z1, . . . , zk) a Boolean function, and let S ⊆ [k]. Any
function obtained by instantiating all variables zi (i ̸∈ S) in ϕ by constant values is called
an S-restriction of ϕ. Finally, we write Õ(·) to hide poly-logarithmic factors and denote by
ω < 2.373 the exponent of square matrix multiplication [8].

2.1 First-Order Model-Checking
A relational structure consists of n objects and relations R1, . . . , Rℓ (of arbitrary arities)
between these objects. A first-order formula is a quantified formula of the form

ψ = (Q1x1) . . . (Qk+1xk+1)ϕ(x1, . . . , xk+1),

where ϕ is a Boolean formula over the predicates R(xi1 , . . . , xiℓ) and each Qi is either a
universal or existential quantifier. Given a (k+1)-partite structure on objects X1 ∪· · ·∪Xk+1,
the model-checking problem (or query evaluation problem) is to check whether ψ holds on
the given structure, that is, for xi ranging over Xi and by instantiating the predicates
R(xi1 , . . . , xiℓ) in ϕ according to the structure, ψ is valid.

Following previous work in this line of research [40, 24], we usually assume that the input
is represented sparsely – that is, we assume that the relational structure is written down as
an exhaustive enumeration of all records in all relations; let m denote the total number of
such entries6. The convention is reasonable as this data format is common in the context of
database theory and also for the representation of graphs (where it is called the adjacency
list representation), see Section 4 for a further discussion.

A first-order formula ψ is called a graph formula if it is defined over a single binary
predicate E(xi, xj). Many natural problems fall into this category; see [24] for a detailed
discussion on the subject.

2.2 MaxSPk and MinSPk

In analogy to first-order properties with quantifier structure ∃k∀ (with maximization instead
of ∃ and counting instead of ∀) and following the definition in [23], we now introduce the
class of optimization problems. Let MaxSPk be the class containing all formulas of the form

6 By ignoring objects not occurring in any relation, we may always assume that n ≤ O(m).
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ψ = max
x1,...,xk

#
y
ϕ(x1, . . . , xk, y), (1)

where, as before, ϕ is a Boolean formula over some predicates R(xi1 , . . . , xiℓ). We similarly
define MinSPk with “min” in place of “max”. Occasionally, we write OptSPk to refer to
both of these classes simultaneously, and we write “opt” as a placeholder for either “max” or
“min”. In analogy to the model-checking problem for first-order properties, we associate to
each formula ψ ∈ OptSPk an algorithmic problem:

▶ Definition 3 (Max(ψ) and Min(ψ)). Let ψ ∈ MaxSPk be as in (1). Given a (k + 1)-
partite structure on objects X1 ∪ · · · ∪Xk ∪ Y , the Max(ψ) problem is to compute

OPT = max
x1∈X1,...,xk∈Xk

#
y∈Y

ϕ(x1, . . . , xk, y).

We similarly define Min(ψ) for ψ ∈ MinSPk. Occasionally, for ψ ∈ OptSPk, we write
Opt(ψ) to refer to both problems simultaneously.

For convenience, we introduce some further notation: For objects x1 ∈ X1, . . . , xk ∈ Xk,
we denote by Val(x1, . . . , xk) = #y∈Y ϕ(x1, . . . , xk, y) the value of (x1, . . . , xk).

The problem Opt(ψ) can be solved in time O(mk) for all OptSPk formulas ψ, by a
straightforward extension of the model-checking baseline algorithm; see [23] for details. As
this is clearly optimal for k = 1, we will often implicitly assume that k ≥ 2 in the following.

For a clean analogy between model-checking and the optimization classes MaxSPk and
MinSPk, we will from now view model-checking as “testing for zero”. More precisely, the
model-checking problem of ∃x1 . . . ∃xk ∀y ¬ϕ(x1, . . . , xk, y) is equivalent to testing whether
Min(ψ) has optimal solution OPT = 0, where ψ = minx1,...,xk #y ϕ(x1, . . . , xk, y). We refer
to the latter problem as Zero(ψ).

Definition 3 introduces Max(ψ) and Min(ψ) as exact optimization problems (i.e., OPT
is required to be computed exactly). We say that an algorithm computes a (multiplicative)
c-approximation for Max(ψ) if it computes any value in the interval [c−1 · OPT,OPT].
Similarly, a (multiplicative) c-approximation for Min(ψ) computes a value in [OPT, c ·OPT].

3 Technical Overview

This section serves the purpose of stating our results formally, to provide the main proof ideas
and techniques, and to convey some intuition whenever possible. Due to space constraints,
we omit precise definitions of the fine-grained hypotheses here and instead refer to the full
version of this paper.

We first introduce our hardness parameters: the and-hardness Hand(ψ) borrowed from
previous work [24] (reviewed below), as well as a novel algebraic parameter that we call
degree-hardness Hdeg(ψ). In the subsequent sections, we give an overview over our various
algorithmic and hardness results based on the values Hdeg(ψ), Hand(ψ) (see Figure 1), with
the formal proof of Theorem 1 given at the end of this section.

3.1 Bringmann et al.’s Model-Checking Dichotomy
Bringmann, Fischer and Künnemann [24] established a fine-grained classification of all ∃k∀-
quantified graph properties into computationally easy and hard model-checking problems.
As our work extends that classification (and also since our results are of a similar flavor), we
briefly summarize their results. The hardness parameter presented in Definition 4 forms the
basis for the dichotomy.
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Here, and for the remainder of this section, we write ψ0 to denote the Boolean func-
tion obtained from ψ in the following way: Let ψ = optx1,...,xk

#y ϕ(x1, . . . , xk, y) be any
graph formula, where ϕ is a propositional formula over the atoms E(xi, xj) (i, j ∈ [k])
and E(xi, y) (i ∈ [k]). Consider the Boolean function obtained from ϕ by replacing ev-
ery atom E(xi, xj) (i, j ∈ [k]) by false. What remains is a Boolean function over the
k atoms E(xi, y) (i ∈ [k]) and we denote this formula by ψ0. For example, if ψ =
maxx1,x2 #y(¬E(x1, x2) ∧ E(x1, y) ∧ E(x2, y)) then we define ψ0 : {0, 1}2 → {0, 1} by
ψ0(a1, a2) = a1 ∧ a2.

As apparent in Definition 4, the core difficulty of a formula ψ is captured by ψ0 and thus
not affected by the predicates E(xi, xj). In the full version we elaborate on this phenomenon.

▶ Definition 4 (And-Hardness). Let ϕ be a Boolean function on k inputs. The and-hardness
Hand(ϕ) of ϕ is the largest integer 0 ≤ h ≤ k such that, for any index set S ∈

([k]
h

)
, there

exists some S-restriction of ϕ with exactly one satisfying assignment. (Set Hand(ϕ) = 0 for
constant-valued ϕ.) For an OptSPk graph formula ψ, we define Hand(ψ) = Hand(ψ0).

This hardness parameter essentially specifies the computational hardness of the model-
checking problems Zero(ϕ); here, Hand(ψ) ≤ 2 is the critical threshold:

▶ Theorem 5 (Model-Checking, [24]). Let ψ be a MinSPk graph formula.
If Hand(ψ) ≤ 2 and Hand(ψ) < k, then Zero(ψ) can be solved in time O(mk−δ) for some
δ > 0.
If 3 ≤ Hand(ψ) or Hand(ψ) = k, then Zero(ψ) cannot be solved in time O(mk−δ) for
any δ > 0 unless the Max-3-SAT hypothesis fails.

3.2 Exact Optimization
We are now ready to detail our results. Our main contribution is a dichotomy for the exact
solvability and approximability of Max(ψ) and Min(ψ) for all MaxSPk and MinSPk graph
formulas ψ. For the exact case, the decisive criterion for the hardness of some formula ψ can
be read off the polynomial extension of the function ψ0. Specifically, for any Boolean function
ϕ there exists a (unique) multilinear polynomial with real coefficients that computes ϕ on
binary inputs. By abuse of notation, we refer to that polynomial by writing ϕ as well. The
degree deg(ϕ) of ϕ is the degree of its polynomial extension.

As an example, consider the Exact-3-Cover property: ϕ(z1, z2, z3) is true if and only
if exactly one of its inputs z1, z2 or z3 is true. Then its unique multilinear polynomial
extension is

ϕ(z1, z2, z3) = 3z1z2z3 − 2(z1z2 + z2z3 + z3z1) + (z1 + z2 + z3),

and therefore deg(ϕ) = 3.

▶ Definition 6 (Degree Hardness). Let ϕ be a Boolean function on k inputs. The degree
hardness Hdeg(ϕ) of ϕ is the largest integer 0 ≤ h ≤ k such that, for any index set S ∈

([k]
h

)
,

there exists some S-restriction of ϕ of degree h. For an OptSPk graph formula ψ, we define
Hdeg(ψ) = Hdeg(ψ0).

It always holds that Hand(ψ) ≤ Hdeg(ψ), but in general these parameters behave very
differently. With Hdeg in place of Hand, we are able to recover the same classification
as Theorem 5 for both exact maximization and minimization:
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▶ Theorem 7 (Exact Optimization). Let ψ be an OptSPk graph formula.
If Hdeg(ψ) ≤ 2 and Hdeg(ψ) < k, then Opt(ψ) can be solved in time O(mk−δ) for some
δ > 0.
If 3 ≤ Hdeg(ψ) or Hdeg(ψ) = k, then Opt(ψ) cannot be solved in time O(mk−δ) for any
δ > 0 unless the Max-3-SAT hypothesis fails.

The algorithmic part is proven along the same lines as [24]: We first brute-force over all
but k = 3 quantifiers, and solve the remaining problem by a reduction to maximum-weight
triangle detection with small edge weights. Intuitively, since the degree of the resulting
3-variable problem is at most 2, we can express the objective as a sum of three parts depending
on two variables each (this approach is also used in a similar context in [67, Chapter 6.5]).
This allows us to label the edges of a triangle instance with corresponding parts, which can
be shown to yield average edge weight O(1).

The conditional lower bound is more interesting. Our reduction is inspired by a standard
argument proving quadratic-time hardness of the Maximum Inner Product problem (MaxIP).
That lower bound is based on the OV hypothesis, so it consists of a reduction from an
OV instance X1, X2 ⊆ {0, 1}d to an instance of MaxIP. The idea is to use a gadget that
maps every entry in xi ∈ Xi to a constant number of new entries;7 let x′

i ∈ {0, 1}O(d)

denote the vector after applying the gadget coordinate-wise. The crucial property is that
⟨x′

1, x
′
2⟩ = d− ⟨x1, x2⟩, and thus a pair of orthogonal vectors x1, x2 corresponds to a pair of

vectors x′
1, x

′
2 of maximum inner product.

To mimic the reduction for all problems which are hard in the sense of Theorem 7, we
settle for the weaker but sufficient property that the value of (x′

1, x
′
2) equals β1d− β2⟨x1, x2⟩,

for some positive integers β1, β2. It follows from our algebraic characterization of hard
functions that a gadget with such guarantees always exists. Ultimately, our hardness proof
makes use of that gadget in a similar way as for MaxIP.

The hardness part of Theorem 7 can in fact be stated in a more fine-grained way: If
some problem Opt(ψ) has degree hardness h = Hdeg(ψ) ≥ 3, then the hardness proof can
be conditioned on the weaker h-Uniform HyperClique assumption. That connection can
be complemented by a partial converse, thus revealing a certain equivalence between exact
optimization and hyperclique detection. An analogous equivalence for model-checking graph
formulas could not be proved and was left as an open problem in [24].

▶ Theorem 8 (Equivalence of Opt(ψ) and HyperClique). Let ψ be an OptSPk graph
formula of degree hardness h = Hdeg(ψ) ≥ 2.

If Opt(ψ) can be solved in time O(mk−δ) for some δ > 0, then, for some (large)
k′ = k′(k, h, δ), h-Uniform k′-HyperClique can be solved in time O(nk′−δ′) for some
δ′ > 0.
If h-Uniform (h+ 1)-HyperClique can be solved in time O(nh+1−δ) for some δ > 0,
then Opt(ψ) can be solved in time O(mk−δ′) for some δ′ > 0.

3.3 Approximation
Since Theorem 7 gives a complete classification for the exact solvability of Opt(ψ), the next
natural question is to study the approximability of properties which are hard to compute
exactly. Unlike the exact case, we use different techniques and tools to give our classification
for maximization and minimization problems.

7 Every entry a in x1 is replaced by three new coordinates (a, 1 − a, 1 − a) and every entry b in x2 is
replaced by (1 − b, b, 1 − b). The contribution to the inner product of the new vectors is equal to
a(1 − b) + (1 − a)b+ (1 − a)(1 − b) = 1 − ab.
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3.3.1 Maximization
We obtain a simple classification of all constant-factor approximable maximization problems,
conditioned on the Strong Exponential Time Hypothesis (SETH).

▶ Theorem 9 (Constant Approximation – Maximization). Let ψ be a MaxSPk graph formula.
If Hand(ψ) < k (or equivalently, if ψ0 does not have exactly one satisfying assignment),
then there exists a constant-factor approximation for Max(ψ) in time O(mk−δ) for some
δ > 0.
Otherwise, if Hand(ψ) = k (or equivalently, ψ0 has exactly one satisfying assignment),
then there exists no constant-factor approximation for Max(ψ) in time O(mk−δ) for any
δ > 0, unless SETH fails.

We give a high-level explanation of our proof by focusing on two representative problems:
On the one hand, strong conditional hardness results have been shown for the MaxIP
problem [4, 28]. When ψ0 has a single satisfying assignment, Max(ψ) is equivalent (up to
complementation) to MaxIP, so we adapt the hardness results for our setting.

On the other hand, consider the Furthest Neighbor problem: Given two sets of
bit-vectors X1, X2 ⊆ {0, 1}d, compute the maximum Hamming distance between vectors
x1 ∈ X1 and x2 ∈ X2. There exists a simple linear-time 3-approximation for this problem:
Fix some x1 ∈ X1 and compute its furthest neighbor x2 ∈ X2. Then compute the furthest
neighbor x′

1 ∈ X1 of x2 and return the distance between x′
1 and x2 as the answer. By applying

the triangle inequality twice, it is easy to see that this indeed yields a 3-approximation.
That argument generalizes for approximating Max(ϕ) whenever ψ0 satisfies the following
property: If α is a satisfying assignment of ψ0, then the component-wise negation of α is
also satisfying. Finally, if ψ0 has at least two satisfying assignments, then Max(ψ) can be
reduced to this special case via a reduction which worsens the approximation ratio by at
most a constant factor. The essential insight for that last step is that we can always “cover”
all satisfying assignments by only two satisfying assignments, as there always exists one
satisfying assignment which contributes a constant fraction (depending on k) to the optimal
value.

We give a finer-grained view of the classification in Theorem 9 in two ways. First, we
want to isolate properties which admit arbitrarily good constant-factor approximations. We
make that notion precise in the following definition:

▶ Definition 10 (Approximation Scheme). Let ψ be an OptSPk formula. We say that Opt(ψ)
admits an approximation scheme if for any ε > 0 there exists some δ > 0 and an algorithm
computing a (1 + ε)-approximation of Opt(ψ) in time O(mk−δ).8

In the following theorem, we identify some formulas which admit such an approximation
scheme, and some formulas for which this is unlikely:

▶ Theorem 11 (Approximation Scheme – Maximization). Let ψ be a MaxSPk graph formula.
If Hand(ψ) ≤ 1, then there exists a randomized approximation scheme for Max(ψ).
If 3 ≤ Hand(ψ) or Hand(ψ) = k, then there exists no approximation scheme for Max(ψ)
unless the Sparse Max-3-SAT hypothesis fails.

Unfortunately, we were not able to close the gap in Theorem 11, and it remains open
whether problems with Hand(ϕ) = 2 admit approximation schemes. In Section 4, we give a
specific example falling into this category.

8 We stress that in our work, ε is always a constant and cannot depend on m.
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For the first item, we give approximation schemes for any Max(ψ) with Hand(ψ) = 1 via
a reduction to Furthest Neighbor, which, as mentioned in the introduction, admits an
approximation scheme.

The lower bound is more interesting: By Theorem 9 we know that if ψ has and-hardness
Hand(ψ) < k, then it admits a constant-factor approximation. Nevertheless, the lower
bound in Theorem 9 only addresses formulas of and-hardness Hand(ψ) = k. In particular,
Theorem 11 identifies a class of problems for which some (fixed) constant-factor approximation
is best-possible in terms of approximation.

At a technical level, we make use of interesting machinery to obtain the lower bound.
The starting point is the distributed PCP framework, which was introduced in [4] and further
strengthened in [62, 28] to give hardness of approximation for Maximum k-Inner Product
(k-MaxIP). In this case, we cannot use this tool directly, since it crucially relies on the fact
that the target problem Max(ψ) has full hardness Hand(ψ) = k.9 Instead, we first show
Max-3-SAT-hardness of the following intermediate problem:

▶ Problem 12 ((k, 3)-OV). Given sets of n vectors X1, . . . , Xk ⊆ {0, 1}d, where each
coordinate y ∈ [d] is associated to three active indices a, b, c ∈ [k], detect if there are vectors
x1 ∈ X1, . . . , xk ∈ Xk such that for all y ∈ [d], it holds that xa[y] · xb[y] · xc[y] = 0 where
a, b, c are the active indices at y.

We then provide a gap introducing reduction from (k, 3)-OV to Max(ψ), in the same
spirit as the PCP reduction gives such a reduction from k-OV to k-MaxIP. This involves
several technical steps as outlined in Figure 2. At a high level, we decompose a (k, 3)-OV
instance into a combination of multiple 3-OV instances and use the PCP reduction as a black
box on each of these. After combining the outputs of the reduction, we obtain instances
of Max(ψ) with the desired gap. The issue with this approach is that the PCP reduction
blows up the dimension of the input vectors exponentially,10 which makes the reduction
inapplicable to our case if we start from a moderate-dimensional (k, 3)-OV instance. To
show that (k, 3)-OV does not even have a O(mk−δ)-time algorithm when the dimension is
d = O(logn), we use the stronger Sparse Max-3-SAT hypothesis.11 See the full version of
this paper for further discussion of this hypothesis.

The second way in which we get a closer look at Theorem 9 is by inspecting the hardest
regime, i.e., when Hand(ψ) = k:

▶ Theorem 13 (Polynomial-Factor Approximation). Let ψ be a MaxSPk graph formula of
full and-hardness Hand(ψ) = k.

For every ε > 0, there exists some δ > 0 such that an mε-approximation for Max(ψ) can
be computed in time O(mk−δ).
For every δ > 0, there exists an ε > 0 such that there exists no mε-approximation for
Max(ψ) in time O(mk−δ) unless SETH fails.

The lower bound is obtained by applying the subsequent improvements on the distributed
PCP framework by [62, 28, 51], which improve the parameters of the reduction via algebraic
geometry codes and expander graphs. For the upper bound, we give a simple algorithm
which exploits the sparsity of the instances.

9 More precisely, the reduction exploits the fact that ψ0 has a unique satisfying assignment to encode the
communication protocol used in the reduction.

10 An instance of k-OV on dimension d = c logn is reduced to multiple instances of k-MaxIP on dimension
exp(c) logn.

11 Morally, just as SETH implies the hardness of low-dimensional OV, the Sparse Max-3-SAT Hypothesis
implies the hardness of low-dimensional (k, 3)-OV.
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Figure 2 The chain of reductions from Sparse Max-3-SAT to VMax(ψ) involving two main
steps. Both proofs involve several intermediate steps as illustrated in the gray parts.

3.3.2 Minimization
There is an easier criterion for the hardness of approximating minimization problems. Namely,
observe that giving a multiplicative approximation to a minimization problem Min(ψ) is at
least as hard as testing if the optimal value is zero (recall that we refer to this problem as
Zero(ψ)). More precisely, suppose that we are given an instance with OPT = 0. Then any
multiplicative approximation must return an optimal solution.

It turns out that this is the only source of hardness for Min(ψ) problems. We show a
fine-grained equivalence of deciding Zero(ψ) and approximating Min(ψ) within a constant
factor:

▶ Theorem 14 (Constant Approximation is Equivalent to Testing Zero). Let ψ be a MinSPk

graph formula. Via a randomized reduction, there exists a constant-factor approximation
algorithm for Min(ψ) in time O(mk−δ) for some δ > 0 if and only if Zero(ψ) can be solved
in time O(mk−δ′) for some δ′ > 0.

To reduce approximating Min(ψ) to Zero(ψ), we make use of locality-sensitive hashing
(LSH). This technique was for instance used to solve the Approximate Nearest Neighbors
problem in Hamming spaces [44], and was recently adapted by Chen and Williams to show
that Minimum Inner Product can be reduced to OV [30]. The latter result constitutes a
singular known case for the general trend in MinSPk revealed by Theorem 14. In comparison,
our reduction is simpler and more general, but gives weaker guarantees on the constant
factor.

We specifically use LSH for a reduction from approximating Min(ψ) to the intermediate
problem of listing solutions to Zero(ψ) – the better the listing algorithm performs, the
better the approximation guarantee. For instance, an algorithm listing L solutions in time
O(mk−δ · Lδ/k) for some δ > 0 results in a constant-factor approximation, while a listing
algorithm in time Õ(mk−δ + L) leads to an approximation scheme. To finish the proof
of Theorem 14, we show that any Zero(ψ) problem with an O(mk−δ)-time decider, for some
δ > 0, also admits a listing algorithm in time O(mk−δ · Lδ/k).

Since the hardness of Zero(ψ) is completely classified [24], we obtain the following
dichotomy as a consequence of Theorem 14:
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▶ Corollary 15 (Constant Approximation – Minimization). Let ψ be a MinSPk graph formula.
If Hand(ψ) ≤ 2 and Hand(ψ) < k, then there exists a randomized constant-factor approxi-
mation algorithm for Min(ψ) in time O(mk−δ) for some δ > 0.
If 3 ≤ Hand(ψ) or Hand(ψ) = k, then computing any approximation for Min(ψ) in time
O(mk−δ) for any δ > 0 is not possible unless the Max-3-SAT hypothesis fails.

Similar to the maximization case, let us next consider approximation schemes for mini-
mization problems. We can reuse the general framework outlined in the previous paragraphs
to obtain an approximation scheme by giving an output-linear listing algorithm in time
Õ(mk−δ + L), for all formulas with and-hardness at most Hand(ψ) ≤ 1.

▶ Theorem 16 (Approximation Scheme – Minimization). Let ψ be a MinSPk graph formula.
If Hand(ψ) ≤ 1, then there exists a randomized approximation scheme for Min(ψ).

3.4 Efficient (Multiplicative) Approximation Schemes

Theorems 11 and 16 show that if Hand(ψ) ≤ 1, then we can give approximation schemes
for Opt(ψ). In the full version, we complement this result by ruling out the existence of
efficient approximation schemes for most regimes. We say that Opt(ψ) admits an efficient
(multiplicative) approximation scheme if there is some fixed constant δ > 0 such that for any
ε > 0, a multiplicative (1 + ε)-approximation for Opt(ψ) can be computed in time O(mk−δ).

▶ Theorem 17. Let ψ be an OptSPk graph formula. If 3 ≤ Hdeg(ψ) or Hdeg(ψ) = k, then
there exists no efficient approximation scheme for Opt(ψ) assuming the Sparse Max-3-SAT
Hypothesis.

3.5 Proving the Main Theorem

We can now put things together to prove Theorem 1.

Proof of Theorem 1. We only sketch the proof for a maximization problem ψ with k ≥ 3;
the other cases are similar. We show how to classify ψ into one of the four stated regimes
with a case distinction based on the hardness parameters Hand(ψ) and Hdeg(ψ). This case
distinction can also be read off Figure 1.

If Hdeg(ψ) ≤ 2: By Theorem 7, ψ is efficiently optimizable, so it lies in R1.
Otherwise, it holds that 3 ≤ Hdeg(ψ) ≤ k. In this case, we make a further distinction:
Hand(ψ) ≤ 1: By Theorem 11, ψ admits an approximation scheme but by Theorem 17
not an efficient one, so it lies in R2.
Hand(ψ) = 2: By Theorem 9, ψ admits an efficient constant-factor approximation
but by Theorem 17, it does not admit an efficient approximation scheme. Thus,
depending on whether ψ admits an approximation scheme or not, it lies in R2 or R3.
(As mentioned below Theorem 1, this is the single case where we cannot place the
formula in its precise regime, see also Open Problem 1.)
3 ≤ Hand(ψ) < k: By Theorem 9, ψ admits an efficient constant factor approximation
but by Theorem 11 it has no approximation scheme, so it lies in R3.
Hand(ψ) = k: By Theorem 13, ψ admits an efficient polynomial-factor approximation,
and this is best possible, so it lies in R4. ◀
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4 Discussion and Open Problems

Our investigation reveals all possible approximability types (in better-than-exhaustive-search
time) for general classes of polynomial-time optimization problems, namely graph formulas in
MaxSPk and MinSPk. Our results, which give an almost complete characterization, open
up the following questions:

Can we extend our classification beyond graph formulas, i.e., when we allow more binary
relations, or even higher-arity relations? Such settings include, e.g., generalizations of
Max k-XOR from F2 to Fq, or variants of the densest subgraph problem on hypergraphs.
In our setting, each variable xi ranges over a separate set Xi, also known as a multichro-
matic setting. We leave it open to transfer our results to the monochromatic setting (see
e.g. [52]).
While we consider running times expressed in the input size (as usual in database contexts),
it would also be natural to consider parameterization in the number n of objects in the
relational structure, see [68].

Besides these extensions, we ask whether one can close the remaining gap in our classification:
Do formulas ψ with Hand(ψ) = 2 and Hdeg(ψ) ≥ 3 admit an approximation scheme? As a
specific challenge, we give the following open problem:

▶ Open Problem 1. Is there an approximation scheme for Maximum Exact-3-Cover (or its
minimization variant)? Specifically, can we prove or rule out that for every ε > 0, there is
some δ > 0 such that we can (1 + ε)-approximate Maximum Exact-3-Cover in time O(m3−δ)?

It appears likely that showing existence of an approximation scheme for Maximum
Exact-3-Cover would lead to a full characterization of MaxSPk.

Finally, while we focused on the qualitative question whether or not exhaustive search
can be beaten, a follow-up question is to determine precise approximability-time tradeoffs. In
this vein, consider the well-studied Maximum k-Cover problem: A simple linear-time greedy
approach is known to establish a (1 − 1/e)−1-approximation [46]. Subsequent lower bounds
show that this is conditionally best possible in polynomial-time [35] and even f(k)mo(k)-time
(under Gap-ETH) [31, 59]. On the other hand, for every fixed k, we show (1) existence of
an approximation scheme, but (2) rule out an efficient one assuming SETH, i.e., for every
δ > 0, there is some ε > 0 such that an (1 + ε)-approximation requires time Ω(mk−δ).

▶ Open Problem 2. Let k ≥ 2. Can we determine, for every 1 ≤ γ ≤ (1 − 1/e)−1, the
optimal exponent α of the fastest γ-approximation for Maximum k-Cover running in time
O(mα±o(1)), assuming plausible fine-grained hardness assumptions?

Note that the extreme cases for γ = 1 and γ = (1 − 1/e)−1 are already settled and that
[59] shows that for all immediate cases, α must have a linear dependence on k, assuming
Gap-ETH.
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