
Fully-Dynamic Graph Sparsifiers Against an
Adaptive Adversary
Aaron Bernstein
Rutgers University, Piscataway, NJ, USA

Jan van den Brand
Simons Institute, Berkeley, CA, USA
University of California Berkeley, CA, USA

Maximilian Probst Gutenberg
ETH Zürich, Switzerland

Danupon Nanongkai
University of Copenhagen, Denmark
KTH Royal Institute of Technology, Stockholm, Sweden

Thatchaphol Saranurak
University of Michigan, Ann Arbor, MI, USA

Aaron Sidford
Stanford University, CA, USA

He Sun
University of Edinburgh, UK

Abstract
Designing efficient dynamic graph algorithms against an adaptive adversary is a major goal in
the field of dynamic graph algorithms and has witnessed many exciting recent developments in,
e.g., dynamic matching (Wajc STOC’20) and decremental shortest paths (Chuzhoy and Khanna
STOC’19). Compared to other graph primitives (e.g. spanning trees and matchings), designing such
algorithms for graph spanners and (more broadly) graph sparsifiers poses a unique challenge since
there is no fast deterministic algorithm known for static computation and the lack of a way to adjust
the output slowly (known as “small recourse/replacements”).

This paper presents the first non-trivial efficient adaptive algorithms for maintaining many
sparsifiers against an adaptive adversary. Specifically, we present algorithms that maintain
1. a polylog(n)-spanner of size Õ(n) in polylog(n) amortized update time,
2. an O(k)-approximate cut sparsifier of size Õ(n) in Õ(n1/k) amortized update time, and
3. a polylog(n)-approximate spectral sparsifier in polylog(n) amortized update time.
Our bounds are the first non-trivial ones even when only the recourse is concerned. Our results
hold even against a stronger adversary, who can access the random bits previously used by the
algorithms and the amortized update time of all algorithms can be made worst-case by paying
sub-polynomial factors. Our spanner result resolves an open question by Ahmed et al. (2019)
and our results and techniques imply additional improvements over existing results, including (i)
answering open questions about decremental single-source shortest paths by Chuzhoy and Khanna
(STOC’19) and Gutenberg and Wulff-Nilsen (SODA’20), implying a nearly-quadratic time algorithm
for approximating minimum-cost unit-capacity flow and (ii) de-amortizing a result of Abraham et
al. (FOCS’16) for dynamic spectral sparsifiers.

Our results are based on two novel techniques. The first technique is a generic black-box reduction
that allows us to assume that the graph is initially an expander with almost uniform-degree and,
more importantly, stays as an almost uniform-degree expander while undergoing only edge deletions.
The second technique is called proactive resampling: here we constantly re-sample parts of the
input graph so that, independent of an adversary’s computational power, a desired structure of the
underlying graph can be always maintained. Despite its simplicity, the analysis of this sampling
scheme is far from trivial, because the adversary can potentially create dependencies between the
random choices used by the algorithm. We believe these two techniques could be useful for developing
other adaptive algorithms.

EA
T
C
S

© Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg,
Danupon Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 20; pp. 20:1–20:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases dynamic graph algorithm, adaptive adversary, spanner, sparsifier

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.20

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2004.08432 [24]

Funding Aaron Bernstein: Funded by NSF Career grant 1942010.
Jan van den Brand: Funded by ONR BRC grant N00014-18-1-2562 and by the Simons Institute for
the Theory of Computing through a Simons-Berkeley Postdoctoral Fellowship. Research partially
done at KTH.
Maximilian Probst Gutenberg: Research partially done while at University of Copenhagen.
Danupon Nanongkai: This project has received funding from the European Research Council (ERC)
under the European Unions Horizon 2020 research and innovation programme under grant agreement
No 715672. Also partially supported by the Swedish Research Council (Reg. No. 2015-04659 and
2019-05622).
Thatchaphol Saranurak: Research partially done at KTH and supported by the Swedish Research
Council (Reg. No. 2015-04659).
Aaron Sidford: Supported in part by a Microsoft Research Faculty Fellowship, NSF CAREER Award
CCF-1844855, NSF Grant CCF-1955039, a PayPal research award, and a Sloan Research Fellowship.
He Sun: Funded by an EPSRC Early Career Fellowship (EP/T00729X/1).

Acknowledgements We thank Julia Chuzhoy and Gramoz Goranci for discussions.

1 Introduction

Dynamic graph algorithms maintain information in an input graph undergoing edge updates,
which typically take the form of edge insertions and deletions. Many efficient algorithms
have been developed in this setting, such as those for maintaining a minimum spanning tree,
maximum matching, shortest distances, and sparsifiers. However, many of these algorithms
are randomized and, more importantly, make the so-called oblivious adversary assumption,
which assumes that each update given to the algorithm cannot depend on answers of the
algorithm to earlier queries. In other words, the entire update sequence is fixed by some
adversary in advance, and then each update is given to the algorithm one by one. This
assumption is crucial for many recent advances in the design of efficient randomized algorithms
for dynamic problems (e.g. [68, 63, 35, 22, 10, 1, 82, 9, 25]).

The oblivious-adversary assumption significantly limits the use of dynamic algorithms
in certain interactive environments and, in particular, the setting where these dynamic
algorithms are employed as subroutines for other algorithms. For example, the recent
partially-dynamic single-source shortest paths algorithm without this assumption [21] has
been used to obtain an almost-linear time approximate min-cost flow and balanced separator
algorithm in the static setting (see also, e.g., [17, 16, 61, 62, 42, 43], for prior attempts in this
direction). In addition, [40] pointed out that their goal of computing a (static) short cycle
decomposition could have been achieved easily using existing dynamic spanner algorithms,
if such algorithms worked without the oblivious-adversary assumption. Because of this,
designing dynamic algorithms without the oblivious adversary assumption has become a
major goal in the field of dynamic graph algorithms in recent years. We call such algorithms
adaptive and say that they work against an adaptive adversary.

Thanks to the recent efforts in developing adaptive algorithms, such algorithms now
exist for maintaining a number of graph primitives, such as minimum spanning trees with
bounded worst-case update time [41, 77, 76, 88], partially-dynamic single-source shortest

https://doi.org/10.4230/LIPIcs.ICALP.2022.20
https://arxiv.org/abs/2004.08432

A. Bernstein et al. 20:3

paths [50, 42, 17, 18, 16, 62, 61, 60], and fully-dynamic matching [26, 27, 28, 29, 87]. This
line of research on dynamic graph algorithms has also brought new insights on algorithm
design in the static setting (e.g. flow, vertex connectivity, matching, and traveling salesman
problem [73, 42, 86, 37, 38]). One very recent exciting application is the use of an adaptive
dynamic algorithm called expander decomposition to compute maximum-weight matching
and related problems in nearly-linear time on moderately dense graphs [86].

Graph sparsifiers

Despite the fast recent progress, very little was known for certain important primitives, like
maintaining graph sparsifiers against an adaptive adversary. To formalize our discussion, we
say that a sparsifier of a graph G = (V, E) is a sparse graph H = (V, E′) that approximately
preserves properties of G, such as all cuts (cut sparsifiers), all-pairs distances (spanners),
and spectral properties (spectral sparsifiers). For any integer α ≥ 1, an α-spanner of graph
G = (V, E) is a subgraph H such that for any pair of nodes (u, v), the distance between u

and v in H is at most α times their distance in G. An α-cut sparsifier of G is a sparse graph
H that preserves all cut sizes up to an α factor: that is, δH(S) ∈ [δG(S), αδG(S)] for every
S ⊆ V , where δG(S) (respectively δH(S)) is the total weight of edges between S and V \ S

in G (respectively H) for any S ⊂ V . An α-spectral sparsifier is a sparse graph that provides
an even stronger guarantee than an α-cut sparsifier (see full version for the definition).

A dynamic algorithm for maintaining a spanner or a cut sparsifier is given a weighted
undirected n-node graph G to preprocess, and returns a spanner or cut-sparsifier H of G.
After this, it must process a sequence of updates, each of which is an edge insertion or deletion
of G. After each update, the algorithm outputs edges to be inserted and deleted to H so that
the updated H remains an α-spanner or cut-sparsifier of the updated G. The algorithm’s
performance is measured by the preprocessing time (the time to preprocess G initially); the
update time (the time to process each update); the stretch (the value of α); and the size
of the spanner (the number of edges). The update time is typically categorized into two
types: amortized case update time and worst case update time. The more desirable one is
the worst-case update time which holds for every single update. This is in contrast to an
amortized update time which holds “on average”; i.e., for any t, an algorithm is said to have
an amortized update time of t if, for any k, the total time it spends to process the first k

updates is at most kt.
Spanners and cut sparsifers are fundamental objects that have been studied extensively

in various settings (e.g., [5, 79, 11, 78, 44, 58, 57, 15, 53, 3, 4]). In the dynamic setting,
they have been actively studied since 2005 (e.g. [7, 51, 8, 48, 23, 10, 31, 20]). A fairly tight
algorithm with amortized update time for maintaining dynamic spanners was known in 2008
due to Baswana et al. [10]. For any k ≥ 1, their algorithm maintains, with high probability,
a (2k − 1)-spanner of size Õ(kn1+1/k) in O(k2 log2 n) amortized update time1. The stretch
and size tradeoff is almost tight assuming Erdős’ girth conjecture, which implies that a
(2k − 1)-spanner must contain Ω(n1+1/k) edges. Recently, Bernstein et al. [20] showed how
to “de-amortize” the result of Baswana et al. [10], giving an algorithm that in O(1)k log3(n)
worst-case update time maintains, w.h.p., a (2k − 1)-spanner of size Õ(n1+1/k).

We refer the reader to the full version for other related results and clear comparison. For
dynamic cut sparsifiers, the only result we are aware of is [1], which maintains a (1 + ϵ)-cut
sparsifier in polylogarithmic worst-case update time. [1] can also maintain a (1 + ϵ)-spectral
sparsifier within the same update time, but this holds only for the amortized update time.

1 Throughout, Õ hides O(polylog(n)) factors. With high probability (w.h.p.) means with probability at
least 1 − 1/nc for any constant c > 1.

ICALP 2022

20:4 Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary

Similar to other dynamic algorithms, most existing dynamic spanner and cut sparsifier
algorithms are not adaptive. The exceptions are the algorithms of [7], which can maintain a
3-spanner (respectively a 5-spanner) of size O(n1+1/2) (respectively O(n1+1/3)) in O(∆) time,
where ∆ is the maximum degree. These algorithms are deterministic, and thus work against
an adaptive adversary. Since ∆ can be as large as Ω(n), their update time is rather inefficient
as typically polylog(n) or no(1) update times are desired. Designing dynamic algorithms for
this low update time is one of the major objectives of our paper.

Challenges

Developing efficient adaptive algorithms for maintaining graph sparsifiers poses great chal-
lenges in the general research program towards adaptive dynamic algorithms. First, computing
many sparsifiers inherently relies on the use of randomness. Even in the static setting, ex-
isting fast algorithms for constructing cut and spectral sparsifiers are all randomized, and
known deterministic algorithms require Ω(n4) time [12, 89]. In fact, a nearly-linear time
deterministic algorithm for a certain cut sparsifier would resolve a major open problem
about computing the minimum cut deterministically [70, 56, 75]. Thus, in contrast to other
primitives, such as the minimum spanning tree or approximate maximum matching, for
which efficient deterministic algorithms exist in the static setting, there is little chance to
dynamically maintain sparsifiers deterministically. (Deterministic dynamic algorithms always
work against adaptive adversaries.)

Secondly, even if we allowed infinite update time and focused on the strictly simpler
objective of minimizing the changes in the maintained sparsifier (the so-called recourse
or replacements in online algorithms), it is unclear from existing techniques whether it is
possible to maintain such a sparsifier against an adaptive adversary while only making
(amortized) polylog(n) changes to the sparsifier per update to the input graph. For example,
an O(log n)-spanner of Õ(n) edges can be easily maintained with Õ(n) recourse per update
by replacing the entire spanner by a new one after every update. Is it possible that an
adversary who can see the output spanner can make a few changes to the graph so that a
new O(log n)-spanner has to change completely? An answer to this question is unclear. This
is in contrast to many dynamic graph primitives where bounding the changes is obvious
even against adaptive adversaries. For example, it can be easily shown that maintaining the
minimum spanning tree requires at most one edge insertion and one edge deletion after each
update to the input graph.

Designing algorithms with low recourse is a prerequisite for fast dynamic algorithms, and
there are several graph problems where low-recourse algorithms were the crucial bottleneck,
e.g. maximal independent set [33, 6, 36, 13, 74], planar embeddings [65, 66], and topological
sorting [19].The lack of recourse-efficient algorithms makes it very challenging to maintain
sparsifiers against an adaptive adversary.

1.1 Our Results
We show how to dynamically maintain both spanners, cut sparsifiers, and spectral sparsifiers
against an adaptive adversary in poly-logarithmic update time and recourse. We summarize
these results as follows:

▶ Theorem 1 (Adaptive Spanner). There is a randomized adaptive algorithm that, given
an n-vertex graph undergoing edge insertions and deletions, with high probability, explicitly
maintains a polylog(n)-spanner of size Õ(n) using polylog(n) amortized update time.

A. Bernstein et al. 20:5

▶ Theorem 2 (Adaptive Cut Sparsifier). There is a randomized adaptive algorithm that, given
an n-vertex graph undergoing edge insertions and deletions and a parameter k ≥ 1, with high
probability, maintains an O(k)-cut sparsifier of size Õ(n) using Õ(n1/k) amortized update
time, which is polylog(n) time when k = log n.

▶ Theorem 3 (Adaptive Spectral Sparsifier). There is a randomized adaptive algorithm
that, given an n-vertex graph undergoing edge insertions and deletions, with high probability,
maintains a polylog(n)-spectral sparsifier of size Õ(n) using polylog(n) amortized update
time.

All results above hold even against a stronger adversary, called randomness-adaptive
in [76]. This adversary can access the random bits previously used by our algorithms (but
not the future random bits). Theorem 1 is the first algorithm with o(n) update time against
an adaptive adversary, and answers the open problem in [2]. The only previous adaptive
algorithm is by [7] which can take O(n) update time. No non-trivial dynamic adaptive
algorithm for cut sparsifiers and spectral sparsifiers is known before Theorems 2 and 3.

Compared to results assuming the oblivious-adversary assumption (e.g. [10, 20, 1]),
our bounds are not as tight. For example, Theorem 1 does not achieve the standard
(2k − 1)-spanner with O(n1+1/k) edges. One reason for this limitation is that it is not
clear if such trade-off is possible even when we focus on the recourse, as discussed above.
Maintaining spanners or other sparsifiers against adaptive adversaries with tight trade-offs
and polylogarithmic recourse is a challenging barrier that is beyond the scope of this paper.
Additionally, the sparse-spanner regime studied in this paper is generally the most useful for
applications to other problems (see discussion in Section 1.2); getting a sharper trade-off
would not lead to significant improvements for most of these applications.

All the above results can be deamortized.2 For example, a 2O(
√

log n log log(n))-spanner of
size Õ(n) can be maintained in 2O(

√
log n log log(n)) worst-case update time. Also, for any k, a

2O(k polylog(k))-cut sparsifier of size Õ(n) can be maintained in Õ(n1/k) worst-case time. In
particular, we can maintain an O(log∗ n)-cut sparsifier and an O(1)-cut sparsifier in no(1)

and nϵ time for any constant ϵ, respectively.
Our deamortization technique also implies, as a side result, the first non-trivial algorithm

with worst-case update time against an oblivious adversary for maintaining spectral sparsifiers.

▶ Theorem 4 (Oblivious Spectral Sparsifier). There is a randomized algorithm against an
oblivious adversary that, given an n-vertex graph undergoing edge insertions and deletions
and ϵ ≥ 1/ polylog(n), with high probability, maintains a (1 + ϵ)-spectral sparsifier of size
n · 2O(

√
log n) using 2O(log3/4 n) worst-case update time.

The previous algorithm by Abraham et al. [1] maintains a (1 + ϵ)-spectral sparsifier of size
Õ(n) using polylog(n) amortize update time. Further [1] asked if the update time can be
made worst-case. Theorem 4 answers this open question modulo no(1) factors.

1.2 Applications
Our results imply several interesting applications. Our first set of applications are for the
decremental (1 + ϵ)-approximate single-source shortest paths (SSSP) problem. There has
been a line of work [17, 16, 18, 62] on fast adaptive algorithms for solving this problem.

2 To do this, we use, e.g., the sparsification technique [49] and a sophisticated dynamic expander
decomposition; see Section 2.3 for an overview.

ICALP 2022

20:6 Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary

Although all these algorithms are adaptive, they share a drawback that they cannot return the
shortest path itself; they can only maintain distance estimates. Very recently, Chuzhoy and
Khanna [42] showed a partial fix to this issue for some algorithms [17, 16] and consequently
obtained impressive applications to static flow algorithms. Unfortunately, this fix only applies
in a more restricted setting, and moreover it is not clear how the technique from [42] can be
used to fix the same issue in other algorithms (e.g. [18, 62]).

We show that our main result from Theorem 1 can be employed in a consistent and simple
way, such that the path-reporting issue in all previous algorithms in [17, 16, 18, 62] can be
fixed. This resolves an open question posed in multiple papers [16, 62, 42]. We summarize
these applications below:

▶ Corollary 5 (Fixing the path-reporting issue of [18, 62]). For any decremental unweighted
graph G = (V, E), fixed source s, and constant ϵ > 0, there is an adaptive algorithm B
that maintains the (1 + ϵ)-approximate distances from vertex s to every vertex v ∈ V and
supports corresponding shortest path queries. The algorithm B has expected total update time
mn0.5+o(1), distance estimate query time O(log log n) and shortest path query time Õ(n).

Corollary 5 gives the first adaptive algorithm without the path-reporting issue that
can take o(n2) total update time. The next algorithm works on weighted graphs and is
near-optimal on dense graphs:

▶ Corollary 6 (Fixing the path-reporting issue of [17, 16]). For any decremental weighted graph
G = (V, E, w) with W being the ratio between maximum and minimum edge weight, fixed
source s, and ϵ > 0, there is an adaptive algorithm A that maintains the (1 + ϵ)-approximate
distances from vertex s to every vertex v ∈ V and supports corresponding shortest path
queries. The algorithm A has expected total update time Õ(n2 log W), distance estimate
query time O(log log(nW)) and shortest path query time Õ(n log W).

Corollary 6 can be compared to two previous results [42, 43]. In [42], their algorithm
requires slower n2+o(1) log W total update time, and needs to assume that the input graph
undergoes only vertex deletions which is more restrictive. So Corollary 6 strictly improves the
algorithm by [42]. In [43], they use very different techniques than ours and show an algorithm
with n2+o(1) log W total update time, distance query time O(log log(nW)), shortest path
query time O(|P |no(1)) when a path P is returned, and is deterministic. This algorithm
is incomparable to Corollary 6. Our result has slightly faster total update time, but their
algorithm is deterministic and guarantees faster shortest path query time.

By plugging Corollary 6 into the standard multiplicative weight update framework (e.g.
[55, 52, 42, 73]), we get the following:

▶ Corollary 7. There exist (1 + ϵ)-approximate algorithms with expected running time Õ(n2)
for the following problems:
1. minimum-cost maximum s-t flow in undirected vertex-capacitated graphs, and
2. minimum-cost maximum s-t flow in undirected unit-edge-capacity graphs.

Corollary 7 slightly reduces the n2+o(1) run time from [42, 43] to Õ(n2).3
The second set of applications are faster algorithms for variants of multi-commodity

flow problems using Theorem 1. For example, we achieve a static Õ((n + k)n)-time
polylog(n)-approximation algorithm for the congestion minimization problem with k de-
mand pairs on unweighted vertex-capacitated graphs. This improves the Õ((m + k)n)-time
O(log(n)/ log log(n))-approximation algorithms implied by Karakostas [69] in terms of the
running time at the cost of a worse approximation ratio. See the full version for more detail.

3 We note that the result of [43] is deterministic.

A. Bernstein et al. 20:7

Finally, we apply Theorem 4 to the problem of maintaining effective resistance. Durfee
et al. [47, 46] presented a dynamic algorithm with Õ(n6/7) amortized update time for (1 + ϵ)-
approximately maintaining the effective resistance between a fixed pair of nodes. Plugging
our result in the algorithm of Durfee et al. leads to an n6/7+o(1) worst-case update time.
(Both of these results assume an oblivious adversary.)

1.3 Techniques
To prove the above results, the first key tool is the black-box reduction in Theorem 8 that
allows us to focus on almost-uniform-degree expanders4. Theorem 8 works for a large class
of problems satisfying natural properties (defined in Section 2) which includes spanners,
cut sparsifiers, and spectral sparsifiers. Hence the theorem uses the term “α-approximate
sparsifier” without defining the exact type of sparsifier.

▶ Theorem 8 (Informal Blackbox Reduction, see full version for the formal statements). Assume
that there is an algorithm A that can maintain an α-approximate sparsifier on an n-vertex
graph G with the following promises:

G undergoes batches of edge deletions5 (isolated nodes are automatically removed),
G is unweighted,
after each batch of deletions, G is an expander graph, and
after each batch of deletions, G has almost uniform degree, i.e. the maximum degree ∆max
and the minimum degree ∆min are within a polylog(n) factor.

Then, there is another algorithm B with essentially the same amortized update time for
maintaining an α-approximate sparsifier of essentially the same size on a general weighted
graph undergoing both edge insertions and deletions. If A is adaptive or deterministic, then
so is B.

As it is well-known that many problems become much easier on expanders (e.g., [84,
83, 81, 67, 34, 72]), we believe that this reduction will be useful for future developments
of dynamic algorithms. For example, if one can come up with an adaptive algorithm for
maintaining (1 + ϵ)-cut sparsifiers on expanders, then one can immediately obtain the same
result on general graphs.

Our second technique is a new sampling scheme called proactive resampling: here we
constantly re-sample parts of the input graph so that, independent of an adversary’s com-
putational power, a desired structure of the underlying graph can be always maintained;
see Section 2 for a high-level discussion of this technique. Since there are still few known
tools for designing algorithms that work against an adaptive adversary, we expect that our
technique will prove useful for the design of other adaptive algorithms in the future.

We further extend the black-box reduction from Theorem 8 to algorithms with worst-case
update time, which allows us to deamortize both Theorem 1 and Theorem 2 with slightly
worse guarantees. It also easily implies Theorem 4.

1.4 Subsequent Development
Since this paper has appeared in April 2020, there have been exciting subsequent developments
based on techniques of this paper.

4 Expanders are graphs with high conductance (see Section 2). Intuitively, they are “robustly connected”
graphs.

5 That means, in each iteration the algorithm is given a set D ⊂ E of edges that are to be deleted.

ICALP 2022

20:8 Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary

Our dynamic spectral sparsifiers with (1 + ϵ)-approximation but large query time (see full
version) has been employed as a blackbox subroutine in a line of work on faster algorithms for
exact max-flow [86, 85, 54], and also in [39] for making a dynamic polylog(n)-approximate
all-pairs max flow algorithm work against an adaptive adversary. In [14], the authors opened
the blackbox of our spectral sparsifier and combined our dynamic expander decomposition
with our sparsification techniques to obtain the first dynamic algorithms with o(n) update
time against an adaptive adversary for (1 + ϵ)-approximate global min cuts and all-pairs
effective resistances. Our almost-uniform-degree expander decomposition is also used in the
context of online algorithms [59].

Our proactive resampling technique has been extended in a follow-up work [30] for main-
taining fully dynamic 3-spanners against an adaptive adversary, in contrast with polylog(n)-
spanners.

2 Overview

All our algorithms use a common framework based on expanders, which results in a reduction
from fully dynamic algorithms on general graphs to the special case of decremental algorithms
on expander graphs. The reduction holds for a general class of graph problems that satisfy
some criteria. These criteria are satisfied for spectral-sparsifiers, cut-sparsifiers and spanners.
In this section, we define the abstract criteria needed for our reduction (See Conditions 1-5
below), so that we only need to prove our algorithm once and apply it to all these types of
sparsifiers.

The overview is split into three parts. In Section 2.1 we show the reduction for amortized
update time. In Section 2.2 we show how to take advantage of the reduction by designing
efficient algorithms on expanders. Finally, in Section 2.3 we finish the overview with a sketch
of how to extend the reduction to worst-case update-time algorithms.

2.1 Reduction to Expanders: Amortized Update Time
We now outline our black-box reduction, which can preserve several nice properties of the
algorithms. That is, given an algorithm with property x running on expander, we obtain
another algorithm with property x with essentially the same running time and approximation
guarantee, where the property x can be “deterministic”, “randomized against an adaptive
adversary”, or “worst-case update time”. In this subsection, we focus on amortized update
time: see Section 2.3 for an overview of how to extend the reduction to apply to worst-case
algorithms.

The reduction holds for any graph problem that satisfies a small number of conditions.
We formalize a graph problem as a function H that maps (G, ϵ) for a graph G and parameter
ϵ > 0 to a set of graphs. We say a dynamic algorithm A solves H(ϵ) if for every input graph
G, algorithm A maintains/computes a graph H ∈ H(G, ϵ). For example we could define
H(G, ϵ) to be the set of all (1 + ϵ)-cut sparsifiers. So then saying “data structure A solves
H(ϵ)” means that A maintains for any input graph an (1 + ϵ)-cut sparsifier.

Pertubation Property

The first property required by our reduction allows us to slightly perturb the edges, i.e. scale
each edge {u, v} by some small factor fu,v bounded by 1 ≤ fu,v ≤ eϵ. Define ζ · G to be the
graph G with all edge-weights multiplied by ζ.

Let G′ be G scaled by up to eϵ, then G′ ∈ H(G, ϵ) and eϵ · G ∈ H(G′, ϵ). (1)

A. Bernstein et al. 20:9

Property (1) implies that G ∈ H(G, ϵ) for all ϵ > 0. For example any graph is a (potentially
dense) spectral approximation or spanner of itself. The property is also useful when we
want to discretize the edge weights. A common technique is to round edge weights to the
nearest power of eϵ in order to discretize the set of possible edge weights without changing
graph properties such as the spectrum or distances too much. Combined with the following
union property, this also allows us to generalize algorithm for unweighted graphs to support
weighted graphs.

Union Property

Say that G =
⋃k

i=1 Gi for some k and that s1, ..., sk ∈ R. Then the union property is defined
as follows:

If Hi ∈ H(Gi, ϵ) and 0 ≤ si, then
⋃

i

si · Hi ∈ H

(⋃
i

si · Gi, ϵ

)
. (2)

Combining this property with the previous pertubation property (1) gives us the following
reduction. Given a graph G with real edge weights from [1, W], one can decompose G

into graphs G1, ..., Gk, such that each Gi contains edges with weights in [e(i−1)ϵ, eiϵ). One
can then use any algorithm that solves H on unweighted graphs to obtain Hi ∈ H(G′

i, ϵ)
for all i = 1, ..., k, where G′

i is the graph Gi when ignoring the edge weights. Then⋃
i eiϵ · Hi ∈ H(

⋃
i eiϵ · Gi, ϵ) ⊂ H(G, ϵ) by combining property (2) and (1). Thus one obtains

an algorithm that solves H on weighted graphs.

Reduction for Amortized Update Time

Loosely speaking, our black-box states the following. Say that we have a data structure
AX on a graph X that at all times maintains a sparsifier in H(X, ϵ) with amortized update
time T (AX), but assumes the following restricted setting: 1) Every update to X is an edge
deletion (no insertion), and 2) X is always an expander. We claim that AX can be converted
into a fully dynamic algorithm A that works on any graph G, and has amortized update
time T (A) = Õ(T (AX)).

We first outline this black-box under the assumption that we have a dynamic algorithm
that maintains a decomposition of G =

⋃
i Gi into edge disjoint expander graphs G1, G2,

This dynamic algorithm will have the property that whenever the main graph G is updated
by an adversarial edge insertion/deletion, each expander Gi receives only edge deletions,
though occasionally a new expander Gj is added to the decomposition. Thus one can simply
initialize AX on the expander Gj to obtain some Hj ∈ H(G, ϵ), when Gj is added to the
decomposition. Then whenever an edge deletion is performed to Gj , we simply update the
algorithm AX to update the graph Hj . By the union property (2) we then have that

H :=
⋃

i

Hi ∈ H

(⋃
i

Gi, ϵ

)
= H(G, ϵ).

So we obtain an algorithm A that can maintain a sparsifier H of G. We are left with proving
how to obtain this dynamic algorithm for maintaining the expander decomposition of G.

Dynamic Expander Decomposition

The idea is based on the expander decomposition and expander pruning of [80]. Their
expander decomposition splits V into disjoint node sets V1, V2, ..., such that the induced
subgraphs G[Vi] on each Vi are expanders, and there are only o(m) edges between these

ICALP 2022

20:10 Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary

expanders. In the full version we show that by recursively applying this decomposition on
the subgraph induced by the inter-expander edges, we obtain a partition of the edges of
G into a union of expanders. This means, we can decompose G into subgraphs G1, G2, ...,
where each Gi is an expander and

⋃
i Gi = G. We show in the full version that the time

complexity of this decomposition algorithm is Õ(m).
We now outline how we make this decomposition dynamic in the full version. Assume

for now, that we have a decomposition of G into G =
⋃

i G(i), where for all i, the graph
G(i) has at most 2i edges, but each G(i) is not necessarily an expander. Further, each G(i)

is decomposed into expanders G(i) =
⋃

j G
(i)
j . To make this decomposition dynamic, we

will first consider edge insertions where we use a technique from [64]. Every edge insertion
performed by the adversary is fed into the graph G(1). Now, when inserting some edges into
some G(i), there are two cases: (i) the number of edges in G(i) remains at most 2i. In that
case recompute the expander decomposition G(i) =

⋃
j G

(i)
j of G(i). Alternatively we have

case (ii) where G(i) has more than 2i edges. In that case we set G(i) to be an empty graph
and insert all the edges that previously belonged to G(i) into G(i+1). Note that on average it
takes 2i−1 adversarial insertions until G(i) is updated, and we might have to pay Õ(2i) to
recompute its decomposition, so the amortized update time for insertions is simply Õ(1).

For edge deletions we use the expander pruning technique based on [80] (refined from
[77, 76, 88]). An over-simplified description of this technique is that, for each update to the
graph, we can repeatedly prune (i.e. remove) some Õ(1) edges from the graph, such that
the remaining part is an expander. So whenever an edge is deleted from G, we remove the
edge from its corresponding G

(i)
j , and remove/prune some Õ(1) extra edges from G

(i)
j , so

that it stays an expander graph. These pruned edges are immediately re-inserted into G(1)

to guarantee that we still have a valid decomposition G =
⋃

i G(i). In summary, we are able
to maintain a decomposition G =

⋃
i,j G

(i)
j of G into expander graphs. This decomposition

changes only by creating new expanders and removing edges from existing expanders, so we
can run the decremental expander algorithm AX on each G

(i)
j .

Contraction Property and Reduction to Uniform Degree Expanders

Many problems are easier to solve on graphs with (near) uniform degree. Thus, we strengthen
our reduction to work even if the decremental algorithm AX assumes that graph X has
near-uniform degree. On its own, the expander decomposition described above is only able
to guarantee that for each expander the minimum degree is close to the average degree;
the maximum degree could still be quite large. In order to create a (near) uniform degree
expander, we split these high degree nodes into many smaller nodes of smaller degree. In
order to perform this operation, we need the condition that whichever graph problem H we
are trying to solve must be able to handle the reverse operation, i.e. when we contract many
small degree nodes into a single large degree node.

When contracting W ⊂ V in both G and H ∈ H(G, ϵ),
let G′ and H ′ be the resulting graphs, then H ′ ∈ H(G′, ϵ). (3)

All in all, our black-box reduction shows that in order to solve a sparsification problem
H in the fully dynamic model on general graphs, we need to 1) show that H satisfies the
perturbation, union, and contraction properties above (Properties 1-3) AND 2) Design an
algorithm AX for H in the simpler setting where the dynamic updates are purely decremental
(only edge deletions), and where the dynamic graph G is always guaranteed to be a near-
uniform degree expander.

A. Bernstein et al. 20:11

We now present the second main contribution of our paper, which is a new adaptive
algorithm AX on expanders. We conclude the overview with a discussion of the worst-case
reduction (Section 2.3), for which we will need two additional properties of the problem H.

2.2 Adaptive Algorithms on Expanders
We showed above that maintaining a sparsifier in general graphs can be reduced to the same
problem in a near-uniform-degree expander. Thus, for the rest of this section we assume that
G = (V, E) is at all times a ϕ-expander with max degree ∆max and min-degree ∆min, and
that G is only subject to edge deletions. Let n = |V |, m = |E|. In this overview, we assume
that 1/ϕ and ∆max/∆min are O(polylog n), and we assume ∆min ≫ 1/ϕ. Define IncG(v) to
the edges incident to v in G.

We now show how to maintain a O(log(n))-approximate cut-sparsifier H in G against
an adaptive adversary; it is not hard to check that H is also a spanner of stretch Õ(1/ϕ),
because a cut-sparsifier of a ϕ-expander is itself a Ω̃(ϕ)-expander, and hence has diameter
Õ(1/ϕ). See full version for details.

Static Expander Construction

We first show a very simple static construction of H ⊆ G. Define ρ = Θ̃
(

∆max
∆2

minϕ2

)
= Θ̃

(
1

∆min

)
,

with a sufficiently large polylog factor. Now, every edge is independently sampled into H

with probability ρ, and if sampled, is given weight 1/ρ. To see that H is a cut sparsifier,
consider any cut X, X̄, with |X| ≤ n/2. We clearly have E[|EH(X, X̄)|] = ρ|EG(X, X̄)|, so
since every edge in H has weight 1/ρ, we have the same weight in expectation. For a high
probability bound, want to show that Pr[|EH(X, X̄)| ∼ ρ|EG(X, X̄)|] ≥ 1 − n−2|X|; we can
then take a union bound over the O(n|X|) cuts of size |X|.

Since the graph is an expander, we know that |EG(X, X̄)| ≥ volG(X) ·ϕ ≥ |X| ·∆min ·ϕ =
Ω̃(|X|∆min). Thus, by our setting of ρ = Θ̃(1/∆min), we have E[|EH(X, X̄)|] ≥ |X| log2(n).
Since each edge is sampled independently, a chernoff bound yields the desired concentration
bound for |EH(X, X̄)|.

Naive Dynamic Algorithms

The most naive dynamic algorithm is: whenever the adversary deletes edge (u, v), resample
all edges in IncG(u) and IncG(v): that is, include each such edge in H with probability
ρ. Efficiency aside, the main issue with this protocol is that the adversary can cause some
target vertex x to become isolated in H, which clearly renders H not a cut sparisifer. To see
this, let y1, . . . , yk be the neighbors of x. The adversary then continually deletes arbitrary
edges (y1, z) ̸= (y1, x), which has the effect of resampling edge (x, y1) each time. With very
high probability, the adversary can ensure within log(n) such deletions (y1, z) that (x, y1) is
NOT included in H; the adversary then does the same for y2, then y3, and so on.

Slightly Less Naive Algorithm

To fix the above issue, we effectively allow vertices u and v to have separate copies of edge
(u, v), where u’s copy can only be deleted if u itself is resampled. Formally, every vertex v

will have a corresponding set of edges Sv and we will always have H =
⋃

v∈V Sv, where all
edges in H have weight 1/ρ. We define an operation SampleVertex(v) that independently
samples each edge in IncG(v) into Sv with probability ρ. The naive implementation of
SampleVertex(v) takes time O(degG(v)) = O(∆max) time, but an existing technique used

ICALP 2022

20:12 Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary

in [71, 45, 32] allows us to implement SampleVertex(v) in time O(ρ∆max log(n)) = Õ(1).
(The basic idea is that the sampling can be done in time proportional to the number of edges
successfully chosen, rather than the number examined.)

The dynamic algorithm is as follows. At initialization, construct each Sv by calling
SampleVertex(v), and then set H =

⋃
v∈V Sv. Whenever the adversary deletes edge (u, v),

replace Su and Sv with new sets SampleVertex(u) and SampleVertex(v), and modify
H =

⋃
v∈V Sv accordingly. By the above discussion, the update time is clearly Õ(1). We

now show that this algorithm effectively guarantees a good lower bound on the weight of
each cut in H, but might still lead to an overly high weight. Consider any cut (X, X̄).
By the expansion of G, the average vertex x ∈ X has IncG(x) ∩ EG(X, X̄) ≥ ϕ∆min. For
simplicity, let us assume that every vertex x ∈ X has IncG(x) ∩ EG(X, X̄) = Ω̃(ϕ∆min) =
Ω̃(∆min), as we can effectively ignore the small fraction of vertices for which this is false.
Now, say that an operation SampleVertex(x) succeeds if it results in |Sx ∩ EG(X, X̄)| ∼
ρ|IncG(x) ∩ EG(X, X̄)|. Because of our setting for ρ and our assumption that IncG(x) ∩
EG(X, X̄) = Ω̃(∆min), a Chernoff bound guarantees that each SampleVertex(x) succeeds
with probability 1−n−10. Now, since the adversary makes at most m updates before the graph
is empty, each SampleVertex(x) is called at most n2 times, so there is a 1−n−8 probability
that every call SampleVertex(x) is successful; we call such vertices always-successful. A
simple probability calculation shows that Pr[at least |X|/2 vertices in X are always-successful]
≥ 1 − n−2|X|, which allows us to union bound over all cuts of size X. Thus, at all times, half
the vertices in X have |Sx ∩ EG(X, X̄)| ∼ ρ|IncG(x) ∩ EG(X, X̄)|; assuming for simplicity
that this is an “average” half of vertices, i.e. that these vertices have around half of the edges
crossing the cut, we have |EH(X, X̄)| ≥ |

⋃
x∈X Sx ∩ EG(X, X̄)| ≳ ρ|EG(X, X̄)|/2.

The above idea already implies that we can maintain a sparse graph H where each cut is
expanding, i.e. a sparse expander, against an adaptive adversary. As an expander has low
diameter, H is a spanner. Therefore, we are done if our goal is a dynamic spanner algorithm.

Unfortunately, this algorithm is not strong enough for maintaining cut sparsifiers, as
the algorithm may result in |EH(X, X̄)| ≫ ρ|EG(X, X̄)|. Let ∆max ∼

√
n, and consider

the following graph G. There is a set X of size
√

n such that G[X] is a clique and G[X̄] is√
n-degree-expander. There is also a

√
n-to-1 matching from X to X̄: so every vertex in

y ∈ X̄ has exactly one edge ey crossing the cut. It is easy to check that G is an expander.
The adversary then does the following. For each y ∈ X̄, it keeps deleting edges in E(y, X̄)
until ey is sampled into Sy; with high probability, this occurs within O(log(n)/ρ) deletions
for each vertex y. Thus, at the end, H ⊇

⋃
y∈X̄ Sy contains all of EG(X, X̄).

Better Algorithm via Proactive Sampling

We now show how to modify the above algorithm to ensure that w.h.p., |EH(X, X̄)| =
Õ(ρ|EG(X, X̄)|); we later improve this to |EH(X, X̄)| = O(ρ log(n)|EG(X, X̄)|). We let time
t refer to the tth adversarial update. As before, we always have H =

⋃
v∈V Sv, and if the

adversary deletes edge (u, v) at time t, the algorithm immediately calls SampleVertex(u)
and SampleVertex(v). The change is that the algorithm also calls SampleVertex(u)
and SampleVertex(v) at times t + 1, t + 2, t + 4, t + 8, t + 16, . . .; we call this proactive
sampling. The proof that |EH(X, X̄)| ≳ ρ|EG(X, X̄)|/2 remains basically the same as before.
We now upper bound |EH(X, X̄)|.

The formal analysis is somewhat technical, but the crux if the following key claim:
for any (u, v) ∈ G, we have that after t adversarial updates, Pr[(u, v) ∈ H at time t] ≤
2ρ log(t) ≤ 2ρ log(m). We then use the key claim as follows: consider any cut (X, X̄). If every
edge in EG(X, X̄) was independently sampled into H with probability at most 2ρ log(m),

A. Bernstein et al. 20:13

then a Chernoff bound would show that |EH(X, X̄)| ≤ 4ρ log(m)|EG(X, X̄)| with probability
at least 1 − n−2|X|, as desired. Unfortunately, even though every individual edge-sampling
occurs with probability ρ, independent of everything that happened before, it is NOT the
case that event e ∈ H is independent from event e′ ∈ H: the adversary is adaptive, so its
sampling strategy for e′ can depend on whether or not e was successfully sampled into H

at an earlier time. Nonetheless, we show in the full proof that these dependencies can be
disentangled.

Let us now sketch the proof for the key claim. The edge (u, v) can appear in H because
it is in Su or Sv at the time t. Let us bound the probability that (u, v) ∈ Su at time t.
Let Tschedule(u) be all times before t for which SampleVertex(u) has been scheduled by
proactive sampling: so whenever the adversary updates an edge (u, v) at time t′, times
t′, t′ + 1, t′ + 2, t′ + 4, t′ + 8, . . . are added to Tschedule(u). Let T t′

schedule(u) ⊂ [t′, t] be the
state of Tschedule(u) at time t′. Now, we say that a call to SampleVertex(u) at time t′

is relevant if T t′+1
schedule(u) = ∅. Observe that for (u, v) to be in Su at time t, it must have

been added during some relevant call SampleVertex(u), because every non-relevant call is
followed by another call before time t which invokes again SampleVertex(u) and thereby
deletes the previously sampled set Su and replaces it by a new one. We complete the proof
by claiming that there are at most log(t) relevant calls SampleVertex(u). This is because
if a relevant call occurs at t′, then proactive sampling adds some time t∗ to Tschedule(u) such
that (t′ + t)/2 ≤ t∗ ≤ t; thus, there can be no relevant calls in time interval [t′, (t′ + t)/2]. So
each relevant call halves the possible time interval for other relevant calls, so there are at
most log(t) relevant calls.

We now briefly point out why this modified algorithm has |EH(X, X̄)| = Õ(ρ|EG(X, X̄)|),
rather than the desired |EH(X, X̄)| = O(ρ log(n)|EG(X, X̄)|). Consider again the graph G

consisting of a vertex set X of size
√

n such that G[X] is a complete graph, and let X be a√
n-degree expander in G[X]. Additionally, we have a

√
n-to-one matching, i.e. every vertex

in X is matched to
√

n vertices in X. The graph is still an expander as argued before.
Now observe that ∆max = 2

√
n and we obtain a first sparsifier H at time 0 of G where

we have weight on the cut, i.e. |EH(X, X̄)|/ρ, of size ∼ n (which is the number of edges
crossing). In particular, the weight on edges in |EH(X, X̄) ∩

⋃
x∈X Sx|/ρ ∼ n, i.e. the

vertices in X carry half the weight of the cut in the sparsifier. But over the course of the
algorithm, the adversary can delete edges in the cut (X, X) that are in G \ H. Observe
that the resampling events do not affect edges in EH(X, X̄) ∩

⋃
x∈X Sx since none of the

deleted edges is incident to any such edge (recall the
√

n-to-one matching). The adversary
can continue until the cut only has weight in G of |X|∆minϕ without violating the expander
and min-degree guarantees. But then the weight in H on the cut is still ∼ n while the weight
in G is only ∼ n(∆max/∆min)ϕ. Thus, we only obtain a ∼ (∆max/∆min)ϕ-approximation
(plus a log n-factor from proactive sampling might appear).

Final Algorithm

To resolve the issue above, we would like to ensure that the edges in EH(X, X̄) are resampled
when |EG(X, X̄)| changes by a large amount. We achieve this with one last modification
to the algorithm: for every v ∈ V , whenever degG(v) decreases by ζ = ϕ∆min, we run
SampleVertex(w) for every edge (v, w) ∈ G. It is not hard to check that each vertex will
only resampled a total of O(∆2

max/ζ) = Õ(∆max) additional times as a result of this change
which is subsumed by Õ(m) when summing over the vertices. (A naive implementation of
the above modification only leads to small amortized update time, but this can easily be
worst-case by staggering the work over several updates using round-robin scheduling.) We
leave the analysis of the approximation ratio for the full version.

ICALP 2022

20:14 Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary

By using the convenient lemma which says that any cut sparsifier on an expander is also
a spectral sparsifier, we also obtain an adaptive algorithm for spectral sparsifier.

2.3 Reduction to Expanders: Worst-Case Update Time

We now outline how to extend our black-box reduction to work with worst-case update time.
We again assume there exists some algorithm AX that maintains for any graph G a sparsifier
H ∈ H(G, ϵ), provided that G stays a uniform degree expander throughout all updates, all
of which are only edge deletions.

The condition that G always remains an expander is too strong, but we can use expander
pruning to maintain the property from the perspective of AX . Consider some deletion in G:
although G may not be an expander, we can use pruning to find a subset of edges P ⊂ E(G),
such that G \ P is an expander. We then input all edges in P as deletions to AX , so the
graph G \ P in question is still an expander: AX thus returns H ∈ H(G \ P, ϵ). Then based
on property (1) and (2) it can be shown that H ∪ P ∈ H(G, ϵ). So by taking all the pruned
edges together with the sparsifier H of G \ P we obtain a sparsifier of G, even when G itself
is no longer an expander.

Unfortunately this dynamic sparsifier algorithm has two downsides: (i) The maintained
sparsifier is only sparse for a short sequence of updates, as otherwise the set of pruned edges
becomes too large and thus the output H ∪ P becomes too dense. (ii) The algorithm only
works on graphs that are initially an expander.

Extending the algorithm to general graphs

To extend the previous algorithm to work on general graphs, we run the static expander
decomposition algorithm. As outlined before, we can decompose G into subgraphs G1, G2, ...,
where each Gi is an expander and

⋃
i Gi = G. We can then run the algorithm, outlined

in the previous paragraph, on each of these expanders and the union of all the obtained
sparsifiers will be a sparsifier of the original input G.

Similar as before, one downside of this technique is that the size of the sparsifier will
increase with each update, because more and more edges will be pruned. Thus, the resulting
dynamic algorithm can only maintain a sparsifier for some limited number of updates.

Extending the number of updates

A common technique for dynamic algorithms, which only work for some limited number
of updates (say k updates), is to reset the algorithm after k updates. If the algorithm has
preprocessing time p and update time u, then one can obtain an algorithm with amortized
update time O(p/k + u). However, the worst-case complexity would be quite bad, because
once the reset is performed, the old sparsifier (from before the reset) must be replaced by
the new one. Listing all edges of the new sparsifier within a single update would be too
slow. There is a standard technique for converting such an amortized bound to an equivalent
worst-case bound. The idea is to slowly translate from the old sparsifier to the new one,
by only listing few edges in each update. For this we require another property for H that
guarantees that the sparsifier stays valid, even when removing a few of its edges.

A. Bernstein et al. 20:15

Transition Property

Consider some H1, H2 ∈ H(G, ϵ), and we now want to have a slow transition from H1 to H2,
by slowly removing edges from H1 from the output (and slowly inserting edges of H2). The
exact property we require is as follows:

Let H1, H2 ∈ H(G, ϵ) and H ⊂ H1, then (eδ − 1)H ∪ H2 ∈ H(G, ϵ + δ). (4)

Here H ⊂ H1 represents the remaining to be removed edges (or alternatively H1 \ H are the
remaining to be inserted edges). Exploiting this property we are able to obtain a O(p/k + u)
worst-case update time.

As the output grows with each update, we must perform the reset after k = O(n) updates,
otherwise the output becomes too dense. This is unfortunate as the preprocessing time is
p = Ω(m), because one must read the entire input, which is too slow to obtain a subpolynomial
update time. This issue can be fixed via a sparsification technique based on [49], presented
in the full version. By using this technique, we can make sure that m = O(n1+o(1)) and thus
the preprocessing time will be fast enough to allow for O(no(1)) update time.

For this sparsification technique we require the following transitivity property.

Transitivity Property

If H ∈ H(G, ϵ), then H (H, δ) ⊂ H (G, δ + ϵ) . (5)

Intuitively this means that an approximation H of G and an approximation H ′ of H, then
H ′ is also a (slightly worse) approximation of G.

Properties 1-5 above are precisely the properties required of a graph problem by our black-
box reduction for worst-case update time. We show in the full version that the sparsifiers
discussed in this paper (spectral sparsifier, cut sparsifier, spanner) satisfy all these properties.

Sparsification Technique

We now outline the sparsification technique, whose formal proof is presented in the full
version. Let G be an arbitrary graph. We partition the edges of G into equally sized
subgraphs G1, G2, ..., Gd for some d > 1. Note that, if we have ε-approximate sparsifiers
H1, ..., Hd of G1, ..., Gd, then

⋃
i Hi is a ε-approximate sparsifier of G by property (2). In

addition, if we have a ε-approximate sparsifier H of
⋃

i Hi, then H is a (2ε)-approximate
sparsifier of G by property (5). This allows us to obtain a faster algorithm as follows: If G

has m edges, then each Gi has only m/d edges, so the dynamic algorithm runs faster on
these sparse Gi. Further, since the Hi are sparse (let’s say O(n) edges), the graph

⋃
i Hi has

only O(dn) edges and maintaining H is also faster than maintaining a sparsifier of G directly,
if dn = o(m). The next idea is to repeat this trick recursively: We repeatedly split each Gi

into d = no(1) graphs, until the graphs have only O(n1+o(1)) edges. This means we obtain
some tree-like structure rooted at G, where each tree-node G′ represents a subgraph of G and
its tree-children are the d subgraphs G′

1, ..., G′
d of G′. For the graphs that form leaves of this

tree, we run our dynamic sparsifier algorithm. We also obtain a sparsifier H ′ of any non-leaf
tree-node G′, by running our dynamic algorithm on

⋃d
i=1 H ′

i, where the H ′
i are sparsifiers of

the child-tree-nodes G′
i of the tree-node G′. Thus all instances of our dynamic algorithm

always run on sparse input graphs. However, there is one downside: When some sparsifier
H ′

i changes, the sparsifier H ′ must also change. Let’s say some edge is deleted from G, then
the edge is deleted from one leaf-node of the tree-structure, and this update will propagate

ICALP 2022

20:16 Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary

from the leaf-node all the way to the root of the tree. This can be problematic because
when the dynamic algorithm changes some c > 1 many edges of the sparsifier for each edge
update, then the number of updates grows exponentially with the depth of the tree-like
structure. In [49] Eppstein et al. circumvented this issue by assuming an extra property
which they call stability property, which essentially says that this exponential growth does
not occur. Our modified sparsification technique no longer requires this assumption, instead
we balance the parameter d carefully to make sure the blow-up of the propagation is only
some sub-polynomial factor.

References
1 Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard Peng. On

fully dynamic graph sparsifiers. In FOCS, pages 335–344, 2016. doi:10.1109/FOCS.2016.44.
2 Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad

Javad Latifi Jebelli, Stephen G. Kobourov, and Richard Spence. Graph spanners: A tutorial
review. CoRR, abs/1909.03152, 2019.

3 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners,
and subgraphs. In PODS, pages 5–14, 2012.

4 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Spectral sparsification in dynamic
graph streams. In APPROX-RANDOM, pages 1–10, 2013.

5 Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete & Computational Geometry, 9:81–100, 1993. doi:
10.1007/BF02189308.

6 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear update time. In STOC, pages 815–826. ACM, 2018.

7 Giorgio Ausiello, Paolo Giulio Franciosa, and Giuseppe F. Italiano. Small stretch spanners
on dynamic graphs. J. Graph Algorithms Appl., 10(2):365–385, 2006. Announced at ESA’05.
URL: http://jgaa.info/accepted/2006/AusielloFranciosaItaliano2006.10.2.pdf, doi:
10.7155/jgaa.00133.

8 Surender Baswana. Streaming algorithm for graph spanners - single pass and constant
processing time per edge. Inf. Process. Lett., 106(3):110–114, 2008. doi:10.1016/j.ipl.2007.
11.001.

9 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching
in o(log n) update time (corrected version). SIAM J. Comput., 47(3):617–650, 2018. doi:
10.1137/16M1106158.

10 Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. Fully dynamic randomized
algorithms for graph spanners. ACM Trans. Algorithms, 8(4):35:1–35:51, 2012. Announced at
SODA’08. doi:10.1145/2344422.2344425.

11 Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for
computing sparse spanners in weighted graphs. Random Struct. Algorithms, 30(4):532–563,
2007. doi:10.1002/rsa.20130.

12 Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers.
SIAM Rev., 56(2):315–334, 2014.

13 Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and Madhu
Sudan. Fully dynamic maximal independent set with polylogarithmic update time. In FOCS,
pages 382–405. IEEE Computer Society, 2019.

14 Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak, and
Uri Stemmer. Dynamic algorithms against an adaptive adversary: Generic constructions and
lower bounds. arXiv preprint, 2021. To appear at STOC’22. arXiv:2111.03980.

15 András A Benczúr and David R Karger. Randomized approximation schemes for cuts and
flows in capacitated graphs. SIAM Journal on Computing, 44(2):290–319, 2015.

https://doi.org/10.1109/FOCS.2016.44
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
http://jgaa.info/accepted/2006/AusielloFranciosaItaliano2006.10.2.pdf
https://doi.org/10.7155/jgaa.00133
https://doi.org/10.7155/jgaa.00133
https://doi.org/10.1016/j.ipl.2007.11.001
https://doi.org/10.1016/j.ipl.2007.11.001
https://doi.org/10.1137/16M1106158
https://doi.org/10.1137/16M1106158
https://doi.org/10.1145/2344422.2344425
https://doi.org/10.1002/rsa.20130
http://arxiv.org/abs/2111.03980

A. Bernstein et al. 20:17

16 Aaron Bernstein. Deterministic partially dynamic single source shortest paths in weighted
graphs. In ICALP, volume 80, pages 44:1–44:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.44.

17 Aaron Bernstein and Shiri Chechik. Deterministic decremental single source shortest paths:
beyond the o(mn) bound. In STOC, pages 389–397, 2016.

18 Aaron Bernstein and Shiri Chechik. Deterministic partially dynamic single source shortest
paths for sparse graphs. In SODA, pages 453–469, 2017.

19 Aaron Bernstein and Shiri Chechik. Incremental topological sort and cycle detection in
expected total time. In SODA, pages 21–34. SIAM, 2018.

20 Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A deamortization approach for
dynamic spanner and dynamic maximal matching. In SODA, pages 1899–1918, 2019.

21 Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic
decremental sssp and approximate min-cost flow in almost-linear time. arXiv preprint, 2021.
arXiv:2101.07149.

22 Aaron Bernstein, Maximilian Probst, and Christian Wulff-Nilsen. Decremental strongly-
connected components and single-source reachability in near-linear time. In STOC, pages
365–376, 2019.

23 Aaron Bernstein and Liam Roditty. Improved dynamic algorithms for maintaining approximate
shortest paths under deletions. In SODA, pages 1355–1365, 2011.

24 Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon Nanongkai,
Thatchaphol Saranurak, Aaron Sidford, and He Sun. Fully-dynamic graph sparsifiers against
an adaptive adversary. CoRR, abs/2004.08432, 2020.

25 Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.
Dynamic algorithms for graph coloring. In SODA, pages 1–20, 2018.

26 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully dynamic
data structures for vertex cover and matching. In SODA, 2015.

27 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic approx-
imation algorithms for fully dynamic matching. In STOC, pages 398–411, 2016.

28 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully dynamic approximate
maximum matching and minimum vertex cover in O(log3 n) worst case update time. In
SODA, pages 470–489, 2017.

29 Sayan Bhattacharya and Janardhan Kulkarni. Deterministically maintaining a (2 + ϵ)-
approximate minimum vertex cover in o(1/ϵ2) amortized update time. In SODA, 2019.

30 Sayan Bhattacharya, Thatchaphol Saranurak, and Pattara Sukprasert. Simple dynamic
spanners with near-optimal recourse against an adaptive adversary. In submission.

31 Greg Bodwin and Sebastian Krinninger. Fully dynamic spanners with worst-case update time.
In ESA, pages 17:1–17:18, 2016. doi:10.4230/LIPIcs.ESA.2016.17.

32 Karl Bringmann and Konstantinos Panagiotou. Efficient sampling methods for discrete
distributions. In ICALP, pages 133–144. Springer, 2012.

33 Keren Censor-Hillel, Elad Haramaty, and Zohar S. Karnin. Optimal dynamic distributed MIS.
In PODC, pages 217–226. ACM, 2016.

34 Yi-Jun Chang and Thatchaphol Saranurak. Improved distributed expander decomposition
and nearly optimal triangle enumeration. In PODC, pages 66–73, 2019.

35 Shiri Chechik. Near-optimal approximate decremental all pairs shortest paths. In FOCS, 2018.
36 Shiri Chechik and Tianyi Zhang. Fully dynamic maximal independent set in expected poly-log

update time. In FOCS, pages 370–381. IEEE Computer Society, 2019.
37 Chandra Chekuri and Kent Quanrud. Near-linear time approximation schemes for some

implicit fractional packing problems. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 801–820. SIAM, 2017.

38 Chandra Chekuri and Kent Quanrud. Fast approximations for metric-tsp via linear program-
ming. arXiv preprint, 2018. arXiv:1802.01242.

ICALP 2022

https://doi.org/10.4230/LIPIcs.ICALP.2017.44
http://arxiv.org/abs/2101.07149
https://doi.org/10.4230/LIPIcs.ESA.2016.17
http://arxiv.org/abs/1802.01242

20:18 Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary

39 Li Chen, Gramoz Goranci, Monika Henzinger, Richard Peng, and Thatchaphol Saranurak.
Fast dynamic cuts, distances and effective resistances via vertex sparsifiers. In FOCS, pages
1135–1146. IEEE, 2020.

40 Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing Wang.
Graph sparsification, spectral sketches, and faster resistance computation, via short cycle
decompositions. In FOCS, pages 361–372, 2018. doi:10.1109/FOCS.2018.00042.

41 Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Sara-
nurak. A deterministic algorithm for balanced cut with applications to dynamic connectivity,
flows, and beyond. CoRR, abs/1910.08025, 2019.

42 Julia Chuzhoy and Sanjeev Khanna. A new algorithm for decremental single-source shortest
paths with applications to vertex-capacitated flow and cut problems. In STOC, pages 389–400,
2019.

43 Julia Chuzhoy and Thatchaphol Saranurak. Deterministic algorithms for decremental shortest
paths via layered core decomposition. In SODA, pages 2478–2496. SIAM, 2021.

44 Bilel Derbel, Mohamed Mosbah, and Akka Zemmari. Sublinear fully distributed partition with
applications. Theory Comput. Syst., 47(2):368–404, 2010. doi:10.1007/s00224-009-9190-x.

45 Luc Devroye. Nonuniform random variate generation. Handbooks in operations research and
management science, 13:83–121, 2006.

46 David Durfee, Yu Gao, Gramoz Goranci, and Richard Peng. Fully dynamic effective resistances.
CoRR, abs/1804.04038, 2018.

47 David Durfee, Yu Gao, Gramoz Goranci, and Richard Peng. Fully dynamic spectral vertex
sparsifiers and applications. In STOC, pages 914–925, 2019.

48 Michael Elkin. Streaming and fully dynamic centralized algorithms for constructing and
maintaining sparse spanners. ACM Trans. Algorithms, 7(2):20:1–20:17, 2011. Announced at
ICALP’07. doi:10.1145/1921659.1921666.

49 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification - a
technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.

50 Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. Journal of the ACM
(JACM), 28(1):1–4, 1981.

51 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the streaming model: the value of space. In SODA, pages 745–754, 2005.
URL: http://dl.acm.org/citation.cfm?id=1070432.1070537.

52 Lisa Fleischer. Approximating fractional multicommodity flow independent of the number
of commodities. SIAM J. Discrete Math., 13(4):505–520, 2000. announced at FOCS’99.
doi:10.1137/S0895480199355754.

53 Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Panigrahi. A
general framework for graph sparsification. In STOC, pages 71–80, 2011.

54 Yu Gao, Yang P Liu, and Richard Peng. Fully dynamic electrical flows: sparse maxflow faster
than goldberg-rao. arXiv preprint, 2021. arXiv:2101.07233.

55 Naveen Garg and Jochen Könemann. Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. SIAM J. Comput., 37(2):630–652, 2007. doi:
10.1137/S0097539704446232.

56 Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in o(m log2 n) time.
In ICALP, volume 168 of LIPIcs, pages 57:1–57:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

57 Mohsen Ghaffari and Fabian Kuhn. Derandomizing distributed algorithms with small messages:
Spanners and dominating set. In DISC, pages 29:1–29:17, 2018. doi:10.4230/LIPIcs.DISC.
2018.29.

58 Ofer Grossman and Merav Parter. Improved deterministic distributed construction of spanners.
In DISC, pages 24:1–24:16, 2017. doi:10.4230/LIPIcs.DISC.2017.24.

https://doi.org/10.1109/FOCS.2018.00042
https://doi.org/10.1007/s00224-009-9190-x
https://doi.org/10.1145/1921659.1921666
http://dl.acm.org/citation.cfm?id=1070432.1070537
https://doi.org/10.1137/S0895480199355754
http://arxiv.org/abs/2101.07233
https://doi.org/10.1137/S0097539704446232
https://doi.org/10.1137/S0097539704446232
https://doi.org/10.4230/LIPIcs.DISC.2018.29
https://doi.org/10.4230/LIPIcs.DISC.2018.29
https://doi.org/10.4230/LIPIcs.DISC.2017.24

A. Bernstein et al. 20:19

59 Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Sahil Singla. Online carpooling
using expander decompositions. In FSTTCS, volume 182 of LIPIcs, pages 23:1–23:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

60 Maximilian Probst Gutenberg, Virginia Vassilevska Williams, and Nicole Wein. New algorithms
and hardness for incremental single-source shortest paths in directed graphs. In Symposium
on Theory of Computing, 2020. arXiv:2001.10751.

61 Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Decremental SSSP in weighted
digraphs: Faster and against an adaptive adversary. In SODA, pages 2542–2561, 2020.

62 Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Deterministic algorithms for
decremental approximate shortest paths: Faster and simpler. In SODA, pages 2522–2541,
2020.

63 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-source
shortest paths on undirected graphs in near-linear total update time. J. ACM, 65(6):36:1–36:40,
2018. announced at FOCS’14.

64 Monika Rauch Henzinger and Valerie King. Maintaining minimum spanning trees in dynamic
graphs. In ICALP, volume 1256 of Lecture Notes in Computer Science, pages 594–604. Springer,
1997.

65 Jacob Holm and Eva Rotenberg. Dynamic planar embeddings of dynamic graphs. Theory
Comput. Syst., 61(4):1054–1083, 2017.

66 Jacob Holm and Eva Rotenberg. Fully-dynamic planarity testing in polylogarithmic time. In
STOC, pages 167–180. ACM, 2020.

67 Arun Jambulapati and Aaron Sidford. Efficient Õ(n/ϵ) spectral sketches for the laplacian and
its pseudoinverse. In SODA, pages 2487–2503. SIAM, 2018.

68 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogar-
ithmic worst case time. In SODA, pages 1131–1142, 2013. doi:10.1137/1.9781611973105.81.

69 George Karakostas. Faster approximation schemes for fractional multicommodity flow problems.
ACM Trans. Algorithms, 4(1):13:1–13:17, 2008. doi:10.1145/1328911.1328924.

70 Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic global minimum cut of a simple
graph in near-linear time. In STOC, pages 665–674. ACM, 2015.

71 Donald Ervin Knuth. Seminumerical algorithms. The art of computer programming, 2, 1997.
72 Huan Li, He Sun, and Luca Zanetti. Hermitian Laplacians and a Cheeger inequality for the

Max-2-Lin problem. In ESA, pages 71:1–71:14, 2019.
73 Aleksander Madry. Faster approximation schemes for fractional multicommodity flow problems

via dynamic graph algorithms. In STOC, pages 121–130, 2010. doi:10.1145/1806689.1806708.
74 Morteza Monemizadeh. Dynamic maximal independent set. CoRR, abs/1906.09595, 2019.
75 Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: Sequential, cut-query

and streaming algorithms. In STOC, 2020.
76 Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-case

update time: adaptive, Las vegas, and O(n1/2−ϵ)-time. In STOC, pages 1122–1129, 2017.
doi:10.1145/3055399.3055447.

77 Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case update time. In FOCS, pages 950–961, 2017.

78 Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate
distance oracles and spanners. In ICALP, pages 261–272, 2005. doi:10.1007/11523468_22.

79 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389–
401, 2011. doi:10.1007/s00453-010-9401-5.

80 Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster, stronger,
and simpler. In SODA, pages 2616–2635, 2019.

81 Jonah Sherman. Nearly maximum flows in nearly linear time. In FOCS, pages 263–269, 2013.
82 Shay Solomon. Fully dynamic maximal matching in constant update time. In FOCS, pages

325–334, 2016. doi:10.1109/FOCS.2016.43.

ICALP 2022

http://arxiv.org/abs/2001.10751
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1145/1328911.1328924
https://doi.org/10.1145/1806689.1806708
https://doi.org/10.1145/3055399.3055447
https://doi.org/10.1007/11523468_22
https://doi.org/10.1007/s00453-010-9401-5
https://doi.org/10.1109/FOCS.2016.43

20:20 Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary

83 Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In STOC, pages 81–90, 2004.

84 Luca Trevisan. Approximation algorithms for unique games. In FOCS, pages 197–205. IEEE
Computer Society, 2005.

85 Jan van den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao
Song, and Di Wang. Minimum cost flows, mdps, and l1-regression in nearly linear time for
dense instances. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 859–869, 2021.

86 Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak,
Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moderately
dense graphs. In FOCS, pages 919–930. IEEE, 2020.

87 David Wajc. Rounding dynamic matchings against an adaptive adversary. Symposium on
Theory of Computing, 2020. arXiv:1911.05545.

88 Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case
update time. In STOC, pages 1130–1143, 2017. doi:10.1145/3055399.3055415.

89 Anastasios Zouzias. A matrix hyperbolic cosine algorithm and applications. In International
Colloquium on Automata, Languages, and Programming, pages 846–858. Springer, 2012.

http://arxiv.org/abs/1911.05545
https://doi.org/10.1145/3055399.3055415

	1 Introduction
	1.1 Our Results
	1.2 Applications
	1.3 Techniques
	1.4 Subsequent Development

	2 Overview
	2.1 Reduction to Expanders: Amortized Update Time
	2.2 Adaptive Algorithms on Expanders
	2.3 Reduction to Expanders: Worst-Case Update Time

