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Abstract
We study the online bin packing problem under two stochastic settings. In the bin packing problem,
we are given n items with sizes in (0, 1] and the goal is to pack them into the minimum number of
unit-sized bins. First, we study bin packing under the i.i.d. model, where item sizes are sampled
independently and identically from a distribution in (0, 1]. Both the distribution and the total
number of items are unknown. The items arrive one by one and their sizes are revealed upon
their arrival and they must be packed immediately and irrevocably in bins of size 1. We provide
a simple meta-algorithm that takes an offline α-asymptotic proximation algorithm and provides a
polynomial-time (α + ε)-competitive algorithm for online bin packing under the i.i.d. model, where
ε > 0 is a small constant. Using the AFPTAS for offline bin packing, we thus provide a linear time
(1 + ε)-competitive algorithm for online bin packing under i.i.d. model, thus settling the problem.

We then study the random-order model, where an adversary specifies the items, but the order
of arrival of items is drawn uniformly at random from the set of all permutations of the items.
Kenyon’s seminal result [SODA’96] showed that the Best-Fit algorithm has a competitive ratio of at
most 3/2 in the random-order model, and conjectured the ratio to be ≈ 1.15. However, it has been
a long-standing open problem to break the barrier of 3/2 even for special cases. Recently, Albers et
al. [Algorithmica’21] showed an improvement to 5/4 competitive ratio in the special case when all
the item sizes are greater than 1/3. For this special case, we settle the analysis by showing that
Best-Fit has a competitive ratio of 1. We also make further progress by breaking the barrier of 3/2
for the 3-Partition problem, a notoriously hard special case of bin packing, where all item sizes lie in
(1/4, 1/2].
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1 Introduction

Bin Packing (BP) is a fundamental NP-hard combinatorial optimization problem. In BP,
we are given a set of items I := (x1, x2, . . . , xn) with their associated weights (also called
sizes) xi’s in (0, 1] and the goal is to partition them into the minimum number of sets (bins)
such that the total weight of each set is at most 1. The problem has numerous applications
in logistics, scheduling, cutting stock, etc. [10]. Theoretically, bin packing has been the
cornerstone for approximation and online algorithms and the study of the problem has led
to the development of several interesting techniques [31, 15, 33].

Generally, the performance guarantee of an offline (resp. online) bin packing algorithm
A is measured by asymptotic approximation ratio (AAR) (resp. competitive ratio (CR)).
Let Opt(I) and A(I) are the objective values returned by the optimal (offline) algorithm
and algorithm A, respectively, on input I. Then AAR (resp. CR) is defined as R∞

A :=
lim sup
m→∞

(
supI:Opt(I)=m

A(I)
Opt(I)

)
. Note that R∞

A focuses on instances where Opt(I) is large

and avoids pathological instances with large approximation ratios where Opt(I) is small.
Best-Fit (BF), First-Fit (FF), and Next-Fit (NF) are the three most commonly used

algorithms for BP. Given xi as the present item to be packed, they work as follows:
BF: Pack xi into the fullest possible bin; open a new bin if necessary.
FF: Pack xi into the first possible bin; open a new bin if necessary.
NF: Pack xi into the most recently opened bin; open a new bin if necessary.

Johnson et al. [28] studied several heuristics for bin packing such as Best-Fit (BF), First-Fit
(FF), Best-Fit-Decreasing (BFD), First-Fit-Decreasing (FFD) and showed their (asymptotic)
approximation guarantees to be 17/10, 17/10, 11/9, 11/9, resp. Bekesi et al. [7] gave an
O(n) time 5/4-asymptotic approximation algorithm. Another O(n log n) time algorithm is
Modified-First-Fit-Decreasing (MFFD) [29] which attains an AAR of 71/60 ≈ 1.1834. Vega
and Lueker [15] gave an asymptotic fully polynomial-time approximation scheme (AFPTAS)
for BP: For any 1/2 > ε > 0, it returns a solution with at most (1 + ε)Opt(I) + O(1) 1 bins in
time Cε + Cn log 1/ε, where C is an absolute constant and Cε depends only on ε. Karmarkar
and Karp [31] gave an algorithm that returns a solution using Opt(I) + O(log2 Opt(I)) bins.
The present best approximation is due to Hoberg and Rothvoss [25] which returns a solution
using Opt(I) + O(log Opt(I)) bins.

3-Partition problem is a notoriously hard special case of BP where all item sizes are larger
than 1/4. Eisenbrand et al. [17] mentioned that “much of the hardness of bin packing seems
to appear already in the special case of 3-Partition when all item sizes are in (1/4, 1/2]”.
This problem has deep connections with Beck’s conjecture in discrepancy theory [45, 38].
In fact, Rothvoss [25] conjectured that these 3-Partition instances are indeed the hardest
instances for bin packing and the additive integrality gap of the bin packing configuration
LP for these 3-Parition instances is already Θ(log n).

In online BP, items appear one by one and are required to be packed immediately and
irrevocably. Lee and Lee [33] presented the Harmonic algorithm with competitive ratio
T∞ ≈ 1.691, which is optimal for O(1) space algorithms. For general online BP, the present
best upper and lower bounds for the CR are 1.57829 [4] and 1.54278 [5], respectively.

In this paper, we focus on online BP under a stochastic setting called the i.i.d. model [11]
where the input items are sampled from a sequence of independent and identically distributed
(i.i.d.) random variables. Here, the performance of an algorithm is measured by the

1 In bin packing and related problems, the accuracy parameter ε is assumed to be a constant. Here, the
term O(1) hides some constants depending on ε.
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expected competitive ratio (ECR) ERA := E[A(In(F ))]/E[Opt(In(F ))], where In(F ) :=
(X1, X2, . . . , Xn) is a list of n random variables drawn i.i.d. according to some unknown
distribution F with support in (0, 1]. Mostly, bin packing has been studied under continuous
uniform (denoted by U [a, b], 0 ≤ a < b ≤ 1, where item sizes are chosen uniformly from
[a, b]) or discrete uniform distributions (denoted by U{j, k}, 1 ≤ j ≤ k, where item sizes are
chosen uniformly from {1/k, 2/k, . . . , j/k}). For U [0, 1], Coffman et al. [13] showed that NF
has an ECR of 4/3 and Lee and Lee [34] showed that the Harmonic algorithm has an ECR
of π2/3 − 2 ≈ 1.2899. Interestingly, Bentley et al. [8] showed that the ECR of FF as well
as BF converges to 1 for U [0, 1]. It was later shown that the expected wasted space (i.e.,
the number of needed bins minus the total size of items) is Θ(n2/3) for First-Fit [44, 12]
and Θ(

√
n log3/4 n) for Best-Fit [44, 35]. Rhee and Talagrand [42] exhibited an algorithm

that w.h.p. achieves a packing in Opt + O(
√

n log3/4 n) bins for any distribution F on (0, 1].
However, note that their competitive ratio can be quite bad when Opt≪ n. A distribution
F is said to be perfectly packable if the expected wasted space in the optimal solution is
o(n) (i.e., nearly all bins in an optimal packing are almost fully packed). Csirik et al. [14]
studied the Sum-of-Squares (SS) algorithm and showed that for any perfectly packable
distribution, the expected wasted space is O(

√
n). However, for distributions that are not

perfectly packable, the SS algorithm has an ECR of at most 3 and can have an ECR of 3/2
in the worst-case [14]. For any discrete distribution, they gave an algorithm with an ECR of
1 that runs in pseudo-polynomial time in expectation. Gupta et al. [24] also obtained similar
o(n) expected wasted space guarantee by using an algorithm inspired by the interior-point
(primal-dual) solution of the bin packing LP. However, it remains an open problem to obtain
a polynomial-time (1 + ε)-competitive algorithm for online bin packing under the i.i.d. model
for arbitrary general distributions. In fact, the present best polynomial-time algorithm for
bin packing under the i.i.d. model is BF which has an ECR of at most 3/2. However, Albers
et al. [1] showed that BF has an ECR ≥ 1.1 even for a simple distribution: when each item
has size 1/4 with probability 3/5 and size 1/3 with probability 2/5.

We also study the random-order model, where the adversary specifies the items, but the ar-
rival order is permuted uniformly at random. The performance measure in this model is called
asymptotic random order ratio (ARR): RR∞

A := lim sup
m→∞

(
supI:Opt(I)=m(E[A(Iσ)]/Opt(I))

)
.

Here, σ is drawn uniformly at random from Sn, the set of permutations of n elements, and
Iσ := (xσ(1), . . . , xσ(n)) is the permuted list. Random-order model generalizes the i.i.d. model
[1], thus the lower bounds in the random-order model can be obtained from the i.i.d. model.
Kenyon in her seminal paper [32] studied Best-Fit under random-order and showed that
1.08 ≤ RR∞

BF ≤ 3/2. She conjectured that RR∞
BF ≤ 1.15. The conjecture, if true, raises the

possibility of a better alternate practical offline algorithm: first shuffle the items randomly,
then apply Best-Fit. This then beats the AAR of 71/60 of the present best practical algorithm
MFFD. The conjecture has received a lot of attention in the past two decades and yet, no
other polynomial-time algorithm is known with a better ARR than BF. Coffman et al. [30]
showed that RR∞

NF = 2. Fischer and Röglin [21] achieved analogous results for Worst-Fit
[27] and Smart-Next-Fit [39]. Recently, Fischer [9] presented an exponential-time algorithm,
claiming an ARR of (1 + ε).

Monotonicity is a natural property of BP algorithms, which holds if the algorithm never
uses fewer bins to pack Î when compared I, where Î is obtained from I by increasing the
item sizes. Murgolo [37] showed that while NF is monotone, BF and FF are not.

Several other problems have been studied under the i.i.d. model and the random-order
model [16, 23, 18, 22, 19, 2, 20, 36, 24].

ICALP 2022
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1.1 Our Contributions
Bin packing under the i.i.d. model. We achieve near-optimal performance guarantee for
the bin packing problem under the i.i.d. model, thus settling the problem. For any arbitrary
unknown distribution F on (0, 1], we give a meta-algorithm (see Algorithm 1) that takes
an α-asymptotic approximation algorithm as input and provides a polynomial-time (α + ε)-
competitive algorithm. Note that both the distribution F as well as the number of items n

are unknown in this case.

▶ Theorem 1. Let ε ∈ (0, 1) be a constant parameter. For online bin packing under
the i.i.d. model, where n items are sampled from an unknown distribution F , given an
offline algorithm Aα with an AAR of α and runtime β(n), there exists a meta-algorithm
(Algorithm 1) which returns a solution with an ECR of (α + ε) and runtime O(β(n)). 2

Using an AFPTAS for bin packing (e.g. [15]) as Aα, we obtain the following corollary.

▶ Corollary 2. Using an AFPTAS for bin packing as Aα in Theorem 1, we obtain an
algorithm for online bin packing under the i.i.d. model with an ECR of (1 + ε) for any
ε ∈ (0, 1/2).

Most algorithms for bin packing under the i.i.d. model are based on the following idea.
Consider a sequence of 2k items where each item is independently drawn from an unknown
distribution F , and let A be a packing algorithm. Pack the first k items using A; denote the
packing by P ′. Similarly, let P ′′ be the packing of the next k items using A. Since each item
is drawn independently from F , both P ′ and P ′′ have the same properties in expectation; in
particular, the expected number of bins used in P ′ and P ′′ are the same. Thus, intuitively, we
want to use the packing P ′ as a proxy for the packing P ′′. However, there are two problems.
First, we do not know n, which means that there is no way to know what a good sample
size is. Second, we need to show the stronger statement that w.h.p. P ′ ≈ P ′′. Note that
the items in P ′ and P ′′ are expected to be similar, but they may not be the same. So, it is
not clear which item in P ′ is to be used as a proxy for a newly arrived item in the second
half. Due to the online nature, erroneous choice of proxy items can be quite costly. Different
algorithms handle this problem in different ways. Some algorithms exploit the properties of
particular distributions, some use exponential or pseudo-polynomial time, etc.

Rhee and Talagrand [41, 42] used upright matching to decide which item can be considered
as a proxy for a newly arrived item. They consider the model packing Pk of the first k items
(let’s call these the proxy items) using an offline algorithm. With the arrival of each of the
next k items, they take a proxy item at random and pack it according to the model packing.
Then, they try to fit in the real item using upright matching. They repeat this process until
the last item is packed. However, they could only show a guarantee of Opt + O(

√
n log3/4 n).

The main drawback of [42] is that their ECR can be quite bad if Opt≪ n (say, Opt =
√

n).
One of the reasons for this drawback is that they don’t distinguish between small and large
items; when there are too many small items, the ECR blows up.

Using a similar approach, Fischer [9] obtained a (1+ε)-competitive randomized algorithm
for the random-order model, but it takes exponential time, and the analysis is quite complic-
ated. The exponential time was crucial in finding the optimal packing which was then used
as a good proxy packing. However, prior to our work, no polynomial-time algorithm existed
which achieves a (1 + ε) competitive ratio.

2 As mentioned in an earlier footnote, the O(·) notation hides some constants depending on ε here.
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To circumvent these issues, we treat large and small items separately. However, a
straightforward adaptation faces several technical obstacles. Thus our analysis required
intricate applications of concentration inequalities and sophisticated use of upright matching.
First, we consider the semi-random case when we know n. Our algorithm works in stages.
For a small constant δ ∈ (0, 1], the first stage contains only δ2n items. These items give us
an estimate of the distribution. If the packing does not contain too many large items, we
show that the simple Next-Fit algorithm suffices for the entire input. Otherwise, we use a
proxy packing of the set of first δ2n items to pack the next δ2n items. In the process, we
pack the small and large items differently. Then we use the proxy packing of the first 2δ2n

items to pack the next 2δ2n items and so on. In general, we use the proxy packing of the
first 2iδ2n items to pack the next 2iδ2n items.

Finally, we get rid of the assumption that we know n using a doubling trick (we guess n

first and keep doubling the guess if it turns out to be incorrect). However, there are several
difficulties (e.g. input stopping midway of two consecutive guesses, large wasted space in the
past stages). Yet, with involved technical adaptations, we can handle them (see Section 2.2).

Our algorithm is simple, polynomial-time (in fact, O(n) time), and achieves essentially
the best possible competitive ratio. It is relatively simpler to analyze when compared to
Fischer’s algorithm [9]. Also, unlike the algorithms of Rhee and Talagrand [42] as well as
Fischer [9], our algorithm is deterministic. This is because, unlike their algorithms, instead
of taking proxy items at random, we pack all the proxy items before the start of a stage
and try to fit in the real items as they come. This makes our algorithm deterministic. Our
algorithm is explained in detail in Section 2.1. The nature of the meta-algorithm provides
flexibility and ease of application. See Table 1 for the performance guarantees obtained using
different offline algorithms.

See Section 2 for the details of the proof and the description of our algorithm. In
fact, our algorithm can easily be generalized to d-dimensional online vector packing [6], a
multidimensional generalization of bin packing. See the full version for a d(α +ε) competitive
algorithm for d-dimensional online vector packing where the ith item Xi can be seen as a
tuple

(
X

(1)
i , X

(2)
i , . . . , X

(d)
i

)
where each X

(j)
i is independently sampled from an unknown

distribution D(j).

Bin packing under the random-order model. Next, we study BP under the random-order
model. Recently, Albers et al. [1] showed that BF is monotone if all the item sizes are greater
than 1/3. Using this result, they showed that in this special case, BF has an ARR of at most
5/4. We show that, somewhat surprisingly, in this case, BF actually has an ARR of 1 (see
Section 3.1 for the detailed proof).

▶ Theorem 3. For online bin packing under the random-order model, Best-Fit achieves an
asymptotic random-order ratio of 1 when all the item sizes are in (1/3, 1].

Next, we study the 3-partition problem, a special case of bin packing when all the item
sizes are in (1/4, 1/2]. This is known to be an extremely hard case [25]. Albers et al. [1]
mentioned that “it is sufficient to have one item in (1/4, 1/3] to force Best-Fit into anomalous
behavior.” E.g., BF is non-monotone in the presence of items of size less than 1/3. Thus the
techniques of [1] do not extend to the 3-Partition problem. We break the barrier of 3/2 in
this special case, by showing that BF attains an ARR of ≈ 1.4941.

▶ Theorem 4. For online bin packing under the random-order model, Best-Fit achieves an
asymptotic random-order ratio of ≈ 1.4941 when all the item sizes are in (1/4, 1/2].

ICALP 2022
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Table 1 Analysis of Algorithm 1 depending on Aα. In the first row, C is an absolute constant
and Cε is a constant that depends on ε.

Aα Time Complexity Expected Competitive Ratio

AFPTAS [15] O(Cε + Cn log 1/ε) (1 + ε)
Modified-First-Fit-Decreasing [29] O(n log n) (71/60 + ε)
Best-Fit-Decreasing [26] O(n log n) (11/9 + ε)
First-Fit-Decreasing [26] O(n log n) (11/9 + ε)
Next-Fit-Decreasing [3] O(n log n) (T∞ + ε)
Harmonic [33] O(n) (T∞ + ε)
Next-Fit O(n) (2 + ε)

We prove Theorem 4 in Section 3.2. As 3-partition instances are believed to be the hardest
instances for bin packing, our result gives a strong indication that the ARR of BF might be
strictly less than 3/2.

2 Online Bin Packing Problem under the i.i.d. Model

In this section, we provide the meta algorithm as described in Theorem 1. For the ease of
presentation, we split this into two parts. In Section 2.1, we assume a semi-random model,
i.e., we assume that the number of items n is known beforehand and design an algorithm.
Later, in Section 2.2, we get rid of this assumption.

Let the underlying distribution be F . Without loss of generality, we assume that the
support set of F is a subset of (0, 1]. For any set of items J , we define W(J) as the sum
of weights of all the items in J . For any k ∈ N+, we denote the set {1, 2, . . . , k} by [k]. Let
ε ∈ (0, 1) be a constant parameter and let 0 < δ < ε/8 be a constant. Let Aα be an offline
algorithm for bin packing with an AAR of α > 1 and let Opt denote the optimal algorithm.
For any i ∈ [n], we call xi to be a large item if xi ≥ δ and a small item otherwise. Let Iℓ

and Is denote the set of large and small items in I, respectively.

2.1 Algorithm Assuming that the Value of n is Known
We now describe our algorithm which assumes the knowledge of the number of items. For
simplicity, in this section we assume both n and 1/δ2 to be powers of 2. Otherwise, we
can round down δ ∈ [1/2i+1, 1/2i), i ∈ N to 1/2i+1. Also, we will anyway get rid of the
assumption on the knowledge of n in the next subsection, and there we do not need n to
be a power of 2. We denote this algorithm by Alg. First, we give a high level idea of the
algorithm. We divide the entire input into stages as follows: we partition the input set I

into m :=
(
log(1/δ2) + 1

)
stages T0, T1, . . . , Tm−1. The zeroth stage T0, called the sampling

stage, contains the first δ2n items, i.e., x1, x2, . . . , xδ2n. For j ∈ [m − 1], Tj contains the
items with index starting from 2j−1δ2n + 1 till 2jδ2n. In essence, T0 contains the first δ2n

items, T1 contains the next δ2n items, T2 contains the next 2δ2n items, and so on. Note
that the number of stages m is a constant. In any stage Tj , we denote the set of large items
and small items by Lj and Sj , respectively. For j ∈ [m− 1], let Tj denote the set of items
which have arrived before the stage Tj , i.e., Tj = T0 ∪ T1 ∪ · · · ∪ Tj−1. Similarly, we define
Lj and Sj as the set of large items and small items, respectively, in Tj . Note that for any
j ∈ [m − 1], |Tj | =

∣∣Tj

∣∣ and since all the items are sampled independently from the same
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distribution, we know that with high probability, the optimal solutions of Tj and Tj are quite
similar. Since Tj would have arrived before Tj , we compute an almost optimal packing of Tj

(in an offline manner) and use it as a blueprint to pack Tj .
The algorithm is as follows: first, we pack T0, the sampling stage using Next-Fit. The

sampling stage contains only a small but a constant fraction of the entire input set; hence it
uses only a few number of bins when compared to the final packing but at the same time
provides a good estimate of the underlying distribution. If the number of large items in the
sampling stage is at most δ3W(T0), then we continue using Next-Fit for the rest of the entire
input too. Intuitively, NF performs well in this case as most of the items are small. Thus,
from now on, let us assume otherwise. Now assume that we are at an intermediate point
where Tj has arrived and Tj is about to arrive (j ≥ 1). We create Dj , the set of proxy items,
which is just a copy of Tj . We pack Dj using Aα. Let this packing be denoted by Pj . Let
B

(k)
j denote the kth bin in the packing Pj . We iterate over k and remove all the small items

in the bin B
(k)
j and create a slot in the free space of B

(k)
j . We call this slot to be an S-slot.

When an item xi ∈ Tj arrives, we check if xi is small or large
If xi is small, we pack it in one of the S-slots greedily, using Next-Fit. If it doesn’t fit in
any of the S-slots, then we create a new bin with only one S-slot spanning the entire bin
(so, this bin will only be used to pack small items), and pack it there.
If xi is large, we remove the smallest proxy item with a size more than xi in the packing
Pj and pack it there. If no such proxy item exists, we open a new bin, pack xi in there
and close it, meaning that it will not be used to pack any further items.

After Tj is packed completely, we just discard the proxy items in the packing that haven’t
been replaced and move to the next stage. For more formal details and pseudocode for the
algorithm, please refer to Algorithm 1.

We will proceed to analyze the algorithm. But first, we will discuss stochastic upright
matching and a standard result on it. Using a standard probabilistic concentration lemma,
we will formulate a few lemmas which are going to be very important for the analysis of the
algorithm.

Stochastic Upright Matching. Rhee and Talagrand [43] studied stochastic upright
matching problem in the context of analysis of bin packing algorithms. Consider a set
P = {(xi, yi)}i∈[2n] of 2n points where each xi is either +1 or −1 with equal probability
and y1, y2, . . . , y2n are sampled according to an i.i.d. distribution. We can define a bipartite
graph G as follows: the vertex set is P , viewed as a set of points in R × R. Two points
P1 = (x1, y1), P2 = (x2, y2) share an edge iff x1 = 1, x2 = −1 and y1 ≥ y2.

The objective of the problem is to find a maximum matching in G or, in other words,
minimize the number of unmatched points which we denote by U(P ). We denote this
matching variant by M. The following lemma shows that w.h.p., the number of unmatched
points is O(

√
n(log n)3/4). The proof of the lemma follows from Lemma 3.1 in [43].

▶ Lemma 5 ([43]). Let P be an instance for M. Then there exist constants a, C, K > 0
such that, P

[
U(P ) ≥ K

√
n(log n)3/4] ≤ C exp

(
−a(log n)3/2) .

Concentration Inequalities. Now we state the concentration inequalities.

▶ Lemma 6 (Bernstein’s Inequality). Let X1, X2, . . . , Xn be independent random variables
such that each Xi ∈ [0, 1]. Then, for any λ > 0, the following inequality holds.

P

[∣∣∣∣∣
n∑

i=1
Xi −

n∑
i=1

E [Xi]

∣∣∣∣∣ ≥ λ

]
≤ 2 exp

(
− λ2

2 (
∑n

i=1 E [Xi] + λ/3)

)
.

ICALP 2022
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Algorithm 1 Alg(x1, x2, . . . , xn): A nearly optimal algorithm for online bin packing assuming
that the number of items n is known before-hand.

1: Input: In(D) = {x1, x2, ..., xn}.
2: for i= 1 to δ2n do ▷ Sampling Stage, T0
3: Pack xi using NF.
4: end for
5: if |L0| ≤ δ3W(T0) then ▷ Very few large items
6: Use NF for all remaining stages.
7: else
8: for j= 1 to m− 1 do
9: Dj ← Tj ; L(Dj)← set of large items in Dj .

10: Pack Dj using Aα.
11: Let the packing be denoted by Pj . ▷ Packing of proxy items
12: Sj ← ϕ. ▷ the set of S-slots
13: for bin B in Pj do
14: Remove the small items in B.
15: Create an S-slot H of size equal to (1−weight of all the large items in B).
16: Sj ← Sj ∪H.
17: end for
18: for xi ∈ Tj do
19: if xi is large then
20: if ∃d ∈ L(Dj) such that d ≥ xi then
21: Find smallest such d.
22: L(Dj)← L(Dj) \ {d}.
23: Pack xi in place of d in the packing Pj .
24: else
25: Open a new bin and pack xi and close the bin.
26: end if
27: else
28: Try packing xi in Sj using Next-Fit.
29: if xi couldn’t be packed then
30: Open a new bin B′ with a single S-slot of unit capacity.
31: Sj ← Sj ∪B′.
32: Pack xi in B′.
33: end if
34: end if
35: end for
36: end for
37: end if

The following lemma is a direct implication of the results of [42, 40].

▶ Lemma 7. For any t ∈ [n], let I(1, t) denote the first t items of the input set I. Then
there exist constants K, a > 0 such that, P

[
Opt(I(1, t)) ≥ t

nE [Opt(I)] + K
√

n(log n)3/4] ≤
exp

(
−a(log n)3/2) .

The following lemmas are about how a property of a part of the input (say, the total size)
compares to that of the entire input.
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▶ Lemma 8. For an input set I of n items drawn from a distribution independ-
ently, for any arbitrary set J ⊆ I we have, P

[∣∣∣W(J)− |J|
n E [W(I)]

∣∣∣ ≥ E [W(I)]2/3
]
≤

2 exp
(
− 1

3E [W(I)]1/3
)

.

▶ Lemma 9. Let I be an input set of n items drawn from a distribution independently and
let J be any subset of I. Suppose Jℓ (resp. Iℓ) denote the set of large items in J (resp. I).
Then we have, P

[∣∣∣|Jℓ| − |J|
n E [|Iℓ|]

∣∣∣ ≥ E [W(I)]2/3
]
≤ 2 exp

(
− δ

3E [W(I)]1/3
)

.

▶ Lemma 10. For any t ∈ {1, 2, . . . , n}, Suppose I(1, t) denote the first t items of the
input set I. Then there exist constants C, a > 0 such that with probability at least 1 −
exp

(
−a (logE [Opt(I)])1/3

)
, we have Opt(I(1, t)) ≤ (1 + 2δ) t

nE [Opt(I)] + CE [Opt(I)]2/3
.

Lemma 7 (resp. Lemmas 8 and 9) intuitively states that the optimal solution for (resp.
the weight of the items of, and the number of large items in) a part of the input is almost a
linear function of the length of the part. This makes sense because each item comes from the
same distribution. Lemma 10 further tries to improve on Lemma 7 by bounding the lower
order terms in terms of E [Opt(I)] instead of n while losing only a small factor of 1 + 2δ.
This is crucial since we need to bound the number of additional bins used by our algorithm
in terms of E [Opt(I)] and not in terms of n. We give the proofs of Lemmas 7–10 in the
full version. As mentioned, Lemma 7 follows from [42, 40]. Lemmas 8 and 9 are simple
applications of Bernstein’s inequality. The high-level proof of Lemma 10 goes as follows:
first we consider the optimal packing of the large items in I(1, t), then we pack the small
items in I(1, t) greedily. If the small items open new bins then it means that all the bins
(except one) are filled up to a level at least 1− δ. Otherwise, we don’t use any extra bins. So,
Opt(I(1, t)) ≤ max{Opt(Iℓ(1, t)), (1 + 2δ)W(I(1, t)) + 1}. Then we use Lemmas 7, 8 and 9
to prove Lemma 10.

With these helpful lemmas, we now proceed to analyze the algorithm. We split the
analysis into the following two cases: when |L0| ≤ δ3 · W(T0) and when |L0| > δ3 · W(T0).

2.1.1 Case 1: |L0| ≤ δ3 · W(T0)
Recall that in this case, we just continue with Next-Fit for all the remaining items. To bound
the Next-Fit solution, we first consider the number of bins that contain at least one large
item. For this, we bound the value of |Iℓ|. Then we consider the bins that contain only small
items and bound this value in terms of weight of all items W(I).

▷ Claim 11. Let K := E [Opt(I)]. For some positive constants C1, C2, a, we have that
P
[
|Iℓ| ≤ δ · W(T0) + C1K2/3] ≥ 1− C2 exp

(
−aK1/3) .

Proof. As the sampling stage contains δ2n items, E [|L0|] = δ2E [|Iℓ|]. From Lemma 9, we
have P

[
|L0| ≤ δ2E [|Iℓ|]− E [W(I)]2/3

]
≤ 2 exp

(
−(δ/3) · (E [W(I)])1/3), and

P
[
|Iℓ| ≥ E [|Iℓ|] + E [W(I)]2/3

]
≤ 2 exp

(
−(δ/3) · E [W(I)]1/3

)
. From the above inequal-

ities we have, |Iℓ| ≤ 1
δ2 |L0| +

(
1 + 1

δ2

)
E [W(I)]2/3 with probability at least 1 −

4 exp
(
− δ

3E [W(I)]1/3
)

. We can use the inequalities E [Opt(I)] ≥ E [W(I)] and |L0| ≤
δ3 · W(T0) to conclude the proof of this claim. ◁

Now we bound the number of bins that are closed by small items. Note that Next-Fit
fills each such bin up to a capacity at least (1− δ). So, the number of such bins is at most

1
1−δW(I) when all items are packed by Next-Fit. Also, there can be at most one bin that
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can be open. Thus combining all these results, (and using inequality 1
1−δ ≤ 1 + 2δ for

δ < 1
2 ) with high probability, NF(I) ≤ |Iℓ|+ (1 + 2δ)W(I) + 1 ≤ δ · W(T0) + (1 + 2δ)W(I) +

KE [Opt(I)]2/3 , for some constant K.
Using Lemma 8, we get that with high probability,W(I) ≤ E [W(I)]+E [W(I)]2/3. Using

the facts W(I) ≥ W(T0) and E [Opt(I)] /2 ≤ E [W(I)] ≤ E [Opt(I)], we get,

NF(I) ≤ (1 + 3δ)E [Opt(I)] + C3E [Opt(I)]2/3 (1)

with probability of at least 1−C4 exp
(
−a1E [Opt(I)]1/3

)
for some constants C3, C4, a1 > 0.

When the low probability event occurs, we can use the upper bound of NF(I) ≤ 2Opt(I)− 1
to obtain the competitive ratio. Let p = C4 exp

(
−a1E [Opt(I)]1/3

)
.

E [NF(I)] ≤ (1− p)
(

(1 + 3δ)E [Opt(I)] + KE [Opt(I)]2/3 + 1
)

+ p(2E [Opt(I)]− 1)

= (1 + 3δ + 2p)E [Opt(I)] + o(E [Opt(I)])

Since p = o(1) when E [Opt(I)] tends to infinity, we obtain that the expected competitive
ratio tends to at most 1 + 3δ < 1 + ε.

2.1.2 Case 2: |L0| > δ3 · W(T0)
We split our analysis in this case into two parts. We first analyze the number of bins used in
the sampling stage T0 and then analyze the number of bins used in the remaining stages.

Using Lemma 9, we obtain w.h.p. that |L0| ≤ δ2E [|Iℓ|] + E [W(I)]2/3. Hence,

E [|Iℓ|] ≥
1
δ2 |L0| −

1
δ2E [W(I)]2/3

≥ δW(T0)− 1
δ2E [W(I)]2/3 (since |L0| > δ3 · W(T0))

≥ δ3E [W(I)]−
(

δ + 1
δ2

)
E [W(I)]2/3 (2)

The last inequality follows from Lemma 8. For any j ≥ 1, using |Tj |/n ≥ δ2 and using
Lemma 9, we get,

|Lj | ≥ δ5E [W(I)]− (2 + δ3)E [W(I)]2/3 (3)

Each of the Eqs. (2),(3) holds with a probability of at least 1− C exp
(
−aE [W(I)]1/3

)
for some constants C, a > 0.

Note that W(I) ≥ Opt(I)/2. So from now on we assume that there exist constants
C1, C2 > 0 which depend on δ such that w.h.p. both the following inequalities hold.

E [|Iℓ|] ≥ C1 · E [Opt(I)] (4)
|Lj | ≥ C2 · E [Opt(I)] (5)

Analysis of the Sampling Stage: Recall that the number of items considered in the
sampling phase is δ2n. We will bound the number of large items and the weight of items
in this stage using Bernstein’s inequality.

1. Since sampling phase has δ2n items, E [|L0|] = δ2E [|Iℓ|]. By applying Bernstein’s
inequality for X1, X2, . . . , X|T0| where Xi takes value 1 is xi is large and 0 otherwise,
we get,
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P
[
|L0| ≥ 2δ2E [|Iℓ|]

]
= P

[
|L0| ≥ E [|L0|] + δ2E [|Iℓ|]

]
≤ 2 exp

(
− δ4E [|Iℓ|]2

2E [|L0|] + 2
3 δ2E [|Iℓ|]

)
≤ 2 exp

(
−1

3δ2E [|Iℓ|]
)

≤ 2 exp (−a1 · E [Opt(I)]) (from Equation (4))

for some constant a1 > 0. So, with high probability, |L0| ≤ 2δ2E [|Iℓ|] ≤ 2δE [Opt(I)].
2. Similarly, E [W(T0)] = δ2E [W(I)]. By applying Bernstein’s inequality for

X1, X2, . . . , X|T0| where Xi takes value xi, we get,

P
[
W(T0) ≥ 2δ2E [W(I)]

]
= P

[
W(T0) ≥ E [W(S0)] + δ2E [W(I)]

]
≤ 2 exp

(
−δ4E [W(I)]2

2δ2E [W(T0)] + 2
3 δ2E [W(I)]

)

≤ 2 exp
(
−δ2

3 E [W(I)]
)
≤ 2 exp

(
−δ2E [Opt(I)]

6

)
So, with high probability we have, W(T0) ≤ 2δ2E [W(I)]≤ 2δ2E [Opt(I)].

Since the number of bins opened by Next-Fit NF(T0) is at most |L0|+ 1
1−δW(T0) + 1,

using the bounds on the number of large items and weight of small items in sampling
phase, w.h.p. we have,

NF(T0) ≤ 2δE [Opt(I)] + 2δ2

1− δ
E [Opt(I)] ≤ 4δE [Opt(I)] (6)

Analysis of the Remaining Stages: Consider any stage Tj (j > 0) after the sampling
stage. Note that

∣∣Tj

∣∣ = |Tj |. A bin can be opened in three different ways.
1. When a new bin is opened while packing the set of proxy items Dj using Aα (see the

algorithm description in Section 2.1).
2. When a large item can’t replace a proxy item and hence a new bin is opened for it.
3. When a small item can’t fit in the set of S-slots and hence a new bin is opened with a

single S-slot spanning the entire bin.
In our analysis, first we bound the number of bins opened by Aα for proxy items; we use
Lemma 10 to obtain this bound. Then we show that the number of large items which
cannot replace a proxy item would be very small by using upright matching arguments
(Lemma 5). For small items, we bound the number of new bins opened by using the fact
that W(Sj) and W(Sj) are very close which will be proved using Bernstein’s inequality.

Now we analyze the number of bins opened in the first way (say Aj
proxy). This is nothing

but the number of bins opened by Aα to pack Tj . Since, Aα has an AAR of α, by using
Lemma 10, we have,

Aj
proxy = Aα(Tj) ≤ αOpt(Tj) + o(Opt(Tj))

≤ α(1 + 2δ)(
∣∣Tj

∣∣/n)E [Opt(I)] + C3E [Opt(I)]2/3 + o(Opt(I)) (7)

with probability at least 1− exp
(
−a2 log(E [Opt(I)])1/3), for some constants C3, a2 > 0.

We now bound the number of bins opened in the second way. Using Lemma 9, we get
that w.h.p.,

∣∣Lj

∣∣ ≥ |Tj|
n E [|Iℓ|]− E [W(I)]2/3, and |Lj | ≤ |Tj |

n E [|Iℓ|] + E [W(I)]2/3. Since∣∣Tj

∣∣ = |Tj | we have,

|Lj | ≤
∣∣Lj

∣∣+ 2E [W(I)]2/3
. (8)
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So, w.h.p. the number of large items in Tj doesn’t exceed that of those in Tj by a large
number. Now consider the number of bins opened because there is no feasible proxy item
that can be replaced. Let this number be Aj

unmatch. We can interpret this number as the
number of unmatched items when we use the stochastic matching variant M from [43]
as follows. We can interpret each item t ∈ Lj as a point Pt := (+1, t) and each point
t ∈ Lj as a point Pt := (−1, t). For simplicity, let’s call the points with +1 as their first
coordinate as plus points and the points with −1 as their first coordinate as minus points.
We match a point Pt with Pt iff t replaced t in our algorithm. It is shown in [44] that such
matching is always maximum. Hence the number of items that open new bins is at most
the number of unmatched points in this maximum matching. There are two differences
though. First,

∣∣Lj

∣∣ may not be greater than |Lj |; but as we have shown, w.h.p, the
difference can at most be 2E [W(I)]2/3. Secondly, in the matching variantM, every point
has equal chance to be a plus point or minus point. However, this is also inconsequential,
since using concentration bounds for binomial random variables, we can show that the
number of plus points/minus points lie in the range

(
E
[∣∣Lj

∣∣]± E
[∣∣Lj

∣∣]2/3) w.h.p. Hence
by Lemma 5, we obtain that there exist constants a3, C4, K1 s.t.

P
[
Aj

unmatch ≥ K1

√∣∣Lj

∣∣ (log
∣∣Lj

∣∣)3/4 + 2E [W(I)]2/3 + 2E
[∣∣Lj

∣∣]2/3
]

≤ C4 exp
(
−a3(log

∣∣Lj

∣∣)3/2
)

We can simplify the above inequality using Equations (5) and (8) and the fact that
Opt(I) ≤ 2W(I) to obtain that there exist constants a4, C4, K2 > 0 such that,

P
[
Aj

unmatch ≥ K2E [Opt(I)]2/3
]
≤ C4 exp

(
−a4(logE [Opt(I)])3/2

)
(9)

The only part left is to bound the number of bins opened by small items in third
way. Let this number be Aj

small. We will bound this by using the concentration of
weights of small items in Tj and Tj . Consider the random variables X1, X2 . . . Xn where
Xi = 0 if xi is large, and Xi = xi otherwise. We have that W(Sj) =

∑
Xi:xi∈Tj

Xi

and W(Sj) =
∑

Xi:xi∈Tj

Xi. By applying Bernstein’s inequality (similar to Lemma 8)

we get, W(Sj) ≤ |Tj |
n W(Is) + E [W(I)]2/3

, and W(Sj) ≥ |Tj|
n W(Is)− E [W(I)]2/3 with

a probability of at least 1 − C5 exp
(
−a5E [W(I)]1/3

)
for some constants C5, a5 > 0.

Combining both, we get,

W(Sj) ≤ W(Sj) + 2E [W(I)]2/3 (10)

The initial allocated space for small items at the start of stage j in the packing Pj is
W(Sj). Recall that B

(k)
j denotes the kth bin in the packing of Pj . While packing the

small items, if the S-slot in B
(k)
j cannot accommodate a small item, this means that

the remaining space in this S-slot is at most δ. So, the weight of small items which
overflow the space allocated in packing Pj is at most W(Sj)−W(Sj) + δ |Pj | and this
entire weight is packed in new bins opened exclusively for small items. Each of these bins
(except possibly one) have an occupancy of at least (1− δ). Since Aα is α-approximation
algorithm, |Pj | = Aα(Tj) ≤ αOpt(Tj) + o(Opt(I)). Using Equations (7) and (10) we get,
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Aj
small ≤

1
1− δ

(
W(Sj)−W(Sj) + δ · αOpt(Tj) + o(Opt(I))

)
+ 1

≤ 2δ · α
∣∣Tj

∣∣
n

E [Opt(I)] + C3E [Opt(I)]2/3 + o(Opt(I)) (11)

with high probability. Combining Equations (7), (9), and (11), the number of bins, Aj ,
opened in the stage j is bounded as,

Aj = Aj
proxy + Aj

unmatch + Aj
small

≤ α(1 + 4δ)
∣∣Tj

∣∣
n

E [Opt(I)] + C6E [Opt(I)]2/3 + o(Opt(I))

≤ α(1 + 4δ) |Tj |
n

E [Opt(I)] + C6E [Opt(I)]2/3 + o(Opt(I)) (12)

w.h.p., for some constant C6. To bound the sum of all Ajs, first note that the number
of “remaining stages” is m− 1 which is a constant dependent on δ. Hence, with high
probability,

m−1∑
j=1

Aj ≤ α(1 + 4δ)
m−1∑
j=1

∣∣Tj

∣∣
n

E [Opt(I)] + (m− 1) · C6E [Opt(I)]2/3 + o(Opt(I))

≤ α(1 + 4δ)E [Opt(I)] + C7E [Opt(I)]2/3 + o(Opt(I)) (13)

for some constant C7 > 0 dependent on δ.
In the sampling phase, we have NF(T0) ≤ 4δE [Opt(I)] with high probability and in all the
remaining phases we have

∑m−1
j=1 Aj ≤ α(1 + 4δ)E [Opt(I)] + C7E [Opt(I)]2/3 + o(Opt(I)).

Combining both the results we get that w.h.p. the number of bins opened by Alg is,

Alg(I) ≤ α(1 + 8δ)E [Opt(I)] + C7E [Opt(I)]2/3 + o(Opt(I))

≤ α(1 + ε)E [Opt(I)] + C7E [Opt(I)]2/3 + o(Opt(I)) (14)

In the low probability event when Equation (14) may not hold, we can bound Alg(I)
as follows. In the sampling stage, we have that Alg(T0) ≤ 2Opt(I)− 1. For the remaining
stages, we bound the number of bins containing at least one large item and the number of
bins containing only small items. Because we create a proxy packing at the start of each
stage, each large item is packed at most m times. So, the number of bins containing at least
one large item is at most m |Iℓ|. In each stage, with one possible exception, every bin opened
which has only small items has an occupancy of at least (1−δ). Combining over all the stages,
the number of bins which contain only small items is at most 1

1−δW(Is) + m. Thus, we can
bound the total number of bins used by Alg to be at most 2Opt(I) + m |Iℓ|+ 1

1−δW(Is) + m.
On the other hand, we know that Opt(I) ≥ W(I) ≥ δ |Iℓ|+W(Is). Hence, we obtain that
m |Iℓ|+ 1

1−δW(Is) ≤ m
δ(1−δ) Opt(I). Combining all these, we obtain that

Alg(I) ≤
(

2 + m

δ(1− δ)

)
Opt(I) + m (15)

Now, to obtain the competitive ratio, suppose Equation (14) holds with probability p(=
1− o(1)). We combine Equations (14) and (15) similar to the case when |L0| ≤ δ3 · W(T0).

E [Alg(I)] ≤ p(α(1 + 8δ)E [Opt(I)] + o(E [Opt(I)]))

+ (1− p)
((

2 + m

δ(1− δ)

)
E [Opt(I)] + m

)
≤ α(1 + ε)E [Opt(I)] + o(E [Opt(I)]) (since 1− p = o(1))

Scaling the initial value ε to ε/α before the start of the algorithm, we obtain a competitive
ratio of α + ε.
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Figure 1 Doubling trick visualized. We start off with an estimate of n to be n0 and keep doubling
it. The first and second super-stages contain n0 items each. The third super-stage contains 2n0

items and so on. Each super-stage is packed individually using Alg. The stages in each super-stage
are marked by • (for simplicity, only the stages in the last two super-stages are marked). The ×
mark indicates the point where the input abruptly stopped. Notice how the fifth stage of the last
super-stage is not full. Just before packing this stage, Alg constructs a proxy packing of χ by using
Aα. But this is very lossy since χ is large compared to this last stage.

2.2 Getting Rid of the Assumption on the Knowledge of the Input Size
In this subsection, we will extend Alg for online bin packing with i.i.d. items to devise an
algorithm that guarantees essentially the same competitive ratio without knowing the value
of n. We denote this algorithm by ImpAlg.

We use a doubling trick as follows. We first guess the value of n to be a constant
n0 := 1/δ3. Then, we run Alg until min{n, n0} items arrive (here, if min{n, n0} = n, then it
means that the input stream has ended). If n > n0, i.e., if there are more items to arrive,
then we revise our estimate of n by doubling it, i.e., the new value of n is set as n1 := 2n0.
We start Alg afresh on the next min{n, n1} − n0 items. If n > 2n0, then we set the new
guess of n to be n2 := 2n1 = 22n0 and start Alg afresh on the next min{n, n2} − n1 number
of items. We continue this process of doubling our estimate of n until all the items arrive.
See Figure 1 for an illustration. The pseudocode is provided in the full version.

We consider the following partition of the entire input into super-stages as follows: The
first super-stage, Γ0, contains the first n0 items. The second super-stage, Γ1, contains the next
n1 − n0 items. In general, for i > 0, the (i + 1)th super-stage, Γi, contains min{ni, n} − ni−1
items which are given by xni−1+1, xni−1+2, . . . , xmin{n,ni}. So, essentially, ImpAlg can be
thought of running Alg on each super-stage separately. The number of super-stages is given
by κ := ⌈log(n/n0)⌉. The last super-stage might not be full, i.e., ideally, it should contain
n/2 items but it may not. An even worse case would be when the last stage of the last
super-stage is not full, i.e., when it contains fewer than |Γτ−1| /2 items where Γτ−1 is the
last super-stage. To see why this is bad, note that since we had assumed the value of n in
Alg, it was possible to make sure that the last stage had exactly n/2 items. This is crucial
because our analysis heavily relied on the fact that |Tj | =

∣∣Tj

∣∣ for any stage Tj . This meant
that the item set Tj fit almost perfectly in the proxy packing of Tj . But if the last stage
Tm−1 contains far fewer items than Tm−1, then we might be opening far too many proxy
bins than required (see the description of the last super-stage in Figure 1). Hence, we need a
slight tweak in Alg in the way it packs a stage.

2.2.1 A Tweak to Alg in the Way in which a Stage is Packed
Recall that for any j > 1, we pack Tj as follows. Just before the stage Tj starts, we pack Tj

using Aα (the proxy packing). Instead of packing the entire set Tj at once, we do this in
chunks. We divide the entire set Tj into η := 1/δ number of equal chunks. Let’s denote these
chunks by Tj

(1)
, Tj

(2)
, . . . , Tj

(η). Suppose each chunk contains cj number of items. We first
pack Tj

(1) using Aα . Let this packing be denoted by P(1)
j . We pack the first cj items of Tj

by fitting them in the packing P(1)
j just like we packed a stage in Alg by creating S-slots for

small items and replacing a proxy item if we need to pack a large item. Then, we pack Tj
(2)
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using Aα and fit the next cj items of Tj in this packing just like before. We continue this
process until all the items in Tj are packed. This way, if the size of Tj is very small compared
to that of Tj , then we only compute the proxy packing of only a few chunks and not of the
entire set Tj . On the other hand, if |Tj | is significant when compared to

∣∣Tj

∣∣, then we are
anyway good since the number of chunks η is a constant. Intuitively, the optimal solution
for Tj and the union of optimal solutions for η chunks Tj

(1)
, Tj

(2)
, . . . , Tj

(η) are close enough
when η is a constant. See the pseudocode of PackStage in the full version for details.

2.2.2 Analysis
The analyses of both ImpAlg and the tweak to Alg can be found in the full version. The
intuition to why the tweak to Alg doesn’t cause much problem has already been provided
above. The analysis of ImpAlg is a bit complicated though. When n was known we had O(1)
stages. However, now we can have κ := ⌈log(n/n0)⌉ number of super-stages. There can arise
two problems:

We can not analyze each super-stage individually and then sum up the performance
guarantees, as we can not use union bound for a super-constant number of events.
Moreover, we can’t even use the analysis of Alg for the first few super-stages since they
might only have a constant number of items. So, we consider the κ1 :=

⌈
log(δ7n)

⌉
number

of the initial super-stages at a time. We show that these initial super-stages contain
only a small fraction of the entire input. Each of the final (κ− κ1) super-stages can be
individually analyzed using the analysis of Alg.
For each super-stage, we can have a constant number of S-bins (bins which contain
only small items) with less occupancy. However, since the number of super-stages itself
is a super-constant, this can result in a lot of wasted space. For this, we exploit the
monotonicity of NF to ensure that we can pack small items from a super-stage into empty
slots for small items from the previous stages.

See the full version for the details.

3 Best-Fit under the Random-Order Model

In this section, we will prove Theorems 3 and 4.

3.1 When Item Sizes are Larger than 1/3
First, let us recall upright matching and a related result that we will be using.

Upright Matching Problem. For a positive integer k, let Sk denote the set of all permuta-
tions of [k]. Consider a set of points P in the two-dimensional coordinate system. Suppose
each item is marked as a plus point or a minus point. Let P + denote the set of plus points
and let P − denote the set of minus points. An edge exists between two points p+, p− iff
p+ ∈ P +, p− ∈ P − and iff p+ lies above and to the right of p−, i.e., both the coordinates of
p+ are greater than or equal to the corresponding coordinates of p−. The objective is to find
a maximum matching in this graph or, in other words, minimize the number of unmatched
points. We denote the number of unmatched points by U(P ).

We will use the following variant of upright matching to prove the final result. Refer
to [9] for the proof of the following lemma.

▶ Lemma 12 ([9]). Let k ∈ N and let A = {a1, a2, . . . , a2k} such that ai ≥ ak+i for
all i ∈ [k]. Define a set of plus points P + = {(i, ai) : i ∈ [k]} and a set of minus
points P − = {(i, ai) : k < i ≤ 2k}. Suppose we randomly permute the x-coordinates of
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P + ∪ P −, i.e., for a uniform random permutation π ∈ S2k, we redefine P + and P − as
P + = {(π(i), ai) : i ∈ [k]} and P − = {(π(i), ai) : k < i ≤ 2k}. Let P = P + ∪ P −. Then,
there exist universal constants a, C, K > 0 such that

P
[
U(P ) ≥ K

√
k(log k)3/4

]
≤ C exp(−a(log k)3/2) (16)

▶ Remark 13. In the above lemma, if we change the definitions of P +, P − to be P +
new =

{(−π(i), ai) : i ∈ [k]}, P −
new = {(−π(i), ai) : k < i ≤ 2k}, the guarantee given by Equa-

tion (16) doesn’t change since the new set P +
new ∪P −

new can be constructed by taking a mirror
image of the original set P + ∪ P − with respect to the y-axis. Since we consider random
permutations, the probability of a set and its mirror image is the same.
With the above lemma and remark at hand, we now proceed to prove Theorem 3. Albers et
al. [1] showed that the asymptotic random order ratio of the Best-Fit algorithm is at most
1.25 when all the item sizes are more than 1/3. In this section, we improve it further and show
that, Best-Fit for this special case under the random-order model is nearly optimal. We first
show that the Modified Best-Fit algorithm [11] is nearly optimal and we analyze this using
the above variant of stochastic upright matching. The Modified Best-Fit (MBF) algorithm is
the same as BF except that it closes a bin if it receives an item of size less than 1/2. Shor[44]
showed that MBF dominates BF, i.e., for any instance I, BF(I) ≤ MBF(I). MBF can
be easily reduced to upright matching as follows. Given an instance I = {x1, . . . , xn}, for
any item xi ∈ I, xi ∈ P − if xi ≤ 1/2 with x-coordinate as −i and y-coordinate as xi, and
xi ∈ P + if xi > 1/2 with x-coordinate as −i and y-coordinate as 1− xi. So, any item xs of
size ≤ 1/2 can be matched with an item xℓ of size > 1/2 if and only if, xℓ arrives before xs

and the remaining space in the bin occupied by xℓ is more than the size of xs.
Define an item xi as a large item (L) if xi > 1/2; otherwise, as a medium item (M) if

xi ∈ (1/3, 1/2]. We define a bin as LM -bin if it contains one large item and one medium
item. We use the following lemma which was proved in [1] using the monotonicity property
of BF when all item sizes are more than 1/3.

▶ Lemma 14 ([1]). Let I be any list that can be packed into Opt(I) number of LM -bins. If
Best-Fit has an AAR of α for I, then it has an AAR of α for any list of items larger than
1/3 as well.

Consider an input instance which has an optimal packing containing only LM -bins.
Consider the number of bins opened by MBF for such instances. Each large item definitely
opens a new bin, and a medium item opens a new bin if and only if it can not be placed
along with a large item, i.e., it is “unmatched”. So, the number of bins opened by MBF
equals (number of large items+number of unmatched medium items).

Now, we will prove our result.

▶ Theorem 15. For any list I of items larger than 1/3, the asymptotic random order ratio
RR∞

BF = 1.

Proof. From Lemma 14, it is enough to prove the theorem for any list I that can be packed
in Opt(I) LM -bins. So, we can assume that I has k large items and k medium items where
Opt(I) = k. Now consider the packing of MBF for a randomly permuted list Iσ. We have,
MBF(Iσ) = (k+number of unmatched medium items). Since the optimal packing has all the
items matched, we can reduce the following case into the matching variant in Lemma 12: Let
ℓi, mi denote the sizes of the large item and the medium item respectively in the ith bin of the
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optimal solution. For i ∈ [k], we let ai = 1− ℓi and ak+i = mi and let A = {a1, a2, . . . , a2k}.
Note that the required condition in Lemma 12, i.e., ai ≥ ak+i is satisfied. The arrival order
is randomly sampled from S2k. So, we have

MBF(Iσ) = k + U(P )
2 ≤ k + K

√
k(log k)3/4

with probability of at least 1−C exp(−a(log k)3/2) for some universal constants a, C, K > 0.
Since MBF dominates BF we have

P
[
BF(Iσ) ≤ k + K

√
k(log k)3/4

]
≥ 1− C exp(−a(log k)3/2).

In case the high probability event does not occur, we can use the bound of BF(I) ≤
1.7Opt(I) + 2. Let p := C exp(−a(log k)3/2). Then

E [BF(Iσ)] ≤ p(1.7E [k] + 2) + (1− p)(E [k] + K
√
E [k](logE [k])3/4)

≤ E [Opt(I)] + o(E [Opt(I)]) (since p = o(1))

So, we get: RR∞
BF = lim sup

k→∞

(
sup

I:Opt(I)=k

(E[BF(Iσ)]/Opt(I))
)

= 1. This completes the

proof. ◀

3.2 The 3-Partition Problem under Random-Order Model
In this section, we analyze the Best-Fit algorithm under the random-order model given that
the item sizes lie in the range (1/4, 1/2], and thus prove Theorem 4. We call an item small if
its size lies in the range (1/4, 1/3] and medium if its size lies in the range (1/3, 1/2]. Let I be
the input list of items and let n := |I|. Recall that given σ, a uniform random permutation
of [n], Iσ denotes the list I permuted according to σ. We denote by Opt(Iσ), the number of
bins used in the optimal packing of Iσ and by BF(Iσ), the number of bins used by Best-Fit
to pack Iσ. Note that Opt(Iσ) = Opt(I).

If there exists a set of three small items in Iσ such that they arrive as three consecutive
items, we call that set to be an S-triplet. We call a bin to be a k-bin if it contains exactly
k items, for k ∈ {1, 2, 3}. We sometimes refer to a bin by mentioning its contents more
specifically as follows: An MS-bin is a 2-bin which contains a medium item and a small
item. Similarly, an SSS-bin is a 3-bin which contains three small items. Likewise, we can
define an M -bin, S-bin, MM -bin, SS-bin, MMS-bin, and MSS-bin.

Since the item sizes lie in (1/4, 1/2], any bin in the optimal packing contains at most
three items. For the same reason, in the packing by Best-Fit, every bin (with one possible
exception) contains at least two items. This trivially shows that the ECR of Best-Fit is at
most 3/2. To break the barrier of 3/2, we use the following observations.

Any 3-bin must contain a small item.
So, if the optimal solution contains a lot of 3-bins, then it means that the input set
contains a lot of small items.

We will prove that if there exist many small items in the input, then with high probability,
in a random permutation of the input, there exist many disjoint S-triplets.

▷ Claim 16. Let m be the number of small items in the input set I, and let Xσ denote the
maximum number of mutually disjoint S-triplets in Iσ. Suppose m ≥ cn where c = 0.00033,
then the following statements hold true:
1. E [Xσ] ≥ m3/(3n2)≥ c3n/3.
2. Xσ ≥ c3n/3− o(n) with high probability.
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Then, we prove that Best-Fit packs at least one small item from an S-triplet in a 3-bin
or in an SS-bin.

▷ Claim 17. Let {S1, S2, S3} be an S-triplet in I such that S3 follows S2 which in turn
follows S1. Then, in the final packing of Best-Fit of I, at least one of S1, S2, S3 is packed in
a 3-bin or in an SS-bin.

But the number of SS-bins in the final packing of Best-Fit can be at most one. So, we obtain
that the number of 3-bins in the Best-Fit packing is significant. With these arguments,
the proof of Theorem 4 follows. The detailed proofs of the above two claims and the final
theorem is given in the full version.

4 Conclusion

We studied online bin packing under two stochastic settings, namely the i.i.d. model, and
the random-order model. For the first setting, we devised a meta-algorithm which takes any
offline algorithm Aα with an AAR of α (where α can be any constant ≥ 1), and produces an
online algorithm with an ECR of (α + ε). This shows that online bin packing under the i.i.d.
model and offline bin packing are almost equivalent. Using any AFPTAS as Aα results in an
online algorithm with an ECR of (1 + ε) for any constant ε > 0. An interesting question of
theoretical importance is to find whether achieving an ECR of 1 is possible or not. Another
related open question is if we can settle online bin packing under the random-order model as
well.

Then, we studied the analysis of the well-known Best-Fit algorithm under the random-
order model. First, we proved that the ECR of Best-Fit is equal to one if all the item sizes
are greater than 1/3. Then, we improved the analysis of the Best-Fit from 1.5 to ≈ 1.4941,
for the special case when the item sizes are in the range (1/4, 1/2]. An open question is to
further improve this analysis since these instances are conjectured to be the hardest (offline)
instances of bin packing. Another interesting problem would be to improve the lower bound
on the ECR of Best-Fit in this model (which is currently 1.1 due to [2]).
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