
Fault-Tolerant Edge-Disjoint s-t Paths – Beyond
Uniform Faults
David Adjiashvili !

Department of Mathematics, ETH Zürich, Switzerland

Felix Hommelsheim !

Department of Mathematics and Computer Science, Universität Bremen, Germany

Moritz Mühlenthaler !

Laboratoire G-SCOP, Grenoble INP, Univ. Grenoble-Alpes, France

Oliver Schaudt
Department of Mathematics, RWTH Aachen University, Germany

Abstract
The Edge-disjoint s-t Paths Problem (s-t EDP) is a classical network design problem whose goal is
to connect for some k ≥ 1 two given vertices of a graph under the condition that any k − 1 edges of
the graph may fail. We extend the simple uniform failure model of the s-t EDP as follows: the edge
set of the graph is partitioned into vulnerable, and safe edges, and a set of at most k vulnerable
edges may fail, while safe edges do not fail. In particular we study the Fault-Tolerant Path (FTP)
problem, the counterpart of the Shortest s-t Path problem in this non-uniform failure model as well
as the Fault-Tolerant Flow (FTF) problem, the counterpart of s-t EDP. We present complexity
results alongside exact and approximation algorithms for both problems. We emphasize the vast
increase in complexity of the problems compared to s-t EDP.

2012 ACM Subject Classification Theory of computation → Routing and network design problems;
Theory of computation → Network flows; Mathematics of computing → Approximation algorithms

Keywords and phrases graph algorithms, network design, fault tolerance, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.5

Related Version Full Version: https://arxiv.org/abs/2009.05382

1 Introduction

The Minimum-Cost Edge-Disjoint s-t Path Problem (s-t EDP) is a classical network design
problem defined as follows. Given an edge-weighted directed graph D = (V, A), two terminal
vertices s, t ∈ V and an integer parameter k ∈ Z≥0, find k edge-disjoint paths connecting s

and t with minimum total cost. Equivalently, the problem s-t EDP asks for the minimum
cost of connecting two nodes in a network, given that any k − 1 edges can “fail” and hence
be a-posteriori removed from the graph. The assumption here is that faults are uniform
in the sense that every edge in the graph is equally vulnerable. Our goal is to advance the
understanding of network design problems in the presence of non-uniform faults. To this end
we study a natural generalization of s-t EDP called the Fault-Tolerant Path (FTP) problem,
in which we partition the set of edges into vulnerable and safe edges. The task is to find
a minimum-cost subgraph of a given graph that contains an s-t path after removing any k

vulnerable edges from the graph. Formally, the problem FTP is defined as follows.

© David Adjiashvili, Felix Hommelsheim, Moritz Mühlenthaler, and Oliver Schaudt;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 5; pp. 5:1–5:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.adjiashvili@ifor.math.ethz.ch
mailto:fhommels@uni-bremen.de
https://orcid.org/0000-0003-4444-9793
mailto:moritz.muhlenthaler@grenoble-inp.fr
https://orcid.org/0000-0002-2729-127X
https://doi.org/10.4230/LIPIcs.SWAT.2022.5
https://arxiv.org/abs/2009.05382
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Fault-Tolerant Edge-Disjoint s-t Paths

Fault-Tolerant Path (FTP)
Instance: edge-weighted directed graph D = (V, A), two vertices s, t ∈ V , set

M ⊆ A of vulnerable edges, and integer k ∈ Z≥0.
Task: Find minimum-cost set S ⊆ A such that S \ F contains an s-t path for

every F ⊆ M with |F | ≤ k.

Observe that if M = A then FTP is exactly s-t EDP. We also study a generalization of
s-t EDP with a simpler but still non-uniform fault model: The problem Fault-Tolerant Flow
(FTF) asks for ℓ ≥ 1 fault-tolerant disjoint s-t paths, assuming that only a single edge can
be a-posteriori removed from the graph:

Fault-Tolerant Flow (FTF)
Instance: edge-weighted directed graph D = (V, A), two vertices s, t ∈ V , set

M ⊆ A of vulnerable edges, and integer ℓ ∈ Z≥0.
Task: Find minimum cost set S ⊆ A such that S \ f contains ℓ disjoint s-t

paths for every f ∈ M .

1.1 Results
Consider the following well-known polynomial-time algorithm for s-t EDP: Assign unit
capacities to all edges in G and find a minimum-cost s-t flow of value k. The integrality
property of the LP formulation of the Minimum-Cost s-t Flow (MCF) problem guarantees
that there is always an integer extreme-point. Such a point corresponds to a set of edges of
an optimal solution and can be found in polynomial time (see for example [18]). It is natural
to ask whether this approach works also for FTP, which generalizes s-t EDP. We give a
negative answer by showing that FTP is NP-hard and hence the existence of a polynomial
time algorithm for FTP is unlikely. In fact, the existence of constant-factor approximation
algorithms is unlikely even when input graphs are directed acyclic graphs. On the positive
side we provide polynomial-time algorithms for arbitrary graphs and k = 1 as well as directed
acyclic graphs and fixed k.

We furthermore investigate the approximatiblity of FTP using its fractional relaxation
FRAC-FTP, which is defined as follows.

Fractional FTP (FRAC-FTP)
Instance: edge-weighted directed graph D = (V, A), two vertices s, t ∈ V , set

M ⊆ A of the edges, and integer k ∈ Z≥0.
Task: Find minimum cost capacity vector x : A → [0, 1] such that for every

F ⊆ M with |F | ≤ k, the maximum s-t flow in GF = (V, A \ F)
capacitated by x is at least one.

Observe that by adding the requirement that x ∈ {0, 1}A to FRAC-FTP, we obtain
FTP. Recall that for MCF the value of an optimal integer solution is equal to the value
of an optimal fractional solution. We show that in contrast to MCF the integrality gap of
FRAC-FTP is bounded by k + 1 and that this bound is essentially tight in the sense that
there is an infinite family of instances with integrality gap arbitrarily close to k + 1. This
result also leads to a simple LP-based (k + 1)-approximation algorithm for FTP, which we

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:3

then combine with an algorithm for the case k = 1 to obtain a k-approximation algorithm
for FTP. Note that FTP also admits the following simple (k + 1)-approximation algorithm:
Replace each safe edge with k + 1 parallel edges and find k + 1 edge-disjoint paths from s to
t with minimum cost. It is not clear however how to obtain a k-approximation based on this
algorithm, so our LP-based analysis is justified.

The second problem we study is FTF, which asks for ℓ ≥ 1 disjoint s-t paths in the
presence of non-uniform single-edge faults. Observe that in the special case of uniform faults
(every edge is vulnerable) an optimal solution is a minimum-cost s-t flow of value k + ℓ which
can be computed in polynomial time. We show that as before the presence of non-uniform
faults makes the problem much harder. In fact, it is as hard to approximate as FTP, despite
the restriction to single-edge faults (the same result holds for FTF on undirected graphs).
On the positive side, we give a simple polynomial-time (ℓ + 1)-approximation algorithm for
FTF which computes a MCF with appropriately chosen capacities.

Note that our positive results for FTP imply a polynomial-time algorithm for FTF when
ℓ = 1. Together with the hardness of FTF in general this motivates the questions how the
complexity of FTF depends on the number ℓ of disjoint paths. To this end, we fix ℓ and study
the corresponding slice Fault-Tolerant ℓ-Flow of FTF. Our main result is a 2-approximation
algorithm for this problem. In a nutshell, the algorithm first computes a minimum-cost ℓ-flow
and then makes the resulting ℓ disjoint paths fault tolerant by solving the corresponding
augmentation problem. We solve the augmentation problem by reducing it to a shortest
path problem; it is basically a dynamic programming algorithm in disguise. However, the
reduction is quite involved: in order to construct the instance of Shortest s-t-Path, we solve
at most n2ℓ instances of the Min-cost Strongly Connected Subgraphs problem on ℓ terminal
pairs, all of which can be done in polynomial time for fixed ℓ. Hence, the overall running
time is polynomial for fixed ℓ.

In the light of our approximation results for Fault-Tolerant ℓ-Flow, one may wonder
whether the problem may even admit a polynomial-time algorithm (assuming P ̸= NP, say).
An indication in this direction is that for a number of problems with a similar flavor, including
robust paths [3], robust matchings [16] or robust spanning trees [2], hardness results were
obtained by showing that the corresponding augmentation problems are hard. However, our
results mentioned above show that this approach does not work for FTF. We show that a
polynomial-time algorithm for Fault-Tolerant ℓ-Flow implies polynomial-time algorithms
for 1-2-connected Directed 2 Steiner Tree. Whether this problem is NP-hard or not is a
long-standing open question.

1.2 Related Work
The shortest path problem is a classical problem in the area of combinatorial optimization
and as such, it has received considerable attention also in the context of fault tolerance,
see for example [4, 10, 13, 6, 19, 20]. Most of the variants of the Shortest Path Problem
studied in these references, as well as FTP and FTF, are subsumed by the Capacitated
Survivable Network Design Problem, which due to its generality is hard to approximate even
within a factor of 2log1−δ(n) on directed graphs for any δ > 0 under standard complexity
assumptions [7]. The problems FTP and FTF also fit in the framework of bulk-robustness
introduced by Adjiashvili, Stiller and Zenklusen [3]. In this model, we are given a set of failure
scenarios, that is, a set of subsets of resources that may fail simultaneously. The task is to
find a minimum-cost subset of the resources such that a desired property (e.g., connectivity
of a graph) is maintained, no matter which failure scenario materializes. Adjiashvili, Stiller
and Zenklusen considered bulk-robust counterparts of the Shortest Path and Minimum

SWAT 2022

5:4 Fault-Tolerant Edge-Disjoint s-t Paths

Matroid basis problems. For bulk-robust shortest paths on undirected graphs they give a
O(k + log n)-approximation algorithm, where k is the maximum size of a failure scenario.
However, the running-time of this algorithm is exponential in k. Note that their bulk-robust
shortest path problem generalizes FTP, and therefore the same approximation guarantee
holds for FTP. Our approximation algorithm for FTP significantly improves on this bound,
on both the approximation guarantee and the running-time. Furthermore, Adjiashvili [1]
obtained an LP-based O(k2)-approximation algorithm for bulk-robust shortest paths on
planar graphs.

Uniform failure models have been considered for other classical connectivity problems,
such as the Minimum Spanning Tree problem: Here, if any k edges of the input graph may
fail we obtain the Minimum k-Edge Connected Spanning Subgraph (k-ECSS) problem. For
k-ECSS, Gabow, Goemans, Tardos and Williamson [12] gave a polynomial time (1 + c

k)-
approximation algorithm for k-ECSS, for some fixed constant c. The authors also show
that for some constant c′ < c, the existence of a polynomial time (1 + c′

k)-approximation
algorithm implies P = NP. The more general Generalized Steiner Network problem admits a
polynomial 2-approximation algorithm due to Jain [17]. This is also the best known bound for
weighted 2-ECSS. Non-uniform single-edge failures for the minimum spanning tree problem
have been considered in [2] and a 2-approximation algorithm for this problem has been given
recently by Boyd et al. [5]. A problem of a similar flavor but with uniform single-edge faults
is Robust Matching Augmentation, which asks for a minimum-cost subgraph such that after
the removal of any single edge, the resulting graph contains a perfect matching [16]. This
problem is as hard to approximate as Directed Steiner Forest, which is known to admit no
log2−ε-approximation algorithm unless NP ⊆ ZTIME(npolylog(n)) [15]. The approximation
hardness of FTF is a consequence of this result.

1.3 Notation

We mostly consider directed graphs, which we denote by (V, A), where V is the set of vertices
set and A the set of arcs. Undirected graphs are denoted by (V, E) where E is the edge
set. When we consider edge-weighted graphs we assume throughout that the weights are
non-negative. Let G = (V, A) be a digraph with vulnerable arcs M ⊆ A. We denote by
M := A \M the set of safe arcs. Furthermore, for any set ∅ ≠ X ⊊ V of vertices of G, we
denote by δ(X) the set of arcs vw ∈ A such that v ∈ X and w /∈ X.

1.4 Organization

The remainder of this paper is organized as follows. In Section 2, we present our results on
FTP. We first show that FTP on undirected graphs is a special case of FTP on directed
graphs. We provide exact polynomial algorithms for two special cases of FTP in Section 2.1.
In Section 2.2 we relate FTP and FRAC-FTP by proving a tight bound on the integrality
gap and show how this result leads to a k-approximation algorithm for FTP. In Section 2.3
we study the approximation hardness of FTP. Section 3 contains the results on the problem
FTF. Approximation hardness of FTF is shown in Section 3.1. Section 3.2 contains the
approximation algorithms for FTF with and without fixed flow value ℓ. Furthermore, in
Section 3.3, we relate the complexity of FTF with fixed ℓ to other problems of open complexity.
Section 4 concludes the paper and contains open problems.

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:5

2 Fault-Tolerant Paths

Assuming non-negative edge-weights, the shortest path problem on undirected graphs is a
special case of the same problem on directed graphs: we may replace each undirected edge
by two anti-parallel directed edges and conclude that any shortest path in the resulting
digraph corresponds to a shortest path in the original undirected graph. We show that
this observation extends to FTP. For this purpose we show that any solution to an FTP
instance on an undirected graph admits an orientation, such that in each failure scenario a
directed s-t paths remains (assuming that if an undirected edge fails, both corresponding
anti-parallel arcs fail). As a consequence, the positive results for FTP on directed graphs
given in sections 2.1 and 2.2 also hold for FTP on undirected graphs.

▶ Proposition 1. Let X ⊆ E be a feasible solution to an instance of FTP on an undirected
graph (V, E). Then there is an orientation −→X of X such that (V,

−→
X − F) contains a directed

s-t path for every F ⊆M with |F | ≤ k.

Proof. Let us assume for a contradiction that there is no such orientation. A set Y of
(undirected and directed) edges is a partial orientation of X if there is a partition of X into
sets X1 and X2 such that Y = X1∪

−→
X2, where −→X2 is an orientation of X2. Let Y be a partial

orientation of X that maximizes the number of directed edges such that (V,
−→
X −F) contains

a directed s-t path for every F ⊆ M with |F | ≤ k. By our assumption, there is at least
one undirected edge e = vw in Y . Furthermore, there are two sets S1, S2 ⊆ V of vertices,
such that {s} ⊆ S1, S2 ⊆ V \ {t}, v ∈ S1 \ S2, and w ∈ S2 \ S1. Note that vw ∈ δ(S1) and
wv ∈ δ(S2).

Since e is needed in both directions for Y to be feasible, there is some F ⊆M , |F | ≤ k

such that X \ F contains an s-t path that must leave S1 via vw. Therefore, the cut δ(S1)
contains at most k + 1 edges and all of them except possibly e are vulnerable. The same
holds for δ(S2) and therefore we have |δ(S1)| = |δ(S2)| = k + 1. From the feasibility of Y

and the fact that all edges in δ(S1) and δ(S2) except possibly e are vulnerable, it follows
that |δ(S1 ∩ S2)| ≥ k + 1 and |δ(S1 ∪ S2)| ≥ k + 1. By the submodularity of the cut function
|δ(·)| we have

2k + 2 = |δ(S1)|+ |δ(S2)| ≥ |δ(S1 ∩ S2)|+ |δ(S1 ∪ S2)| ≥ 2k + 2 (1)

so we have equality throughout. Furthermore, |δ(·)| satisfies the following identity

|δ(S1)|+ |δ(S2)| = |δ(S1 ∩S2)|+ |δ(S1 ∪S2)|+ |A(S1 \S2, S2 \S1)|+ |A(S2 \S1, S1 \S2)| ,

but the observation that e is an edge connecting S1 \ S2 and S2 \ S1, together with the fact
the we have equality in (1) yields a contradiction to the previous identity. ◀

2.1 Exact Algorithms
In this section we give polynomial-time algorithms for FTP on arbitrary graphs, where at
most one edge can fail (k = 1) and FTP on directed acyclic graphs (DAGs) for fixed k. We
start with the following useful observation.

▶ Lemma 2. Let I = (D = (V, A), s, t, M, k) be an FTP-instance and X ⊆ A. Then the
following statements are equivalent.
1. X is a feasible solution to I.
2. The network (V, X) with capacities ce = 1 if e ∈M and ce =∞ otherwise admits an s-t

flow of value at least k + 1.

SWAT 2022

5:6 Fault-Tolerant Edge-Disjoint s-t Paths

Proof. Let X ⊆ E(D). First, suppose that X is a feasible solution to the FTP instance
(D, M, k). Suppose for a contradiction that the network ((V, X), c) capacitated by ce = 1
if e ∈ M and ce = ∞ otherwise admits no s-t flow of value at least k + 1. Then, by the
Max-Flow Min-Cut Theorem, there is some capacitated cut δ(V ′) for some V ′ ⊆ V with
s ∈ V ′ and t /∈ V ′ such that c(δ(V ′)) < k + 1. By the definition of c, this implies that δ(V ′)
does not contain any safe edge. But then F := δ(V ′) is a cut in (V, X) of size at most k, a
contradiction to the feasibility of X.

Now, suppose that X is not a feasible solution to the FTP instance (D, M, k). Then
there is some capacitated cut δ(V ′) for some V ′ ⊆ V with s ∈ V ′ and t /∈ V ′ such that
c(δ(V ′)) ≤ k. But then, by the Max-Flow Min-Cut Theorem, the network ((V, X), c) admits
no s-t flow of value at least k + 1. ◀

We consider the restriction of FTP to k = 1. An s-t bipath in the graph D = (V, A) is a
union of two (not necessarily disjoint) s-t paths P1, P2 ⊆ A. In the context of 1-FTP we call
a bipath Q = P1 ∪P2 robust if P1 ∩P2 ∩M = ∅. Note that every robust s-t bipath Q in G is
a feasible solution to the 1-FTP instance. Indeed, consider any vulnerable edge e ∈M . Since
e ̸∈ P1 ∩ P2 it holds that either P1 ⊆ Q− e, or P2 ⊆ Q− e. It follows that Q− e contains
some s-t path. The next lemma shows that every feasible solution of the 1-FTP instance
contains a robust s-t bipath.

▶ Lemma 3. Every feasible solution S∗ to an 1-FTP instance contains a robust s-t bipath.

Proof. We assume without loss of generality that S∗ is a minimal feasible solution with
respect to inclusion. Let Y ⊆ S∗ be the set of bridges in (V, S∗). From feasibility of S∗, we
have Y ∩M = ∅. Consider any s-t path P in S∗. Let u1, · · · , ur be be the set of vertices
incident to Y = P ∩ Y . Let ui and ui+1 be such that uiui+1 ̸∈ Y . (if such an edge does
not exist, we have Y = P , which means that P is a robust s-t bipath). Note that S∗ must
contain two edge-disjoint ui-ui+1 paths L1, L2. Taking as the set Y together with all such
pairs of paths L1, L2 results in a robust bipath. ◀

We conclude from the previous discussion and Lemma 3 that all minimal feasible solutions
to the 1-FTP instance are robust bipaths. This observation leads to the simple polynomial-
time algorithm for 1-FTP that, using flow-techniques, computes for any pair of vertices u, v

the length of i) a min-cost u-v path using only safe edges and ii) two edge-disjoint u-v paths
of minimum cost. In a second step the algorithm computes a minimum-cost s-t path in a
complete graph with respect to the minimum of the two computed costs. The resulting s-t
path corresponds to a min-cost s-t bipath in the original graph and hence, by Lemma 3, an
optimal robust s-t path.

▶ Theorem 4. 1-FTP admits a polynomial-time algorithm.

Proof. To solve 1-FTP we need to find the minimum cost robust s-t bipath. To this end let
us define two length functions ℓ1, ℓ2 : V × V → R≥0. For two vertices u, v ∈ V let ℓ1(u, v)
denote the shortest path distance from u to v in the graph (V, A \M), and let ℓ2(u, v)
denote the cost of the shortest pair of edge-disjoint u-v paths in D. Clearly, both length
functions can be computed in polynomial time (e.g. using flow techniques). Finally, set
ℓ(u, v) = min{ℓ1(u, v), ℓ2(u, v)}. Construct the complete graph on the vertex set V and
associate the length function ℓ with it. Observe that by definition of ℓ, any s-t path in this
graph corresponds to a robust s-t bipath with the same cost, and vice versa. It remains to
find the shortest s-t bipath by performing a single shortest s-t path in the new graph. For
every edge uv in this shortest path, the optimal bipath contains the shortest u-v path in
(V, A \M) if ℓ(u, v) = ℓ1(u, v), and the shortest pair of u-v paths in D, otherwise. ◀

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:7

We now consider the problem k-FTP (for fixed k ∈ N) on layered graphs. The generaliza-
tion to a directed acyclic graph is done via a standard transformation, which we describe
later. Recall that a layered graph D = (V, A) is a graph with a partitioned vertex set
V = V1 ∪ · · · ∪ Vr and a set of edges satisfying A ⊂

⋃
i∈[r−1] Vi × Vi+1. We assume without

loss of generality that V1 = {s} and Vr = {t}. For every i ∈ [r− 1] we let Ai = A∩Vi×Vi+1.
We reduce k-FTP to a shortest path problem in a larger graph. The following definition sets
the stage for the algorithm.

▶ Definition 5. An i-configuration is a vector d ∈ {0, 1, · · · , k + 1}Vi satisfying
∑

v∈Vi
dv =

k + 1. We let supp(d) = {v ∈ Vi : dv > 0}. For an i-configuration d1 and an (i + 1)-
configuration d2 we let

V (d1, d2) = supp(d1) ∪ supp(d2) and A(d1, d2) = A[V (d1, d2)].

We say that an i-configuration d1 precedes an (i+1)-configuration d2 if the following flow
problem is feasible. The graph is defined as H(d1, d2) = (V (d1, d2), A(d1, d2)). The demand
vector ν and the capacity vector c are given by

νu =
{
−d1

u if u ∈ supp(d1)
d2

u if u ∈ supp(d2)
and ce =

{
1 if e ∈M

∞ if e ∈ E \M,

respectively. If d1 precedes d2 we say that the link (d1, d2) exists. Finally, the cost ℓ(d1, d2)
of this link is set to be minimum value w(A′) over all A′ ⊆ A(d1, d2), for which the previous
flow problem is feasible, when restricted to the set of edges A′.

The algorithm constructs a layered graph H = (V,A) with r layers V1, · · · ,Vr. For every
i ∈ [r] the set of vertices Vi contains all i-configurations. Observe that since V1 = {s} and
Vr = {t}, we have that V1 and Vr contain one vertex each, which we denote by cs and ct,
respectively. The edges correspond to links between configurations. Every edge is directed
from the configuration with the lower index to the one with the higher index. The cost is set
according to Definition 5. The following lemma provides the required observation, which
immediately leads to a polynomial-time algorithm.

▶ Lemma 6. Every cs-ct path P in H corresponds to a fault-tolerant path S with w(S) ≤ ℓ(P),
and vise-versa.

Proof. Consider first a fault-tolerant path S ⊆ A. We construct a corresponding cs-ct

path in H as follows. Consider any k + 1 s-t flow fS , induced by S. Let p1, · · · , pl be a
path decomposition of fS and let 1 ≤ ρ1, · · · , ρl ≤ k + 1 (with

∑
i∈[l] ρi = k + 1) be the

corresponding flow values.
Since D is layered, the path pj contains exactly one vertex vj

i from Vi and one edge ej
i

from Ai for every j ∈ [l] and i ∈ [r]. For every i ∈ [r] define the i-configuration di with

di
v =

∑
j∈[l]:v=vi

j

ρi,

if some path pj contains v, and di
v = 0, otherwise. The fact that di is an i-configuration

follows immediately from the fact that fS is a (k + 1)-flow. In addition, for the same reason
di precedes di+1 for every i ∈ [r − 1]. From the latter observations and the fact that d1 = cs

and dr = ct it follows that P = d1, d2, · · · , dr is a cs − ct path in H with cost ℓ(P) ≤ w(S).
Consider next an cs − ct path P = d1, · · · , dr with cost ℓ(P) =

∑r−1
i=1 ℓ(di, di+1). The

cost ℓ(di, di+1) is realized by some set of edges Ri ⊆ A(di, di+1) for every i ∈ [r − 1].
From Definition 5, the maximal s-t flow in the graph D′ = (V, R) is at least k + 1, where

SWAT 2022

5:8 Fault-Tolerant Edge-Disjoint s-t Paths

R = ∪i∈[r−1]Ri. Next, Lemma 2 guarantees that there exists some feasible solution S ⊆ R,
the cost of which is at most ℓ(P). In the latter claim we used the disjointness of the sets Ri,
which is due the layered structure of the graph G. This concludes the proof of the lemma. ◀

Finally, we observe that the number of configurations is bounded by O(nk+1), which
implies that k-FTP can be solved in polynomial time on layered graphs.

To obtain the same result for directed acyclic graphs we perform the following transforma-
tion of the graph. Let v1, · · · , vn be a topological sorting of the vertices in D. Replace every
edge e = vivj (i < j) with a path pe = vi, ue

i+1, · · · , ue
j−1, vj of length j− i+1 by subdividing

it sufficiently many times. Set the cost of the first edge on the path to w′(viu
e
i+1) = w(vivj)

and set the costs of all other edges on the path to zero. In addition, create a new set of
faulty edges M ′, which contains all edges in a path pe if e ∈M . It is straightforward to see
that the new instance of FTP is equivalent to the original one, while the obtained graph
after the transformation is layered. We summarize the result as follows.

▶ Theorem 7. There is a polynomial-time algorithm for k-FTP restricted to instances with
a directed acyclic graph.

2.2 Integrality Gap and Approximation Algorithms
In this section we study the natural fractional relaxation FRAC-FTP of FTP and prove a
tight bound on its integrality gap. That is, we bound the worst-case ratio of the value of an
optimal solution of an FTP instance and the corresponding optimal value of FRAC-FTP.
This result also suggests a simple approximation algorithm for FTP with ratio k + 1. We
then combine this algorithm with the algorithm for 1-FTP to obtain a k-approximation
algorithm.

Fractional FTP and Integrality Gap

We give the following bound on the integrality gap of FRAC-FTP.

▶ Theorem 8. The integrality gap of FRAC-FTP is at most k + 1. Furthermore, there exists
an infinite family of instances of FTP with integrality gap arbitrarily close to k + 1.

Proof. Consider an instance I = (D, s, t, M, k) of FTP. Let x∗ denote an optimal solution
to the corresponding FRAC-FTP instance, and let OPT = w(x∗) be its cost. Define a vector
y ∈ RA as follows.

ye =
{

(k + 1)xe if e ̸∈M

min{1, (k + 1)xe} otherwise.
(2)

Clearly, it holds that w(y) ≤ (k + 1)OPT . We claim that every s-t cut in D with capacities
y has capacity of at least k + 1. Consider any such cut C ⊂ A, represented as the set of
edges in the cut. Let M ′ = {e ∈M : x∗

e ≥ 1
k+1} denote the set of faulty edges attaining high

fractional values in x∗. Define C ′ = C ∩M ′. If |C ′| ≥ k + 1 we are clearly done. Otherwise,
assume |C ′| ≤ k. In this case consider the failure scenario F = C ′. Since x∗ is a feasible
solution it must hold that

∑
e∈C\C′ x∗

e ≥ 1. Since for every edge e ∈ C \ C ′ it holds that
ye = (k + 1)x∗

e we obtain∑
e∈C\C′

ye ≥ k + 1

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:9

as desired. From our observations it follows that the maximum flow in D with capacities y

is at least k + 1. Finally, consider the minimum cost (k + 1)-flow z∗ in D with capacities
defined by

ce =
{

k + 1 if e ̸∈M

1 otherwise.

From integrality of c and the minimum-cost flow problem we can assume that z∗ is integral.
Note that ye ≤ ce for every e ∈ A, hence any feasible (k + 1)-flow with capacities y is
also a feasible (k + 1)-flow with capacities c. From the previous observation it holds that
w(z∗) ≤ w(y) ≤ (k + 1)OPT . From Lemma 2 we know that the support of z∗ is a feasible
solution to the FTP instance. This concludes the proof of the upper bound of k + 1 for the
integrality gap.

To prove the same lower bound we provide an infinite family of instances, containing
instances with integrality gap arbitrarily close to k + 1. Consider a graph with p≫ k parallel
edges with unit cost connecting s and t, and let M = A. An optimal solution to this FTP
instance chooses any subset of k + 1 edges. At the same time, the optimal solution to
FRAC-FTP assigns a capacity of 1

p−k to every edge. This solution is feasible, since in every
failure scenario, the number of edges that survive is at least p− k, hence the maximum s-t
flow is at least one. The cost of this solution is p

p−k . Taking p to infinity yields instances
with integrality gap arbitrarily close to k + 1. ◀

The proof of Theorem 8 leads to a simple (k + 1)-approximation algorithm for FTP.
However, simply creating k copies of each vulnerable arc and finding a minimum-cost s-t
flow of value at least k + 1 gives a (k + 1)-approximation as well.

▶ Proposition 9. FTP admits a polynomial-time (k + 1)-approximation algorithm.

A k-Approximation Algorithm

We propose an LP-based k-approximation algorithm for FTP that is a refinement of the
LP-based approximation algorithm of Proposition 9. Intuitively, the reason why the algorithm
of Proposition 9 gives an approximation ratio of k + 1 is that the capacity of the edges in
A \M is set to k + 1. Therefore, if an s-t flow z∗ uses such an edge to its full capacity,
the cost incurred is k + 1 times the cost of the edge. Hence, the best possible lower bound
on the cost w(z∗) is (k + 1) OPTF RAC , where OPTF RAC denotes the optimal value of the
corresponding FRAC-FTP instance. To improve the algorithm we observe that each edge
which carries a flow of k + 1 according to z∗ is a cut-edge in the obtained solution.

Let I = (D, s, t, M) be an instance of FTP. We begin our analysis by considering a certain
canonical flow defined by minimal feasible solutions.

▶ Definition 10. Consider an inclusion-wise minimal feasible solution S ⊆ A to I. A flow
fS induced by S is any integral s-t (k + 1)-flow in D respecting the capacity vector

cS
e =


1 if e ∈ S ∩M

k + 1 if e ∈ S \M

0 if e ∈ A \ S.

Consider an optimal solution X∗ ⊆ A to I and a corresponding induced flow f∗. Define

XP AR = {e ∈ X∗ : f∗(e) ≤ k} and XBRIDGE = {e ∈ X∗ : f∗(e) = k + 1} .

SWAT 2022

5:10 Fault-Tolerant Edge-Disjoint s-t Paths

As we argued before, every edge in XBRIDGE must be a bridge in H = (V, X∗) disconnecting
s and t. Let eu denote the tail vertex of an edge e ∈ A. Since every edge e ∈ XBRIDGE

constitutes an s-t cut in H, it follows that the vertices in U = {eu : e ∈ XBRIDGE} ∪ {s, t}
can be unambiguously ordered according to the order in which they appear on any s-t path
in H, traversed from s to t. Let s = u1, · · · , uq = t be this order. Except for s and t, every
vertex in U constitutes a cut-vertex in H. Divide H into q − 1 subgraphs H1, · · · , Hq−1 by
letting Hi = (V, Yi) contain the union of all ui-ui+1 paths in H. We observe the following:

▶ Proposition 11. For every i ∈ {1, 2, . . . , q − 1} the set Yi ⊆ A is an optimal solution to
the FTP instance Ii = (G, ui, ui+1, M).

Consider some i ∈ {1, 2, . . . , q−1} and let f∗
i denote the flow f∗, restricted to edges in Hi.

Note that f∗
i can be viewed as a ui-ui+1 (k + 1)-flow. Exactly one of the following cases can

occur. Either Hi contains a single edge e ∈ A \M , or maxe∈Yi f∗
i (e) ≤ k. In the former case,

the edge e is the shortest ui-ui+1 path in (V, A \M). In the latter case we use an algorithm
that is similar to the one of Proposition 9 to obtain a k-approximation of the optimal FTP
solution on instance Ii. Concretely, the algorithm defines the capacity vector c′(e) = k if
e /∈M and c′(e) = 1, otherwise, and finds an integral minimum-cost ui-ui+1 (k + 1)-flow Y ∗

in D, and returns the support Y ⊆ A of the flow as the solution. The existence of the flow
f∗

i guarantees that w(y∗) ≤ w(f∗
i), while the fact that the maximum capacity in the flow

problem is bounded by k gives w(Y) ≤ kw(y∗). It follows that this algorithm approximates
the optimal solution to the FTP instance Ii to within a factor k.

The final algorithm uses the algorithm for 1-FTP as a blueprint. However, instead
of finding two edge-disjoint u-v paths, the new algorithm solves the aforementioned flow
problem. We summarize the main result of this section as follows.

▶ Theorem 12. FTP admits a polynomial-time k-approximation algorithm.

2.3 Approximation Hardness
We complement our algorithmic results by showing approximation hardness for FTP. An
instance of the problem Directed m-Steiner Tree (m-DST) is given by a weighted directed
graph D = (V, A), a source node s ∈ V , a set T ⊆ V of terminals and an integer m ≤ |T |.
The goal is to find a minimum-cost arboresence X ⊆ A rooted at s that connects s to m

terminals. Halperin and Krauthgamer [15] showed that m-DST cannot be approximated
within a factor log2−ϵ m for every ϵ > 0, unless NP ⊆ ZTIME(npolylog(n)). We show that the
problem m-DST is a special case of FTP.

Given an m-DST instance we construct an instance of FTP as follows. The graph D is
augmented by |T | new arcs A′ of cost 0 connecting every terminal to a new node t. Finally,
we let M = A′ and k = m− 1. It is readily verified that any fault-tolerant s-t path in the
graph so obtained corresponds to a feasible solution to the m-DST instance of the same cost
(we may assume that all arcs in A′ are in some solution to the FTP instance). This implies
the following conditional approximation lower bound for FTP.

▶ Proposition 13. FTP admits no polynomial-time approximation algorithms with ratio
log2−ϵ k for every ϵ > 0, unless NP ⊆ ZTIME(npolylog(n)).

The reduction can be easily adapted to yield a kϵ-approximation algorithm for FTP for
the special case that M ⊆ {e ∈ A : t ∈ e} using the algorithm of Charikar et. al. [8].

We end this discussion by showing that FTP contains as a special case a more general
Steiner problem, which we call Simultaneous Directed m-Steiner Tree (m-SDST). An input
to m-SDST specifies two arc-weighted digraphs D1 = (V, A1, w1) and D2 = (V, A2, w2) on

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:11

the same set V of vertices, a source s, a set T ⊆ V of terminals, and an integer m ≤ |T |. The
goal is to find a subset U ⊆ T of m terminals and two arborescences S1 ⊆ A1 and S2 ⊆ A2
connecting s to U in the respective graphs, so as to minimize w1(S1) + w2(S2). m-SDST is
seen to be a special case of FTP via the following reduction. Given an instance of m-SDST,
construct a graph D = (V ′, A) as follows. Take a disjoint union of D1 and D2, where the
direction of every arc in D2 is reversed. Connect every copy of a terminal u ∈ T in D1 to its
corresponding copy in D2 with an additional zero-cost arc eu. Finally, set M = {eu : u ∈ T}
and k = m− 1. A fault-tolerant path connecting the copy of s in D1 to the copy of s in D2
corresponds to a feasible solution to the m-SDST instance with the same cost, and vice-versa.

3 Fault-Tolerant Flows

In this section we present our results on the problem FTF. We first give an approximation
hardness result and then investigate the complexity of FTF for fixed flow values ℓ. Our main
result is a polynomial-time algorithm for the corresponding augmentation problem, which
we use to obtain a 2-approximation for Fault-Tolerant ℓ-Flow. We conclude by showing that
a polynomial-time algorithm for Fault-Tolerant ℓ-Flow implies polynomial-time algorithms
for two problems whose complexity status is open.

3.1 Approximation Hardness of FTF
We show that FTF is as hard to approximate as Directed Steiner Forest by using an approxi-
mation hardness result from [16] for the problem Weighted Robust Matching Augmentation.
The problem Weighted Robust Matching Augmentation asks for the cheapest edge-set (as-
suming non-negative costs) to add to a bipartite graph such that the resulting graph is
bipartite and contains a perfect matching after a-posteriori removing any single edge. The
idea of our reduction is similar to that of the classical reduction from the Bipartite Maximum
Matching problem to the Max s-t Flow problem. Note that we may assume that both parts
of the input graph have the same size. We add to the graph (U, W, E) on n vertices of a
Weighted Robust Matching Augmentation instance I two terminal vertices s and t, and
connect s to each vertex of U and each vertex of W to t by an arc of cost 0. Now we add all
possible arcs from U to W , marking those as vulnerable that correspond to an edge in E;
the costs are according to I. Observe that a fault-tolerant n/2-flow corresponds to a feasible
solution to the Weighted Robust Matching Augmentation instance after deleting s and t.

▶ Lemma 14. A polynomial-time f(ℓ) approximation algorithm for FTF implies a polynomial-
time f(n/2)-approximation algorithm for Weighted Robust Matching Augmentation, where n

is the number of vertices in the Weighted Robust Matching Augmentation instance.

Proof. In the following it will be convenient to denote by E the edge-set of the bipartite
complement of a bipartite graph with edge-set E. Let I = (G, c) be an instance of Weighted
Robust Matching Augmentation where G = (U, W, E) is a balanced bipartite graph on n

vertices and c ∈ ZE
≥0. Our reduction is similar to the classical reduction from the perfect

matching problem in bipartite graphs to the Max s-t Flow problem. We construct in
polynomial-time an instance I ′ = (D′, c′, s, t, M) of FTF as follows. To obtain the digraph
D′ = (V, A), we add to the vertex set of G two new vertices s and t and add all arcs from s

to U and from W to t. Furthermore, we add all arcs from U to W and consider those that
correspond to an edge in E as vulnerable. That is, we let M := {uw : u ∈ U, w ∈W, uw ∈ E}.
To complete the construction of I ′, we let ℓ = n/2, and let the arc-costs c′ be given by

SWAT 2022

5:12 Fault-Tolerant Edge-Disjoint s-t Paths

c′
uw :=

{
cuw if uw ∈ E(G), and
0 otherwise.

For X ⊆ E ∪ E we write q(X) for the corresponding set of arcs of D′. Similarly, for
a set Y ⊆ A of arcs we write q−1(Y) for the corresponding set of undirected edges of G.
Observe that for a feasible solution X to I, the arc set q(X) ∪ As ∪ At is feasible for I ′,
where As (resp., At) is the set of arcs leaving s (resp., entering t). Furthermore, a feasible
solution Y to I ′ corresponds to a feasible solution q−1(Y \ (As ∪At)) to I. Also note that,
by the choice of c′, we have that the cost of two corresponding solutions is the same. It
follows that since ℓ = n/2, any polynomial-time f(ℓ)-factor approximation algorithm for
Fault-Tolerant ℓ-Flow implies a polynomial-time f(n/2)-factor approximation algorithm for
Weighted Robust Matching Augmentation, where n = |U + W |. ◀

We combine Lemma 14 with two hardness results from [16] and [15] to obtain the following
approximation hardness result for FTF.

▶ Theorem 15. FTF admits no polynomial-time log2−ε(ℓ)-factor approximation algorithm
for every ε > 0, unless NP ⊆ ZTIME(npolylog(n)).

Proof. We give a polynomial-time cost-preserving reduction from Directed Steiner Forest to
FTF via Weighted Robust Matching Augmentation. The intermediate reduction step from
Directed Steiner Forest to Weighted Robust Matching Augmentation is given in [16, Prop. 6.1].
Consider an instance I of Directed Steiner Forest on a weighted digraph D = (V, A) on
n vertices with k terminal pairs (s1, t1), (s2, t2), . . . , (sk, tk). According to the reduction
given in the proof of [16, Prop. 18], we obtain an instance of Weighted Robust Matching
Augmentation on a graph of at most 2(n + k) + 2(n − k) = 4n =: n′ vertices. By the
arguments their proof, a f(n′)-approximation algorithm for Weighted Robust Matching
Augmentation yields a f(4n)-approximation algorithm for Directed Steiner Forest. We apply
Proposition 14 to conclude that an f(ℓ)-approximation algorithm for FTF yields a f(2n)-
approximation algorithm for Directed Steiner Forest. According to the result of Halperin
and Krauthgamer [15], the problem Directed Steiner Forest admits no polynomial-time
log2−ε n-approximation algorithm for every ε > 0, unless NP ⊆ ZTIME(npolylog(n)). We
conclude that FTF admits no polynomial-time log2−ε(ℓ/2)-factor approximation algorithm
under the same assumption. ◀

3.2 Approximation Algorithms
We first present a simple polynomial-time (ℓ + 1)-approximation algorithm for FTF, which is
similar to the LP-based (k + 1)-approximation for FTP. The algorithm computes a minimum-
cost s-t flow of value ℓ + 1 on the input graph with the following capacities: each vulnerable
arc receives capacity 1 and any other arc capacity 1 + 1/ℓ. The solution then consists of
all arcs in the support of the flow. To see that for this choice of capacities we obtain a
feasible solution, recall that the value of any s-t cut upper-bounds the value of any s-t flow.
Therefore, each s-t cut C has value at least ℓ + 1, so C contains either at least ℓ safe arcs
or at least ℓ + 1 arcs. To prove the approximation guarantee, we show that any optimal
solution to an FTF instance contains an s-t flow of value ℓ + 1 and observe that we over-pay
safe arcs by a factor of at most (1 + 1/ℓ).

▶ Theorem 16. FTF admits a polynomial-time (ℓ + 1)-approximation algorithm.

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:13

Proof. Let I be an instance of FTF on a digraph D = (V, A)) with weight c ∈ ZA
≥0,

terminals s and t, vulnerable arcs M and desired flow value ℓ. We consider an instance
I ′ = (D, c, s, t, ℓ + 1, g) of MCF, where the arc capacities g are given by

ge :=
{

1 if e ∈M , and
1 + 1

k otherwise

An optimal solution to I ′ can be computed computed in polynomial-time by standard
techniques. We saw in the discussion at the beginning of Section 3.2 that the set of arcs of
positive flow in a solution to I ′ yields a feasible solution to I.

It remains to bound the approximation ratio. Let Y ∗ be an optimal solution to I of cost
OPT(I). We first show that Y ∗ contains ℓ + 1 disjoint s-t paths.

▷ Claim 1. Y ∗ contains an s-t flow of value ℓ + 1 with respect to the capacities g.

Proof. First observe that in any feasible solution to I, every s-t cut contains either at least ℓ

safe arcs or at least ℓ + 1 arcs. Now, an s-t cut Z in Y ∗ having at least ℓ safe arcs satisfies
g(Z) ≥ (1 + 1

ℓ) · ℓ = ℓ + 1. On the other hand, an s-t cut Z ′ in Y ∗ containing at least ℓ + 1
arcs satisfies g(Z ′) ≥ ℓ + 1. Hence, each s-t cut in Y ∗ has capacity at least ℓ + 1. By the
max-flow-min-cut theorem there is an s-t flow of value at least ℓ + 1. ◁

The theorem now follows from the next claim.

▷ Claim 2. An optimal solution to I ′ has cost at most (ℓ + 1) ·OPT(I).

Proof. Let f∗ ∈ QA be an optimal s-t flow with respect to the capacities g. Furthermore,
let Y be the set of arcs of positive flow, that is Y := {e ∈ A | f∗

e > 0}. Let YM = Y ∩M

be the vulnerable arcs in Y and let YS = Y \ YM be the safe arcs. First, we may assume
that each arc e ∈ Y has flow value at least f∗

e ≥ 1/ℓ, since each arc has capacity either 1
or 1 + 1

ℓ . This is true since we could scale the arc capacities g by a factor ℓ, which allows
us to compute (in polynomial time) an integral optimal solution with respect to the scaled
capacity function, using any augmenting paths algorithm for MCF. In addition, observe that
we may pay a factor of at most 1 + 1

ℓ too much for each safe arc since the capacity of the
safe arc is 1 + 1

ℓ . Therefore, we may bound the cost of a safe arc e ∈ YS by ℓ · (1 + 1
ℓ) · ce · fe

and the cost of each vulnerable arc e ∈ YM by ℓ · ce · fe, where fe is the flow-value of arc e

according to the solution Y . Hence, we obtain

c(Y) = c(YS) + c(YM)

≤ ℓ ·

(
(1 + 1

ℓ
) ·
∑

e∈YS

ce · f∗
e +

∑
e∈YM

ce · f∗
e

)

≤ ℓ · (1 + 1
ℓ

) ·
(∑

e∈YS

ce · f∗
e +

∑
e∈YM

ce · f∗
e

)
≤ (ℓ + 1) ·OPT(I) ,

where the first inequality follows from the two arguments above and the last inequality
follows from Claim 1. ◁

◀

Note that we cannot simply use the dynamic programming approach as in the algorithm
for 1-FTP to obtain an ℓ-approximation for FTF, since a solution to FTF in general does not
have cut vertices, which are essential for the decomposition approach for the k-approximation
for FTP.

SWAT 2022

5:14 Fault-Tolerant Edge-Disjoint s-t Paths

A 2-approximation for Fault-Tolerant ℓ-Flow

We now show that for a fixed number ℓ of disjoint paths a much better approximation
guarantee can be obtained. That is, we give a polynomial-time 2-approximation algorithm for
Fault-Tolerant ℓ-Flow (FTℓF) (however, its running time is exponential in ℓ). The algorithm
first computes a minimum-cost s-t flow of value ℓ and then augments it to a feasible solution
by solving the following augmentation problem.

Fault-Tolerant ℓ-Flow Augmentation
Instance: arc-weighted directed graph D = (V, A), nodes s, t ∈ V , arc-set X0 ⊆ A

that contains ℓ disjoint s-t paths, and set M ⊆ A of vulnerable arcs.
Task: Find minimum weight set S ⊆ A \ X0 such that for every f ∈ M the

set (X0 ∪ S) \ f contains ℓ disjoint s-t paths.

Our main technical contribution is that Fault-Tolerant ℓ-Flow Augmentation can be
solved in polynomial time for fixed ℓ. Our algorithm is based on a dynamic programming
approach and it involves solving many instances of the problem Directed Steiner Forest,
which asks for a cheapest subgraph connecting ℓ given terminal pairs. This problem admits
a polynomial-time algorithm for fixed ℓ [11], but is W[1]-hard when parameterized by ℓ, so
the problem is unlikely to be fixed-parameter tractable [14]. Roughly speaking, we traverse
the ℓ disjoint s-t paths computed previously in parallel, proceeding one arc at a time. In
order to deal with vulnerable arcs, at each step, we solve an instance of Directed Steiner
Forest connecting the ℓ current vertices (one on each path) to ℓ destinations on the same
path by using backup paths. That is, we decompose a solution to the augmentation problem
into instances of Directed Steiner Forest connected by safe arcs. An optimal decomposition
yields an optimal solution to the instance of the augmentation problem. We find an optimal
decomposition by dynamic programming. Essentially, we give a reduction to a shortest path
problem in a graph that has exponential size in ℓ.

Let us fix an instance I of Fault-Tolerant ℓ-Flow Augmentation on a digraph D = (V, A)
with arc-weights c ∈ ZA

≥0 and terminals s and t. Let P1, P2, . . . , Pℓ be ℓ disjoint s-t paths
contained in X0. We assume without loss of generality that X0 is the union of P1, P2, . . . , Pℓ.
If X0 contains an arc e that is not on any of the ℓ paths, we remove e from X0 and assign to
it weight 0.

We now give the reduction to the shortest path problem. We construct a digraph
D = (V,A); to distinguish it clearly from the graph D of I, we call the elements in V (A) of
D vertices (arcs) and elements of V (A) nodes (links). We order the vertices of each path
Pi, 1 ≤ i ≤ ℓ, according to their distance to s on Pi. For two vertices xi, yi of Pi, we write
xi ≤ yi if xi is at least as close to s on Pi as yi. Let us now construct the node set V. We
add a node v to V for every ℓ-tuple v = (x1, ..., xℓ) of vertices in V (X0) satisfying xi ∈ Pi,
for every i ∈ {1, 2, . . . , ℓ}. Note that the corresponding vertices of a node are not necessarily
distinct, since the ℓ edge-disjoint paths P1, P2, . . . , Pℓ may share vertices. We also define a
(partial) ordering on the nodes in V. From now on, let v1 = (x1, ..., xℓ) and v2 = (y1, ..., yℓ)
be two nodes of V . We write v1 ≤ v2 if xi ≤ yi for every 1 ≤ i ≤ ℓ. Additionally, let Qi(x, y)
be the sub-path of Pi from a vertex x of Pi to a vertex y of Pi.

We now construct the link set A := A1 ∪ A2 of D as the union of two link-sets A1 and
A2, defined as follows. We add to A1 a link v1v2, if v1 precedes v2 and the subpaths of each
Pi from xi to yi contain no vulnerable arc. That is, we let

A1 := {v1v2 | v1, v2 ∈ V, v1 ≤ v2, Qi(xi, yi) ∩M = ∅ for 1 ≤ i ≤ ℓ} .

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:15

Algorithm 1 : Exact algorithm for Fault-Tolerant ℓ-Flow Augmentation.

Input: instance I of Fault-Tolerant ℓ-Flow Augmentation on a digraph D = (V, A)
1: Construct the graph D = (V,A)
2: Find a shortest path P in D from (s, . . . , s) to (t, . . . , t)
3: For each link vw ∈ P ∩ A2 add the arcs of an optimal solution to I(v, w) to Y

4: return Y

We now define the link set A2. Let v1, v2 ∈ V such that v1 precedes v2. If there is some
1 ≤ i ≤ ℓ, such that Qi(xi, yi) contains at least one vulnerable arc, then we first need
to solve an instance of Directed Steiner Forest on ℓ terminal pairs in order to compute
the cost of the link v1v2. We construct an instance I(v1, v2) of Directed Steiner Forest as
follows. The terminal pairs are (xi, yi)1≤i≤ℓ. The input graph is given by D′ = (V, A′),
where A′ = (A\X0)∪

⋃
1≤i≤ℓ

←−
Qi(xi, yi), where←−Qi(xi, yi) are the arcs of Qi(xi, yi) in reversed

direction. The arc costs are given by

c′
e :=

{
ce if e ∈ A \X0, and
0 if e ∈

←−
Qi(xi, yi) for some i ∈ {1, 2, . . . , ℓ}.

That is, for 1 ≤ i ≤ ℓ, we reverse the path Qi(xi, yi) connecting xi to yi and make the
corresponding arcs available at zero cost. We then need to connect xi to yi without using
arcs in X0. Since the number of terminal pairs is at most ℓ which is a constant, the Directed
Steiner Forest instance I(v1, v2) can be solved in polynomial time by the algorithm of Feldman
and Ruhl given in [11]. Let OPT(I(v1, v2)) be the cost of an optimal solution to I(v1, v2).
We add a link v1v2 to A2 if the computed solution of I(v1, v2) is strongly connected. This
completes the construction of A2. For a link e ∈ A we let the weight we = 0 if e ∈ A1 and
we = OPT(I(v1, v2)) if e ∈ A2.

We now argue that a shortest path P from node s1 = (s, . . . , s) ∈ V to node t1 =
(t, . . . , t) ∈ V in D corresponds to an optimal solution to I. For every link vw ∈ P, we add
the optimal solution to I(v, w) computed by the Feldman-Ruhl algorithm to our solution Y .
The algorithm runs in polynomial time for a fixed number ℓ of disjoint s-t paths, since it
computes at most nℓ Min-cost Strongly Connected Subgraphs on ℓ terminal pairs, which
can be done in polynomial time by [11]. Proving that the final algorithm is optimal is quite
technical and requires another auxiliary graph and a technical lemma.

▶ Theorem 17. The set Y computed by Algorithm 1 is an optimal solution to the instance
I of Fault-Tolerant ℓ-Flow Augmentation. Furthermore, the running time is bounded by
O(|A||V |6ℓ−2 + |V |6ℓ−1 log |V |).

From Theorem 17 we obtain a polynomial-time 2-approximation algorithm for FTℓF: Let
OPT(I) be the cost of an optimal solution to an instance I of FTℓF. The algorithm first
computes a minimum-cost s-t flow X0 and then runs the algorithm for the augmentation
problem using X0 as initial arc-set. The algorithm returns the union of the arc-sets computed
in the two steps. By Theorem 17 we can augment X0 in polynomial time to a feasible solution
X0 ∪ Y to I. Since we pay at most OPT(I) for the sets X0 and Y , respectively, the total
cost is at most 2 OPT(I).

▶ Corollary 18. FTℓF admits a polynomial-time 2-approximation algorithm.

The remainder of this section is devoted to sketching the proof of Theorem 17. For this
purpose we need another auxiliary graph that we use as a certificate of feasibility. For a
graph H = (V, A∗) such that X0 ⊆ A∗ ⊆ A, we denote the corresponding residual graph

SWAT 2022

5:16 Fault-Tolerant Edge-Disjoint s-t Paths

s t

(a) Graph D and X0 consisting of two disjoint paths.

s t

(b) Residual graph DX0 (X0 ∪ Y).

Figure 1 Illustration of the structure of feasible solutions to Fault-Tolerant ℓ-Flow Augmentation.
Unsafe arcs are red, safe arcs are black. In Fig. 1a: edges of X0 are black and red; edges of A − X0

are light gray and light red. Dashed edges belong to Y .

by DX0(A∗) = (V, A′). The arc-set A′ is given by A′ := {uv ∈ A∗ | uv /∈ X0} ∪ {vu ∈
A∗ | uv ∈ X0}. An illustration of this graph is given in Figure 1. We first show that in a
feasible solution Y ⊆ A \X0, each vulnerable arc in X0 is contained in a strongly connected
component of DX0(X0 ∪ Y).

▶ Lemma 19. Let Y ⊆ A \ X0. Then Y is a feasible solution to I if and only if each
vulnerable arc f ∈M ∩X0 is contained in a strongly connected component of DX0(X0 ∪ Y).

Proof. We first prove the “if” part, so let f = uv be a vulnerable arc in X0 that is contained
in a strongly connected component of DX0(X0 ∪ Y). Since f ∈ X0, the arc f is reversed
in DX0(X0 ∪ Y) and since f is on a cycle C in DX0(X0 ∪ Y), there is a path P from u

to v in DX0(X0 ∪ Y). Let P ′ be the path corresponding to P in X0 ∪ Y . Note that P ′ is
not a directed path in D and that an arc e on P ′ is traversed forward if e ∈ P ′ ∩ Y and
traversed backward if e ∈ P ′ ∩X0. We partition P ′ into two disjoint parts P ′

X0
= P ′ ∩X0

and P ′
Y = P ′ ∩ Y . We now argue that (X0 − P ′

X0
− f) ∪ P ′

Y contains ℓ disjoint s-t paths.
Clearly, we have (X0−P ′

X0
− f)∪P ′

Y ⊆ X0 ∪Y . Furthermore, by our assumption that X0 is
the union of ℓ s-t edge-disjoint paths, for each vertex v ∈ V − {s, t}, we have δ+(v) = δ−(v)
and δ+(s) = δ−(t) = ℓ. Since C is a cycle in DX0(X0 ∪ Y) the degree constraints also hold
for (X0 − P ′

X0
− f) ∪ P ′

Y . Hence (X0 − P ′
X0
− f) ∪ P ′

Y is the union of ℓ disjoint s-t paths.
We now prove the “only if” part. Let f = uv ∈ X0 be a vulnerable arc and suppose f is

not contained in a strongly connected component of DX0(X0 ∪ Y). Let L ⊆ V be the set
of vertices that are reachable from u in DX0(X0 ∪ Y) and let R = V − L. Note that s ∈ L,
since u is on some s-t path in X0 and t ∈ R, since otherwise there is a path from u to v in
DX0(X0 ∪Y) (since every arc in X0 is reversed in DX0(X0 ∪Y)). Let L′ = {x1, . . . , xℓ} ⊆ L,
xi ∈ Pi for 1 ≤ i ≤ ℓ, be the vertices of L that are closest to t in X0. We now claim
that δ+(L) is a cut of size ℓ in X0 ∪ Y containing f . Since f is vulnerable this contradicts
the feasibility of X0 ∪ Y . We have f ∈ δ+(L) in X0 ∪ Y , since otherwise f is contained
in a strongly connected component of DX0(X0 ∪ Y). By the construction of L, we have
Y ∩ δ+(L) = ∅. Since X0 is the union of ℓ disjoint paths, the set δ+(L) has size at most ℓ,
proving our claim, since this implies that X0 ∪ Y is not feasible. ◀

Next, we sketch the proof of Theorem 17.

Proof of Theorem 17 (sketch). Let P be a shortest path in the D and let Y be the solution
computed by Algorithm 1. Using Lemma 19 we can show the feasibility of Y .

▷ Claim 1. The solution Y computed by Algorithm 1 is feasible.

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:17

Let Y ∗ be an optimal solution to I of weight OPT(I). We now show that Y is optimal.
Observe that the weight of Y is equal to c′(P), so it suffices to show that w(P) ≤ OPT(I).
To prove the inequality, we first introduce a partial ordering of the strongly connected
components of DX0(X0 ∪ Y ∗). Using this ordering we can construct a path P ′ in D from
(s, . . . , s) to (t, . . . , t) of cost w(P ′) = OPT(I). We conclude by observing that a shortest
path P has cost at most w(P ′).

▷ Claim 2. There is a path P ′ from (s, . . . , s) to (t, . . . , t) in D of cost at most OPT(I).

Proof of Claim 2 (sketch). We give an algorithm that constructs a path P ′ from (s, . . . , s)
to (t, . . . , t) in D such that P ′ only uses links in A2 that correspond to strongly connected
components of Y ∗ in DX0(X0 ∪ Y ∗). Starting from s1 = (s, . . . , s) ∈ V, we perform the
following two steps alternatingly until we reach (t, ..., t) ∈ V.
1. From the current node u, we proceed by greedily taking links of A1 until we reach a node

v = (v1, v2, . . . , vℓ) ∈ V with the property that each vertex vi, 1 ≤ i ≤ ℓ, is either t or
part of some strongly connected component of DX0(X0 ∪ Y ∗).

2. From the current node v, we take a link vw ∈ A2 to some node w ∈ V , where the link vw

corresponds to a strongly connected component Z of DX0(X0 ∪ Y ∗).
It can be shown that this algorithm indeed finds the desired solution. ◁

Finally, using the algorithm in [11] for finding a cost-minimal strongly connected subgraph
on ℓ terminal pairs, we obtain that Algorithm 1 runs in time O(mn6ℓ−2 + n6ℓ−1 log n). ◀

3.3 Relation to a Problem of Open Complexity
In the previous section we obtained a 2-approximation for Fault-Tolerant ℓ-Flow. Ideally,
one would like to complement this with a hardness (of approximation) result. However,
since Fault-Tolerant ℓ-Flow Augmentation admits a polynomial-time algorithm according
to Theorem 17, we cannot use the augmentation problem in order to prove NP-hardness of
Fault-Tolerant ℓ-Flow; an approach that has been used successfully for instance for robust
paths [3], robust matchings [16] and robust spanning trees [2]. Hence, there is some hope
that Fault-Tolerant ℓ-Flow might actually be polynomial-time solvable. Here, we show that
a polynomial-time algorithm for Fault Tolerant 2-Flow implies polynomial-time algorithms
for 1-2-connected Directed 2 Steiner Tree, a problem whose complexity is open [9].

The problem 1-2-connected Directed 2 Steiner Tree is defined as follows. Given a digraph
D = (V, E) with costs c ∈ QA, a root vertex s ∈ V , and two terminals t1, t2 ∈ V , the goal is
to find a minimum cost set X ⊆ E such that X contains two disjoint s-t1 paths and one s-t2
path.

▶ Proposition 20. A polynomial-time algorithm for Fault Tolerant 2-Flow implies a
polynomial-time algorithm for 1-2-connected Directed 2 Steiner Tree.

Proof. Let I be an instance of 1-2-connected Directed 2 Steiner Tree on a graph D = (V, A)
with edge-weights c ∈ QE , root s ∈ V , and terminals T = {t1, t2}. We construct an instance
I ′ of Fault Tolerant 2-Flow as follows. We add to D two vertices u and t and four directed
edges Â = {(s, u), (t1, u), (u, t), (t2, t)}. Let the resulting graph be D′. The edge weights c′

of D′ are given by

c′
e :=

{
ce if e ∈ A(G), and
0 otherwise.

Finally, we let M := A ∪ {(s, u), (t1, u)}, that is, the edges incident to t are safe while all
other edges are unsafe.

SWAT 2022

5:18 Fault-Tolerant Edge-Disjoint s-t Paths

Let X be a feasible solution to I ′. We have Â ⊆ X, since otherwise X is not feasible.
We now show that there is at least one s-ti path and there are at least two disjoint s-t2
paths in (V, X \ Â). Assume first that there is no path from s to t1 in (V, X \ Â). But then
{(s, u), (v, t)} is a cut of size two in D′, where (s, u) is a vulnerable edge. This contradicts
the feasibility of X. Now assume that there are no two disjoint s-t2 paths in (V, X \ Â). It is
not hard to see that then we have a contradiction to the feasibility of X. Finally, observe
that there is a one-to-one correspondence between feasible solutions to I and I ′. ◀

4 Conclusions and Future Work

We introduced the two problems FTP and FTF, which add a non-uniform fault model to the
classical edge-disjoint s-t paths problem. This fault-model leads to a dramatic increase in
the computational complexity. We gave polynomial-time algorithms for several classes of
instances including the case k = 1 and DAGs with fixed k. Furthermore, we proved a tight
bound on the integrality gap of a natural LP relaxation for FTP and obtained a polynomial
k-approximation algorithm. For FTF, our main result is a 2-approximation algorithm for
fixed ℓ. One of the main open problems is to see whether the approximation guarantee for
FTP can be improved to the approximation guarantees of the best known algorithms for the
Steiner Tree problem. Furthermore, it would be interesting to see if the methods employed
in the current paper for 1-FTP and k-FTP on directed acyclic graphs can be extended to
k-FTP on general graphs. Another intriguing open question is whether Fault-Tolerant ℓ-Flow
is NP-hard, which is not known even for ℓ = 2. We showed that a positive result in this
direction implies polynomial-time algorithms for two Steiner problems whose complexity
status is open.

References
1 David Adjiashvili. Non-uniform robust network design in planar graphs. In Approximation,

Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX-
/RANDOM 2015). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2015.

2 David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler. Flexible graph connectivity.
In International Conference on Integer Programming and Combinatorial Optimization, pages
13–26. Springer, 2020.

3 David Adjiashvili, Sebastian Stiller, and Rico Zenklusen. Bulk-robust combinatorial optimiza-
tion. Mathematical Programming, 149(1-2):361–390, 2015. doi:10.1007/s10107-014-0760-6.

4 Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. Approximation complexity of min-
max (regret) versions of shortest path, spanning tree, and knapsack. In European Symposium
on Algorithms, pages 862–873. Springer, 2005.

5 Sylvia Boyd, Joseph Cheriyan, Arash Haddadan, and Sharat Ibrahimpur. A 2-approximation
algorithm for flexible graph connectivity. arXiv preprint, 2021. arXiv:2102.03304.

6 Christina Büsing. Recoverable robust shortest path problems. Networks, 59(1):181–189, 2012.
7 Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna, and Nitish Korula. Approxima-

bility of capacitated network design. Algorithmica, 72(2):493–514, 2015.
8 Moses Charikar, Chandra Chekuri, To-yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha, and

Ming Li. Approximation algorithms for directed Steiner problems. Journal of Algorithms,
33(1):73–91, 1999.

9 Joseph Cheriyan, Bundit Laekhanukit, Guyslain Naves, and Adrian Vetta. Approximating
rooted steiner networks. ACM Transactions on Algorithms (TALG), 11(2):1–22, 2014.

10 Kedar Dhamdhere, Vineet Goyal, R Ravi, and Mohit Singh. How to pay, come what may:
Approximation algorithms for demand-robust covering problems. In 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’05), pages 367–376. IEEE, 2005.

https://doi.org/10.1007/s10107-014-0760-6
http://arxiv.org/abs/2102.03304

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:19

11 Jon Feldman and Matthias Ruhl. The directed Steiner network problem is tractable for
a constant number of terminals. SIAM Journal on Computing, 36(2):543–561, 2006. doi:
10.1137/S0097539704441241.

12 Harold N Gabow and Suzanne R Gallagher. Iterated rounding algorithms for the smallest
k-edge connected spanning subgraph. SIAM Journal on Computing, 41(1):61–103, 2012.

13 Daniel Golovin, Vineet Goyal, Valentin Polishchuk, R Ravi, and Mikko Sysikaski. Improved
approximations for two-stage min-cut and shortest path problems under uncertainty. Mathe-
matical Programming, 149(1-2):167–194, 2015.

14 Jiong Guo, Rolf Niedermeier, and Ondřej Suchỳ. Parameterized complexity of arc-weighted
directed Steiner problems. SIAM Journal on Discrete Mathematics, 25(2):583–599, 2011.

15 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In Proceedings
of the 35th Annual ACM Symposium on Theory of Computing, pages 585–594, 2003. doi:
10.1145/780542.780628.

16 Felix Hommelsheim, Moritz Mühlenthaler, and Oliver Schaudt. How to secure matchings
against edge failures. SIAM Journal on Discrete Mathematics, 35(3):2265–2292, 2021.

17 Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21(1):39–60, 2001. doi:10.1007/s004930170004.

18 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

19 Gang Yu and Jian Yang. On the robust shortest path problem. Computers and Operations
Research, 25(6):457–468, June 1998.

20 Paweł Zieliński. The computational complexity of the relative robust shortest path problem
with interval data. European Journal of Operational Research, 158(3):570–576, November 2004.
doi:10.1016/s0377-2217(03)00373-4.

SWAT 2022

https://doi.org/10.1137/S0097539704441241
https://doi.org/10.1137/S0097539704441241
https://doi.org/10.1145/780542.780628
https://doi.org/10.1145/780542.780628
https://doi.org/10.1007/s004930170004
https://doi.org/10.1016/s0377-2217(03)00373-4

	1 Introduction
	1.1 Results
	1.2 Related Work
	1.3 Notation
	1.4 Organization

	2 Fault-Tolerant Paths
	2.1 Exact Algorithms
	2.2 Integrality Gap and Approximation Algorithms
	2.3 Approximation Hardness

	3 Fault-Tolerant Flows
	3.1 Approximation Hardness of FTF
	3.2 Approximation Algorithms
	3.3 Relation to a Problem of Open Complexity

	4 Conclusions and Future Work

