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Abstract
The problem of computing the longest common subsequence of two sequences (LCS for short) is
a classical and fundamental problem in computer science. In this paper, we study four variants
of LCS: the Repetition-Bounded Longest Common Subsequence problem (RBLCS) [2], the
Multiset-Restricted Common Subsequence problem (MRCS) [11], the Two-Side-Filled
Longest Common Subsequence problem (2FLCS), and the One-Side-Filled Longest Common
Subsequence problem (1FLCS) [5, 6]. Although the original LCS can be solved in polynomial
time, all these four variants are known to be NP-hard. Recently, an exact, O(1.44225n)-time,
dynamic programming (DP)-based algorithm for RBLCS was proposed [2], where the two input
sequences have lengths n and poly(n). We first establish that each of MRCS, 1FLCS, and 2FLCS
is polynomially equivalent to RBLCS. Then, we design a refined DP-based algorithm for RBLCS
that runs in O(1.41422n) time, which implies that MRCS, 1FLCS, and 2FLCS can also be solved in
O(1.41422n) time. Finally, we give a polynomial-time 2-approximation algorithm for 2FLCS.
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1 Introduction

1.1 Longest common subsequence problems with occurrence constraints
The problem of computing the longest common subsequence of two sequences (LCS for
short) is a classical and fundamental problem in computer science [3, 4, 9, 16]. Indeed,
many polynomial-time algorithms have been published for LCS [8, 9, 14, 15, 16]. A natural
extension of LCS is to impose constraints on the occurrences of the symbols in the solution.
It has been shown that even very simple constraints may make the problem computationally
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15:2 Polynomial-Time Equivalences Among LCS Variants

much harder. As an example, the Repetition-Free Longest Common Subsequence
problem (RFLCS), introduced by Adi et al. [1] is: Given two sequences X and Y over an
alphabet Σ, the goal of RFLCS is to find a “repetition-free” longest common subsequence
of X and Y , where each symbol appears at most once in the obtained subsequence. Adi et
al. [1] proved that RFLCS is APX-hard even if each symbol appears at most twice in each of
the given sequences. On the positive side, they showed that RFLCS admits a polynomial-time
occmax-approximation algorithm, where occmax is defined as follows: Let occ(W,σ) be the
number of occurrences of a symbol σ in a sequence W . Then occmax is the maximum of
min{occ(X,σ), occ(Y, σ)} taken over all σ’s in two sequences X and Y .

Mincu and Popa [11] introduced a general form of RFLCS, called the Multiset Re-
stricted Common Subsequence problem (MRCS): Given two sequences X and Y , and
a multiset M over the alphabet Σ, the goal of MRCS is to find a common subsequence
ZM of X and Y , that contains the maximum number of symbols from M. If M = Σ,
then MRCS is essentially equivalent to RFLCS. Therefore, MRCS is also APX-hard. In [11],
the authors showed that there exists an exact algorithm solving MRCS with running time
O(|X||Y |(t + 1)|Σ|), where t is the maximum multiplicity of symbols in M. Also, they
provided a polynomial-time 2

√
min{|X|, |Y |}-approximation algorithm for MRCS [11].

Recently, Asahiro et al. [2] introduced a slightly different generalization of RFLCS, called
the Repetition-Bounded Longest Common Subsequence problem (RBLCS for short):
Let Σ = {σ1, σ2, . . . , σk} be an alphabet of k symbols and Cocc be an occurrence constraint
Cocc : Σ → N, assigning an upper bound on the number of occurrences of each symbol in
Σ. Given two sequences X and Y over the alphabet Σ and an occurrence constraint Cocc,
the goal of RBLCS is to find a “repetition-bounded” longest common subsequence of X and
Y , where each symbol σi appears at most Cocc(σi)-times in the obtained subsequence for
i = 1, 2, . . . , k. In [2], Asahiro et al. provided a dynamic programming (DP) based algorithm
for RBLCS and proved that its running time is O(1.44225|X|) for any occurrence constraint
Cocc, assuming |X| ≤ |Y | and |Y | = O(poly(|X|)), and even less in certain special cases. In
particular, for RFLCS, their DP-based algorithm runs in O(1.41422|X|) time. NP-hardness
and APX-hardness results for RBLCS on restricted instances were also shown in [2].

1.2 Longest common subsequence problems on incomplete sequences
The comparison of biological sequences is a widely investigated field of bioinformatics, in
which the genomic features including DNA sequences and genes of different organisms are
compared in order to identify biological differences and similarities. In genomic analyses,
however, the considered genomes are usually not complete and thus there are cases where we
have to reconstruct complete genomes from incomplete genomes (so-called scaffolds) by filling
in missing genes. For this purpose, Muñoz et al. [13] formulated the following combinatorial
optimization problem, called the One-Sided Scaffold Filling problem (1SF): Given an
incomplete genome Y , a multiset M of missing genes, and a reference genome X, the goal of
1SF is to insert the missing genes into Y so that the number of common adjacencies between
the resulting Y ∗ and X is maximized. Subsequently, Jiang et al. [10] proposed the Two-Sided
Scaffold Filling problem (2SF): Given two scaffolds (incomplete genomes), the goal of 2SF is
to fill the missing genes into those two scaffolds respectively to result in such two genomes
that the number of common adjacencies between them is maximized.

Inspired by methods for genome comparison based on LCS and by 1SF/2SF, Castelli et
al. [5] introduced a new variant of LCS, called the One-Side-Filled Longest Common
Subsequence problem (1FLCS), which aims to compare a complete sequence with an
incomplete one, i.e., with some missing elements: Given a complete sequence X, an incomplete
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sequence Y , and a multiset MY of symbols missing in Y , 1FLCS asks for a sequence Y +

obtained by inserting a subset of the symbols of MY into Y so that Y + induces a common
subsequence with X of maximum length. The authors proved the APX-hardness of 1FLCS
and designed a polynomial-time 5

3 -approximation algorithm for 1FLCS. They also presented
an exponential-time exact algorithm for 1FLCS. (However, they did not analyze its time
complexity in detail.) In [6], Castelli et al. showed that if the alphabet size |Σ| is a constant,
then there is a polynomial-time algorithm for 1FLCS, and concluded by introducing the
Two-Side-Filled Longest Common Subsequence problem (2FLCS), i.e., LCS on two
incomplete sequences and two multisets of missing symbols: Given two incomplete sequences
X and Y , and two multisets MX and MY , 2FLCS asks for two sequences X+ and Y +

obtained by inserting subsets of the symbols of MX and MY into X and Y , respectively,
so that X+ and Y + induce a common subsequence of maximum length. They conjectured
that 2FLCS can be approximated within a constant factor in polynomial time, and that
the following simple method gives a 2-approximation: (1) First find a longest common
subsequence Z1 of input two sequences X and Y . Then, (2) obtain a sequence Z2 that
maximizes the number of symbols matched by inserting symbols of MX and MY . Finally,
(3) output the longest of Z1 and Z2. Moreover, they conjectured that 2FLCS can be solved
in polynomial time if the alphabet size is a constant.

1.3 Our contributions
Suppose that there exist an O(TA)-time algorithm for an optimization problem PA and an
O(TB)-time algorithm for another optimization problem PB. In this paper, we say that
two problems PA and PB are polynomially equivalent, or that polynomial-time equivalence
between PA and PB holds, if an optimal solution for an instance IA of PA can be obtained
in O(TB) + O(poly(|IA|)) time and an optimal solution for an instance IB of PB can be
obtained in O(TA) +O(poly(|IB |)) time. Our contributions are:
1. We establish that MRCS is polynomially equivalent to RBLCS by showing the following:

(i) From an input (X,Y,M) of MRCS, we construct an input (X,Y,Cocc) of RBLCS in
O(poly(|(X,Y,M)|)) time. Then, from an optimal solution ZR of RBLCS on (X,Y,Cocc),
we construct an optimal solution ZM of MRCS on (X,Y,M) in O(poly(|(X,Y,M)|)) time.
Conversely, (ii) from an input (X,Y,Cocc) of RBLCS, we construct an input (X,Y,M)
of MRCS in O(poly(|(X,Y,Cocc)|)) time. Then, from an optimal solution ZM of MRCS
on (X,Y,M), we construct an optimal solution ZR in O(poly(|(X,Y,Cocc)|)) time. It
is important to note that our constructions between two inputs are “input-sequences
preserving reductions”, i.e., X and Y in (X,Y,M) and (X,Y,Cocc) are identical.

2. Similarly to the above, we show the polynomial-time equivalence between 1FLCS and
RBLCS: (i) From an input (X,Y,MY ) of 1FLCS, we construct an input (X,Y,Cocc) of
RBLCS in O(poly(|(X,Y,MY )|)) time. Then, from an optimal solution ZR of RBLCS
on (X,Y,Cocc), we construct an optimal solution Z1F of 1FLCS on (X,Y,MY ) in
O(poly(|(X,Y,MY )|)) time. Conversely, (ii) from an input (X,Y,Cocc) of RBLCS, we
construct an input (X,Y,MY ) of 1FLCS in O(poly(|(X,Y,Cocc)|)) time. Then, from an
optimal solution Z1F of 1FLCS on (X,Y,MY ), we construct an optimal solution ZR of
RBLCS on (X,Y,Cocc) in O(poly(|(X,Y,Cocc)|)) time.

3. We prove the polynomial-time equivalence between 2FLCS and RBLCS. Due to the second
contribution and 1FLCS being a special case of 2FLCS, we only need to show one direction:
(i) From an input (X,Y,MX ,MY ) of 2FLCS, we construct an input (X,Y,Cocc) of RBLCS
in O(poly(|(X,Y,MX ,MY )|)) time. Then, from an optimal solution ZR of RBLCS on
(X,Y,Cocc), we construct an optimal solution Z2F of 2FLCS on (X,Y,MX ,MY ) in
O(poly(|ZR|)) time.

CPM 2022
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4. We design a refined DP-based algorithm that runs in O(1.41422n) time for RBLCS on two
sequences X of length n and Y of length m (assuming that n ≤ m and m = O(poly(n))),
while the previously known running time was O(1.44225n) in [2].

5. We give a simple polynomial-time 2-approximation algorithm for 2FLCS, thus resolving
one of the conjectures in [6].

▶ Remark 1. One sees that 1FLCS on (X,Y,MY ) is equivalent to 2FLCS on
(X,Y, ∅,MY ); 1FLCS can be solved by using an algorithm for 2FLCS. From (ii) in the
second contribution, RBLCS can also be solved by using the algorithm for 2FLCS with
some extra polynomial-time calculations. Therefore, the one-way equivalence in the third
contribution demonstrates the “two-way” polynomial-time equivalence between 2FLCS and
RBLCS. Furthermore, interestingly, an algorithm for 1FLCS can solve 2FLCS within an extra
polynomial-time factor.

▶ Remark 2. None of the constructions between inputs described above change the sequences
X and Y . In particular, |X| and |Y | remain the same, so the above polynomial-time
equivalences imply that MRCS, 1FLCS, and 2FLCS can also be solved in O(1.41422n) time.

▶ Remark 3. We also remark that the polynomial-time equivalence between 1FLCS and
2FLCS gives an affirmative answer to the conjecture on the polynomial-time solvability of
2FLCS for a constant size alphabet in [6] since we do not change Σ.

2 Preliminaries

2.1 Notation
An alphabet Σ = {σ1, σ2, . . . , σk} is a set of k symbols. Let X be a sequence over the alphabet
Σ and |X| be the length of the sequence X. Throughout the paper, a sequence X is often
regarded as a multiset of the same symbols. For example, X = ⟨x1, x2, . . . , xn⟩ is a sequence
of length n, where xi ∈ Σ for 1 ≤ i ≤ n, i.e., |X| = n. A subsequence of X is obtained
by deleting zero or more symbols from X. Then, we say that a sequence Z is a common
subsequence of X and Y if Z is a subsequence of both X and Y . Given two sequences X
and Y as input, the goal of the Longest Common Subsequence problem (LCS) is to find
a longest common subsequence of X and Y , which is denoted by LCS(X,Y ). Let L(X,Y )
denote the length of LCS(X,Y ).

For the sequence X, the consecutive subsequence, i.e., substring ⟨xi, xi+1, . . . , xj⟩ is de-
noted by Xi..j . Then, we define the ith prefix of X, for i = 1, . . . , n, as X1..i = ⟨x1, x2, . . . , xi⟩.
Also, we define the ith suffix of X, for i = 1, . . . , n, as Xi..n = ⟨xi, xi+1, . . . , xn⟩. X1..n is X.

Let X = ⟨x1, x2, . . . , xn⟩ and Y = ⟨y1, y2, . . . , ym⟩ be the given two sequences of length n
and length m, respectively. Assume that n ≤ m and m = O(poly(n)) throughout the paper.
Suppose that Z = ⟨z1, z2, . . . , zp⟩ is a common subsequence with length p of X and Y . Then,
we can consider two strictly increasing sequences IX = ⟨i1, i2, . . . , ip⟩ of indices of X and
IY = ⟨j1, i2, . . . , jp⟩ of indices of Y such that zℓ = xiℓ = yjℓ

holds for each ℓ = 1, 2, . . . , p.
We call the pair (IX , IY ) of such sequences an index-expression of the common sequence Z
of X and Y . A pair (xiℓ , yjℓ

) is called the ℓth match. Also, we say that the ℓth match is zℓ,
xiℓ , or yiℓ .

For two sequences A = ⟨a1, . . . , ai⟩ of length i and B = ⟨b1, . . . , bj⟩ of length j, let A⊕B

be the concatenation of A and B, i.e., the sequence A⊕B = ⟨a1, . . . , ai, b1, . . . , bj⟩ of length
i+j. For X = ⟨x1, x2, . . . , xn⟩ of length n, let X\⟨i⟩ denote the sequence obtained by deleting
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the ith symbol xi from X, i.e., X \ ⟨i⟩ = X1..i−1 ⊕Xi+1..n = ⟨x1, x2, . . . , xi−1, xi+1, . . . , xn⟩.
Similarly, for 1 ≤ i1 < i2 < · · · < ip ≤ n, let X \ ⟨i1, i2, . . . , ip⟩ be the sequence obtained by
deleting p symbols xi1 , xi2 , . . . , xip from X.

Let M be a multiset of symbols in Σ and let |M| be the cardinality of M. Let occ(M, σ)
denote the occurrences (i.e., the multiplicity) of a symbol σ ∈ Σ in a multiset M. Let
M \ {σℓ} be the multiset obtained by removing ℓ σ’s from a multiset M. Let M \ {σ∗} be
the multiset obtained by removing all σ’s from a multiset M.

Consider a multiset M of cardinality ℓ and obtain an arbitrarily fixed sequence M =
⟨µ1, µ2, . . . , µℓ⟩ of ℓ symbols in M, called a sequence-expression of the multiset M. In the
following, the multiset M is often regarded as its sequence-expression M ; M and M are used
interchangeably. Similarly to the above, for 1 ≤ i1 < i2 < · · · < ip ≤ ℓ, let M \ ⟨i1, i2, . . . , ip⟩
be the sequence obtained by deleting p symbols µi1 , µi2 , . . . , µip from M .

An algorithm ALG is called an α-approximation algorithm and ALG’s approximation ratio
is α if OPT (x)/ALG(x) ≤ α holds for every input x of an LCS-type problem, where ALG(x)
and OPT (x) are the length of solutions obtained by ALG and an optimal algorithm in
polynomial-time.

2.2 Repetition-bounded longest common subsequence
Recall that occ(W,σ) is the number of occurrences of σ ∈ Σ in a sequence W . Without loss
of generality, we assume that two input sequences X and Y have all k symbols in Σ, and thus
occ(X,σi) ≥ 1 and occ(Y, σi) ≥ 1 for every symbol σi. Let Cocc be an occurrence constraint,
i.e., a function Cocc : Σ → N assigning an upper bound on the number of occurrences of
each symbol in Σ. The Repetition-Bounded Longest Common Subsequence problem
(RBLCS) can be formally defined as follows [2]:

Repetition-Bounded Longest Common Subsequence problem (RBLCS)
Input: A pair of sequences X and Y , and an occurrence constraint Cocc.
Goal: Find a longest common subsequence Z of X and Y such that occ(Z, σ) ≤ Cocc(σ)

is satisfied for every σ ∈ Σ.

We call Z a repetition-bounded longest common subsequence. Let LCS(X,Y,Cocc) denote
the repetition-bounded longest common subsequence for the input triple (X,Y,Cocc). Also,
L(X,Y,Cocc) denotes the length of LCS(X,Y,Cocc).

▶ Example 4. Let (X,Y,Cocc) be an instance of RBLCS defined by:

X = ⟨t, g, t, c, a, c, g, t, g, a, a, g⟩, Y = ⟨a, t, g, c, a, t, g, g, a, c, a, g, c⟩; and
Cocc(a) = 1, Cocc(c) = 1, Cocc(g) = 2, Cocc(t) = 1.

Z = ⟨g, c, t, g, a⟩ of length five is an optimal solution of RBLCS since occ(Z, a) = 1, occ(Z, c) =
1, occ(Z, g) = 2, occ(Z, t) = 1, and

∑
σ∈{a,c,g,t} Cocc(σ) = 5, i.e., L(X,Y,Cocc) = 5. As a

side note, ⟨t, g, c, a, t, g, a, a, g⟩ of length nine is an optimal solution of the original LCS.

Consider an input triple (X,Y,Cocc) of RBLCS and a feasible solution ZR for (X,Y,Cocc).
Then, for every σ ∈ Σ, the number of occurrences occ(ZR, σ) of σ must be bounded above
by Cocc(σ). If Cocc(σ′) > min{occ(X,σ′), occ(Y, σ′)} for some σ′, then the constraint Cocc
is somewhere redundant. Therefore, if the input (X,Y,Cocc) of RBLCS satisfies Cocc(σ) ≤
min{occ(X,σ), occ(Y, σ)} for every σ ∈ Σ, then we call (X,Y,Cocc) the standard input.
Without loss of generality, we assume that every input of RBLCS is standard in the following.

CPM 2022
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2.3 Multiset restricted common subsequence
The formal definition of the Multiset Restricted Common Subsequence problem
(MRCS) is as follows [11]:

Multiset Restricted Common Subsequence problem (MRCS)
Input: A pair of sequences X and Y , and a multiset M.
Goal: Find a common subsequence Z of X and Y such that Z contains the maximum

number of symbols from M.

That is, the goal of MRCS is to maximize |M ∩ Z| as a multiset intersection or, equivalently,
to minimize |M \ Z| as a multiset difference (if Z is regarded as the corresponding multiset).
The optimal solution Z is denoted by LCS(X,Y,M) in the following. The length of
LCS(X,Y,M) is denoted by L(X,Y,M).

▶ Example 5. Consider the following input triple (X,Y,M) of MRCS:

X = ⟨t, g, t, c, a, c, g, t, g, a, a, g⟩, Y = ⟨a, t, g, c, a, t, g, g, a, c, a, g, c⟩, M = {a, c, g, g, t}

One sees that a common subsequence ⟨g, c, t, g, a⟩ of X and Y is an optimal solution of MRCS
since |M| = 5 and solutions of length five with all the symbols in M are equally as good as
longer solutions. For example, the objective function value of a longer common subsequence
Z = ⟨g, c, t, g, a, a, g⟩ is also five since |M ∩ Z| = 5.

2.4 Filled longest common subsequence
Let MX (MY , resp.) be a multiset of symbols in Σ. Then, we denote the cardinal-
ity of the multiset MX (MY , resp.) by |MX | (|MY |, resp.), i.e.,

∑
σ∈MX

occ(MX , σ)
(
∑
σ∈MY

occ(MY , σ), resp.). A filling X+ (Y +, resp.) of the sequence X (Y , resp.) is defined
as a sequence obtained from X (Y , resp.) by inserting a subset of the symbols from MX (MY ,
resp.) into X (Y , resp.). That is, for some 0 ≤ p ≤ |MX | and M′

X = {χ1, . . . , χp} ⊆ MX ,
the filling X+ obtained by inserting M′

X into X is the following concatenation of 2p + 1
subsequences (some might be a null sequence):

X+ = X1..j1 ⊕ ⟨χi1⟩ ⊕Xj1+1..j2 ⊕ ⟨χi2⟩ ⊕ · · · ⊕ ⟨χip⟩ ⊕Xjp+1..n
,

where X = X1..j1 ⊕ Xj1+1..j2 ⊕ · · · ⊕ Xjp+1..n and {i1, . . . , ip} = {1, . . . , p}. For some
0 ≤ q ≤ |MY | and M′

Y = {ψ1, . . . , ψq} ⊆ MY , the filling Y + obtained by inserting M′
Y

into Y is similarly defined. Let X∗ and Y ∗ be fillings such that the length of LCS(X∗, Y ∗)
is the longest among the length of LCS(X+, Y +) over all pairs of X+ and Y +. The Two-
Side-Filled Longest Common Subsequence problem (2FLCS) is defined as follows [6]:

Two-Side-Filled Longest Common Subsequence problem (2FLCS)
Input: A pair of sequences X and Y , and a pair of multisets MX and MY .
Goal: Find two fillings X∗ and Y ∗ such that the length of LCS(X∗, Y ∗) is the longest

among the lengths of LCS(X+, Y +) over all pairs of X+ and Y +.

In the following, the longest common subsequence LCS(X∗, Y ∗) of two fillings X∗ and
Y ∗ is written as LCS(X,Y,MX ,MY ). The length of LCS(X,Y,MX ,MY ) is denoted
by L(X,Y,MX ,MY ). As a special case, if MX = ∅, then the problem is called the
One-Side-Filled Longest Common Subsequence problem (1FLCS) [6]:
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One-Side-Filled Longest Common Subsequence problem (1FLCS)
Input: A pair of sequences X and Y , and a multiset MY .
Goal: Find a filling Y ∗ such that the length of LCS(X,Y ∗) is the longest among the

length of LCS(X,Y +) over all fillings Y +.

Let LCS(X,Y,MY ) and L(X,Y,MY ) be the longest common subsequence LCS(X,Y ∗)
and its length, respectively.

▶ Example 6. Now we consider the following example, two sequences X and Y , and two
multisets MX and MY , as input to 2FLCS:

X = ⟨g, t, c, a, c, t, g, a⟩, Y = ⟨g, a, t, c, c, g, t, g⟩, MX = {g, t}, and MY = {c, t, t}

Here, for example, occ(X, c) = 2 and occ(MY , c) = 1. One sees that for the input quadruple
(X,Y,MX ,MY ), an optimal pair of fillings is as follows:

X∗ = ⟨t, g, t, c, a, c, g, t, g, a⟩ and Y ∗ = ⟨t, g, t, c, a, t, c, c, g, t, g⟩.

That is, the leftmost t and the seventh g in X∗ are inserted into the original X from MX .
For Y ∗, the first, third, and fourth symbols (t, t, and c, respectively) are inserted into Y from
MY . Then, the longest common subsequence LCS(X∗, Y ∗) of those fillings X∗ and Y ∗ is
⟨t, g, t, c, a, c, g, t, g⟩. Note that IX∗ = ⟨1, 2, 3, 4, 5, 6, 7, 8, 9⟩ and IY ∗ = ⟨1, 2, 3, 4, 5, 7, 9, 10, 11⟩.
One can verify that, for example, the first symbol t in LCS(X∗, Y ∗) originally comes from
MX and MY , but the second symbol g comes from X and Y .

Now let X+ = ⟨x1, x2, . . . , xn⟩ and Y + = ⟨y1, y2, . . . , ym⟩ be two fillings of X and Y ,
respectively. Let (IX+ , IY +) be an index-expression of a common subsequence of two fillings
X+ and Y +. Then, the ℓth match (xiℓ , yjℓ

) is one of the following four types of matches:
MXMY -match: xiℓ and yiℓ are inserted from MX and MY , respectively.
MXY -match: xiℓ is inserted from MX but yiℓ is originally in Y .
XMY -match: xiℓ is originally in X but yjℓ

is inserted from MY .
XY -match: xiℓ and yiℓ are originally in X and Y , respectively.

Let X∗ and Y ∗ denote optimal fillings for the quadruple (X,Y,MX ,MY ) of 2FLCS. If
there exists at least one symbol, say, σ, in MY that does not appear in an optimal filling
Y ∗, then the length of LCS(X∗, Y ∗ ⊕ ⟨σ⟩) is equal to one of LCS(X∗, Y ∗), which implies
that Y ∗ ⊕ ⟨σ⟩ is another optimal filling. Similarly, if σ′ ∈ MX does not appear in X∗, then
X∗ ⊕ ⟨σ′⟩ is another optimal filling. Therefore, without loss of generality, we assume that all
the symbols in MX and MY are inserted to the optimal fillings.

2.5 Known results on exact/approximation algorithms
Here, we summarize the previously known results on exact and approximation algorithms.
For RBLCS, the following exact exponential-time algorithm is known:

▶ Proposition 7 ([2]). There is an O(1.44225n)-time algorithm for RBLCS on two sequences
X and Y , where |X| = n, |Y | = m, and n ≤ m, assuming that m = O(poly(n)).

If Cocc(σ) = 1 for every symbol σ ∈ Σ, then we can design a faster exact algorithm:

▶ Proposition 8 ([2]). There is an O(1.41422n)-time algorithm for RFLCS on two sequences
X and Y , where |X| = n, |Y | = m, and n ≤ m, assuming that m = O(poly(n)).
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Furthermore, the following approximation algorithm is known for RFLCS:

▶ Proposition 9 ([1]). There is a polynomial-time occmax-approximation algorithm for RFLCS
on two sequences X and Y , where occmax = maxσ∈Σ{min{occ(X,σ), occ(Y, σ)}}.

For MRCS, the following exact exponential-time algorithm and the polynomial-time
approximation algorithm are proposed in [11]:

▶ Proposition 10 ([11]). There is an O(nm(t + 1)k)-time algorithm for MRCS on two
sequences X and Y , and a multiset M, where t and k are the maximum multiplicity of M
and the alphabet size |Σ|, respectively 1.

▶ Proposition 11 ([11]). There is a polynomial-time 2
√

min{n,m}-approximation algorithm
for MRCS on two sequences X and Y , and a multiset M, where |X| = n and |Y | = m.

For 1FLCS, an FPT-algorithm parameterized by the number k of XMY -matches in the
optimal subsequence is known [6]. Note that k may be as large as the length of X, i.e., n.

▶ Proposition 12 ([6]). There is an O(2O(k)poly(n+m+ |MY |))-time algorithm for 1FLCS
on an input triple (X,Y,MY ) if the number of XMY -matches in LCS(X,Y ∗) is k.

The following algorithm for 1FLCS runs in polynomial time if |Σ| is a constant [6]:

▶ Proposition 13 ([6]). There is an O(n|Σ|+2m)-time algorithm for 1FLCS on (X,Y,MY ).

The following approximability result is also known for 1FLCS:

▶ Proposition 14 ([6]). There is a polynomial-time 5
3 -approximation algorithm for 1FLCS.

3 Polynomial-time equivalence of RBLCS and MRCS

In this section we show the polynomial-time equivalence between RBLCS and MRCS. First
consider any optimal solution ZM for an input (X,Y,M) of MRCS. Recall that the objective
function value of MRCS is |M∩ZM|. Hence, |M∩ZM| can be regarded as the summation of
occurrences of all the symbols in the solution. Furthermore, intuitively, the number occ(M, σ)
of occurrences of every symbol σ ∈ M can be regarded as the occurrence constraint Cocc(σ)
of the solution for RBLCS, and vice versa. One sees that we can transform from/to a
multiset M of symbols in Σ to/from an occurrence constraint Cocc of symbols in Σ such
that Cocc(σ) = occ(M, σ) for every σ ∈ Σ clearly in polynomial time; all we have to do is
count the multiplicity/occurrences of every symbol in M. Then, we can obtain the following
theorem (see the journal version of this paper for its proof):

▶ Theorem 15. Consider a pair of a multiset M in an input for MRCS and an occurrence
constraint Cocc of symbols in Σ in an input for RBLCS such that Cocc(σ) = occ(M, σ) for
every σ ∈ Σ. Then, the followings hold: (1) Given an optimal solution ZR for an input
(X,Y,Cocc) of RBLCS, we can obtain an optimal solution for an input (X,Y,M) of MRCS
in polynomial time. (2) Given an optimal solution ZM for an input (X,Y,M) of MRCS, we
can obtain an optimal solution for an input (X,Y,Cocc) of RBLCS in polynomial time.

1 We remark that the time complexity shown in Theorem 3 of [11] is O(nmtk), but the correct one must
be O(nm(t + 1)k) because the algorithm has to store t + 1 values from 0 through t for the maximum
multiplicity. As described before, if M = Σ, i.e., t = 1, then MRCS is essentially equivalent to RFLCS
and thus MRCS is NP-hard. If we can solve MRCS with t = 1 in O(nmtk) = O(nm) time, then we can
obtain P = NP.
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4 Polynomial-time equivalence of RBLCS, 1FLCS, and 2FLCS

4.1 Proof tools
In this subsection we give some proof tools. The first tool reduces the numbers of XY -matches
and MXMY -matches in an output subsequence (see the journal version of this paper for its
proof):

▶ Lemma 16. Suppose that (X,Y,MX ,MY ) is an input for 2FLCS, and X∗ and Y ∗

are optimal fillings of (X,Y,MX ,MY ). Also, suppose that the numbers of XY -matches,
MXMY -matches, XMY -matches, and MXY -matches of some σ in the index-expression
(IX∗ , IY ∗) of X∗ and Y ∗ are α > 0, β > 0, ζ ≥ 0, and η ≥ 0, respectively. Then, we can
obtain in polynomial time another pair of optimal fillings X∗∗ and Y ∗∗ such that (i) the
numbers of XY -matches, MXMY -matches, XMY -matches, and MXY -matches of σ in the
index-expression (IX∗∗ , IY ∗∗) of X∗∗ and Y ∗∗ are α− 1, β − 1, ζ + 1, and η+ 1, respectively,
and (ii) all the matches of any different symbol σ′ ̸= σ do not change.

If we use the above tool iteratively α-times for α ≤ β (β-times for β ≤ α, resp.), then we
can obtain so-called an “XY -match-free” (“MXMY -match-free”, resp.) output subsequence.

▶ Lemma 17. Suppose that an input quadruple (X,Y,MX ,MY ) satisfies occ(X,σ) > 0 and
occ(MY , σ) > 0 for some σ ∈ Σ. Let X = ⟨x1, . . . , xn⟩ and MY = ⟨ψ1, . . . , ψℓ⟩. Then,

L(X,Y,MX ,MY ) = max
σ=xi=ψj

L(X \ ⟨i⟩, Y,MX ,MY \ ⟨j⟩) + 1.

We can apply very similar arguments to the pair Y and MX , which gives:

▶ Corollary 18. Suppose that an input quadruple (X,Y,MX ,MY ) satisfies occ(Y, σ) > 0
and occ(MX , σ) > 0 for some σ ∈ Σ. Let Y = ⟨y1, . . . , ym⟩ and MX = ⟨χ1, . . . , χℓ⟩. Then,

L(X,Y,MX ,MY ) = max
σ=yi=χj

L(X,Y \ ⟨i⟩,MX \ ⟨j⟩,MY ) + 1.

The following lemma and corollary deal with the symbol additions to multisets:

▶ Lemma 19. Let X+ be a filling of X and MX , and let Y + be a filling of Y and MY .
Suppose that a common subsequence Z of X+ and Y + satisfies occ(Z, σ) < occ(Y +, σ) for
some symbol σ ∈ Σ. Then, we can find in polynomial time a new filling X++ of X and
MX ∪{σ} and a common subsequence Z ′ of X++ and Y + satisfying the following conditions:
(1) occ(Z, σ) + 1 = occ(Z ′, σ), and (2) for every σ′ except for σ occ(Z, σ′) = occ(Z ′, σ′).

▶ Corollary 20. Let X+ be a filling of X and MX , and let Y + be a filling of Y and MY .
Suppose that a common subsequence Z of X+ and Y + satisfies occ(Z, σ) < occ(X+, σ) for
some symbol σ ∈ Σ. Then, we can find in polynomial time a new filling Y ++ of Y and
MY ∪{σ} and a common subsequence Z ′ of Y ++ and X+ satisfying the following conditions:
(1) occ(Z, σ) + 1 = occ(Z ′, σ), and (2) for every σ′ except for σ, occ(Z, σ′) = occ(Z ′, σ′).

4.2 RBLCS and 1FLCS
In this subsection we show that 1FLCS is polynomially equivalent to RBLCS. Consider an
input triple (X,Y,MY ) of 1FLCS. In [12], Mincu and Popa observed that a filling-procedure
of a symbol σ ∈ MY into Y to match some σ in X can be seen as a deleting-procedure of
the matched σ from X [12]. Our basic ideas are based on their observation: Every symbol
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σ ∈ MY can be matched to σ at any position in X without restrictions. After all σ’s in MY

are matched, the number of remaining unmatched σ’s in X is occ(X,σ) − occ(MY , σ), which
can be seen as the occurrence constraint Cocc(σ) of the input (X,Y,Cocc) for RBLCS. In
the following, we show that (i) from the input (X,Y,MY ) for 1FLCS, we can construct the
input (X,Y,Cocc) for RBLCS such that Cocc(σ) = occ(X,σ) − occ(MY , σ) for every σ ∈ Σ
in polynomial time, and vice versa; (ii) from an optimal solution of the former problem, we
can construct an optimal solution of the latter problem in polynomial time, and vice versa.

Consider an input triple (X,Y,MY ) of 1FLCS and a feasible solution Z1F . Then, for every
symbol σ, occ(Z1F , σ) ≤ occ(X,σ) holds. If occ(X,σ) < occ(MY , σ), then occ(MY , σ) −
occ(X,σ) σ’s are clearly redundant. If the input (X,Y,MY ) of 1FLCS satisfies occ(X,σ) ≥
occ(MY , σ) for every σ ∈ Σ, then we call (X,Y,MY ) the standard input. Without loss of
generality, we assume that every input of 1FLCS is standard.

▶ Lemma 21. Suppose that a triple (X,Y,MY ) is a standard input for 1FLCS, Y ∗ is an
optimal filling, and Z is the longest common subsequence of X and Y ∗. Then, for every σ in
Σ, occ(Z, σ) ≥ occ(MY , σ) is satisfied.

Proof. Let X = ⟨x1, . . . , xn⟩, Y ∗ = ⟨y∗
1 , . . . , y

∗
m⟩, and Z = ⟨z1, . . . , zℓ⟩ = ⟨xi1 , . . . , xiℓ⟩ =

⟨y∗
j1
, . . . , y∗

jℓ
⟩ (i.e., ip < ip+1 and jp < jp+1 hold for every 1 ≤ p ≤ ℓ− 1). Since the input is

standard, for every σ, occ(MY , σ) ≤ occ(X,σ) holds.
Now suppose for the purpose of obtaining a contradiction that there exists at least one

symbol, say, σ′, occ(Z, σ′) < occ(MY , σ
′) ≤ occ(X,σ′) holds. Since occ(Z, σ′) < occ(X,σ′)

holds, we can find an index q such that the qth symbol xq in X is σ′ but q is not in
IX = ⟨i1, i2, . . . , iℓ⟩. First, we assume that ip < q < ip+1 holds for some p where 1 ≤
p ≤ ℓ − 1. Then, we construct a new sequence Z ′ = ⟨xi1 , . . . , xip⟩ ⊕ ⟨σ′⟩ ⊕ ⟨xip+1 . . . , xiℓ⟩
of length ℓ + 1. If q < i1 (iℓ < q, resp.), then we insert σ′ to the head position, i.e.,
Z ′ = ⟨σ′⟩⊕⟨xi1 , . . . , xiℓ⟩ (to the tail position, i.e., Z ′ = ⟨xi1 , . . . , xiℓ⟩⊕⟨σ′⟩, resp.). Moreover,
since occ(Z, σ′) < occ(MY , σ

′), we can find an index q′ such that the q′th symbol yq′ inserted
into Y ∗ is σ′ but q′ is not in IY ∗ = ⟨j1, j2, . . . , jℓ⟩. Then we construct a new filling Y ∗∗ as
follows: (1) First remove the q′th symbol yq′ (= σ′) from Y ∗, and then (2) insert yq′ right
after yjp

of Y ∗. Note that the (p+ 1)st symbol in the new sequence Z ′ is σ′. It follows that
LCS(X,Y ∗∗) = Z ′ and thus we can obtain the sequence of length ℓ+ 1 from (X,Y,MY ),
which is a contradiction. Therefore, for all σ in Σ, occ(Z, σ) ≥ occ(MY , σ) holds. ◀

Consider an input triple (X,Y,MY ) of 1FLCS and its optimal solution Z1F . Suppose
that there is a symbol σ such that occ(X,σ) > occ(Y, σ) + occ(MY , σ). Let ℓ = occ(X,σ) −
(occ(Y, σ) + occ(MY , σ)) ≥ 0. Then, at least ℓ σ’s in X do not appear in Z1F . Let Sσ be
a multiset of ℓ σ’s. Now, suppose that for a new triple (X,Y,MY ∪ Sσ), we can obtain an
optimal solution Z. Then, the length of Z must be equal to |Z1F |+ ℓ. Moreover, by removing
ℓ σ’s in Sσ from Z, we can easily find the original optimal solution Z1F for (X,Y,MY ). For
every symbol σ′ in Σ satisfying occ(X,σ′) > occ(Y, σ′) + occ(MY , σ

′), the similar discussion
as the above can be applied. Let S =

⋃
σ′:occ(X,σ′)>occ(Y,σ′)+occ(MY ,σ′) Sσ′ . If we are given

the triple (X,Y,MY ∪ S), then by finding its optimal solution Z ′ first, and then removing all
the symbols in S from Z ′, we obtain Z1F . In the following we call the triple (X,Y,MY ∪ S)
by merging S to MY an extended triple. If the triple (X,Y,MY ) of 1FLCS is extended and
satisfies occ(X,σ) ≥ occ(MY , σ) for every σ ∈ Σ then it is called ex-standard. To simplify
the discussion, we assume that every input triple (X,Y,MY ) of 1FLCS is always ex-standard.

The following lemma is quite trivial but plays an important role:
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▶ Lemma 22. (1) Suppose that an input triple (X,Y,MY ) for 1FLCS is ex-standard.
Then, we can construct a standard input triple (X,Y,Cocc) for RBLCS satisfying Cocc(σ) =
occ(X,σ) − occ(MY , σ) for every σ ∈ Σ in polynomial time. (2) Suppose that an input
triple (X,Y,Cocc) for RBLCS is standard. Then, we can construct an ex-standard input
triple (X,Y,MY ) for 1FLCS satisfying occ(MY , σ) = occ(X,σ) − Cocc(σ) for every σ ∈ Σ
in polynomial time.

Proof. (1) Since the triple (X,Y,MY ) is ex-standard, occ(X,σ) − occ(MY , σ) ≥ 0 for every
σ. Therefore, we can always obtain the valid occurrence constraint such that Cocc(σ) =
occ(X,σ)−occ(MY , σ) for every σ. Furthermore, since (X,Y,MY ) is ex-standard, Cocc(σ) =
occ(X,σ) − occ(MY , σ) ≤ occ(Y, σ). It follows that Cocc(σ) ≤ min{occ(X,σ), occ(Y, σ)}.
Hence, the triple (X,Y,Cocc) must be standard for RBLCS. (2) Since the triple (X,Y,Cocc)
is standard, Cocc(σ) ≤ min{occ(X,σ), occ(Y, σ)}. Therefore, we can always obtain the valid
multiset MY such that occ(MY , σ) = occ(X,σ) − Cocc(σ) ≥ 0 for every σ. ◀

▶ Lemma 23. Consider an ex-standard input (X,Y,MY ) for 1FLCS and a standard input
(X,Y,Cocc) for RBLCS such that Cocc(σ) = occ(X,σ) − occ(MY , σ) holds for every σ ∈
Σ. Let ZF = LCS(X,Y,MY ) and Y ∗ be an optimal filling for 1FLCS. Also, let ZR =
LCS(X,Y,Cocc) be an optimal solution for RBLCS. Then, |ZR| + |MY | = |ZF | holds.

Proof. First, from Lemma 22, we always find a pair of triples (X,Y,MY ) and (X,Y,Cocc)
such that the former and the latter are the ex-standard input for 1FLCS and the standard
input for RBLCS satisfying Cocc(σ) = occ(X,σ) − occ(MY , σ) for every σ ∈ Σ, respectively.

(1) We first show that |ZF | ≤ |ZR|+ |MY | holds. Let X = ⟨x1, . . . , xn⟩, Y = ⟨y1, . . . , ym⟩,
and MY = ⟨ψ1, . . . , ψℓ⟩, where MY is the sequence-expression of MY . By the assumption that
(X,Y,MY ) is ex-standard, there exists a sequence ⟨i1, i2, . . . , iℓ⟩ of indices of X satisfying
L(X,Y,MY ) = L (X \ ⟨i1, . . . , iℓ⟩, Y, ∅) + ℓ, by regarding L(X,Y, ∅,MY ) as L(X,Y,MY ),
and by using the formula in Lemma 17 recursively. Since MY = ∅, L(X \ ⟨i1, . . . , iℓ⟩, Y, ∅) is
clearly equal to the length of the longest common subsequence Z ′ of X \ ⟨i1, . . . , iℓ⟩ and Y .
Therefore, |ZF | = |Z ′| + |MY |. Note that Z ′ is a common subsequence of the original X
and Y and satisfies the following for every σ:

Cocc(σ) = occ(X,σ) − occ(MY , σ) = occ(X \ ⟨i1, . . . , iℓ⟩, σ) ≥ occ(Z ′, σ).

That is, every symbol in Z ′ satisfies the occurrence constraint Cocc of RBLCS, which implies
that |Z ′| ≤ |ZR|. As a result, |ZF | = |Z ′| + |MY | ≤ |ZR| + |MY | holds.

(2) Next, we show that |ZR| + |MY | ≤ |ZF |. Recall that for every σ, occ(ZR, σ) ≤
Cocc(σ) = occ(X,σ) − occ(MY , σ) is satisfied. Here, from the viewpoint of 1FLCS, we can
obtain a longer sequence than ZR by filling symbols of MY into Y . Suppose that ZR
is a common subsequence for RBLCS on (X,Y,Cocc) and (X,Y, ∅) is an input triple for
1FLCS. From Lemma 19, by setting a multiset M′

Y = {σ} and filling σ into Y as matched
with some σ in X, we can obtain a common subsequence Z1 such that |Z1| = |ZR| + 1,
occ(Z1, σ) = occ(ZR, σ) + 1, and occ(Z1, σ

′) = occ(ZR, σ′) for every σ′ except for σ. By
repeating the merge M′

Y ∪ {σ} and the filling of σ occ(MY , σ)-times for every σ ∈ Σ, we
can eventually obtain MY , the filling of Y and MY , and a common subsequence Z satisfying
|Z| = |ZR| +

∑
σ∈Σ occ(MY , σ) = |ZR| + |MY |. Since ZF is the longest, |Z| ≤ |ZF |. Hence,

|ZR| + |MY | = |Z| ≤ |ZF | holds.
From (1) and (2), |ZR| + |MY | = |ZF |. This completes the proof. ◀
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▶ Theorem 24. Consider an ex-standard input (X,Y,MY ) for 1FLCS and a standard
input (X,Y,Cocc) for RBLCS such that Cocc(σ) = occ(X,σ) − occ(MY , σ) holds for every
σ ∈ Σ. Let ZF = LCS(X,Y,MY ) and Y ∗ be an optimal filling for 1FLCS. Also, let ZR =
LCS(X,Y,Cocc) be an optimal solution for RBLCS. Then, the followings hold: (1) Given an
optimal solution ZR for RBLCS, we can obtain an optimal solution for 1FLCS in polynomial
time. (2) Given an optimal filling Y ∗ for 1FLCS, we can obtain an optimal solution for
RBLCS in polynomial time.

Proof. Consider two sequences X and Y , a multiset MY , and an occurrence constraint Cocc
such that Cocc(σ) = occ(X,σ) − occ(MY , σ) holds for every σ ∈ Σ.

(1) Suppose that the optimal solution ZR for RBLCS is now given. From Lemma 23, every
optimal solution for 1FLCS is of length |ZR|+ |MY |. Hence, it is enough to prove that we can
obtain an optimal filling Y ∗ of Y and MY from ZR and a common subsequence ZF of X and
Y ∗ such that |ZR| + |MY | = |ZF | in polynomial time. As seen in the proof of Lemma 23, by
repeating the merge M′

Y = M′
Y ∪{σ} and the filling of σ occ(MY , σ)-times for every σ ∈ Σ,

we eventually obtain Y ∗ and ZF satisfying |ZF | = |ZR| +
∑
σ∈Σ occ(MY , σ) = |ZR| + |MY |.

The total number of iterations is |MY |. Since each iteration works in polynomial time as
shown in Lemma 23, Y ∗ and ZF of 1FLCS can be obtained in polynomial time.

(2) Suppose that the optimal filling Y ∗ is now given. The longest common subsequence
ZF of X and Y ∗, and its index-expression (IX , IY ∗) can be obtained in polynomial time.
From Lemma 21, occ(ZF , σ) ≥ occ(MY , σ) holds for every σ ∈ Σ. Therefore, we can find
|ZF | − |MY | XY -matches in (IX , IY ∗). Letting zℓ be the symbol of the ℓth XY -match
(1 ≤ ℓ ≤ |ZF | − |MY |), we construct the sequence Z−

F = ⟨z1, z2, . . . , z|ZF |−|MY |⟩ of length
|ZF | − |MY |. Note that Z−

F must be a common subsequence of X and Y . Moreover,
Z−
F satisfies the occurrence constraint Cocc(σ) = occ(X,σ) − occ(MY , σ) ≥ occ(ZF , σ) −

occ(MY , σ) for every σ ∈ Σ. Since |Z−
F | = |ZF | − |MY |, Z−

F is an optimal solution for
RBLCS from Lemma 23. The construction of Z−

F can be easily executed by scanning the
index-expression (IX , IY ∗) and thus it can be done in polynomial time. ◀

4.3 RBLCS and 2FLCS

In this subsection we consider the polynomial-time equivalence between 2FLCS and RBLCS.
Since 1FLCS on (X,Y,MY ) is equivalent to 2FLCS on (X,Y, ∅,MY ), 1FLCS can be solved
by using any algorithm for 2FLCS. From the polynomial-time equivalence between 1FLCS
and RBLCS in the previous subsection, RBLCS can also be solved by the same algorithm with
some extra polynomial-time calculations. Therefore, to establish the equivalence between
RBLCS and 2FLCS, only one direction remains to be proved. To do so, we first give a pair
of two inputs (X,Y,MX ,MY ) for 2FLCS and (X,Y,Cocc) for RBLCS. Then, we show that
given an optimal solution ZR of RBLCS on (X,Y,Cocc), we can obtain optimal fillings X∗

and Y ∗ of 2FLCS on (X,Y,MXMY ) in polynomial time.

▶ Lemma 25. Suppose that an input (X,Y,MX ,MY ) of 2FLCS satisfies occ(X,σ) = p <

occ(MY , σ) = q and min {occ(MX , σ), occ(Y, σ) + q − p)} = λ ≥ 0 for some positive integers
p and q. Then the following holds:

L(X,Y,MX ,MY ) ≤ L(X,Y,MX \ {σ∗},MY \ {σq−p}) + λ
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Proof. Suppose that an input quadruple (X,Y,MX ,MY ) of 2FLCS satisfies occ(X,σ) =
p < occ(MY , σ) = q. If we set X = ⟨x1, . . . , xn⟩ and MY = ⟨ψ1, . . . , ψℓ⟩, and apply the
recursive formula in Lemma 17 recursively, then there exist two sequences of ⟨i1, . . . , ip⟩ and
⟨j1, . . . , jp⟩ of indices such that σ = xir = ψjr for every 1 ≤ r ≤ p. Therefore, we obtain

L(X,Y,MX ,MY ) = L(X \ ⟨i1, . . . , ip⟩, Y,MX ,MY \ ⟨j1, . . . , jp⟩) + p.

Suppose that X+ and Y + are optimal fillings of (X\⟨i1, . . . , ip⟩, Y,MX ,MY \⟨j1, . . . , jp⟩).
Then, occ(X+, σ) ≤ occ(MX , σ) since σ ̸∈ X \ ⟨i1, . . . , ip⟩ and occ(Y +, σ) ≤ occ(Y, σ) +
q − p. Therefore, we obtain occ(Z, σ) ≤ min {occ(MX , σ), occ(Y, σ) + q − p} for Z =
LCS(X+, Y +). Now, we set min {occ(MX , σ), occ(Y, σ) + q − p} = λ. Then, we have:

L(X \ ⟨i1, . . . , ip⟩, Y,MX \ {σ∗},MY \ {σ∗}) + λ ≥
L(X \ ⟨i1, . . . , ip⟩, Y,MX ,MY \ ⟨j1, . . . , jp⟩).

Suppose that a sequence J+ = ⟨j1, . . . , jq⟩ of indices satisfies that ψjr′ = σ for every
1 ≤ r′ ≤ q. Then, we obtain:

L(X,Y,MX ,MY ) =L(X \ ⟨i1, . . . , ip⟩, Y,MX ,MY \ ⟨j1, . . . , jp⟩) + p

≤L(X \ ⟨i1, . . . , ip⟩, Y,MX \ {σ∗},MY \ {σ∗}) + λ+ p

=L(X,Y,MX \ {σ∗},MY \ ⟨jp+1, . . . , jq⟩) + λ.

This completes the proof. ◀

▶ Theorem 26. Suppose that an input quadruple (X,Y,MX ,MY ) of 2FLCS satisfies
occ(X,σ) = p < occ(MY , σ) = q for some positive integers p and q, and optimal fillings X+

1
and Y +

1 of (X,Y,MX \ {σ∗},MY \ {σq−p}) are given. Then, optimal fillings X+
2 and Y +

2
of an input quadruple (X,Y,MX ,MY ) can be obtained in polynomial time.

Proof. Suppose that Z1 is the longest common subsequence of X+
1 and Y +

1 such that the
index-expression of Z1 is (I, J), where I = ⟨i1, . . . , ik⟩ and J = ⟨j1, . . . , jk⟩. Also suppose
that Z2 is the longest common subsequence of X+

2 and Y +
2 . From Lemma 25, |Z1| +λ ≥ |Z2|

holds, where min {occ(MX , σ), occ(Y, σ) + q − p} = λ.
Now suppose that X+

1 = ⟨x1, . . . , xn⟩ and Y +
1 = ⟨y1, . . . , ym⟩. Also suppose that Y +

2 =

Y +
1 ⊕⟨

q−p︷ ︸︸ ︷
σ, . . . , σ⟩. One can see that occ(Y +

2 , σ) = occ(Y, σ)+q, occ(Z1, σ) ≤ p < occ(MY , σ) =
q, and Z1 is a common subsequence of X+

1 and Y +
2 . Therefore, by applying the formula in (1)

of Lemma 19 min {occ(MX , σ), occ(Y, σ) + q − p}-times, we can get the target sequence X+
2

in polynomial time. ◀

It is important to note that (X,Y,MX \ {σ∗},MY \ {σq−p}) does not satisfy both
occ(X,σ) < occ(MY , σ) and occ(Y, σ) < occ(MX , σ). For Y and MX , we have:

▶ Corollary 27. Suppose that an input quadruple (X,Y,MX ,MY ) of 2FLCS satisfies
occ(Y, σ) = p < occ(MX , σ) = q for some positive integers p and q, and optimal fillings X+

1
and Y +

1 of (X,Y,MX \ {σq−p},MY \ {σ∗}) are given. Then, optimal fillings X+
2 and Y +

2
of an input quadruple (X,Y,MX ,MY ) can be obtained in polynomial time.

From Theorem 26 and Corollary 27, any input can be reduced to the quadruple
(X,Y,MX ,MY ) such that for every σ, both occ(X,σ) ≥ occ(MY , σ) and occ(Y, σ) ≥
occ(MX , σ) are satisfied. Therefore, if the input (X,Y,MX ,MY ) of 2FLCS satisfies
both occ(X,σ) ≥ occ(MY , σ) and occ(Y, σ) ≥ occ(MX , σ) for every σ ∈ Σ, then we call
(X,Y,MX ,MY ) the standard input.
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▶ Theorem 28. For a standard input quadruple (X,Y,MX ,MY ), consider an occurrence
constraint Cocc such that Cocc(σ) = min {occ(X,σ) − occ(MY , σ), occ(Y, σ) − occ(MX , σ)}
holds for every σ ∈ Σ. Then, the triple (X,Y,Cocc) must be standard for RBLCS. If an
optimal solution ZR of RBLCS on (X,Y,Cocc) is given, then we can obtain optimal fillings
X∗ and Y ∗ of 2FLCS on a standard input quadruple (X,Y,MX ,MY ) in polynomial time.

Proof. Suppose that the input (X,Y,MX ,MY ) of 2FLCS is standard, |MX | = p, and
|MY | = q. Let X = ⟨x1, . . . , xn⟩ and Y = ⟨y1, . . . , ym⟩. Then, by applying the arguments
of Lemma 17 and Corollary 18 to all the symbols recursively, we can obtain the sequences
⟨i1, . . . , iq⟩ and ⟨j1, . . . , jp⟩ of different indices that satisfy the following:

L(X,Y,MX ,MY ) = L(X \ ⟨i1, . . . , iq⟩, Y \ ⟨j1, . . . , jp⟩, ∅, ∅) + p+ q.

One can verify that for the input (X \ ⟨i1, . . . , iq⟩, Y \ ⟨j1, . . . , jp⟩, ∅, ∅) of 2FLCS, the longest
common subsequence of X \ ⟨i1, . . . , iq⟩ and Y \ ⟨j1, . . . , jp⟩ is clearly an optimal solution of
the classical LCS. Let Z ′ be such a sequence. Here, note that for every σ ∈ Σ, we can obtain:

occ(X \ ⟨i1, . . . , iq⟩, σ) = occ(X,σ) − occ(MY , σ), and
occ(Y \ ⟨j1, . . . , jp⟩, σ) = occ(Y, σ) − occ(MX , σ).

Therefore, we have:

occ(Z ′, σ) ≤ min {occ(X,σ) − occ(MY , σ), occ(Y, σ) − occ(MX , σ)} .

Since Z ′ is a common subsequence of X and Y , Z ′ is a feasible solution of RBLCS on
(X,Y,Cocc). Therefore, |ZR| ≥ |Z ′| holds. It follows that |ZR| + |MX | + |MY | ≥ |Z ′| +
|MX | + |MY | = L(X,Y,MX ,MY ).

As for ZR, occ(ZR, σ) ≤ Cocc(σ) = min {occ(X,σ)−occ(MY , σ), occ(Y, σ)−occ(MX , σ)}
holds for every σ. Therefore, by applying Lemma 19 occ(MX , σ)-times for every symbol
σ ∈ Σ, we can construct in polynomial time the filling X+ of X and MX , and a common
subsequence Z1 of X+ and Y such that |Z1| = |ZR|+ |MX | and occ(Z1, σ) ≤ Cocc(σ)+ |MX |.

Note that for every σ, occ(X+, σ) = occ(X,σ)+occ(MX , σ) and occ(Z1, σ) ≤ occ(X,σ)−
occ(MY , σ) + occ(MX , σ) hold. Hence, by applying Corollary 20 occ(MY , σ)-times for every
symbol σ, we can construct in polynomial time the filling Y + of Y and MY , and a common
subsequence Z2 of X+ and Y + such that |Z2| = |Z1| + |MY | = |ZR| + |MX | + |MY |. Recall
that |ZR| + |MX | + |MY | ≥ L(X,Y,MX ,MY ). Therefore, |Z2| ≥ L(X,Y,MX ,MY ) holds.

As a result, X+ and Y + are optimal fillings of 2FLCS on (X,Y,MX ,MY ) and those can
be obtained in polynomial time if ZR is given. This completes the proof. ◀

5 O(1.41422n)-time exact algorithm for RBLCS

In [2], a dynamic programming (DP) based algorithm for RBLCS was provided and it was
explicitly proved that its running time is O(1.44255n). In this section we improve the running
time from O(1.44255n) to O(1.41422n), but give only the basic ideas here. Further details
can be found in the journal version of this paper.

Now, let us consider the original LCS and its typical DP-based algorithm. Let L(i, j)
denote the length of a longest common subsequence of the ith prefix X1..i of X and the jth
prefix Y1..j of Y . In the process of execution, each value of L(i, j) is computed and is stored
into a two-dimensional DP-table L0 of size (n+ 1) × (m+ 1). For more details, e.g., see [7].

For RBLCS, the previous DP-based algorithm proposed in [2] has to store not only the
length of the subsequence Z, but also the occurrence occ(Z, σ) of every σ in Z not to break
the occurrence constraint Cocc(σ). To store the occurrences, the algorithm introduces an
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occurrence vector v. Let L(i, j,v) be the length of a repetition-bounded longest common
subsequence of X1..i and Y1..j satisfying the occurrence vector v, i.e., the length of the longest
subsequence which does not break the occurrence constraint. Then, each value of L(i, j,v) is
stored into a three-dimensional DP-table L1 of size (n + 1) × (m + 1) ×

∏
σ (Cocc(σ) + 1).

In [2], the authors showed that the table size of L1 is bounded above by O(1.44255n).
Our new DP-based algorithm prepares a smaller DP-table of size (n+ 1) × (m+ 1) ×∏

σ (min{Cocc(σ), occ(X,σ) − Cocc(σ)} + 1). One can show that the DP-table size is reduced
to O(1.41422n):

▶ Theorem 29. There is an O(1.41422n)-time DP-based algorithm to solve RBLCS for two
input sequences X and Y , where |X| = n, |Y | = m = O(poly(n)), and |X| ≤ |Y |.

Recall that all reductions in the previous sections preserve X and Y . By our polynomial-
time equivalences, we obtain the following corollary:

▶ Corollary 30. MRCS, 1FLCS, and 2FLCS can be solved in O(1.41422n) time.

6 A polynomial-time 2-approximation algorithm for 2FLCS

In this section, we give a polynomial-time algorithm for 2FLCS and show that its approxima-
tion ratio is bounded above by two by using the proof tools introduced in Section 4.1.

Algorithm. Suppose that a standard input quadruple (X,Y,MX ,MY ) is given, i.e.,
occ(X,σ) ≥ occ(MY , σ) and occ(Y, σ) ≥ occ(MX , σ) are satisfied. Let X = {x1, . . . , xn}
and Y = {y1, . . . , ym}. Here is an outline of our algorithm ALG: (Step 1) Let Xb = ε and
Yf = ε be two empty sequences. (1-1) While scanning from x1 to xn of X, if the ith symbol
xi in X matches a symbol, say, σy, in MY , then xi (= σy) is concatenated to Yf , i.e.,
Yf = Yf ⊕ ⟨σy⟩ and removed from MY . Then, obtain a filling Y2 = Yf ⊕ Y of Y and MY .
Similarly, (1-2) while scanning from y1 to ym of Y , if the ith symbol yi in Y matches a
symbol, say, σx, in MX , then yi (= σx) is concatenated to Xb, i.e., Xb = Xb ⊕ ⟨σx⟩ and
removed from MX . Then, obtain a filling X2 = X ⊕Xb of X and MX (n.b., not Xb ⊕X).
(Step 2) Obtain a longest common subsequence Z of two fillings X+ and Y +. (Step 3) Output
a solution triple (X+, Y +, Z). See Algorithm 1 for the detailed description of ALG.

▶ Theorem 31. Algorithm ALG is a polynomial-time 2-approximation algorithm for 2FLCS
on a standard input quadruple (X,Y,MX ,MY ).

Proof. Suppose that the input (X,Y,MX ,MY ) of 2FLCS is standard. Let X = ⟨x1, . . . , xn⟩
and Y = ⟨y1, . . . , ym⟩. Then, by applying the arguments of Lemma 17 and Corollary 18 to
all the symbols recursively, we can obtain the sequences ⟨i1, . . . , i|MY |⟩ and ⟨j1, . . . , j|MX |⟩
of different indices that satisfy the following:

L(X,Y,MX ,MY ) = L(X \ ⟨i1, . . . , i|MY |⟩, Y \ ⟨j1, . . . , j|MX |⟩, ∅, ∅) + |MY | + |MX |.

Clearly, the first term L(X \ ⟨i1, . . . , i|MY |⟩, Y \ ⟨j1, . . . , j|MX |⟩, ∅, ∅) of the right-hand side is
at most L(X,Y ) since X\⟨i1, . . . , i|MY |⟩ and Y \⟨j1, . . . , j|MX |⟩ are subsequences of X and Y ,
respectively. Therefore, the longest length OPT of 2FLCS is at most L(X,Y )+ |MX |+ |MY |.
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Algorithm 1 ALG.

Input: Two sequences X = ⟨x1, . . . , xn⟩ and Y = ⟨y1, . . . , ym⟩; and two multisets
MX and MY

Output: Two fillings X+ of X and MX and Y + of Y and MY ; and a common
subsequence Z of X+ and Y +

1 Xb := ε, Yf := ε;
2 for i = 1 to n do
3 if xi = σy for σy ∈ MY then
4 Yf := Yf ⊕ ⟨σy⟩, MY := MY \ {σy};
5 Y + := Yf ⊕ Y ;
6 for i = 1 to m do
7 if yi = σx for σx ∈ MX then
8 Xb := Xb ⊕ ⟨σx⟩, MX := MX \ {σx};
9 X+ := X ⊕Xb;

10 Find a longest common subsequence Z of the two sequences X+ and Y +;
11 return (X+, Y +, Z);

Let ALG = |Z| be the length obtained by our algorithm ALG for the input
(X,Y,MX ,MY ), i.e., ALG = L(X+, Y +). Since a longest common subsequence of X
and Y is a common subsequence of X+ and Y +, ALG ≥ L(X,Y ) holds. Further-
more, since LCS(X,Yf ) ⊕ LCS(Xb, Y ) is another common subsequence of X+ and Y +,
ALG ≥ L(X,Yf ) + L(Xb, Y ) = |MY | + |MX | holds. As a result, the approximation ratio of
ALG is bounded as follows:

OPT

ALG
≤ L(X,Y ) + |MX | + |MY |

max{L(X,Y ), |MX | + |MY |}

= 2(L(X,Y ) + |MX | + |MY |)
2(max{L(X,Y ), |MX | + |MY |})

≤ 2(L(X,Y ) + |MX | + |MY |)
L(X,Y ) + |MX | + |MY |

= 2.

Clearly, ALG runs in polynomial time. This completes the proof. ◀

For non-standard inputs, we can also obtain a 2-approximation algorithm by slightly
modifying ALG. All we have to do is to add MXMY -matches of redundant symbols. If the
sequence of length ℓ is concatenated, then we get OPT+ℓ

ALG+ℓ ≤ 2. Further details can be found
in the journal version of this paper.
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