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Abstract
The paper deals with a load-balancing algorithm for a closed stochastic network with two zones
with different demands. The algorithm is motivated by an incentive algorithm for redistribution
of cars in a large-scale car-sharing system. The service area is divided into two zones. When cars
stay too long in the low-demand zone, users are encouraged to pick them up and return them in
the high-demand zone. The zones are divided in cells called stations. The cars are the network
customers. The mean-field limit solution of an ODE gives the large scale distribution of the station
state in both clusters for this incentive policy in a discrete Markovian framework. An equilibrium
point of this ODE is characterized via the invariant measure of a random walk in the quarter-plane.
The proportion of empty and saturated stations measures how the system is balanced. Numerical
experiments illustrate the impact of the incentive policy. Our study shows that the incentive policy
helps when the high-demand zone observes a lack of cars but a saturation must be prevented
especially when the high-demand zone is small.
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Motivation. Car-sharing, a practice that is gaining ground in urban areas, comes to meet
ecological, economic and practical imperatives. For a decade it has been becoming an
alternative mode of transportation. The principle is that a given number of vehicles is made
available to users at stations or in a public space in a given geographical area to make trips.
The user picks up a vehicle if available, makes his trip and then drops it off at his destination.

For the operator, managing such systems is far from simple. The randomness due to the
user arrivals as well as to the trips generates an imbalance in the system: Some areas are
more or less served by vehicles throughout the day, depending on whether they are residential
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13:2 Mean Field Analysis of an Incentive Algorithm for a Closed Stochastic Network

areas or in the city center for example. Thus, the users may find themselves without an
available vehicle, which alters the efficiency of the system. Rebalancing the network by better
distributing the vehicles, in other words, bringing them back where they are needed is a
major issue for operators. The usual techniques are either active, such as using trucks to
move bikes or drivers for cars, or passive, such as incentive policies that encourage users to
move vehicles themselves on their trips. We can cite the example of Velib+ which offered
extra time for returning bikes in uphill stations of the Parisian bike-sharing system or the
Angel’s Rewards bikes program developed in NYC allowing users to earn free day passes and
membership extensions.

Gift incentive policy. This paper deals with an incentive policy implemented by Com-
munauto on its free floating car-sharing system in Montreal. In the geographical area, a
small zone is identified as a high-demand zone by the operator. Moreover, some cars remain
stationary for too long in the rest of the service area with low-demand called the normal
zone while users cannot find available cars in the high-demand zone. In order to bring back
these stagnant cars from the normal zone to the high-demand zone, Communauto designates
them as gifts on its application and offers 30 free minutes on the trip if the user returns the
gift to the high-demand zone. This policy is called here a gift policy.

Aim of the paper. The aim is to study the impact of the incentive policy implementing a
trip discount to move some cars to a high-demand area. For that, a probabilistic model is
proposed for such a system as a large closed stochastic network of interacting particles which
are cars and gifts. The service area is divided into cells, called here stations, which are nodes
of the network, plus extra-nodes containing moving cars and gifts.

Results. We investigate in a Markovian framework the steady state of these stations.
Although an invariant measure exists for this irreducible Markov process on a finite state
space for a fixed number of stations, it remains untractable. The idea is to deal with the
approximation as the number of stations and cars get large together, called the mean-field
limit. Indeed, the states of the stations are asymptotically independent and their common
distribution is given as a solution of an ODE. See Proposition 1. The equilibrium point of
the ODE gives the long-time limit. The special case of a model without incentive policy
corresponds to the two-cluster model studied in [6] where the equilibrium point is unique
and well determined. Here is a practical application of this framework. For the gift policy,
Proposition 2 gives a characterization of the equilibrium point as a function of the invariant
measure of a random walk in the quarter-plane. It is a first step to address the problem of
existence and uniqueness of the equilibrium point.

Performance. Our performance criterion is to minimize the proportion of empty or saturated
stations, called for short problematic, in order to maximize the efficiency of the system. Since
no closed-form solution for the previous invariant measure is derived, we perform a numerical
solution of a multidimensional equation for the system with incentive policy. We compare it
with the analytical solution of the model without incentives. We study the impact of the
policy in the case where everyone follows incentives. This impact is significant when the
high-demand zone lacks cars. The risk is to overload it, especially if it is small.

Related works. Mean-field approach comes from physical statistics and is applied for a large
class of models of interacting particles. For example biology (neuron networks), economics
and social sciences (opinion dynamics). It has applications for stochastic networks as in the
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context of load-balancing strategies as Power-of-Choice and others. See references in [10]
and [11]. A direct analysis of large networks is difficult because there is either no closed-
form expression in general or some but numerically prohibitive. Thus the goal is to find
approximations. Mean-field techniques provide an approximation of the evolution of the state
distribution of a fixed node as a solution of an ODE. One of the main problems to address
is the number of equilibrium points. This issue elucidated, it allows for the performance
metrics either explicit expressions or a numerical solution (see [9]), depending on the models.
In all these models, the mean-field limit stands for completely connected network while in
real systems, the interaction is often weaker. A great difference between the models is the
difficulty to address the uniqueness of the equilibrium point. For example, in our study this
question is not addressed since numerically solved. Proving existence of multiple equilibrium
points can also be hard. In opinion or epidemic models, the set of states of an agent is small
(even {0, 1}) which simplifies the analysis. See [16].

For a direct approach to stochastic network models, let us briefly recall an important
class of queueing networks called closed Jackson networks. A closed network is a network
where customers stay forever in the system with no external arrivals. A Gordon–Newell
network, or simply called closed Jackson network, [13] consists of a finite number of nodes,
each with one or several servers. The service times of customers at each node are i.i.d. with
exponential distribution. The service rate at each node can depend on both the node and
its state. Specifically, if there are xi customers at node i, the service rate is denoted by
µi(xi), where µi(.) is a function from N → R+ with µi(0) = 0 and µi(x) > 0 for all x > 0.
At the end of its service, a customer is directed to another node according to a fixed routing
matrix. All service times are independent. Note that a Jackson network is the version with
external arrivals and a routing matrix including departures to outside (see [14]). Originally,
the nodes of such a network are assumed to have infinite capacity. This description can
be generalized to a system including nodes with finite capacities. Nevertheless one should
describe the way customers must be redirected until reaching to non-saturated nodes, i.e.
whose capacity is not yet reached. Consider the blocking-rerouting policy where entering a
saturated queue, the customer is rerouted with the routing matrix at infinite speed until he
finds an unsaturated node. This blocking-rerouting policy is defined in [1] and used in [8] in
a more general version. The main interest of such a class of queueing networks is that the
equilibrium distribution is explicit with a product-form expression (see [1]).

It is conventional to model vehicle-sharing systems as closed Jackson networks where the
vehicles play the role of the customers. The associated network has two types of nodes: one-
server nodes, that describe the stations, and infinite-server nodes, the latter corresponding
to the different routes linking the stations. Service times at these nodes are respectively
inter-arrival times of users at stations and trip times along the corresponding routes. In a
pioneering paper [4], an asymptotic analysis of infinite capacity closed Jackson networks at
equilibrium is proposed when the number of nodes and customers tend to +∞ at the same
rate. It is applied to vehicle-sharing systems in the infinite capacity case. Note that the
asymptotic analysis performed in [12] is done when the number of nodes (stations and routes)
is fixed, while the number of customers (vehicles) tends to infinity. Both papers crucially
rely on the explicit product-form stationary distribution, which is well-known in the infinite
capacity case. The case of vehicle-sharing systems with finite capacity is considered in [8].
The model is identified as a Jackson network with the blocking-rerouting policy previously
described. By [1], the invariant distribution has a product-form in this case.

AofA 2022
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1 The model

1.1 Model description
In this following description and in the whole paper, a car is always a normal car and not a
gift. We propose a simplified stochastic two-cluster model for car-sharing when including
the gift policy. It will be further discussed in Section 4.1. The principle of the model is the
following.

The arrival process of users at any station of cluster i is Poisson with parameter λi, where
i ∈ {1, 2}. As the rate of user arrivals is larger in cluster 1 than cluster 2, we assume that
λ1 > λ2.
If the user arrives at a station in cluster 1 where there is an available car, the user picks
it up to start a trip. Otherwise he leaves the system.
Every car parked in cluster 2 becomes a gift after a random time with exponential
distribution of parameter δ.
When a user arrives in a station of cluster 2, if there is an available gift and an available
car in this station, he picks up a gift with probability p, and a car with probability 1 − p.
If there is just one of the resources (gift or car), the user picks it up. Otherwise he leaves
the system.
The car trip is assumed to have an exponential distribution of parameter µ. When a
car trip ends, the user chooses cluster i with probability ci, then he chooses a station at
random in this cluster to park the car.
The gift trip is assumed to have an exponential distribution of parameter µc. When a
gift trip ends, the user returns the gift car to any station in cluster i with probability qi.
The gift parked appears then as a car on the app.
A station in cluster i has capacity Ki. If the station chosen is full, the user makes another
trip until finding a station with an available parking space.

Note that in our model the inter-arrival times of users, trip times and times to become a
gift are all independent with exponential distribution. See Figure 1 for an illustration of the
model. This modeling was preceded by an analysis of real data. The model will be discussed
in 4.1.

1.2 Notations
Let us summarize the notations. For all the following, i ∈ {1, 2} is the cluster type.

Ni is the number of stations in cluster i.
N =

∑
i Ni is the total number of stations.

αi = limN→+∞ Ni/N is the limiting proportion of stations in cluster i.
Ki is the capacity of a station in cluster i.
M is the total number of cars.
s = limN→+∞ M/N is the limiting mean number of cars per station, called fleet size
parameter.
λi is the rate of user arrivals at a station in cluster i.
1/µ is the mean trip time for a normal car.
1/µc is the mean trip time for a gift.
δ is the rate at which a car in a station of cluster 2 becomes a gift.
p is the probability that a user takes a gift when cars and gifts are both available.
qi is the probability that a user returns the gift in cluster i.
ci is the probability that a user returns his normal car in cluster i.
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Figure 1 Illustration of the model with gifts.

1.3 Queueing formulation
In this paper, the system can be described as a closed stochastic network. The nodes of the
network are a set of N = N1 + N2 one-server queues of finite capacity (the stations), divided
in two clusters, cluster 1 (zone with high demand) with N1 stations of capacity K1, cluster 2
(normal zone) with N2 stations of capacity K2, plus two infinite-server queues, i.e. the two
nodes containing respectively cars and gifts making a trip. The service times at the queues
have exponential distribution with parameters respectively λ1, λ2, µ and µc. According to
the queueing vocabulary, there are M customers of two classes: cars and gifts, and a routing
matrix given by the previous description.

However, this is not a Jackson network because there are additional transitions since a
car in a station of cluster 2 becomes a gift at rate δ and a gift arriving at a station from
the infinite-server node becomes a car. It does not fit in this classical framework because of
these changes of customer classes. Note that in the case without incentive policy (δ → 0),
the model is a Jackson network since there are no gifts. Such a model (with δ → 0) is known
as a two-cluster bike-sharing system studied in [6] and [8]. Section 2.1.1 is devoted to this
case called model without gifts.

1.4 The Markov process
The state process is(

X1,n(t), X2,m(t), Cm(t), ZN (t), 1 ≤ n ≤ N1 and 1 ≤ m ≤ N2
)

where
X1,n(t) is the number of cars at a station n in cluster 1 at time t,
X2,m(t) is the number of cars at a station m in cluster 2 at time t,
Cm(t) is the number of gifts at a station m (necessarily in cluster 2) at time t and
ZN (t) is the number of gifts making a trip at time t.

AofA 2022
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Note that the number of cars making a trip at time t is equal to

M −
N1∑

n=1
X1,n(t) −

N2∑
m=1

(
X2,m(t) + Cm(t)

)
− ZN (t).

As we deal with a two-cluster model, it is sufficient to study the behavior of one station in
each cluster. It amounts to dealing with the empirical measure process

(Y N (t)) =
(

Y N1
1,j (t), Y N2

2,k,l(t),
ZN (t)

N
, j ∈ χ1, (k, l) ∈ χ2

)
where Y N1

1,j (t) is the proportion of stations with j cars in cluster 1 and Y N2
2,k,l(t) is the

proportion of stations with k cars and l gifts in cluster 2, defined by

Y N1
1,j (t) = 1

N1

N1∑
n=1

1{
X1,n(t)=j

} and Y N2
2,k,l(t) = 1

N2

N2∑
m=1

1{(
X2,m(t),Cm(t)

)
=(k,l)

}
where χ1 = {j ∈ N, j ≤ K1} and χ2 = {(k, l) ∈ N2, k + l ≤ K2}. Because the inter-arrival
times, trip times and times to become a gift have exponential distribution, (Y N (t)) is a
Markov process, with finite state space

SN =
{

y = (y1,j , y2,k,l, z){j∈χ1,(k,l)∈χ2}, y1,j ∈ N
N1

, y2,k,l ∈ N
N2

, z ∈ N
N

,
∑
j∈χ1

y1,j = 1,

∑
(k,l)∈χ2

y2,k,l = 1,
∑
j∈χ1

j y1,j +
∑

(k,l)∈χ2

(k + l) y2,k,l + z ≤ M

}
.

The inequality in the previous definition of the state space SN is due to the fact that the
number of cars driving has be to added to the left-hand side of the inequality to obtain the
total number M of cars in the system. Let us write its transitions from state y ∈ SN . To
simplify the notations, let us denote by

E1 =
∑
j∈χ1

j y1,j and E2 =
∑

(k,l)∈χ2

(k + l) y2,k,l (1)

respectively the mean number of cars parked in cluster 1 and the mean number of cars
plus gifts parked in cluster 2. Also, let us denote by (e1,j , e2,k,l, e0, j ∈ χ1, (k, l) ∈ χ2)
the canonical basis of R|χ1|+|χ2|+1, where the cardinality of set A is denoted by |A|. The
transitions, from state y = (y1,j , y2,k,l, z) ∈ SN , are due to three events: a user arrival, a
gift appearance or a car return. For example, when a user arrives at a station of cluster
2 with k cars and l gifts (for short of type (2, k, l)) to take a gift (l > 0), the number
of gifts decreases by 1. Since there are y2,k,lN2 possible stations, this happens at rate
λ2y2,k,lN21{l>0}

(
p + (1 − p)1{k=0}

)
. Recall that p is the probability for a user arriving to a

station in cluster 2 to choose a gift when cars and gifts are available. Thus the corresponding
transition is the following.

y −→ y + 1
N2

(e2,k,l−1 − e2,k,l) + e0

N
at rate λ2y2,k,lN21{l>0}

(
p + (1 − p)1{k=0}

)
.

The other transitions are presented in the appendix. These transitions allow us to write the
drift of process (Y N (t))t which will be useful to the mean-field convergence (Proposition 1).
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2 Mean-field limit

Our aim is to investigate the system when M , N1 and N2 get large at the same rate, for
short, when N gets large. When N tends to +∞, the process (Y N (t)) given by the previous
transitions converges in distribution to a deterministic function which is the unique solution
of a given ODE. This result is given by the following proposition.

▶ Proposition 1 (Mean-field convergence). For T > 0, (Y N (t))t∈[0,T ] converges in distribution
to the unique solution (y(t))t∈[0,T ] of the following ODE with y(0) fixed

dy1,j

dt
(t) = y1,j+1(t)λ11{j<K1} + y1,j−1(t)

(
c1

α1
µ(s − α1E1(t) − α2E2(t) − z(t)) +

q1µc

α1
z(t)
)

1{j>0}

− y1,j(t)
(

λ11{j>0} +
c1

α1
µ(s − α1E1(t) − α2E2(t) − z(t))1{j<K1} +

q1µc

α1
z(t)1{j<K1}

)
dy2,k,l

dt
(t) = y2,k,l+1(t)λ21{k+l<K2}

(
p + (1 − p)1{k=0}

)
+ y2,k+1,l(t)λ21{k+l<K2}

(
1 − p + p1{l=0}

)
+ y2,k+1,l−1(t) δ (k + 1) 1{k<K2} + y2,k−1,l(t)

(
c2

α2
µ (s − α1E1(t) − α2E2(t) − z(t))

+
q2µc

α2
z(t)
)

1{k>0} − y2,k,l(t)
(

λ2(1 − 1{k=0,l=0}) + δk +
c2

α2
µ(s − α1E1(t) − α2E2(t)

− z(t))1{k+l<K2} +
(1 − q)µc

α2
z(t)1{k+l<K2}

)
dz
dt

(t) = − q1 µcz(t)
∑
j∈χ1

y1,j(t) 1{j<K1} + α2 λ2

∑
(k,l)∈χ2

y2,k,l(t) 1{l>0}

(
p + (1 − p)1k=0

)
− q2µcz(t)

∑
(k,l)∈χ2

y2,k,l(t)1{k+l<K2}. (2)

Recall that, in these equations, s is the limiting number of cars per station and αi the limiting
proportion of stations in cluster i, i ∈ {1, 2}.

The proof is standard (see [2]). The idea of the proof is that a Markov process can be written
as the sum of a martingale term and a drift term in form of an integral on time. When N is
large, one can prove that the process is tight. Moreover, the martingale term converges to 0.
Then any limiting value satisfies an ODE. The uniqueness of the solution of the ODE gives
the convergence of the process.

2.1 The equilibrium point

To investigate the steady-state behavior of the model, we study the equilibrium point ȳ of
the mean-field ODE written as follows

dy
dt (t) = F (y(t))

where F comes from Proposition 1. It amounts to finding ȳ such that

F (ȳ) = 0. (3)

Note that the vector ȳ is of dimension 1 + |χ1| + |χ2| = 1 + K1 + K2(1 + K2)/2. Finding a
closed-form expression of the equilibrium point ȳ is out of reach. Let us present two points
of view: the first one is based on a nice queueing interpretation which holds for the no-gift
case. The second is an analytic approach which should be relevant for the case with gifts but
is beyond this work.

AofA 2022



13:8 Mean Field Analysis of an Incentive Algorithm for a Closed Stochastic Network

2.1.1 The queueing interpretation for the no-gift case
In this case, the existence and uniqueness of the equilibrium point ȳ is proved. See [6] for
details. In addition, ȳ is given by a simple queueing interpretation of the mean-field limit. It
gives that the limiting stationary number of cars at a station of cluster i, considered as a
M/M/1/Ki queue, has a geometric distribution νρri,Ki

on {0, . . . , Ki} with parameter ρri

where for i = 1, 2, ri = Λµβi/λi with βi = qi/αi, Λ = 1/ maxi(µβi/λi) and ρ is the unique
solution of the fixed point equation

s = ρΛ +
2∑

i=1
αim(νρri,Ki

). (4)

In the previous equation, we denote by m(νρ,K) the mean of the geometric distribution νρ,K

on {0, . . . , K} with parameter ρ, given by

m(νρ,K) =
{

K
2 if ρ = 1
ρ

1−ρ − (K+1)ρK+1

1−ρK+1 otherwise
(5)

because, for ρ = 1, νρ,K is the uniform distribution on {0, . . . , K}. It shows that the
multidimensional equilibrium point equation (3) amounts to fixed point equation (4) on R+.
This is the purpose of [6, Theorem 1] for the cluster case detailed in [6, Section 2.3].

2.1.2 Characterization of the equilibrium point
Taking into account the gift policy induces a change of classes between normal cars and gifts.
This considerably complicates the search for an equilibrium point and changes the nature of
the limiting objects involved. The question of existence and uniqueness of a solution of the
equilibrium point in equation (3) remains open. For simplicity, let us take the case p = q1 = 1
in order to highlight the main difficulties of this problem. Remembering that p = 1 means
that, when available, a gift is always chosen over a car in a station of the normal zone, and
q1 = 1 means that all gifts are returned at a station of cluster 1. Heuristically, looking for an
equilibrium point ȳ means that the right-hand term in the mean-field ODE (2) is null. With
obvious notations ȳ = (ȳ1, ȳ2, z̄), note first that the number of moving gifts (ZN (t)/N) is
the rescaled number of customers in a M/M/∞ queue introduced by Kelly [15] whose limit
is (z(t)) which tends to the load parameter (see [17, Section 6.5])

z̄ = α2λ2

µc

1 − ȳ2,.,0

1 − ȳ1,S
(6)

where ȳ1,S is the probability that a station in cluster 1 is saturated and ȳ2,.,0 the probability
that a station in cluster 2 has no gift, i.e. 1 − ȳ1,S =

∑
j∈χ1

ȳ1,j1{j<K1} and 1 − ȳ2,.,0 =∑
(k,l)∈χ2

ȳ2,k,l1{l>0}. Then a queuing interpretation similar to that for the no-gift case holds.
Indeed, at equilibrium, a station of cluster 1 can be considered as a M/M/1/K1 queue, with
arrival rate

γ̄1 = 1
α1

(
c1µ(s − α1Ē1 − α2Ē2 − z̄) + q1µcz̄

)
(7)

where Ēi are defined by (1) and service rate λ1. It is well known that its invariant measure
is a geometric distribution on {0, . . . , K1} with parameter ρ̄1 = γ̄1/λ1, i.e. ȳ1,j = ρj

1(1 −
ρ1)/(1 − ρK+1

1 ) for 0 ≤ j ≤ K1. Note that, plugging equation (6) into (7), ρ̄1 depends on ȳ,
only by ȳ1 and ȳ2. Moreover ȳ2 = πρ̄2,K2 where

ρ̄2 = 1
λ2α2

(
c2µ(s − α1Ē1 − α2Ē2 − z̄) + q2µcz̄

)
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and, for fixed ρ, πρ,K2 is the invariant measure of the Markov process on χ2 with matrix
jump Qρ,K given by its non-null non-diagonal terms

Qρ,K(n, n − e1) = λ21{n1>0}

Qρ,K(n, n + e2) = λ2ρ1{n2<K2}

Qρ,K(n, n + e1 − e2) = δ1{n2>0}.

(8)

In conclusion the equilibrium point ȳ, solution of a multidimensional fixed point equation,
can be expressed as a function of (ρ̄1, ρ̄2) solution of a fixed point equation. It is summarized
by the following result.

▶ Proposition 2 (Equilibrium point). An equilibrium point of the ODE is given as

ȳ =
(

νρ̄1,K1 , πρ̄2,K2 ,
α2λ2

µc

1 −
∑K2

k=0 πρ̄2,K2(k, 0)∑K1−1
k=0 νρ̄1,K1(k)

)
where νρ̄1,K1 is the geometric distribution on {0, . . . , K1} with parameter ρ̄1, πρ̄2,K2 the
invariant measure associated to Qρ̄2,K2 given by (8) and (ρ̄1, ρ̄2) is the solution of the fixed
point equation

ρi = 1
λiαi

(
ciµ(s − E) + (qiµc − ciµ)α2λ2

µc

1 −
∑K2

k=0 πρ2,K2(k, 0)∑K1−1
k=0 νρ1,K1(k)

)
, i ∈ {1, 2} (9)

with E = α1E1 + α2E2, E1 and E2 being the means associated to νρ1,K1 and πρ2,K2 .

Proposition 2 reduces the question of existence and uniqueness of the equilibrium point
to a fixed point equation. Indeed, proving the existence and uniqueness of the equilibrium
point ȳ amounts to finding a unique (ρ̄1, ρ̄2) solution of the fixed point equation (9). The
further analysis (existence and uniqueness) of this fixed point equation is beyond the scope
of the paper. In this direction, a first approach would be to find a closed-form expression
for the invariant measure π. An analytical method for generating function F associated to
invariant measure π is suggested as an alternative to the probabilistic approach (see [3] for
details). Some details are given in the following remark.
▶ Remark 3. Let γ2 = λ2ρ. The global balance equation associated to π is

πk,l(γ2 + λ2(1 − 1{k=l=0}) + δk)
= 1{k+l<K2}(πk,l+1λ2 + πk+1,lλ21{l=0}) + πk+1,l−1δ(k + 1)1{l>0} + πk−1,lγ21{k>0}.

(10)

Using the generating function

F (x, y) =
∑

(k,l)∈χ2

π(k,l)x
kyl,

the global balance equation (10) yields to a functional equation on F . Although the capacity
K2 is assumed to be finite throughout the whole paper, we present here this functional
equation for the case K2 = +∞ for the sake of simplicity

F (x, y)
(

γ2(1 − x) + λ2

(
1 − 1

y

))
= F ′

x(x, y)δ(y − x) + π0,0λ2

(
1 − 1

x

)
+ f(x)λ2

(
1
x

− 1
y

)
where f(x) =

∑K1
k=0 πk,0xk.
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13:10 Mean Field Analysis of an Incentive Algorithm for a Closed Stochastic Network

Such a functional equation is not similar to the classical case studied in [3] due to the
derivative term F ′

x and we do not solve it. Without an explicit form, we wonder whether the
uniqueness problem could be directly solved. Such track is not explored. No closed-form
solution of the invariant measure π is derived. Instead of this, the paper gives in Section 3.2
a numerical solution to equation (2).

3 Performance

In order to evaluate the impact of the incentive algorithm on the system behavior, a usual
performance metric is used, i.e. the proportion of stations with no vehicle (car or gift) or no
parking space available, called problematic stations. It characterizes how far the system is
unbalanced.

▶ Definition 4 (Performance Metric). Let ȳ be the equilibrium point of the mean-field ODE
obtained by Proposition 1. The performance metric is the limiting stationary proportion Pb

of problematic stations given by

Pb = α1(ȳ1,0 + ȳ1,K1) + α2

(
ȳ2,0,0 +

K2∑
k=0

ȳ2,k,K2−k

)

where Ki is the station capacity and αi the limiting proportion of stations for cluster i,
i ∈ {1, 2}.

The first sum in brackets is the proportion of empty and saturated stations in clusters 1,
the first term ȳ1,0 of stations with no car, the second term ȳ1,K1 of saturated stations in the
high-demand zone. The second sum in brackets is the proportion of empty and saturated
stations in cluster 2, ȳ2,0,0 of stations with neither cars nor gifts and

∑K2
k=0 ȳ2,k,K2−k of

saturated stations in the normal zone.
Optimizing the proportion of problematic stations means maximizing the number of

transactions and the number of satisfied users. Our aim is to compare the performance with
gifts and without gifts. The idea is to vary the fleet size parameter s, which is the limiting
ratio of the total number of cars M by the total number of stations N , in order to analyze
how much flexibility the gift policy gives to an operator who wants to increase the fleet size
without harming the system.

3.1 Analysis of the model without gifts
From Section 2.1.1, the proportion of problematic stations Pb in this case is given by

Pb =
2∑

i=1
αi

1 − ρri

1 − (ρri)Ki+1 (1 + (ρri)Ki+1)

where αi = limN→∞ Ni/N . For i = 1, 2, the proportion of problematic stations in cluster i

as a function of s is given by the parametric curve

ρ 7→

(
ρΛ +

2∑
i=1

αim(νρri,Ki
), 1 − ρri

1 − (ρri)Ki+1 (1 + (ρri)Ki+1)
)

where the first term (1 − ρri)/(1 − (ρri)Ki+1) is the proportion of empty stations in cluster i

and the second term (ρri)Ki+1(1−ρri)/(1−(ρri)Ki+1) is the proportion of saturated stations
in cluster i. As explained in Section 5.2 of [6], the proportion of problematic stations in
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cluster i has a minimum 2/(Ki + 1) for ρri equal to 1 i.e. for ρ = 1/ri. Thus, plugging in
equation (4), this minimum corresponds to

s∗
i = Λ

ri
+

2∑
i′=1

αi′m(νri′ /ri,Ki′ ).

where m(νρ,K) is defined by equation (5). The following result is the translation, with
the notations of the paper, of the result of Section 5.2 of [6]. It gives the fleet size which
corresponds to the optimal performance for a given cluster in the system without gift policy.

▶ Proposition 5 (Optimal performance per cluster without gift policy). For the model without
gifts, the limiting stationary proportion of problematic stations in cluster i ∈ {1, 2} is minimal
and equal to 2/(Ki + 1) when

s = s∗
i = αi

(
Ki

2 + λi

µqi

)
+ α3−i

(
γ3−i

1 − γ3−i
−

(K3−i + 1)γK3−i+1
3−i

1 − γ
K3−i+1
3−i

)

where γ3−i = (qiλiαi)/(q3−iλ3−iα3−i). The last term in brackets must be replaced by K3−i/2
for γ3−i = 1.

Note that, for s = s∗
i which minimizes the proportion of problematic stations in cluster i,

the proportion of problematic stations in cluster i′ ≠ i is not optimal and is exactly
νri′ /ri,Ki′ (0) + νri′ /ri,Ki′ (Ki′). Thus minimizing the problematic stations in both clusters
simultaneously is not possible.

For the values of Figure 2b and α1 = α2 = 0.5, Proposition 5 gives s∗
1 = 29.9 and

s∗
2 = 13.1, and for α1 = 0.28 and α2 = 0.72, s∗

1 = 21.9 and s∗
2 = 20.4, which can be checked

in Figure 2.
Note the U-shape of the curves plotted in Figure 2b. This shape is typical of these

performance curves (cf [5]). Indeed, for small values of the mean number of cars per station,
the proportion of empty stations is large and close to 1. Similarly, if the mean number of
cars per station is large, the proportion of saturated stations is large and close to 1. Since
the performance criterion includes both cases, the U-shape is observed. The contribution of
empty and saturated stations to the proportion of problematic stations is illustrated by [6,
Figure 2] where the proportions of empty, saturated and problematic stations are plotted.

3.2 Numerical solution
First of all, we numerically obtain the equilibrium point ȳ of the mean-field ODE established
in Proposition 1, the solution of the fixed point equation (3), as a function of the fleet size
parameter s. There are many tools to solve such an equation. We use the Anderson method
implemented in Scipy, a Python library.

Figure 2a plots the performance Pb numerically obtained as a function of the fleet size
parameter s, for the two-cluster model with and without gifts for a naive case: both clusters
have the same number of stations, so that α1 = α2 = 0.5, and everyone follows the gift policy.
That means the probability p that a user picks up a gift if gifts and cars are available and
the probability q1 a gift is returned to cluster 1 are equal to 1. All other parameters are
given in Figure 2. Figure 2a shows that, for cluster 2, the cases with and without gifts are
similar. But, for cluster 1, for this set of parameter values, it seems that an efficient gift
policy (p = q1 = 1) would allow an operator to increase the fleet size without harming the
system performance and even with improving it. Indeed, for a whole range of values of the
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13:12 Mean Field Analysis of an Incentive Algorithm for a Closed Stochastic Network

fleet size parameter s, typically s ≤ 20, the high demand zone suffers from a lack of available
cars. About 60% of the stations in the high demand zone are empty for a fleet size parameter
s between 10 and 20. The effect of the incentive policy is significant in this case, since the
proportion of empty stations in cluster 1 falls under 40% and even reaches 20% for s = 20.

Note that the crosses are simulations of the system with N1 = 50 and N2 = 50, the other
parameters are given in Figure 2. Compared to the performance curves obtained numerically,
it validates that the mean-field limit provides a good approximation for N1 and N2 large
enough.

Figure 2b plots the performance numerically obtained for the two-cluster model with
and without gifts for a more realistic case. The number of stations in the high demand zone
is significantly smaller than in the normal one, the ratios are respectively α1 = 0.28 and
α2 = 0.72. Figure 2b shows that the performance curves fit for small and large parameter
fleet size s for both cases, with and without gifts. In between, there is a plateau where the
proportion of problematic stations is close to its minimum. This implies that varying fleet
size parameter s around its optimum does not degrade too much the performance which
remains close to its optimum. This stability is important for the operator. The minimum
proportion of problematic stations should depend on capacities K1 and K2, user arrival and
trip rates. It is remarkable that the two plateaux correspond to the same values of s. Thus,
the stations in cluster 1 do not saturate for s smaller than 30. Despite their small capacity,
the high demand in cluster 1 limits the saturation.

In addition, Figure 2b shows that, for a small s, the gift policy slightly improves the
performance. It is true until the two curves intersect at s ≃ 12. Above this value, on the
plateau of cluster 1, the performance is slightly worse with the gift policy. Indeed, gifts seem
to saturate cluster 1 and this slightly decreases the system performance. The mean-field
approximation is again validated by simulation. See the crosses curve.
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(a) N1 = N2 = 50.
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(b) N1 = 28, N2 = 72.

Figure 2 Performance for both clusters (1 for the high-demand zone, and 2 for the normal zone)
is numerically computed from equilibrium point equation as a function of the fleet size per station in
a system with and without gifts, compared with the simulation curve in crosses. K1 = 15, K2 = 45,
λ1 = 2.6, λ2 = 1, µ = µc = 0.65, δ = 1/14, c1 = 0.5 and p = q1 = 1.
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4 Discussion

4.1 Discussion of the model
Discrete Markovian framework. The exponential distributions are assumed to obtain a
Markov discrete state process, i.e. the number of gifts and cars in the different stations. It is
not true in real systems. This seems to be true for the arrival times of users at a station, but
not for the trip times which seem heavy-tailed due to some very long trips. The behavior of
the system can be affected by a log-normal trip time distribution compared to an exponential
one. As to the threshold, it is deterministic in the real system. Intuitively, the exponential
distribution with the same mean for the threshold should not change the behavior of the
network. Large stochastic networks with general service time distributions are still largely
unexplored. The paper stays in a convenient framework.

Station-based state process. The model does not take into account the detailed moves
of the cars, i.e. the fact that a car goes from station i in cluster 1 for example to station j

in cluster 2. For the state of stations, these detailed moves do not matter. Mathematically,
the detailed routing matrix between stations only affects the stationary behavior of the
network by its invariant measure. In other words, this means that the driving cars are
indistinguishable and, after their departure, the origin of the trip is no longer important.
Only the popularity of stations is significant, expressed as the probability that a car is
dropped off at that station.

Space-homogeneity. In order to simplify the presentation, we assume that parameters
do not depend on the stations. This mean-field approach can be extended to a completely
heterogeneous model. It is out of the scope of the paper.

This modeling was preceded by an analysis of real data which highlighted the low
proportion of gifts offered under this incentive policy. Thus we opt for a constant probability
p to choose a gift if one is available in the station. Nevertheless, a relevant option is to choose
with a probability which takes into account the number of available gifts relative to cars in
the station. The study is similar in this case.

Time-homogeneity. In real systems, some parameters, like the arrival rate of users, depend
on time. The mathematical model does not take this into account but simulations of the
time-inhomogeneous model are performed in Section 4.2.

Reservation. In real car-sharing systems, cars can be booked. It seems that such a study
can still be conducted.

4.2 Simulations for time-inhomogeneous arrival process and real trip
time distribution

We investigate now the influence of time-inhomogeneity of the parameters, especially the
arrival rates of users and also the non exponential trip time distribution. Simulations are
performed with arrivals according to a Poisson process with rates λ1 and λ2 in the stations
of clusters 1 and 2, depending on time, and trip time having the distribution provided by an
analysis of real data. To validate the accuracy of this time-inhomogeneous arrivals and a
more realistic trip time distribution (see [7]) with Montreal FFCS system dataset, we plot in
Figure 3 the average daily rate of arrivals obtained by simulation. It can be compared to
that provided by data, plotted in Figure 4.
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Figure 3 Evolution of a daily arrival rate for the time-inhomogeneous simulation.
Time intervals are 20 mn.
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Figure 4 Number of transactions starting in both zones during the day considering intervals of
20 mn.

Figure 5 plots the performance in both cases: time-inhomogeneous arrival rates and
so-called real trip time distribution versus time-homogeneous arrival rate and trip time with
exponential distribution. Performance is different for both clusters for the whole range of
fleet sizes. It can be explained as follows. For large fleet sizes, more arrivals during the day
and some longer trips contribute to prevent saturation in stations of both clusters in the
time-inhomogeneous case. For small fleet sizes, more arrivals and larger trip times empty
the stations, especially in cluster 1. It explains why the time-inhomogeneous case performs
better for a mean number of cars per station around 30, but worse when it is smaller than
this value.
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Figure 5 Performance from a time-inhomogeneous and time-homogeneous simulation as a function
of fleet size. The thin curve is plotted for time-inhomogeneous arrival rates and real trip time
distribution of [7]. It is compared to the thick curve plotted for time-homogeneous arrival rates and
trip times with exponential distribution of Figure 2b.

In conclusion, although the homogeneous model helps us to study the influence of
parameters such as δ and q, it approximates poorly time-inhomogeneous arrival rates
combined with heavy-tailed trip time distribution.

4.3 Future work
The analysis highlights an interesting random walk in the quarter-plane. Its study seems
necessary to obtain further analytical results. Another model seems also necessary to
analytically obtain the proportion of gifts in the system, to see the price that the operator
should pay to implement such a policy.
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A Transitions of the empirical measure process

In this section, we present the detailed transitions of the empirical measure process (Y N (t))
introduced in Section 1.4. The transitions, from state y = (y1,j , y2,k,l, z) ∈ SN , are given by

User arrival.
A user arrival at a station in cluster 2 with k cars and l gifts (for short of type (2, k, l))
taking a gift.

y −→ y + 1
N2

(e2,k,l−1 − e2,k,l) + e0

N
at rate λ2y2,k,lN21{l>0}

(
p + (1 − p)1{k=0}

)
.

A user arrival at a station of type (2, k, l) taking a normal car.

y −→ y + 1
N2

(e2,k−1,l − e2,k,l) at rate λ2y2,k,lN21{k>0}
(
1 − p + p1{l=0}

)
.

A user arrival at a station of type (1, j).

y −→ y + 1
N1

(e1,j−1 − e1,j) at rate λ1y1,jN11{j>0}.

Gift appearance.
A car becoming a gift at a station of type (2, k, l).

y −→ y + 1
N2

(e2,k−1,l+1 − e2,k,l) at rate δkN2y2,k,l.

Car return.
A normal car returned at a station of type (1, j).

y −→ y + 1
N1

(e1,j+1 − e1,j) at rate c1y1,jµ
(

M − (E1N1 + E2N2 + zN)
)

1{j<K1}.

A normal car returned at a station of type (2, k, l).
y −→ y + 1

N2
(e2,k+1,l − e2,k,l) at rate c2y2,k,lµ

(
M − (E1N1 + E2N2 + zN)

)
1{k+l<K2}.
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A gift returned at a station of type (1, j).

y −→ y + 1
N1

(e1,j+1 − e1,j) − e0

N
at rate q1y1,jµczN1{j<K1}.

A gift returned at a station of type (2, k, l).

y −→ y + 1
N2

(e2,k+1,l − e2,k,l) − e0

N
at rate q2y2,k,lµczN1{k+l<K2}.
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