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Abstract
We study the asymptotic behaviour of random integer partitions under a new probability law that
we introduce, the Plancherel–Hurwitz measure. This distribution, which has a natural definition in
terms of Young tableaux, is a deformation of the classical Plancherel measure. It appears naturally in
the enumeration of Hurwitz maps, or equivalently transposition factorisations in symmetric groups.

We study a regime in which the number of factors in the underlying factorisations grows linearly
with the order of the group, and the corresponding maps are of high genus. We prove that the
limiting behaviour exhibits a new, twofold, phenomenon: the first part becomes very large, while the
rest of the partition has the standard Vershik–Kerov–Logan–Shepp limit shape. As a consequence,
we obtain asymptotic estimates for unconnected Hurwitz numbers with linear Euler characteristic,
which we use to study random Hurwitz maps in this regime. This result can also be interpreted as
the return probability of the transposition random walk on the symmetric group after linearly many
steps.
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1 Random partitions, Plancherel and Plancherel–Hurwitz measures

Let n ≥ 1 be an integer and let Sn denote the group of permutations on [n] := {1, 2, . . . , n}.
The famous RSK algorithm (Robinson, Schensted, Knuth) associates each permutation
σ ∈ Sn bijectively to a pair (P,Q) of standard Young tableaux (SYT) of the same shape. It
is impossible to overstate the importance of this construction in enumerative and algebraic
combinatorics. At the enumerative level, the RSK algorithm gives a bijective proof of the
following identity:∑

λ⊢n

(fλ)2 = n!, (1)
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6:2 Random Partitions Under the Plancherel-Hurwitz Measure
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Figure 1 A random partition of n = 2500 under the Plancherel–Hurwitz measure Pn,ℓ in the high
genus regime ℓ = 2⌊1.5n⌋ (sampled via a Metropolis–Hastings algorithm). The twofold asymptotic
behaviour is shown in yellow: the first part λ1 is asymptotic to 2ℓ

log(n) and escapes the picture, while
the rest of the partition scales in

√
n with a VKLS limit shape. See Theorem 2. The profile of the

partition is in red, while the VKLS limit shape scaled up to
√

n · Ω(x/
√

n) is the yellow curve.

where the sum is taken over integer partitions of n, and where fλ is the number of SYT of
shape λ (see Figure 2 or Section 3). If the permutation σ is chosen uniformly at random, the
shape λ of the associated tableaux is a random partition of n distributed according to the
probability measure

λ 7→ 1
n! (fλ)2, (2)

which is the Plancherel measure of the symmetric group Sn.
The study of random partitions under the Plancherel measure is an immense subject in

itself with many ramifications. One of the classical and most famous results is the fact, due
independently to Logan and Shepp [15] and Vershik and Kerov [19], that when n goes to
infinity, the diagram of a Plancherel distributed partition converges in some precise sense to
a deterministic limit shape (Theorem 7 below) that we call the VKLS limit shape following
these authors’ initials. Other deep results deal with the behaviour of the largest part λ1,
which coincides with the longest increasing subsequence of the random permutation σ, which
scales as 2

√
n with fluctuations of order n1/6 driven by a Tracy–Widom distribution [14].

The book [17] is a delightful introduction to the subject.
In this paper we will be interested in a generalisation of this measure, motivated by the

study of transposition factorisation, or Hurwitz maps, discussed in the next section. For an
even integer ℓ ≥ 0, we let Hn,ℓ be the number of factorisations of the identity of Sn into ℓ
transpositions:

Hn,ℓ = #{(τ1, τ2, . . . , τℓ) ∈ (Sn)ℓ, τ1τ2 · · · τℓ = id, each τi is a transposition}. (3)

The Frobenius formula from representation theory of finite groups (see e.g. [12]) together with
the combinatorial representation theory of Sn, gives an explicit expression for the number
Hn,ℓ as a sum over partitions, vastly generalising (1) (which corresponds to ℓ = 0). Indeed,

Hn,ℓ = 1
n!

∑
λ⊢n

f2
λ(Cλ)ℓ, (4)
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Figure 2 The Young diagram of the partition (4, 2, 1) ⊢ 7 (in this paper we use the “Russian”
representation where boxes are tilted by 45◦). Left, its boxes are filled to produce a SYT of shape
(4, 2, 1); center, they are filled with their hook lengths, showing there are f(4,2,1) = 7!/(6 ·4 ·3 ·2) = 35
such tableaux; right, each box is filled with its content, which is the abscissa of its middle point in
this representation. The content-sum is C(4,2,1) = −2 − 1 + 0 + 0 + 1 + 2 + 3 = 3. The profile is the
piecewise linear function represented here in red (coordinate axes are in grey).

where Cλ is a combinatorial quantity, namely the sum of contents of all boxes of the partition
λ (see Figure 2). The RHS of this formula naturally gives rise to a certain measure on
partitions, which is our main object of study:

▶ Definition 1 (Main object). For n ∈ Z>0, ℓ ∈ 2Z≥0, the Plancherel–Hurwitz measure is
the probability measure on partitions of n defined by

Pn,ℓ(λ) := 1
n!Hn,ℓ

f2
λ(Cλ)ℓ. (5)

The measure Pn,ℓ is invariant by conjugation of a partition (vertical reflection of the diagrams),
which sends the content-sum Cλ to its opposite. For ℓ > 0 we will choose to work on the
“positive half” of the measure, namely we let

P+
n,ℓ(λ) := Pn,ℓ(λ|Cλ > 0) = 2 · 1Cλ>0 · Pn,ℓ(λ). (6)

A partition distributed under Pn,ℓ for ℓ > 0 can be thought of as a partition distributed
under P+

n,ℓ which is reflected about a vertical axis with probability 1
2 .

When ℓ = 0 the measure Pn,ℓ is nothing but the Plancherel measure. Our main result
deals instead with the case where ℓ grows linearly with n, corresponding to a high genus
for the underlying map (see next section). The rescaled profile ψλ of a partition λ of n is
the real function (piecewise linear with slope ±1) whose graph follows the contour of the
diagram of λ in the coordinates of its tilted diagram representation, rescaled so that each
box has area 1/n (see Figures 1 and 2).

▶ Theorem 2 (Main result, see Figure 1). Fix θ > 0 and let λ ⊢ n be a random partition under
the Plancherel–Hurwitz measure P+

n,ℓ in the “high-genus” regime given by ℓ = ℓ(n) := 2⌊θn⌋.
Then, as n → ∞:

(i) the first part λ1 is equivalent to 2ℓ
log n (in probability)

(ii) the rest of the partition λ̃ = (λ2, λ3, . . .) has a VKLS limit shape. Namely, w.h.p.,

sup
x

|ψλ̃(x) − Ω(x)| → 0, with Ω(x) =
{

2
π

(
arcsin x

2 +
√

4 − x2
)
, |x| ≤ 2

|x|, |x| > 2,
(7)

where ψλ̃(x) is the rescaled profile of λ̃.

We could include λ1 in the partition λ̃ of (7), since the supremum norm in this statement
is insensitive to a small number of large parts. However, as Figure 1 indicates, λ1 is the only
part not scaling as

√
n so we find this formulation more natural. Indeed, we can show that:

AofA 2022
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Figure 3 Three pure Hurwitz maps, each with 4 vertices, 6 edges and Euler characteristic χ = 0.
Left, the map corresponding to (12)(23)(34)(34)(23)(12) = id is connected and has genus 0; center,
the map corresponding to (12)4(34)2 = id has two connected components, of genus 1 and 0; right,
the map corresponding to (12)6 = id has three components, of genus 2, 0 and 0.

▶ Proposition 3. Under the hypotheses of Theorem 2 we have
(iii) the second part satisfies λ2 ≤ (e+ o(1))

√
n w.h.p.

As the figure strongly suggests, the constant e can be replaced by 2 in the previous proposition.
We did not have a full proof at the time of writing this extended abstract, and we refer
readers to the long version of this paper, to appear shortly.

2 High genus maps, Hurwitz numbers, and random walks

Our original motivation to study the Plancherel–Hurwitz measure comes from the field
of enumerative geometry and map enumeration. A map is a multigraph embedded on a
compact oriented surface with simply connected faces, considered up to homeomorphisms.
Equivalently it can be seen as a discrete surface, discretized by a finite number of polygons.
Since the pioneering worsk of Tutte on planar maps (e.g. [18]) the enumeration of maps has
proven to be particularly interesting, borrowing tools from physics, algebra and geometry
and revealing their connections within combinatorics. These tools include matrix integral
generating functions discovered by treating maps as Feynman diagrams [5], the topological
recursion [11], and recurrence formulas based on integrable hierarchies [13]. Such exact
methods have led to the asymptotic enumeration of many types of maps which notably
exhibit a universal exponent of − 5

2 , and can extend to surfaces with positive genus (e.g. [7]).
These methods do not, however, extend to maps whose genus grows with the number

of polygons. This “high genus” regime is one of the most recent and exciting frontiers in
the field, due the inefficiency of existing generating-function or bijective methods, requiring
the development of new tools. The first result in this direction was recently obtained by
Budzinski and the second author [6], who showed the following estimate for the number
of (connected) triangulations of size n on a surface of genus g ∼ θn, by a combination of
algebraic, combinatorial, and probabilistic methods:

Tn,g = n2g exp[c(θ)n+ o(n)], g ∼ θn, (8)

where c(θ) > 0 is a known continuous function. In this paper we will be interested in a
different model of maps:
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▶ Definition 4 (Hurwitz map, see Figure 3). A Hurwitz map with n vertices and ℓ edges is a
map on a (non-necessarily connected) compact oriented surface, with vertices labelled from 1
to n and edges labelled from 1 to ℓ, such that the labels of edges around each vertex increase
(cyclically) counterclockwise. In such a map each vertex is incident to precisely one corner
which is an edge-label descent. If moreover each face of the map contains precisely one such
corner, the Hurwitz map is called pure.

It is classical, and easy to see, that Hurwitz maps of parameters n and ℓ are in bijection
with tuples of transpositions (τ1, . . . , τℓ) in Sn, while pure Hurwitz maps are in bijection
with tuples whose product is equal to the identity. The bijection only consists in identifying
tranpositions with edges of the map, and their index with the edge-label, see Figure 3 (this
construction is a special case and an adaptation of the classical construction of “constellations”,
see [4, 10]). The reader might find the definition of pure Hurwitz maps rather unnatural,
however this model has a legitimate history in the field. In particular they are known [10], in
the planar and fixed-genus cases, to belong to the same universality class as e.g. triangulations,
quadrangulations, etc. (properties such as counting exponents or the existence of bijections
are known, convergence to Brownian surfaces is conjectured). We chose this model because
among the natural models of maps, it is the one for which the connection to the Plancherel
measure is the most combinatorial, and it is therefore a natural candidate to test the idea of
using random partition techniques to study high genus random maps.

It is important to insist that our maps are not necessarily connected, which is an
important difference with most of the literature. A pure Hurwitz map of parameters n and ℓ
has necessarily n faces, and its Euler characteristic χ, its number of components κ, and its
generalised genus G (sum of the genera, or number of handles, of each connected component)
are related by Euler’s formula:

χ = #vertices − #edges + #faces = 2n− ℓ = 2κ− 2G. (9)

This is why we call the regime ℓ ≫ 2n the “high genus” regime.
By the above correspondence, the number Hn,ℓ introduced in (3) is the number of pure

Hurwitz maps with n vertices and ℓ edges. This number is called an unconnected Hurwitz
number in the enumerative geometry literature. As a consequence of our analysis of the
Plancherel–Hurwitz measure, we obtain the following estimate:

▶ Theorem 5 (Asymptotics of high genus unconnected Hurwitz numbers). As in (3), let Hn,ℓ

be the unconnected Hurwitz number counting not necessarily connected pure Hurwitz maps
with n vertices and ℓ = ℓ(n) = 2⌊θn⌋ edges, for θ > 0. Then, as n → ∞,

Hn,ℓ =
(

n

logn

)2ℓ

exp
[
2(log(23/2θ) − 1)ℓ+ o(n)

]
. (10)

It is tempting to see this theorem as as strong (for our model) as the Budzinski–Louf
estimate (8), but unfortunately this is not quite the case. The major difference is that our
maps are not necessarily connected. Moreover, we can show that (the proof is omitted in
this extended abstract but follows easily from our results)

▶ Proposition 6. For θ > 1, as n → ∞ a uniformly random unconnected Hurwitz map with
n vertices and ℓ = 2⌊θn⌋ edges contains a connected component with at least γ(θ)ℓ edges, for
some function γ(θ) > 0, and m = o(ℓ) vertices, w.h.p.

The fact that the “giant” edge-component in the previous proposition has a sublinear number
of vertices seems to rule out the possibility of deducing asymptotics for the connected
linear-genus regime from our results, at least not without new ideas.

AofA 2022



6:6 Random Partitions Under the Plancherel-Hurwitz Measure

At this point it is worth commenting that in map enumeration, the regime in which the
genus is unconstrained, or superlinear, is often much easier to deal with than the linear
case. In fact, the Plancherel–Hurwitz measure already appears (with no name) in the “super
high genus” regime ℓ > 1

2n logn, in work of Diaconis and Shahshahani on the transposition
random walk on Sn. They famously showed [8] that when ℓ ≥ 1+ϵ

2 n logn, the walk is strongly
mixed after ℓ steps, and the proof essentially consists in showing that the Plancherel–Hurwitz
measure is dominated by the trivial partition (n) in this regime. In this context, our result (10)
can also be interpreted as an estimate on the return probability of the random walk after
linearly many steps – much before the cut-off time, at a time when the Plancherel–Hurwitz
measure still has a more subtle behaviour than the trivial partition.

Finally, we note that related measures on partitions were studied by Biane in the context
of the factorisation of characters of Sn [1], related to the intermediate regime ℓ = 2⌊θ

√
n⌋

which we do not study in this work. The limit-shape phenomena observed in this reference
are different from ours. We leave the study of a possible connection, and more generally the
complete study of intermediate (sublinear) values of ℓ to further works.

3 Elements of the classical Plancherel case

Formally, a partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λℓ(λ)) of n (we write “λ ⊢ n”) is a weakly
decreasing sequence of ℓ(λ) positive integers (called parts) which sum to n. We represent it
by its Young diagram in Russian convention (Figure 2). A Standard Young Tableau (SYT)
of shape λ ⊢ n is a filling of the boxes of its diagram with all the numbers from 1 to n which
is increasing along rows and columns. The number fλ of such tableaux can be calculated by
the “hook-length” formula

fλ = n!∏
□∈λ hλ(□) (11)

where the hook length hλ(□) is the number of boxes in a hook going down and right from
the top edge of the diagram to □ and up and right to the top edge (Figure 2 again).

The number fλ is famously equal to the dimension of the irreducible representation V λ

of the symmetric group indexed by λ, a representation theoretic connection that we have
no space to develop here. We will only point out, for interested readers, that the sum of all
transpositions in Sn acts on this module V λ as a scalar Cλ, which is explicitly given by the
sum of contents as defined in the introduction (Figure 2 again). These two facts, together
with classical representation theory, are the main reasons behind the Frobenius formula (4)
expressing the count of transposition factorisations in Sn with tableaux-theoretic quantities.

For ℓ = 0 the Plancherel–Hurwitz measure becomes the Plancherel measure Pn,0(λ) = 1
n!f

2
λ

which, as said in the introduction, is very well understood.

▶ Theorem 7 (Vershik–Kerov–Logan–Shepp (VKLS) [15, 19]). Let λ ⊢ n be a random partition
under the Plancherel measure Pn,0. Then, as n → ∞ we have, w.h.p.,

sup
x

|ψλ(x) − Ω(x)| = 0 and λ1 ≤ 2
√
n+ o(

√
n), ℓ(λ) ≤ 2

√
n+ o(

√
n) (12)

where ψλ(x) is the rescaled profile of λ and Ω(x) is the curve defined at (7).

Several proofs exists of this limit shape result. Perhaps the simplest and most conceptual
ones use the formulation of the Plancherel measure in the language of fermions and the
infinite wedge space, which provides a direct connection with determinantal processes [3, 14].
Such approaches and their generalisations have grown into a vast field of research after the
introduction of the theory of Schur processes (see e.g. [2] for an entry point).
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In the case ℓ > 0 that we study here, it is still possible (and natural) to formulate the
Plancherel-Hurwitz measure in terms of the infinite wedge, see [16]. This leads to a deep
connection with integrable hierachies (the KP and 2-Toda hierarchy in particular), and
even to a simple looking recurrence formula to compute the number Hn,ℓ (more precisely,
their connected counterpart, see [9]). However, we do not know how to use either of these
tools to approach our problems (for readers familiar with the subject: the connection to
determinantal processes in presence of a sandwiched content-sum scalar operator is unclear).

Other, maybe more elementary, proofs of the VKLS theorem are based on a direct scaling
of the hook-length formula (11) and variational calculus. We recommend the first chapters of
the book [17] as a useful reference for such approaches. A key outcome of such an approach
is the following estimate for the Plancherel measure of a partition λ in terms of its rescaled
profile ψλ, see e.g. [17, Section 1.14]:

Pn,0(λ) = 1
n!f

2
λ = exp

[
− n

(
1 + 2Ihook(ψλ) +O

(
logn√
n

))]
(13)

where Ihook(·) is an “energy” functional defined by an explicit integral formula. The VKLS
limiting curve Ω(x) introduced in Theorem 2 is the unique continuous function satisfying∫

(Ω(x) − |x|)dx = 1 which minimises Ihook(Ω) (see e.g. [17, Section 1.17]). This implies the
limit shape part of the VKLS theorem, since any partition whose profile is “far” from Ω(x)
will appear with an exponentially small probability.

The upper bound on the first part λ1 in the VKLS theorem does not directly follow from
this limit shape analysis. Classical proofs usually depend either on the RSK algorithm or
on the random growth process. The fact that neither of these tools exist in the context of
factorisations (ℓ > 0) will make our proofs become harder, see comments in the next section.

4 Proofs of our results

We will now sketch the proofs of Theorems 5 and 2, and Proposition 3. Throughout this
section, we consider λ to be a random partition of n distributed by the Plancherel–Hurwitz
measure P+

n,ℓ with ℓ = ℓ(n) = 2⌊θn⌋. Heuristically, a random partition under P+
n,ℓ is driven

by two different “forces”:
1. on the one hand, the “Plancherel entropy”: the estimate (13) shows that there is an

exponential cost for the partition, in terms of the Plancherel factor f2
λ, to deviate from

the VKLS shape.
2. on the other hand, the “content-sum entropy”: the factor (Cλ)ℓ can itself become

exponentially high, so the partition may prefer to deviate from VKLS if this leads to a
much higher content-sum.

Our main theorem shows that the best way for the partition to adapt to this situation, is to
“throw” all its contribution to a large content-sum in the first part λ1, and that after this the
rest of the partition maximises the entropy classically. We establish this fact by successive
refinements, in several steps.

We now go through the proofs. We will use the notation Zn(Λ) = 1
n!

∑
λ∈Λ f

2
λ(Cλ)ℓ for

any set Λ of partitions of n, such that the partition function is Hn,ℓ = Zn({λ ⊢ n}). We also
fix ε = 1

100 and split any partition λ ⊢ n into λ = λ+ ⊔ λ− where λ+ denotes the parts that
are greater than n1−ε and λ− the parts that are less than n1−ε, see Figure 4. We will use
the following immediate and convenient bounds.

AofA 2022
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M − m

nε

λ− = µ
λ− = µ n1−ε

M − m

|λ+| = M

M

n1−ε n1−ε

λ− = µ

Figure 4 Left, a partition λ ⊢ n in Λ(µ, M, m), with λ+ and λ− indicated. Right, a SYT of
shape λ0 ∈ Λ(µ, M, 0) (the filling of the boxes is not shown) is transformed to a SYT of some shape
λ ∈ Λ(µ, M, m) or to something else by the surjective operation used to prove Claim 13.

▶ Lemma 8 (Useful bounds). Let λ ⊢ n with λ+ = (λ1, . . . , λp), then
(i) 1

n!f
2
λ ≤ n!∏p

i=1
(λi!)2(n−|λ+|)!

≤ n|λ+|∏p

i=1
(λi!)2 ,

(ii) Cλ ≤ λ1n
2 ,

(iii) Cλ =
∑p

i=1

(
λi(λi−1)

2 − (i− 1)λi

)
− p|λ−| + Cλ− .

We now proceed with the succession of lemmas that constitutes the core of our proof.

▶ Lemma 9 (Bounding the partition function below). We have

Hn,ℓ ≥ exp [2ℓ(log ℓ− log logn) − ℓ(2 − log 2) + o(n)] . (14)

Proof. Let L := 2ℓ
log n and λ∗ = L ⊔ µ with ℓ(µ), µ1 ≤ 2

√
n (µ can be taken as the partition

of n− L maximising fµ). Using Lemma 8(iii) we have

Cλ∗ = L(L− 1)
2 − |µ| + Cµ

from which it is not difficult to show that

Zn({λ∗}) ≥ exp [2ℓ(log ℓ− log logn) − ℓ(2 − log 2) + o(n)] (15)

and this finishes the proof since Hn,ℓ = Zn({λ ⊢ n}) ≥ Zn({λ∗}). ◀

The following lemma controls the contribution of “big parts” λ+ in a Plancherel–Hurwitz
random partition. The “truncation” threshold n0.99 is somewhat arbitrary at this stage and
will be improved to O(

√
n) at the very end of our analysis.

Throughout the following, let λ be a random partition under the Plancherel–Hurwitz
measure P+

n,ℓ at high genus, with ℓ = 2⌊θn⌋.

▶ Lemma 10 (Controlling big parts). W.h.p., we have |λ+| ∈ [ 0.4ℓ
log n ,

6ℓ
log n ] where L = 2ℓ

log n .

Proof. Let Rλ = |λ+| log n
ℓ . For all λ ⊢ n, by Lemma 8(i),

1
n!f

2
λ ≤ exp

[
− (1 − 2ε)Rλℓ+ 2Rλℓ

logn

]
. (16)

On the other hand, by Lemma 8(ii)-(iii), if Cλ ≥ 0, then

Cℓ
λ ≤ exp

[
2ℓ(log ℓ− log logn) + ℓ

(
log

(
R2

λ + n2−ε log2 n

ℓ2

)
− log 2

)]
. (17)
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Combining (16) and (17), and using (14), we obtain

Zn({λ})
Hn,ℓ

≤ exp
[
ℓ

(
2 − (1 − 2ε)Rλ + 2Rλ

logn + log
(
R2

λ + n2−ε log2 n

ℓ2

))]
(18)

hence for n large enough and λ ⊢ n with Rλ ̸∈ [0.4, 6], P+
n,ℓ(λ) ≤ exp(−ℓ/100), which entails

the result since there are eO(
√

n) partitions of n. ◀

▶ Lemma 11 (Uniqueness of the big part). W.h.p., λ+ = (λ1).

The proof of Lemma 11 requires to compare the contribution of partitions having a single
big part, to those having more than one (indeed, because we do not have exact formulas nor
precise estimates on our partition functions, we can only rely on “comparison” of probabilities
at this stage). We will perform this comparison among partitions having the same set of
“small parts” (called µ below).

For non-negative integers M,m and partitions µ ⊢ n−M , we let Λ(µ,M) = {λ||λ+| =
M,λ− = µ} and Λ(µ,M,m) = {λ ∈ Λ(µ,M)|λ1 = M − m}. We also use the notation
λ0 = M ⊔ µ so that Λ(µ,M, 0) = {λ0}. We will need the following two claims, whose proof
is postponed to after that of the lemma.

▷ Claim 12. For all λ ∈ Λ(µ,M,m), we have Cλ ≤ Cλ0 − (m− 1) M
2 .

▷ Claim 13. If m > 0 then,
∑

λ∈Λ(µ,M,m) fλ ≤ fλ0 exp[m(2ε logn+ 1)].

Proof of Lemma 11. By Lemma 10, we know that, w.h.p., |λ+| ∈ [0.4 ℓ
log n , 6

ℓ
log n ]. We can

thus assume this event for the rest of this proof.
We now condition on |λ+| = M and λ− = µ, with given M ∈ [0.4 ℓ

log n , 6
ℓ

log n ] and
µ ⊢ n−M . Combining Claims 12 and 13 for m > 0, one obtains

Zn(Λ(µ,M,m))
Zn({λ0}) ≤ exp

[
ℓ log

(
1 − (m− 1)M

2Cλ0

)
+ 2m(2ε logn+ 1)

]
. (19)

But we know that Cλ0 ≤ (1 + o(1)) M2

2 and M ≤ 6 ℓ
log n . Hence

Zn(Λ(µ,M,m))
Zn({λ0}) ≤ exp

[
−m logn

100

]
(20)

Summing this over all m > 0 (recall that m ≥ n1−ε if the set is non-empty), we have∑
m>0

Z(Λ(µ,M,m)) = o(Z({λ0})) (21)

which is enough to conclude that λ+ = (λ1) w.h.p. ◀

Proof of the claims. The first claim is direct. For the second one, we need to define a proper
“redistribution” operation that enables us to compare the contribution of partitions with one
big part to others. To do this, we will describe an operation taking as input a SYT of shape
λ0 plus some information, and outputting a SYT of some λ ∈ Λ(µ,M,m), or something else,
such that this operation is surjective on Λ(µ,M,m).
Input: A SYT T of shape λ0.
1. Create nε empty rows between the first row of T and the rest,
2. choose m numbers in the first row of T (

(
M
m

)
choices),

3. for each of these numbers, choose one of the newly created rows, and move it there (nε

choices each time),
4. sort each row and delete the empty rows, output the result.
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6:10 Random Partitions Under the Plancherel-Hurwitz Measure

It is easily checked that this procedure can output any SYT of λ for any λ ∈ Λ(µ,M,m)
(indeed, for such a λ, λ+ must have at most n

n1−ε = nε rows). Hence we have

∑
λ∈Λ(µ,M,m)

fλ ≤
(
M

m

)
nεmfλ0 ≤ fλ0 exp(m(2ε logn+ 1) (22)

where in the last inequality we used the bound m! ≥ (m/e)m, along with the facts that
logM ≤ logn and logm ≥ (1 − ε) logn. ◁

We can now collect the fruits of the previous lemmas to obtain our main theorems.

Proof of Theorem 5. The previous lemmas imply that for a Plancherel–Hurwitz distributed
partition λ, we have w.h.p. λ+ = (λ1) with λ1 = O( n

log(n) ), Cλ = (1 + o(1)) λ2
1

2 . On the other
hand, we have 1

n!f
2
λ ≤ nλ1

(λ1!)2 , hence

Zn({λ}) ≤ exp [2ℓ log(λ1) − ℓ log 2 − λ1 logn+ o(n)] . (23)

Now we substitute λ1 = Rλℓ
log n in the inequality above, and we obtain

Zn({λ}) ≤
(

n

logn

)2ℓ

exp
[
2(log θ − 2)ℓ

]
exp [ℓ(2(logRλ − log 2) + 2 −Rλ) + o(n)] . (24)

Now, since for x > 0 we always have 2(log x− log 2) + 2 − x ≤ 0, we get

Z({λ}) ≤
(

ℓ

logn

)2ℓ

exp
[
(−2 + log 2)ℓ+ o(n)

]
. (25)

This, together with the lower bound of Lemma 9, proves Theorem 5 since there are eO(
√

n)

partitions of n. ◀

Proof of Theorem 2, part (i). The last argument of the previous proof also implies that

Pn,ℓ(λ) ≤ exp [ℓ(2(logRλ − log 2) + 2 −Rλ) + o(n)] . (26)

Now, the function on positive reals x 7−→ 2(log x− log 2) + 2 − x has a unique maximum at
x = 2. Any non-negligible deviation of Rλ from this maximum thus entails an exponentially
decreasing probability, which is enough to conclude that Rλ = 2 + o(1) w.h.p. ◀

Proof of Theorem 2, part (ii). The previous discussions imply that, w.h.p., Cλ = (1 +
o(1))2

(
ℓ

log n

)2
and fλ =

(
n
λ1

)
fλ̃e

o(n), which, by Theorem 5 and the Plancherel entropy
estimate (13), lead to

Pn,ℓ(λ) ≤ exp (2n(Ihook(ψλ) − Ihook(Ω)) + o(n)) . (27)

This implies, as in the classical Plancherel case (see [17, Section 1.17]), the almost sure
convergence in supremum norm to the VKLS limit shape. ◀

It only remains to prove Proposition 3, i.e. to upper bound the size of λ2. As we said
already, the VKLS limit shape result in supremum norm does not imply such a bound, and
even in the Plancherel case extra arguments are needed. We find convenient here to refer
again to Romik’s book where two bounds are given for the largest part in the Plancherel
regime:
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L

k
µ ⊢ n − L − k µ ⊢ n − L − k

L

Figure 5 Partitions L ⊔ k ⊔ µ ⊢ n and L ⊔ µ ⊢ n − k.

an elementary bound, based on a first moment calculation and the RSK algorithm, which
is enough to establish a bound of the form (e+ o(1))

√
n ([17, Lemma 1.4]).

a more sophisticated bound based on the Cauchy–Schwarz inequality and on the existence
of the corner-growth process for the Plancherel measure, which leads to the sharp bound
(2 + o(1))

√
n ([17, Section 1.19]).

In our context, we unfortunately do not have the analogue of the RSK algorithm (see next
section), let alone of the corner growth process. The proof below mimics the first moment
argument of the classical proof at the level of tableaux, and together with previous estimates
on the partition functions enable us to reach the bound (e+o(1))

√
n. A more subtle approach

which tries to mimic the corner growth process as in the second proof should enable us to
attain soon the (conjectured) bound (2 + o(1))

√
n in which case it will appear in the journal

version of this paper.

Proof of Proposition 3. Under the Plancherel-Hurwitz measure, if we condition on the first
part being λ1 = 2ℓ

log n = L, the distribution of the second part is

P(λ2 = k|λ1 = L) = 1
n!Zn[L]

∑
µ⊢n−L−k,µ1≤k

f2
L⊔k⊔µC

ℓ
L⊔k⊔µ. (28)

where Zn[L] ≡ Zn({λ ⊢ n|λ1 = L}). Comparing SYT of shape L ⊔ k ⊔ µ ⊢ n with ones of
shape L⊔µ ⊢ n−k, obtained by removing the second part, and the contents of the partitions,
we have

fL⊔k⊔µ ≤
(
n

k

)
fL⊔µ, CL⊔k⊔µ = CL⊔µ − |µ| + k2

2 = CL⊔µ(1 + o(1)) (29)

and from there we obtain

P(λ2 = k|λ1 = L) ≤
(
n

k

)2 (n− k)!
n!

Zn−k[L]
Zn[L] (1 + o(1)). (30)

Now, following an application of the identity nfµ =
∑

ν:µ↗ν fν for µ ⊢ n, where “µ ↗ ν”
means that ν is obtained from µ by adding one box, and using elementary bounds on the
variation of the content-sum when a single box is added, it is possible to show that

Zn[L] = Zn−1[L]eo(1). (31)

It follows that

P(λ2 = k|λ1 = L) ≤ n!
k!2(n− k)!e

o(k) ≤ nk

(k/e)2k
eo(k), (32)

and, to conclude the proof,

∀ε > 0, lim
n→∞

P(λ2 = (1 + ε)e
√
n|λ1 = L) = 0 (33)

and we have λ2 ≤ e(1 + o(1))
√
n w.h.p. as n → ∞. ◀
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5 Open questions and perspectives

Maybe the main open question that follows our work is the following: does there exist an
analogue of the RSK algorithm proving combinatorially the identity (4)? If this is the case,
then our results about λ1 and λ2 probably translate into distributional limit theorems for
certain parameters of random factorisations (or random pure Hurwitz maps). To start with,
can one identify the “meaning” of the statistic λ1 on the Hurwitz side?

Another question is, of course, to know if one can use the Plancherel–Hurwitz approach to
say anything about connected Hurwitz maps of high genus. This would be very interesting. It
may also be interesting to combine this approach with the technology of integrable hierarchies,
which have been so fruitful but have so far not directly led to precise asymptotic estimates
nor limit theorems for connected random maps or Hurwitz numbers of high genus.
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