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Abstract
In this work we extend the robust version of the Sylvester-Gallai theorem, obtained by Barak, Dvir,
Wigderson and Yehudayoff, and by Dvir, Saraf and Wigderson, to the case of quadratic polynomials.
Specifically, we prove that if Q ⊂ C[x1. . . . , xn] is a finite set, |Q| = m, of irreducible quadratic
polynomials that satisfy the following condition

There is δ > 0 such that for every Q ∈ Q there are at least δm polynomials P ∈ Q such that
whenever Q and P vanish then so does a third polynomial in Q \ {Q, P }.

then dim(span{Q}) = Poly(1/δ).
The work of Barak et al. and Dvir et al. studied the case of linear polynomials and proved an

upper bound of O(1/δ) on the dimension (in the first work an upper bound of O(1/δ2) was given,
which was improved to O(1/δ) in the second work).
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Independent result

Independently of our work, [18] have also proved the same result. Both works have been
presented in a common talk at CG week 2022. For a more detailed comparison between the
works, we refer the reader to Subsection 1.2.

1 Introduction

In this paper we prove a robust version of a result of [40]: Let T ⊂ C[x1, . . . , xn] be a finite
set of polynomials. We say that Q1(x⃗), Q2(x⃗) ∈ Q satisfy the Polynomial Sylvester-Gallai
condition (PSG-condition for short) if there is a third polynomial Q3(x⃗) ∈ Q such that Q3(x⃗)
vanishes whenever Q1(x⃗) and Q2(x⃗) vanish. We prove that if T ⊂ C[x1, . . . , xn] is a finite
set containing only irreducible quadratic polynomials, such that for every Q ∈ T a δ fraction
of the polynomials in T satisfy the PSG-condition with Q, then dim (span{T }) = Poly(1/δ).
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43:2 Robust Sylvester-Gallai Type Theorem for Quadratic Polynomials

The motivation for proving this result, besides its own appeal, is two fold: a similar
theorem played an important role in the polynomial identity testing (PIT for short) problem
for small depth algebraic circuits, one of the fundamental open problems in theoretical
computer science, see [33]; and it is also related to a long line of work extending and
generalizing the original Sylvester-Gallai theorem [30, 17]. In particular, our result builds
and generalizes a result of [3, 9], that can be viewed as proving an analogous claim for the
case of degree-1 polynomials. Such results are useful in discrete geometry [3, 9], in the study
of locally correctable codes, for reconstruction of certain depth-3 circuits [39, 25, 42] and
more. See the survey of Dvir on incidence geometry for some applications of Sylvester-Gallai
type theorems [7].

We next give background on the Sylvester-Gallai theorem, and some of its variants, and
then discuss the connection to the polynomial identity testing problem.

Sylvester-Gallai type theorems

The Sylvester-Gallai theorem (SG-theorem) asserts that given a set S = {v⃗1, . . . , v⃗m} ⊂ Rn

such that S is not contained in a line, there must be a line that contains exactly two points
from S. It was first conjectured by Sylvester in 1893 [44] and then proved, independently,
by Melchior in 1941 [30] and Gallai [17] in 1943 (in an answer to the same question posed
by Erdös, who was unaware of Melchior’s result [12]). There are many extensions and
generalizations of the theorem. We shall state a few that are related to this work. It is
also helpful to think of the contra-positive statement. We say that a set of points is a
Sylvester-Gallai configuration (SG-configuration for short) if every line that intersects the
set at two points, must contain at least three points from the set. Thus, an SG-configuration
in Rn must be colinear.

In [38] Serre, aware that the original formulation of the theorem is not true over C asked
“Is there a nonplanar version of the Sylvester-Gallai configuration over the field of complex
numbers?” Kelly proved that the answer is no, i.e. that every finite set of points in Cn

satisfying the SG-condition is planar [27]. Edelstein and Kelly proved a colorful variant of
the problem: if three finite sets of points in Rn satisfy that every line passing through points
from two different sets also contains a point from the third set, then, the points belong to a
three-dimensional affine space. This result can be extended to any constant number of sets.
Many more extensions and generalizations of the SG-theorem are known, e.g. [22, 8]. The
survey by Borwein and Moser [5] is a good resource on the SG-Theorem and some of the
different variants that have been studied in the past.

More recently, Barak et al. [3] and Dvir, Saraf and Wigderson [9], motivated by questions
on locally decodable codes and construction of rigid matrices, proved a robust (or fractional)
version of the SG-theorem:

▶ Definition 1 (δ-SG configuration). We say that a set of points v1, . . . , vm ∈ Cn is a δ-SG
configuration if for every i ∈ [m] there exists at least δ(m − 1) values of j ∈ [m] such that the
line through vi, vj contains a third point in the set.

▶ Theorem 2 (Theorem 1.9 of [9]). Let V = {v1, . . . , vm} ⊂ Cn be a δ-SG configuration.
Then dim(span{v1, . . . , vm}) ≤ 12

δ + 1.
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Algebraic generalizations of Sylvester-Gallai type theorems

Although the Sylvester-Gallai theorem and Theorem 2 are formulated in the setting of
discrete geometry, there is a very natural algebraic formulation: If a finite set of pairwise
linearly independent vectors, S ⊂ Cn, has the property that every two vectors span a third
vector in the set, then the dimension of S is at most 3. The proof is immediate from Kelly’s
theorem: pick a subspace H of codimension 1, which is in general position with respect to the
vectors in S. The intersection points pi = H ∩ span{si}, for si ∈ S, satisfy the SG-condition
over C. Therefore, dim(S) ≤ 3. An equivalent formulation, in the case of linear functions, is
the following: If a finite set of pairwise linearly independent linear forms, L ⊂ C[x1, . . . , xn],
has the property that for every two forms ℓi, ℓj ∈ L there is a third ℓk ∈ L, such that ℓk = 0
whenever ℓi = ℓj = 0, then the linear dimension of L is at most 3. To see the equivalence
note that it must be the case that ℓk ∈ span{ℓi, ℓj} and thus the coefficient vectors of the
forms in the set satisfy the condition for the (vector version of the) SG-theorem, and the
bound on the dimension follows. Observe that the last example shows that in the case of
linear functions the PSG-condition and the SG-condition are equivalent. The last formulation
can now be generalized to higher degree polynomials. In particular, the following conjecture
was raised by Gupta [20].

▶ Definition 3 (PSG-configuration). Let T ⊂ C[x1, . . . , xn] be a set of polynomials. We say
that Q1, Q2 ∈ T satisfy the Polynomial Sylvester-Gallai condition (PSG-condition for short)
if there is a third polynomial Q3(x⃗) ∈ T such that Q3 vanishes whenever Q1 and Q2 vanish.

We say that a set T is a PSG-configuration if every two polynomials Q1, Q2 ∈ T satisfy
the PSG-condition.

▶ Problem 1 (Conjecture 2 of [20]). There is a function λ : N → N such that for any finite
set T ⊂ C[x1, . . . , xn] of pairwise linearly independent and irreducible polynomials, of degree
at most r, that satisfy the PSG-condition, it holds that the algebraic rank of T is at most
λ(r).

This problem was answered affirmatively, with a stronger conclusion, in the case of
quadratic polynomials (r = 2) in [40].

▶ Theorem 4 (Theorem 1.7 of [40]). There is a constant λ such that the following holds
for every n ∈ N. Let T ⊂ C[x1, . . . , xn] consist of homogeneous quadratic polynomials, such
that each Q ∈ T is either irreducible or a square of a linear function. If T satisfies the
PSG-condition then dim (span{T }) ≤ λ.

Motivated by applications for the polynomial identity testing problem, Gupta [20] and
Beecken, Mittmann and Saxena [4] also raised the following colorful variant, which generalizes
the Edelstein-Kelly theorem.

▶ Conjecture 5 (Conjecture 30 of [20]). There is a function λ : N → N such that the following
holds for every r, n ∈ N. Let R, B, G be finite disjoint sets of pairwise linearly independent,
irreducible, homogeneous polynomials in C[x1, . . . , xn] of degree ≤ r such that for every pair
Q1, Q2 from distinct sets there is a Q3 in the remaining set so that whenever Q1 and Q2
vanish then also Q3 vanishes. Then the algebraic rank of (R ∪ B ∪ G) is at most λ(r).

This problem was also answered affirmatively, with the same stronger conclusion, in [40],
for the case of quadratic polynomials.

SoCG 2022
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▶ Theorem 6 (Theorem 1.8 of [40]). There is a constant λ such that the following holds for
every n ∈ N. Let T1, T2 and T3 be finite sets of homogeneous quadratic polynomials over C
satisfying the following properties:

Each Q ∈ ∪iTi is either irreducible or a square of a linear function.
No two polynomials are multiples of each other (i.e., every pair is linearly independent).
For every two polynomials Q1 and Q2 from distinct sets there is a polynomial Q3 in the
third set so that whenever Q1 and Q2 vanish then also Q3 vanishes.

Then dim (span{∪iTi}) has dimension O(1).

PIT and Sylvester-Gallai type theorems

The PIT problem asks to give a deterministic algorithm that given an arithmetic circuit as
input determines whether it computes the identically zero polynomial. The circuit can be
given either via a description of its graph of computation (white-box model) or via oracle
access to the polynomial that it computes (black-box model). This is a fundamental problem
in theoretical computer science that has received a lot of attention from researchers in the last
two decades. Besides of being a natural and elegant question, the PIT problem is important
due its connections to lower bounds for arithmetic circuits (hardness-randomness tradeoffs)
[23, 1, 24, 11, 6]; its relation to other derandomization problems such as finding perfect
matching deterministically, in parallel, [13, 43], derandomizing factoring algorithms [28],
derandomization questions in geometric complexity theory [31, 15]; its role in algebraic natural
proofs [16, 19]. In particular, PIT appears to be the most general algebraic derandomization
problem. For more on the PIT problem see [41, 34, 35, 14]. For a survey of algebraic
hardness-randomness tradeoffs see [29].

A beautiful line of work has shown that deterministic algorithms for the PIT problem for
homogeneous depth-4 circuits or for depth-3 circuits would lead to deterministic algorithms
for general circuits [2, 21]. This makes small depth circuits extremely interesting for the PIT
problem. This is also the setting where Sylvester-Gallai type theorems play an important role.
The relation between (colored-versions of the) SG-theorem and deterministic PIT algorithms
for depth-3 circuits was observed in [10]. The work of [26, 37] used this relation to obtain
polynomial- and quasi-polynomial-time PIT algorithms for depth-3 circuits, depending on
the characteristic. Currently, the best algorithm for PIT of depth-3 circuits was obtained
through a different yet highly related approach in [36]. As the SG-theorem played such an
important role in derandomizing PIT for depth-3 circuits, it was asked whether a similar
approach could work for depth-4 circuits. This motivated [4, 20] to raise Problem 1 and
Conjecture 5. In [33] we gave a positive answer to Conjecture 5 for the case of degree-2
polynomials (r = 2). Interestingly, Theorem 2 played a crucial role in the proof, as well as
in the proofs of [40, 32]. Studying the proofs of [40, 32, 33] leads to the conclusion that in
order to solve Problem 1 and Conjecture 5 for degrees larger than 2, we must first obtain a
result analogous to Theorem 2.

Our results

In this work we prove an analog of Theorem 2 for quadratic polynomials. We hope that this
result will lead to an extension of the works [40, 32, 33] to higher degree polynomials.

▶ Definition 7 (δ-PSG-configuration). Let Q ⊂ C[x1, . . . , xn] be a set of polynomials. We say
that a finite set of polynomials Q is a δ-PSG configuration if for every Q ∈ Q there are at
least δ · |Q| polynomials P ∈ Q such that Q and P satisfy the PSG condition.
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▶ Theorem 8. Let Q ⊂ C[x1, . . . , xn] a finite set of irreducible quadratic polynomials. If Q
is a δ-PSG configuration then dim(span{Q}) = O(1/δ16).

▶ Remark 9. The same conclusion holds even if we allow irreducible polynomials of degree
at most 2 (i.e. if we allow linear functions). The proof is similar in nature, with more case
analysis, and so we decided to omit it.

Note that this is robust version of Theorem 4 in the same sense that Theorem 2 is a
robust version of the SG-theorem.

▶ Remark 10. While the result in Theorem 2 tight (up to the constant in the big Oh), we do
not believe that the result of Theorem 8 is tight. In particular, we believe that the upper
bound should be O(1/δ).

1.1 Proof idea
To explain the proof we will use some algebraic notations, ⟨·⟩ denotes an ideal,

√
⟨·⟩ denotes

the radical of the ideal, and C[V ]2 denotes the space of all quadratic polynomials defined
only using the linear forms in V .

At the heart of all previous work lies an algebraic theorem, classifying the cases in which
a quadratic polynomial vanishes when two other quadratics vanish (actually, for [32, 33] a
more general result was needed - a characterization of the different cases in which a product
of quadratic polynomials vanishes whenever two other quadratics vanish).

▶ Theorem 11 (Theorem 1.10 of [40]). Let A, B and C be n-variate, homogeneous, quadratic
polynomials, over C, such that whenever A and B vanish then so does C. Then, one of the
following cases must hold:

(i) C is in the linear span of A and B.
(ii) There exists a non trivial linear combination of the form αA + βB = ℓ2 for some linear

form ℓ.
(iii) There exist two linear forms ℓ1 and ℓ2 such that when setting ℓ1 = ℓ2 = 0 we get that

A and B (and consequently C) vanish.

The high level idea in the proof of Theorem 4 (which was generalized in [32, 33]),
includes two steps; The first step constructs a linear space of linear forms V , and a subset
J ⊂ Q, both of constant dimension such that a vast majority of the polynomials in Q are
in span{J , Q ∩ ⟨V ⟩}.1 Implementing this idea requires a lot of case analysis, according to
Theorem 11. In the second step the dimension of Q ∩ ⟨V ⟩ is upper bounded.

The idea outlined above heavily relies on the fact that when δ = 1, the set Q ∩ ⟨V ⟩ is a
PSG-configuration in itself. Indeed, let Q1, Q2 ∈ Q ∩ ⟨V ⟩. When δ = 1 it follows that there
is Q3 ∈ Q such that Q3 ∈

√
⟨Q1, Q2⟩ ⊆ ⟨V ⟩. In order to bound the dimension of Q ∩ ⟨V ⟩,

[40] “projected” V to a one dimensional space span{z} (where z is a new variable). Every
polynomial Qi ∈ Q ∩ ⟨V ⟩ is mapped to a polynomial of the form z · ℓi, for some linear form
ℓi. Then, it is proved that the ℓi’s form an SG-condition.2

This technique fails when δ ∈ (0, 1). First, we cannot expect to prove that Q ∩ ⟨V ⟩
is a δ′-PSG configuration by itself (even when we allow smaller, yet fixed, δ′ ≤ δ). For
example, since δ < 1, it may be the case that (many polynomials) Q ∈ Q ∩ ⟨V ⟩ have all of

1 [40] had different notations, and |J | = 1.
2 The reader should take note that this is a very high-level simplification of one part in the proof. For

more details see the “easy-case” in [32, 33].

SoCG 2022
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their neighbors outside Q ∩ ⟨V ⟩. Furthermore, even if we knew that Q ∩ ⟨V ⟩ is a δ′-PSG
configuration, then it is not clear that by following the lines of [40] and mapping ⟨V ⟩ to
span{z}, the resulting ℓis, form a δ′-PSG configurations. The reason for that is a bit subtle:
note that it may be the case that many polynomials Q ∈ Q ∩ ⟨V ⟩ were mapped to span{z2}.
Thus, it may be the case that all the neighbors of some z · ℓ are in span{z2}, which gives
us no information at all about ℓ. In contrast, in [40], since δ = 1, we could get information
about ℓ by its interaction with polynomials not in span{z2}.

In order to overcome these issues, we needed to develop new techniques, and improve the
characterization given in Theorem 11iii (see Corollary 19). Next, we present the outline of
the proof in more details.

We start with the same line of constructing a linear space of linear forms V , and a subset
J ⊂ Q, both of dimension O(poly( 1

δ )) such that Q ⊆ span{J , ⟨V ⟩}. We partition Q to
four sets: C[V ] = Q ∩ C[V ]2; C⟨V ⟩ = (Q ∩ ⟨V ⟩) \ C[V ]; J[V ] = Q ∩ span{J ∪ C[V ]2}; and the
remaining set J⟨V ⟩ = Q ∩ span{J ∪ ⟨V ⟩} \ J[V ]. We already know that dim(C[V ] ∪ J[V ]) is
small, so we only have to bound the dimension of C⟨V ⟩ ∪ J⟨V ⟩.

Let us focus on C⟨V ⟩. We would like to prove that we can add a few linear functions to V

to get a subspace U such that C⟨V ⟩ ⊂ C[U ]2. Let P ∈ C⟨V ⟩. First we consider the case that
many of P ’s neighbors (i.e. those polynomials with which P satisfies the PSG-condition) are
in C[V ] ∪ C⟨V ⟩. To handle this case we strengthen Theorem 11iii and use it to show that if
Q ∈ C[V ] is a neighbor of P then the polynomial Q′ ∈

√
⟨P, Q⟩ is unique (see Corollary 18).

This means that by moving the linear functions on which P depends to U , we move many
polynomials from C⟨V ⟩ to C[V + U ]2.

Next we consider the case where P has “many” neighbors in J[V ] ∪ J⟨V ⟩. To handle this
case we first prove that P can only satisfy Theorem 11i with polynomials in J[V ] ∪ J⟨V ⟩.
We prove that under this condition, there is a “large” subset of C⟨V ⟩ that is of constant
dimension. Thus, by adding a few linear functions to U , we move many polynomials from
C⟨V ⟩ to C[V + U ]2 (see Claim 29). We can continue this process as long as C⟨V ⟩ is large
enough, as the amount of polynomials that we move at any step depends on |C⟨V ⟩|. Therefore,
when this process terminates we still have to deal with a set C⟨V ⟩ that is not large but not
too small either (it is of size Ω(δm)). Now, we turn our attention to J⟨V ⟩. Using similar
arguments, and relying on the fact that

∣∣C⟨V ⟩
∣∣ is small, we prove that we can add a few

linear functions to U and make
∣∣J⟨V +U⟩

∣∣ small. Having achieved that, we prove that if both∣∣C⟨V +U⟩
∣∣ and

∣∣J⟨V +U⟩
∣∣ are small then they are in fact, empty (see Claim 28).

1.2 The work of [18]
Independently from this work, Garg, Oliviera and Sengupta have also proved that δ-PSG
configurations have dimension bounded by Poly( 1

δ ).
While our result, in its current form, holds when the configuration is assumed to contain

only irreducible quadratics, [18] also allow linear forms in the configuration. Our techniques
are good enough to deduce the more general case, but since it adds more technical details
that do not give more insight into the problem, we decided to omit that part of the proof.

There are a number of parallels between the methods used in [18] and the ones used in
our paper. Both proofs use structure theorems that analyze the situation in which there is a
quadratic polynomial in the radical of an ideal generated by two other quadratics. Basically
those theorems prove that the involved quadratics must satisfy certain structural conditions.
Further, both results partition the δ-PSG configuration to “special” sets based on the different
cases of the structure theorem, and analyze each of these sets separately.
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One key technical difference between our approach and that of [18] is the definition of
these special sets. While we construct J , V using our iterative process, [18] define the notion
of clean vector spaces, which generate “special algebras” (in their terminology) that have
similar properties, but are also saturated in the sense that adding a few linear forms to the
vector space cannot bring too many polynomials from the configuration “closer” to the vector
space. This is the analog of moving many polynomials from J⟨V ⟩ ∪ C⟨V ⟩ to J[V ] ∪ C[V ], until
this cannot be done anymore, in our work.

[18] also uses the notion of univariate polynomials over clean vector spaces, whereas we
work with the ideal generated by the vector space V . They show that there is a clean vector
space W , of dimension at most Poly( 1

δ ), such that the polynomials in each special set are
univariate over W . In other words, each Qi in the configuration can be represented as a
polynomial in the space C[W, ℓi]2 for some linear form ℓi. They then show that these ℓi’s form
a LCC configuration (see [3, 18] for definition), instead of a robust linear SG configuration,
which is what we use in our work. This in turn is also the reason why the bound in [18] is
slightly worse than the one in our work.

1.3 Discussion
There are two distinct goal to the line of work [40, 32, 33], including this paper. The first is
obtaining higher degree geometric extensions of the Sylvester-Gallai and Edelstein-Kelley
theorems. From the complexity theoretic point of view, the goal is to eventually obtain PIT
algorithms for Σ[k]Π[d]ΣΠ[r] circuits, for any k, r = O(1). Currently we have a polynomial
time PIT algorithm only for the case k = 3 and r = 2 [33]. To understand such a difficult
question one has to start somewhere, and the case k = 3 and r = 2 was a natural starting
point for the investigation (especially as no subexponential time PIT algorithm, even for
Σ[3]Π[d]ΣΠ[2] circuits, was known prior to [33]). Since so little is known, we believe that a
natural approach for advancing is to first extend the results of [33] to higher degrees (i.e.
higher values of r), and then for a higher top fan-in (i.e. higher values of k). Before we
explain the difficulties in going to higher degrees we recall that [33] needed the following
strengthening of Theorem 6 for their PIT algorithm.

▶ Theorem 12 (Theorem 1.6 in [33]). There exists a universal constant λ such that the
following holds. Let T1, T2, T3 ⊂ C[x1, . . . , xn] be finite sets of pairwise linearly independent
homogeneous polynomials satisfying the following properties:

Each Q ∈ ∪j∈[3]Tj is either irreducible quadratic or a square of a linear function.
Every two polynomials Q1 and Q2 from distinct sets satisfy that whenever they vanish
then the product of all the polynomials in the third set vanishes as well.

Then, dim(span{∪j∈[3]Tj}) ≤ λ.

There are several difficult hurdles in going from r = 2 to general r, or even to r = 3, if
we wish to continue working in the framework of [40, 32, 33] (and this paper). The first is
understanding what is the correct generalization of Theorem 11 to higher degrees, as this
theorem lies at the heart of all these papers. A second hurdle is obtaining a robust version
of Theorem 12. First for r = 2 and then for higher degrees.

For extending Theorem 11 to higher degrees it seems natural to find an extension to
r = 3. While it seems that such an approach could last forever and lead nowhere (as we will
then have to prove a result for r = 4 etc.), we believe that understanding the case r = 3 can
shed more light on the general case, as sometimes going from degree 2 to 3 is as difficult as
the general case.

SoCG 2022



43:8 Robust Sylvester-Gallai Type Theorem for Quadratic Polynomials

Once we prove such a structural theorem, we will need to extend Theorem 12 to higher
values of r. An important tool in the proof of Theorem 12 was a robust version of the
EK-theorem.

▶ Definition 13 (δ-EK configuration). We say that the sets T1, T2, T3 ⊂ Cn form a δ-EK
configuration if for every i ∈ [3] and p ∈ Ti a δ fraction of the vectors q in the union of the
two other sets satisfy that p and q span some vector in the third set (the one not containing
p and q). We refer to a 1-EK configuration as simply an EK-configuration.

▶ Theorem 14 (Theorem 3.9 of [33]). Let 0 < δ ≤ 1 be any constant. Let T1, T2, T3 ⊂ Cn be
disjoint finite sets that form a δ-EK configuration. Then, dim(span{∪iTi}) = O(1/δ3).

Thus, a natural continuation would be to prove a robust version of Theorem 14 for quadratic
polynomials (i.e. a robust version of Theorem 6) and then to extend it to a robust version
of Theorem 12 and to higher degrees. While in this paper we only prove a robust version
of Theorem 4, we believe that with some more technical work this can be extended to a
robust version of Theorem 6 as well. Hence, the next immediate challenge would be to obtain
a robust version of Theorem 12 (or even of the main result of [32]). If we obtain such an
extension and, in addition extend Theorem 11 to higher values of r, then we expect that a
PIT algorithm for the case k = 3 and r = 3 would follow. More importantly, we believe that
this will let us gain important understanding on how to generalize the results for arbitrary
values of r.

2 Robust-SG theorems in Cn

We shall need the following generalizations of Theorem 2. The proofs of this section appear
in the full version.

▶ Theorem 15. Let 0 < δ ≤ 1 be any constant. Let W ⊂ Cn be an r-dimensional space.
Let W ⊂ W and K ⊂ Cn \ W be finite subsets such that no two vectors in T = K ∪ W are
linearly dependent. Assume further that all the elements in K satisfy the following relaxed
EK-property: For every p ∈ K, for at least δ fraction of the points q ∈ T the span of p and q

contains a point in T \ {p, q}. Then, dim(span{T }) ≤ O(r + 1
δ ).

We also use the following bi-partitive version of [9, Corollary 1.11] this is a slight variation
of the formulation presented in their paper.

▷ Claim 16. Let V = v1, . . . , vn ⊂ Cd be a set of n distinct points. Suppose that there is
B ⊆ V such that there are at least δn2 pairs in B × (V \ B) that lie on a special line. Then
there exists a subset B′ ⊆ B such that |B′| ≥ (δ/6)n and affine-dim(B′) ≤ O(1/δ).

The important difference between Claim 16 and [9, Corollary 1.11] is that Claim 16
guarantees the existence of a low-dimensional subspace that contains a constant fraction of
the points in B, whereas from [9, Corollary 1.11] we do not get any guarantee about the
fraction of points from B in the low-dimensional space.

3 Strengthening Case iii of Theorem 11

The following claim strengthens Theorem 11iii by providing more information on the polyno-
mial in the radical.
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▷ Claim 17. Let P, Q and T be irreducible homogeneous quadratic polynomials, such that
T ∈

√
⟨P, Q⟩. Furthermore, assume that they satisfy Theorem 11iii and not any other

case, that is, there are linear forms v1, v2 such that T, P, Q ∈ ⟨v1, v2⟩. Finally, assume
Lin(P ) ̸⊆ Lin(Q). Then there are linear forms v′

1, v′
2 ∈ span{v1, v2} such that the following

holds:
P = v′

1ℓ + v′2
2 for some linear form ℓ.

Q = v′
1u − v′2

2 for some linear form u.
T = v′

2(ℓ + u) + αP + βQ for some constants α, β ∈ C,
where the qualities holds up to a constant non zero factor.

We provide the proof of Claim 17 in the full version. As a consequence of the claim we
can deduce the following uniqueness property.

▶ Corollary 18. Let P, Q, Q′, T be pairwise linearly independent irreducible quadratics such
that T ∈

√
⟨P, Q⟩. Let T ′ be such that T ′ ̸∼ P, Q, Q′ and such that T ′ ∈

√
⟨P, Q′⟩. Assume

further that P ∈ ⟨Lin(Q) + Lin(Q′)⟩ but Lin(P ) ̸⊆ Lin(Q) + Lin(Q′). Then T ̸= T ′. In
addition, Lin(T ), Lin(T ′) ̸⊆ Lin(Q) + Lin(Q′).

The proof of Corollary 18 appears in the full version.
We finish this section by formulating the improvement for Theorem 11 which follows

immediately from Claim 17

▶ Corollary 19 (Improvement of Theorem 1.10 of [40]). Let A, B and C be n-variate, homo-
geneous, quadratic polynomials, over C, such that C ∈

√
⟨A, B⟩. Then, one of the following

cases must hold:
(i) C is in the linear span of A and B.
(ii) There exists a non trivial linear combination of the form αA + βB = ℓ2 for some linear

form ℓ.
(iii) If none of the above hold, then there exist two linear forms ℓ1 and ℓ2 such that A, B, C ∈

⟨ℓ1, ℓ2⟩. Furthermore, we have that either Lin(P ) ⊆ Lin(Q) or
A = ℓ1a + ℓ2

2 for some linear form a.
B = ℓ1b − ℓ2

2 for some linear form b.
C = ℓ2(a + b) + αA + βB for some constants α, β ∈ C.

4 Robust Sylvester-Gallai theorem for quadratic polynomials

We divide Q = Q1 ∪ Q2 ∪ Q3 as following:

Q1 =
{

Q ∈ Q
∣∣∣∣ Q satisfies Theorem 11i with at least

δ/100 fraction of the polynomials in Q

}
, (1)

Q2 =
{

Q ∈ Q
∣∣∣∣ Q satisfies Theorem 11ii with at least

δ/100 fraction of the polynomials in Q

}
, (2)

Q3 =
{

Q ∈ Q
∣∣∣∣ Q satisfies Theorem 11iii with at least

δ/100 fraction of the polynomials in Q

}
. (3)

We will also use the following notation: Let Q ∈ Q, and t ∈ {(i), (ii), (iii)} we denote

Γt(Q) = {P ∈ Q | Q, P satisfiy case t of Theorem 11} .

Finally we set Q1 = Q1 \ (Q2 ∪ Q3). This implies that if P ∈ Q1 then at least a δ/100
fraction of the polynomials in Q satisfy Theorem 11i with P and no other case.

SoCG 2022
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▶ Observation 20. The definition of Γt naturally defines an undirected graph with an edge
between P and Q if for some t, Q ∈ Γt(P ) (which is equivalent to saying P ∈ Γt(Q)). Thus,
when we speak of “edges” and “neighbors” this graph is the one that we refer to.

Throughout the proof, we will use the following simple claim.

▷ Claim 21. Let P, T ∈ Q. Removing T from Q, causes the removal of at most two
polynomials from Γ(i)(P ), and this happens only in the case that P ∈ Γ(i)(T ) and |Q ∩
span{P, T}| = 3.

Proof. First, note that for Q1, Q2, Q3 ∈ Q if Q3 ∈ span{Q1, Q2}, then for every k ≠ j ∈ [3],
Qk ∈ Γ(i)(Qj). In particular, if P ̸∈ Γ(i)(T ), then removing T from Q does not affect Γ(i)(P ).

Let P ∈ Γ(i)(T ). By the argument above, if |Q ∩ span{P, T}| > 3 then removing T does
not affect Γ(i)(P ). Thus, the only case the Γ(i)(P ). is affected is when |Q ∩ span{P, T}| = 3
and in this case the third polynomial in the span is removed from Γ(i)(P ). ◁

The proof of Theorem 8 is organized as follows. In the full version we bound the dimension
of Q2. Specifically, we prove the following claim.

▷ Claim 22. There exist a subset I ⊆ Q2 of size |I| = O(1/δ), and a linear space of linear
forms V ′ such that dim(V ′) = O(1/δ2) such that Q2 ⊂ span{I,C[V ′]2}.

In the full version prove that for some small dimensional space V ′′, it holds that Q3 ⊂ ⟨V ′′⟩.

▷ Claim 23. There exists a linear space of linear forms, V ′′, such that dim(V ′′) = O(1/δ)
and Q3 ⊂ ⟨V ′′⟩.

Set V = V ′ + V ′′. So far it holds that Q2 ∈ span{I,C[V ]2} and Q3 ⊂ ⟨V ⟩. Next, we find
a small set of polynomials J such that Q ⊂ ⟨V ⟩ + span{J }.

▷ Claim 24. There exists a set J ⊆ Q, of size |J | = O(1/δ), such that Q ⊂
span{(Q ∩ ⟨V ⟩), J ,C[V ]2}. Furthermore, if P ∈ Q \ ⟨V ⟩ then there is no quadratic L

such that P + L ∈ ⟨V ⟩ and ranks(L) ≤ 2.

Given the claims above we have that Q ⊂ span{(Q ∩ ⟨V ⟩), J ,C[V ]2}, where |J | = O(1/δ)
and dim(V ) = O(1/δ2). We are not done yet as the dimension of ⟨V ⟩, as a vector space, is
not a constant. To bound this dimension we partition Q to four sets and study the subgraphs
induced by any two of the sets.

C[V ] = {Q ∈ Q | Q ∈ C[V ]2} (4)
C⟨V ⟩ = {Q ∈ Q | Q ∈ ⟨V ⟩} \ C[V ] (5)
J[V ] = {Q ∈ Q | Q ∈ span{J ,C[V ]2} \ C[V ]2} (6)
J⟨V ⟩ = {Q ∈ Q | Q ∈ span{J , ⟨V ⟩} \ ⟨V ⟩} \ J[V ] . (7)

In words, C[V ] is the set of all quadratics in Q that only depend on linear functions in V .
C⟨V ⟩ is the set of polynomials that are in ⟨V ⟩ but not in C[V ], etc.

Our goal is to bound the dimension of each of these sets. In fact, we already know that
dim(C[V ]), dim(J[V ]) ≤ O(1/δ4) so we only need to bound dim(C⟨V ⟩) and dim(J⟨V ⟩). For
that we will analyze the edges between the different sets.

We first note that the “furthermore” part of Claim 24, stating that the “rank-distance”
between nonzero polynomials in span{J } and quadratics in ⟨V ⟩ is larger than 2, implies the
following:
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▶ Observation 25.
1. If P ∈ C⟨V ⟩ ∪ C[V ] and Q ∈ J⟨V ⟩ ∪ J[V ] satisfy that P ∈ Γ(Q) then P and Q satisfy

Theorem 11i.
2. If P ∈ J⟨V ⟩ and Q ∈ C⟨V ⟩ ∪ C[V ] ∪ J[V ] satisfy that P ∈ Γ(Q) then P and Q satisfy

Theorem 11i.

Proof. We only prove the first case as the proof of the second case is similar. As Q ∈
J⟨V ⟩ ∪J[V ], we have that ranks(Q1) > 2. In particular, P and Q do not satisfy Theorem 11iii.
If P and Q satisfy Theorem 11ii then Q = αP + ℓ2 for some linear form ℓ, which contradicts
the structure of J guaranteed in Claim 24. ◀

To bound the dimension of C⟨V ⟩ we note that any edge going from P ∈ C⟨V ⟩ ∪ J⟨V ⟩ to
C[V ] ∪ J[V ] defines uniquely a third polynomial in C⟨V ⟩ ∪ J⟨V ⟩. This uniqueness property
guarantees that if we add Lin(P ) to V , then many polynomials move from C⟨V ⟩ ∪ J⟨V ⟩ to
C[V ] ∪ J[V ].

▷ Claim 26. Let P ∈ C⟨V ⟩ then,
1. for every polynomial Q1 ∈ Γ(P ) ∩ J[V ] there is a unique polynomial Q′

1 ∈ J⟨V ⟩ such that
Q′

1 ∈ span{P, Q1}. I.e., there is no other Q2 ∈ J[V ] such that Q′
1 ∈ span{P, Q2}.

2. for every polynomial Q1 ∈ Γ(P ) ∩ C[V ] there is a unique polynomial Q′
1 ∈ C⟨V ⟩ such that

Q′
1 ∈

√
⟨P, Q1⟩. I.e., there is no other Q2 ∈ C[V ] such that Q′

1 ∈
√

⟨P, Q2⟩.

Proof.
1. Let Q1 ∈ Γ(P ) ∩ J[V ]. By Observation 25, P and Q1 satisfy Theorem 11i. We first prove

that they span a polynomial in J⟨V ⟩ and then prove its uniqueness. Any polynomial in
T ∈ span{P, Q1} \ (span{P}) has ranks(T ) > 2, even when setting the linear forms in
V to 0. Hence, P and Q1 span a polynomial Q′

1 ∈ J[V ] ∪ J⟨V ⟩. As P ̸∈ C[V ]2 we can
conclude that Q′

1 ∈ J⟨V ⟩. To prove that Q′
1 is unique assume that Q′

1 ∈ span{P, Q2}
for some Q2 ∈ J[V ]. Pairwise linear independence implies that P ∈ span{Q1, Q2} which
implies that P ∈ C[V ], in contradiction.

2. Follows from Corollary 18. ◁

▷ Claim 27. Let P ∈ J⟨V ⟩. Then for every polynomial Q1 ∈ Γ(P ) ∩ (J[V ] ∪ C[V ]) there is
a unique polynomial Q′

1 ∈ J⟨V ⟩ ∪ C⟨V ⟩ such that Q′
1 ∈ span{P, Q1}. By “unique” we mean

that there is no other Q2 ∈ J[V ] such that Q′
1 ∈ span{P, Q2}.

Proof. We first consider the case Q1 ∈ Γ(P ) ∩ C[V ]. Observation 25 implies that P and Q1
satisfy Theorem 11i. By construction of J , any polynomial in T ∈ span{P, Q1} \ (span{Q1})
has ranks(T ) > 2, even when setting the linear forms in V to 0. Hence, P and Q1 span a
polynomial Q′

1 ∈ J[V ] ∪ J⟨V ⟩. As P ̸∈ J[V ] we conclude that Q′
1 ∈ J⟨V ⟩. To prove that Q′

1 is
unique assume that Q′

1 ∈ span{P, Q2} for some Q2 ∈ J[V ] ∪ C[V ]. As before, pairwise linear
independence shows that P ∈ span{Q1, Q2}, which implies that P ∈ J[V ], in contradiction.

Consider the case Q1 ∈ Γ(P ) ∩ J[V ]. As before, P and Q1 must satisfy Theorem 11i. Any
polynomial in T ∈ span{P, Q1} \ (span{Q1}) is not in J[V ] ∪ C[V ]. Hence, P and Q1 span a
polynomial Q′

1 ∈ C⟨V ⟩ ∪ J⟨V ⟩. Uniqueness follows exactly as in the first case. ◁

We next show that the uniqueness property proved in Claims 26 and 27 imply that J⟨V ⟩
and C⟨V ⟩ cannot be “too small,” unless they are empty.

▷ Claim 28. If |J⟨V ⟩|, |C⟨V ⟩| ≤ (δ/10) · m, then J⟨V ⟩ = C⟨V ⟩ = ∅.

SoCG 2022
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Proof. Assume towards a contradiction that there is P ∈ C⟨V ⟩ ∪ J⟨V ⟩. As |Γ(P )| ≥ δm it
follows that |Γ(P ) ∩ (C[V ] ∪ J[V ])| ≥ (8δ/10) · m. Claims 26 and 27 imply that there are
at least |Γ(P ) ∩ (C[V ] ∪ J[V ])| ≥ 8δ/10 polynomials in J⟨V ⟩ ∪ C⟨V ⟩ in contradiction to the
assumption that there are at most (2δ/10) · m polynomials in J⟨V ⟩ ∪ C⟨V ⟩. ◁

Thus, if we can make|J⟨V ⟩|, |C⟨V ⟩| ≤ (δ/10) · m without increasing dim(V ) and |J | too
much then Claim 28 would imply that Q ∈ span{J ,C[V ]2}, from which the theorem would
follow. We first show how to reduce |C⟨V ⟩| and then we reduce |J⟨V ⟩|. We will need the
following easy observation.

▷ Claim 29. There is a linear subspace V ⊆ V ′, of dimension dim(V ′) ≤ 1/δ4 ·dim(V ) ≤ 1/δ6,
such that |C⟨V ′⟩| ≤ δ/10 · m.

The proof of Claim 29 appears in the full version. Note that it may now be the case that
some linear combination of polynomials in J is now “close” to V ′. We therefore perform the
following simple process: if Q ∈ span{J } is such that for some quadratic L of rank(L) = 2
we have that P + L ∈ ⟨V ′⟩ then we can add Lin(L) to V ′ and remove one polynomial from
J while still maintaining that Q ⊂ span{(Q ∩ ⟨V ′⟩), J ,C[V ′]2}. As |J | = O(1/δ), this does
not have much affect on the dimension of V ′, which is still O(1/δ4 · dim(V )).

To simplify notation, we denote with V the linear space guaranteed by Claim 29. As V

may have changed, we update the sets C[V ], C⟨V ⟩, J[V ] and J⟨V ⟩ accordingly. By construction
of V = V ′, we now have that |C⟨V ⟩| ≤ δ/100m.

We now complete the proof of Theorem 8 by bounding the dimension of J⟨V ⟩.

▷ Claim 30. There is a set J ⊆ J ′ ⊂ Q such that |J ′| ≤ |J | + O(1/δ) and dim(J ′
⟨V ⟩) ≤

O(1/δ + dim(V )2).

Proof. Denote T1 = {Q ∈ J | |Γ(ii)(Q)| ≥ 0.1δm} and T2 = J⟨V ⟩ \ T1. For every polynomial
in Q ∈ J⟨V ⟩, denote Q = QJ + Q⟨V ⟩ where QJ ∈ span{J } and Q⟨V ⟩ ∈ ⟨V ⟩. Note that
neither QJ nor Q⟨V ⟩ can be zero as this would imply Q ∈ J[V ] ∪ C⟨V ⟩.

▷ Claim 31. There is a subset T ′
1 ⊆ T1 of size at most 10/δ such that T1 ⊂

span{T ′
1 , J ,C[V ]2}.

We prove Claim 31 in the full version. Set T2 = T2 \ span{T1, J ,C[V ]2}. Every Q ∈ T2
must now satisfy that |Γi(Q)| ≥ 0.9δm. Indeed, this follows from the fact that Q ̸∈ T1
and that it cannot satisfy Theorem 11iii with any polynomial. Remove from Γi(Q) all
the polynomials in B1, this removes at most 2|B1| ≤ 2/10δm polynomials from Γi(Q)
(using an argument similar to Claim 21), leaving |Γ(i)(Q)| ≥ 0.7δm. This implies that
K = T2, W = span{T1, J ,C[V ]2} and W = Q ∩ span{T1, J ,C[V ]2} satisfy the conditions of
Theorem 15. As dim(W ) ≤ O(dim(V )2) it follows that dim(J⟨V ⟩) ≤ O(1/δ + dim(V )2).

Setting J ′ = T ′
1 ∪ J completes the proof. ◁

We now put everything together and prove Theorem 8.

Proof of Theorem 8. Claims 22, 23 and 24 imply that there exists a set J ⊆ Q, of size
|J | = O(1/δ), and a subspace of linear functions V of dimension dim(V ) = O(1/δ2) such
that Q ⊂ span{(Q ∩ ⟨V ⟩), J ,C[V ]2}.

By Claims 29 and 30 there are J ⊆ J ′ and V ⊆ V ′ such that dim(V ′) ≤ 1/δ4 · dim(V ) ≤
1/δ6 and |J ′| = O(1/δ), for which it holds that |C⟨V ′⟩| ≤ δ/10 · m and dim(J ′

⟨V ⟩) ≤
O(1/δ + dim(V )2) = O(1/δ8). We now set J = J ′, V = V ′ and, if needed, we add O(|J |)
linear functions to V to make sure that no non-trivial linear combination of polynomials in
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J is of the form L + F (V ) where ranks(L) ≤ 2 and F ∈ C[V ]2, we obtain that J⟨V ⟩ = ∅
and |C⟨V ⟩| ≤ δm/10. Claim 28 now guarantees that we also have that C⟨V ⟩ = ∅. Hence,
Q = C[V ] ∪ J[V ] and it follows that dim(span{Q}) ≤ |J | + dim(V )2 = O(1/δ16). ◀
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