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Abstract
It is well known that the Johnson-Lindenstrauss dimensionality reduction method is optimal for
worst case distortion. While in practice many other methods and heuristics are used, not much is
known in terms of bounds on their performance. The question of whether the JL method is optimal
for practical measures of distortion was recently raised in [8] (NeurIPS’19). They provided upper
bounds on its quality for a wide range of practical measures and showed that indeed these are best
possible in many cases. Yet, some of the most important cases, including the fundamental case of
average distortion were left open. In particular, they show that the JL transform has 1 + ϵ average
distortion for embedding into k-dimensional Euclidean space, where k = O(1/ϵ2), and for more
general q-norms of distortion, k = O(max{1/ϵ2, q/ϵ}), whereas tight lower bounds were established
only for large values of q via reduction to the worst case.

In this paper we prove that these bounds are best possible for any dimensionality reduction
method, for any 1 ≤ q ≤ O( log(2ϵ2n)

ϵ
) and ϵ ≥ 1√

n
, where n is the size of the subset of Euclidean

space.
Our results also imply that the JL method is optimal for various distortion measures commonly

used in practice, such as stress, energy and relative error. We prove that if any of these measures is
bounded by ϵ then k = Ω(1/ϵ2), for any ϵ ≥ 1√

n
, matching the upper bounds of [8] and extending

their tightness results for the full range moment analysis.
Our results may indicate that the JL dimensionality reduction method should be considered

more often in practical applications, and the bounds we provide for its quality should be served as a
measure for comparison when evaluating the performance of other methods and heuristics.

2012 ACM Subject Classification Theory of computation → Random projections and metric embed-
dings; Theory of computation → Computational geometry; Theory of computation → Unsupervised
learning and clustering

Keywords and phrases average distortion, practical dimensionality reduction, JL transform

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.13

Related Version Full Version: https://arxiv.org/abs/2107.06626

Funding Yair Bartal: Supported in part by a grant from the Israeli Science Foundation (1817/17).
Kasper Green Larsen: Supported by Independent Research Fund Denmark (DFF) Sapere Aude
Research Leader grant No 9064-00068B.

1 Introduction

Dimensionality reduction is a key tool in numerous fields of data analysis, commonly used as
a compression scheme to enable reliable and efficient computation. In metric dimensionality
reduction subsets of high-dimensional spaces are embedded into a low-dimensional space,
attempting to preserve metric structure of the input. There is a large body of theoretical
and applied research on such methods spanning a wide range of application areas such as
online algorithms, computer vision, network design, machine learning, to name a few.
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13:2 Optimality of the JL Dimensionality Reduction for Practical Measures

Metric embedding has been extensively studied by mathematicians and computer scientists
over the past few decades (see [18, 25, 19] for surveys). developing a rich theory, and some
original and elegant techniques have been developed and successfully applied in various fields
of algorithmic research. See [27, 18, 34] for exposition of some applications.

The vast majority of these methods have been designed to optimize the worst-case
distance error incurred by embedding. For metric spaces (X, dX) and (Y, dY ) an injective
map f : X → Y is an embedding. It has (a worst-case) distortion α ≥ 1 if there is a positive
constant c satisfying for all u ̸= v ∈ X, dY (f(u), f(v)) ≤ c · dX(u, v) ≤ α · dY (f(u), f(v)). A
cornerstone result in metric dimensionality reduction is the celebrated Johnson-Lindenstrauss
lemma [21]. It states that any n-point subset of Euclidean space can be embedded, via
a linear transform, into a O(log n/ϵ2)-dimensional subspace with 1 + ϵ distortion. It has
been recently shown to be optimal in [24] and in [6] (improving upon [5]). Furthermore, it
was shown in [26] that there are Euclidean pointsets in Rd for which any embedding into
k-dimensions must have nΩ(1/k) distortion, effectively ruling out dimensionality reduction
into a constant number of dimensions with a constant worst-case distortion.

Metric embedding and in particular dimensionality reduction have also gained significant
attention in applied community. Practitioners have frequently employed classic tools of
metric embedding as well as have designed new techniques to cope with high-dimensional
data. A large number of dimensionality reduction heuristics have been developed for a variety
of practical settings, eg. [33, 28, 7, 36]. However, most of these heuristics have not been
rigorously analyzed in terms of the incurred error. Recent papers [11] and [8] initiate the
formal study of practically oriented analysis of metric embedding.

Practical distortion measures. In contrast to the worst case distortion the quality of
practically motivated embedding is often determined by its average performance over all
pairs, where an error per pair is measured as an additive error, a multiplicative error or a
combination of both. There is a huge body of applied research investigating such notions of
quality. For the list of citations and a more detailed account on the theoretical and practical
importance of average distortion measures see [8].

In this paper we consider the most basic and commonly used in practical applications
notions of average distortion, which we define in the following. Moment of distortion was
defined in [4], and studied in various papers since then.

▶ Definition 1 (ℓq-distortion). For u ≠ v ∈ X let expansf (u, v) = dY (f(u), f(v))/dX(u, v)
and contractf (u, v) = dX(u, v)/dY (f(u), f(v)). Let distf (u, v) = max{expansf (u, v),
contractf (u, v)}. For any q ≥ 1 the q-th moment of distortion is defined by

ℓq-dist(f) =

 1(|X|
2
) ∑

u̸=v∈X

(distf (u, v))q

1/q

.

Additive average distortion measures are often used when a nearly isometric embedding is
expected. Such notions as energy, stress and relative error measure (REM) are common
in various statistic related applications. For a map f : X → Y , for a pair u ̸= v ∈ X let
du,v := dX(u, v) and let d̂uv := dY (f(u), f(v)). For all q ≥ 1

▶ Definition 2 (Additive measures).

Energyq(f) =

 1(|X|
2
) ∑

u ̸=v∈X

(
|d̂uv − duv|

du,v

)q
 1

q

=

 1(|X|
2
) ∑

u̸=v∈X

∣∣expansf (u, v) − 1
∣∣q 1

q

.
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Stressq(f) =
(∑

u̸=v∈X |d̂uv − duv|q∑
u̸=v∈X(duv)q

) 1
q

, Stress∗
q(f) =

(∑
u̸=v∈X |d̂uv − duv|q∑

u̸=v∈X(d̂uv)q

) 1
q

.

REMq(f) =

 1(|X|
2
) ∑

u ̸=v∈X

(
|d̂uv − duv|

min{d̂uv, duv}

)q
 1

q

.

▷ Claim 3 ([8]). For all q ≥ 1, ℓq-dist(f) − 1 ≥ REMq(f) ≥ Energyq(f).

In the full version we also address the machine learning motivated σ-distortion [12].
In [8] the authors rigorously analyzed dimensionality reduction for the above distortion

measures. The central question they studied is: What dimensionality reduction method is
optimal for these quality measures and what are the optimal bounds achievable ? In particular,
is the Johnson-Lindenstrauss (JL) transform also optimal for the average quality criteria?

Their analysis of the Gaussian implementation of the JL embedding [20] shows that any
Euclidean subset can be embedded with 1 + ϵ average distortion (ℓ1-dist) into k = O(1/ϵ2)
dimensions. And for more general case of the q-moment of distortion, the dimension is
k = O(max{1/ϵ2, q/ϵ}). However, tight lower bounds were proved only for large values of q,
leaving the question of optimality of the most important case of small q, and particularly the
most basic case of q = 1, unresolved.

For the additive average measures (stress, energy and others) they prove that a bound
of ϵ can be achieved in dimension k = O(q/ϵ2). They showed a tight lower bound on the
required dimension only for q ≥ 2, leaving the basic case of q = 1 also unresolved.

In this paper, we prove that indeed the Johnson-Lindenstrauss bounds are best possible
for any dimensionality reduction for the full range of q ≥ 1, for all the average distortion
measures defined in this paper. We believe that besides theoretical contribution this statement
may have important implications for practical considerations. In particular, it may affect the
way the JL method is viewed and used in practice, and the bounds we give may serve a basis
for comparison for other methods and heuristics.

Our results. We show that the guarantees given by the Gaussian JL implementation are
the best possible for the average distortion measures. In particular, we prove

▶ Theorem 4. Given any integer n and Ω( 1√
n

) < ϵ < 1, there exists a Θ(n)-point subset of
Euclidean space such that any map f of it into ℓk

2 with ℓ1-dist(f) ≤ 1+ϵ requires k = Ω(1/ϵ2).

▶ Theorem 5. Given any integer n, and Ω( 1√
n

) < ϵ < 1, and 1 ≤ q <= O(log(ϵ2n)/ϵ),
there exists a Θ(n)-point subset of Euclidean space such that any embedding of it into ℓk

2 with
ℓq-distortion at most 1 + ϵ requires k = Ω(q/ϵ).

As ℓq-distortion is monotonically increasing as a function of q, the theorems imply the
lower bound of k = Ω

(
max

{
1/ϵ2, q/ϵ

})
. For the additive distortion measures we prove:

▶ Theorem 6. Given any integer n and Ω( 1√
n

) < ϵ < 1, there exists a Θ(n)-point subset of
Euclidean space such that any embedding of it into ℓk

2 with any of Energy1, Stress1, Stress∗
1,

REM1 or σ-distortion bounded above by ϵ requires k = Ω(1/ϵ2).

Our main proof is of the lower bound for Energy1 measure, which we show to imply the
bound in Theorem 4 and for all measures in Theorem 6, with some small modifications for the
stress measures. Furthermore, since all additive measures are monotonically increasing with
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q the bounds hold for all q ≥ 1. Therefore Theorems 4 and 5 together provide a tight bound
of Ω(max{1/ϵ2, q/ϵ}) for the ℓq-distortion. Additionally combined with the lower bounds
of [8] for q ≥ 2, Theorem 6 provides a tight bound of Ω(q/ϵ2) for all additive measures.

Techniques. The proofs of the lower bounds in all the theorems are based on counting
argument, as in the lower bound for the worst case distortion proven by [24]. We extend
the framework of [24] to the entire range of q moments of distortion, including the average
distortion. As in the original proof we show that there exists a large family P of metric
spaces that are quite different from each other so that if one can embed all of these into
a Euclidean space with a small average distortion the resulting image spaces are different
too. This implies that if the target dimension k is too small there is not enough space to
accommodate all the different metric spaces from the family.

Let us first describe the framework of [24].1 The main idea is to construct a large
family of n-point subspaces I ⊆ ℓ

Θ(n)
2 so that each subspace in the family can be uniquely

encoded using a small number of bits, assuming that each I can be embedded with 1 + ϵ

worst-case distortion in ℓk
2 . The sets they construct are such that the information on the

inner products between all the points in I, even if distorted by an additive error of O(ϵ),
enables full reconstruction of the points in the set. In particular, each I consists of a zero
vector together with the standard basis vectors E and an additional set of vectors denoted
by Y. The set Y is defined in such a way that ⟨y, e⟩ ∈ {0, cϵ}, for a constant c > 1, for all
(y, e) ∈ Y × E. The authors then show that a 1 + ϵ distortion embedding f of I must map all
the points into the ball of radius 2 while preserving all the inner products up to an additive
error Θ(ϵ), which enables to recover the vectors in Y. The next step is to show that all
image points can be encoded using a small number of bits, while preserving the inner product
information up to an Θ(ϵ) additive error. This can be achieved by carefully discretizing
the ball, and applying a map f̃ mapping every point to its discrete image approximation so
that ⟨f(v), f(u)⟩ = ⟨f̃(v), f̃(u)⟩ ± Θ(ϵ). For this purpose one may use the method of [6] who
showed2 that randomly rounding the image points to the points in a small enough grid will
preserve all the pairwise inner products within Θ(ϵ) additive error with constant probability,
and this in turn allows to derive a short binary encoding for each input point. This implies
the lower bound on k = Ω(log(ϵ2n)/ϵ2), for ϵ = Ω(1/

√
n).

Let us now explain the challenges in applying this method to the case of bounded average
distortion and q-moments. Assuming f : I → ℓk

2 has 1 + ϵ average distortion neither implies
that all images are in a ball of constant radius nor that f preserves all pairwise inner products.
The bounded average distortion also does not guarantee the existence of a large subset of I
with the properties above. We suggest the following approach to overcoming these issues.
First, we add to I a large number of ”copies” of 0 vectors which enables to argue that a
large subset Î ⊆ I will be mapped into a constant radius ball, such that the average additive
distortion is Θ(ϵ). The next difficulty is that if the images would be rounded to the points in
a grid using a mapping which would preserve all pairwise inner products with Θ(ϵ) additive
error, then the resulting grid would be too large, which would’t allow a sufficiently short
encoding. We therefore round the images to a grid with Θ(ϵ) additive approximation to the
average of the inner products of Î and thus reduce the size of the grid (and the encoding).
The next step is showing that the above guarantees imply the existence of a large enough

1 The description is based on combining the methods of [24, 6], and can be also viewed as our q-moments
bound with q = Θ(log(ϵ2n)/ϵ).

2 The original proof of [24] uses a different elegant discretization argument.
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subset of pairs Z ⊆
(I

2
)

of special structure, which allows to encode the entire set I with a few
bits even if only the partial information about the inner products within Z is approximately
preserved. In particular, we show that there is a large subset YG ⊆ Y such that for each
point y ∈ YG there is a large enough subset Ey ⊆ E such that all pairwise inner products
⟨y, e⟩, where y ∈ YG and e ∈ Ey, are additively preserved up to Θ(ϵ) in the grid embedding,
and therefore all the discretized images of these points have short binary encoding. The last
step is to argue that this subset is sufficiently large so the knowledge of its approximate inner
products possesses enough information in order to recover the entire point set I from our
small size encoding. As this set still covers only a constant fraction of the pairs, and encoding
the rest of the points is far more costly, this forces the dimension and number of points in our
instance to be set to d = Θ(n) = Θ(1/ϵ2), implying a lower bound of k = Ω(1/ϵ2). Finally,
we prove that this can extend to arbitrary large subspaces via metric composition techniques.
To extend these ideas to the general case of q-moments of distortion we prove that similar
additive approximation distortion bounds hold with high probability of at least 1 − e−Θ(ϵq).
This means that a smaller fraction of the pairs require a more costly encoding, and allows us
to set d = Θ(n) = Θ(1/ϵ2) · eΘ(ϵq), implying a lower bound of k = Ω(q/ϵ).

Related work. The study of ”beyond the worst-case” distortion analysis of metric embedding
initiated in [22] by introducing partial and scaling distortions. This has generated a rich line
of follow up work, [1, 4, 2] just to name a few. The notions of average distortion and ℓq-
distortion were introduced in [4] who gave bounds on embedding general metrics in normed
spaces. Other notions of refined distortion analysis considered in the literature include
such notions as Ramsey type embeddings [9], local distortion embeddings [3], terminal and
prioritized distortion [15, 14], and recent works on distortion of the q-moments3[29, 30, 23].

In applied community, various notions of average distortion are frequently used to infer
the quality of heuristic methods [17, 16, 32, 13, 31, 35, 10].

However, the only work rigorously analyzing these notions we are aware of is that of
[8]. They proved lower bounds of k = Ω(1/ϵ) for the all additive measures average (1-norm)
version, and for the average distortion measure (ℓ1-distortion), which we improve here to the
tight Ω(1/ϵ2) bound. For q ≥ 2 they gave tight bounds of Ω(q/ϵ2) for all additive measures.
For ℓq-dist they have shown that for q = Ω(log(1/ϵ)/ϵ) the tight bound of k = Ω(q/ϵ) follows
from the black-box reduction to the lower bound on the worst case distortion.

2 Lower bound for average distortion and additive measures

In this section we prove Theorems 4 and Theorem 6. Using Claim 3, we may focus on proving
the lower bound for Energy1(f) in order to obtain similar lower bounds for REM1(f) and
ℓ1-dist(f). In full version of the paper we show how to change this proof in order to obtain
lower bound on Stress1(f), and further show that the lower bounds for all the additive
measures follow from the lower bounds on Energy and Stress.

We present here the proof of an existence of a bad metric space of size n̂ = Θ(1/ϵ2),
while construction of a metric space of an arbitrary size n ≥ n̂, based on a similar technique
appearing in [8] via metric composition [9], is given in the full version of the paper.

3 The notion in these papers, also studied [4, 8], computes the ratio between the average of (or q-moments)
of new distances to that of original distances, in contrast to the average distortion (or q-moments of
distortion) measure in Definition 1, which measures the average (or q-moments) of pairwise distortions.

SoCG 2022



13:6 Optimality of the JL Dimensionality Reduction for Practical Measures

We construct a large family P of metric spaces, such that each I ∈ P can be completely
recovered by computing the inner products between the points in I. For a given ϵ < 0, let
l = ⌈ 1

γ2ϵ2 ⌉, for some large constant γ > 1 to be determined later. We will prove k ≥ c
γ2

1
ϵ2 ,

for c < 1, and so we may assume w.l.o.g. that ϵ ≤ 1/γ, otherwise the statement trivially
holds. We construct point sets I ⊂ ℓd

2, where d = 2l, each I of size 3d = 6l = Θ(1/ϵ2).
Define a set O = {oj}d

j=1 of d arbitrary near zero vectors in ℓd
2, i.e., a set of d different

vectors such that for all oj ∈ O, ∥oj∥2 ≤ ϵ/100. Let E = {e1, e2, . . . , ed} denote the
vectors of the standard basis of Rd. For a set S of l indices from {1, 2, . . . , d}, we define
yS = 1√

l

∑
j∈S ej . For a sequence of d index sets (possibly with repetitions) S1, S2, . . . , Sd,

let Y[S1, . . . , Sd] = {yS1 , . . . , ySd
}. Each point set I[S1, . . . , Sd] ∈ P is defined as the union of

the sets defined above4, i.e., I[S1, . . . , Sd] = O ∪ E ∪ Y[S1, . . . , Sd]. The size of the family is
|P| =

(
d
l

)d. Note that each I ∈ P is contained in B2(1), the unit ball of ℓd
2, and has diameter

diam(I) =
√

2. Additionally, for all ej ∈ E and yS ∈ Y the value of the inner product ⟨ej , yS⟩
determines whether ej ∈ span{ei|i ∈ S}. In particular, if ⟨ej , yS⟩ = 0 then j ̸∈ S, and if
⟨ej , yS⟩ = 1/

√
l ≥ (1/2)γϵ then j ∈ S.

Assume that for each I ∈ P there is an embedding f : I → ℓk
2 , with Energy1(f) ≤ ϵ.

We prove that this implies that k = Ω(1/ϵ2). The strategy is to produce a unique binary
encoding of each I in the family based on the embedding f . Let length(I) denote the length
of the encoding for each I, we will show that length(I) ≲ l2 + l · k log( 1

ϵk ). Since the encoding
defines an injective map from P to {0, 1}length(I), the number of different sets that can be
recovered by decoding is at most 2length(I). Now, because |P| =

(
d
l

)d ≥ 22l2 we get that
k log( 1

ϵk ) ≳ l and show that this implies the bound on k ≥ Ω(l).
We are now set to describe the encoding for each I and to bound its length. First, in the

following lemma, we show that there exists a large subset Î ⊆ I that is mapped by f into a
ball of a constant radius in k-dimensional space and that the average of the errors in the
inner products incurred by f on the subset Î is bounded by Θ(ϵ).

▶ Lemma 7. For any I ∈ P let f : I → ℓk
2 be an embedding with Energy1(f) ≤ ϵ, with

ϵ ≤ 1/36. Let 0 < α ≤ 1/16 be a parameter. There is a subset Î ⊆ I of size
∣∣̂I∣∣ ≥ (1 − α)|I|

such that f (̂I) ⊂ B2
(
1 + 3.01ϵ

α

)
, and 1

|( Î
2)|

∑
(u,v)∈( Î

2)
∣∣⟨f(u), f(v)⟩ − ⟨u, v⟩

∣∣ ≤ (10 + 1
2α )ϵ.

Proof. By assumption we have that the following condition holds:

Energy1(f) = 1∣∣(I
2
)∣∣ ∑

(u,v)∈(I
2)

∣∣expansf (u, v) − 1
∣∣ ≤ ϵ. (1)

This bound implies that
1

|O|(|I| − 1)
∑

oj∈O

∑
v∈I,v ̸=oj

∣∣expansf (oj , v) − 1
∣∣ ≤ 1

|O|(|I| − 1)
∑

u̸=v∈I

∣∣expansf (u, v) − 1
∣∣

≤ 3d(3d − 1)
d(3d − 1) ϵ = 3ϵ.

From which follows that

min
oj∈O

1
|I| − 1

∑
v∈I,v ̸=oj

∣∣expansf (oj , v) − 1
∣∣ ≤ 3ϵ. (2)

4 We will omit [S1, . . . Sd] from notation for a fixed choice of the sets.
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Let ô ∈ O denote the point at which the minimum is obtained. We assume without loss of
generality that f(ô) = 0. Let Î be the set of all v ∈ I such that

∣∣expansf (ô, v) − 1
∣∣ ≤ 3ϵ

α .
By Markov’s inequality, |Î| ≥ (1 − α)

∣∣I∣∣. We have that for all v ∈ Î, |expansf (v, ô) − 1| =
| ∥f(v)∥2

∥v−ô∥2
− 1| ≤ 3ϵ

α , and using ∥v − ô∥2 ≤ ∥v∥2 + ∥ô∥2 ≤ 1 + ϵ/100, so that ∥f(v)∥2 ≤
(1 + 3ϵ

α )(1 + ϵ/100) ≤ 1 + 3.002ϵ
α , implying that f(v) ∈ B2

(
1 + 3.01ϵ

α

)
.

For all (u, v) ∈
(

Î
2
)

we have:∣∣⟨f(u), f(v)⟩ − ⟨u, v⟩
∣∣ ≤ 1

2

[∣∣∥f(u)∥2
2 − ∥u∥2

2
∣∣+
∣∣∥f(v)∥2

2 − ∥v∥2
2
∣∣]

+ 1
2

[∣∣∥f(u) − f(v)∥2
2 − ∥u − v∥2

2
∣∣] .

We can bound each term as follows:∣∣∥f(u)∥2
2 − ∥u∥2

2
∣∣ =

= |∥f(u) − f(ô)∥2
2 − ∥u − ô∥2

2 + ∥u − ô∥2
2 − ∥u∥2

2|
≤ |∥f(u) − f(ô)∥2 − ∥u − ô∥2| · (∥f(u) − f(ô)∥2 + ∥u − ô∥2)
+ |∥u − ô∥2 − ∥u∥2| · (∥u − ô∥2 + ∥u∥2)
≤ ∥u − ô∥2 · |expansf (u, ô) − 1| · (∥f(u)∥2 + ∥u − ô∥2) + ∥ô∥2 · (∥u − ô∥2 + ∥u∥2)

≤
(

1 + ϵ

100

)
|expansf (u, ô) − 1|

(
1 + 3.002ϵ

α
+ 1 + ϵ

100

)
+ ϵ

100 ·
(

2 + ϵ

100

)
≤

(
2 + 3.01ϵ

α

)
|expansf (u, ô) − 1| + ϵ

40 ≤
(

2 + 1
9α

)
|expansf (u, ô) − 1| + ϵ

40 ,

where we have used ∥ô∥ ≤ ϵ/100, ∥u − ô∥2 ≤ ∥u∥2 + ∥ô∥2 ≤ 1 + ϵ/100, and the bound on the
norms of the embedding within Î. Additionally, we have that∣∣∥f(u) − f(v)∥2

2 − ∥u − v∥2
2
∣∣ =

= |∥f(u) − f(v)∥2 − ∥u − v∥2|(∥f(u) − f(v)∥2 + ∥u − v∥2)
≤ ∥u − v∥2 |expansf (u, v) − 1|(∥f(u)∥2 + ∥f(v)∥2 + ∥u − v∥2)

≤
√

2
(

2
(

1 + 3.002ϵ

α

)
+

√
2
)

|expansf (u, v) − 1| ≤
(

5 + 1
4α

)
|expansf (u, v) − 1|,

where the second to last inequality holds since ∥u − v∥2 ≤ diam(I) =
√

2. It follows that:
1

|
(

Î
2
)
|

∑
(u,v)∈(Î

2)

∣∣⟨f(u), f(v)⟩ − ⟨u, v⟩
∣∣ ≤ (3)

≤
(

2 + 1
9α

)
· 1

|
(

Î
2
)
|

(
|Î| − 1

2

) ∑
u∈Î,u̸=ô

|expansf (u, ô) − 1|

+ 1
2

(
5 + 1

4α

)
· 1

|
(

Î
2
)
|

∑
(u,v)∈(Î

2)
|expansf (u, v) − 1| + ϵ

40 .

By definition of Î, and using (2) we have that

1
|
(

Î
2
)
|

(
|Î| − 1

2

) ∑
u∈Î,u̸=ô

|expansf (u, ô) − 1| = 1
|Î|

∑
u∈Î,u̸=ô

|expansf (u, ô) − 1|

≤ 1
|I|

∑
u∈I,u̸=ô

|expansf (u, ô) − 1| ≤ 3ϵ.
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Therefore (3) yields that

1
|
(

Î
2
)
|

∑
(u,v)∈(Î

2)

∣∣⟨f(u), f(v)⟩ − ⟨u, v⟩
∣∣ ≤

≤
(

2 + 1
9α

)
· 3ϵ + 1

2

(
5 + 1

4α

)
· 1

|
(

Î
2
)
|

∑
(u,v)∈(Î

2)
|expansf (u, v) − 1| + ϵ

40

≤ 1
2

(
5 + 1

4α

)
· 1

|
(

Î
2
)
|

∑
(u,v)∈(Î

2)
|expansf (u, v) − 1| +

(
7 + 1

3α

)
ϵ.

Now, we have that
1

|
(

Î
2
)
|

∑
(u,v)∈(Î

2)
|(expansf (u, v)) − 1| ≤ 6

5
1

|
(

I
2
)
|

∑
(u,v)∈(I

2)
|(expansf (u, v)) − 1| ≤ 6

5ϵ,

using |Î| ≥ (1 − α)|I|, so that α ≤ 1/16 we have |
(

Î
2
)
| ≥ (1 − 1

3(1−α)d )(1 − α)2 · |
(

I
2
)
| ≥ 5

6 |
(

I
2
)
|

and applying (1). Finally, we obtain

1
|
(

Î
2
)
|

∑
(u,v)∈(Î

2)

∣∣⟨f(u), f(v)⟩ − ⟨u, v⟩
∣∣ ≤ 6

5 · 1
2

(
5 + 1

4α

)
ϵ +

(
7 + 1

3α

)
ϵ ≤

(
10 + 1

2α

)
ϵ.◀

We have shown thus far that for the large subset Î of the set I, the average of the inner
products between the images equals up to an additive factor Θ(ϵ) to the average of the
inner products between the original points. Moreover, all the images of Î are in the constant
radius ball. We next show that rounding these images to the (randomly chosen) points of
the sufficiently small grid will not change the sum of the inner products too much, implying
that instead of encoding the original images f (̂I) we can encode its rounded counterpart. To
show this, we use a technique of randomized rounding as proposed in [6].

▶ Lemma 8. Let X ⊂ ℓk
2 such that X ⊂ B2(r). For δ < r/

√
k let Gδ ⊆ B2(r) denote

the intersection of the δ-grid with B2(r). There is a mapping g : X → Gδ such that
1

|(X
2 )|

∑
(u,v)∈(X

2 )|⟨g(u), g(v)⟩ − ⟨u, v⟩| ≤ 3δr, and the points of the grid can be represented

using LGδ
= k log(4r/(δ

√
k)) bits.

Proof. For each point v ∈ X randomly and independently match a point ṽ = g(v) on the
grid by rounding each of its coordinates vi to one of the closets integral multiplies of δ in
such a way that E[ṽi] = vi. This distribution is given by assigning

⌈
vi

δ

⌉
δ with probability

p =
(

vi

δ −
⌊

vi

δ

⌋)
, and assigning

⌊
vi

δ

⌋
δ with probability 1 − p. For any u ̸= v ∈ X we have:

E [|⟨ũ, ṽ⟩ − ⟨u, v⟩|] ≤ E [|⟨ũ − u, v⟩|] + E [|⟨ũ, ṽ − v⟩|]

≤
(
E
[
(⟨ũ − u, v⟩)2])1/2 +

(
E
[
(⟨ũ, ṽ − v⟩)2])1/2

,

where the last inequality is by Jensen’s. We bound each term separately.

E[(⟨ũ − u, v⟩)2] = E

( k∑
i=1

(ũi − ui)vi

)2 =

=
k∑

i=1
v2

i E
[
(ũi − ui)2]+ 2

∑
1≤i ̸=j≤k

vivjE[ũi − ui]E[ũj − uj ] ≤ δ2 ∥v∥2
2
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since |ũi − ui| ≤ δ and E[ũi] = ui. Similarly, for the second term we have

E
[
(⟨ũ, ṽ − v⟩)2] = E

( k∑
i=1

ũi(ṽi − vi)
)2 ≤

k∑
i=1

E
[
ũ2

i

]
E
[
(ṽi − vi)2] (4)

+ 2
∑

1≤i ̸=j≤k

E[ũiũj(ṽi − vi)]E[ṽj − vj ] ≤ δ2
k∑

i=1
E[ũ2

i ],

because the random variables ũi and ṽi are independent. We also have that

k∑
i=1

E[ũ2
i ] =

k∑
i=1

E[(ui +(ũi −ui))2] =
k∑

i=1

(
u2

i + 2uiE[ũi − ui] + E[(ũi − ui)2]
)

≤ ∥u∥2
2 +δ2k.

Therefore, putting all together, E [|⟨ũ, ṽ⟩ − ⟨u, v⟩|] ≤ δr + δ(r2 + δ2k)1/2 ≤ 2δr + δ2
√

k ≤ 3δr.
The bound on the average difference in inner product in the lemma follows by the linearity

of expectation, and the implied existence of a mapping with bound at most the expectation.
The upper bound on the representation of the grid points was essentially given in [6]: The
ith coordinate of a point x on the grid is given by a sign and an absolute value niδ, where
0 ≤ ni ≤ r/δ are integers satisfying

∑
1≤i≤k n2

i ≤ (r/δ)2. So can be represented by the sign
and their binary representation of size at most

∑k
i=1(log(ni) + 1), which is maximized when

all n2
i ’s are equal, which gives the bound of k log(4r/(δ

√
k)). ◀

Combining the lemmas we obtain:

▶ Corollary 9. For any I ∈ P let f : I → ℓk
2 be a map with Energy1(f) ≤ ϵ, for ϵ ≤ 1/36. Let

0 < α ≤ 1/16. There is Î ⊆ I of size
∣∣Î∣∣ ≥ (1−α)|I| such that there is a set G ⊂ ℓk

2 and a map
g : Î → G such that 1∣∣(Î

2)
∣∣ ∑(u,v)∈(Î

2)
∣∣⟨g(f(u)), g(f(v))⟩−⟨u, v⟩

∣∣ ≤
(
13 + 0.76

α

)
ϵ, and the points

in G can be uniquely represented by binary strings of length at most LG = k log(4r/(ϵ
√

k))
bits, where r < 1 + 0.09 1

α .

Proof. The corollary follows by applying Lemma 7 followed by Lemma 8 with X = Î and
δ = ϵ. Note that we may assume that ϵ = δ < 1/

√
k < r/

√
k, as otherwise we are done. ◀

We are now ready to obtain the main consequence which will imply the lower bound.

▶ Corollary 10. For any I ∈ P let f : I → ℓk
2 be an embedding with Energy1(f) ≤ ϵ, with

ϵ ≤ 1/36. Let 0 < α ≤ 1/16 and 0 < β be parameters. There is a subset of points G that
satisfies the following: there is a subset YG ⊆ Y of size

∣∣YG
∣∣ ≥ (1 − 3α − 3√

2 β)|Y | such
that for each y ∈ YG there is a subset EG

y ⊆ E of size
∣∣EG

y

∣∣ ≥ (1 − 3α − 3√
2 β)
∣∣E∣∣ such that

for all pairs (y, e) ∈ YG × EG
y we have:

∣∣⟨g(f(y)), g(f(e))⟩ − ⟨y, e⟩
∣∣ ≤ 1

β2

(
13 + 0.76

α

)
ϵ, where

g : YG ∪ {EG
y }y∈YG → G. Moreover, the points in G can be uniquely represented by binary

strings of length at most LG = k log(4r/(ϵ
√

k)) bits, where r < 1 + 0.09 1
α .

Proof. Applying Corollary 9 and Markov’s inequality there are at most β2 fraction of
pairs (u, v) ∈

( Î
2
)

such that
∣∣⟨g(f(u)), g(f(v))⟩ − ⟨u, v⟩

∣∣ > 1
β2

(
13 + 0.76

α

)
ϵ. It follows that the

number of pairs in Y ×E that are in
(

Î
2
)

and have this property is at most β2· 3d(3d−1)
2 ≤ 9

2 β2·d2.
Therefore there can be at most 3√

2 βd points in u ∈ Y such that there are more than 3√
2 βd

points in v ∈ E with this property. Since there are at most 3αd points in each of Y and E

which may not be in Î we obtain the stated bounds on the sizes of |YG| and |EG
y |. ◀
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2.1 Encoding algorithm
Let t = 8. We set α = 1/(12t), β = 1/(

√
2t), which implies that r ≤ 10. Therefore,

by Corollary 10, we can find a subset G ⊆ B2(10), and a mapping g : f(I) → G, and
a subset YG ⊆ Y , with |YG| ≥

(
1 − 1

t

)
|Y |, where for all y ∈ YG we can find a susbet

EG
y ⊆ E with |EG

y | ≥
(
1 − 1

t

)
|E|, such that for all pairs (e, y) ∈ YG × EG

y the inner products∣∣⟨g(f(y)), g(f(e))⟩ − ⟨y, e⟩
∣∣ ≤ 12000ϵ. Moreover, each point in G can be uniquely encoded

using at most LG = k log(40/(ϵ
√

k)) bits.
We first encode all the points Y \ YG. For each yS ∈ Y \ YG we explicitly write down

a bit for each ei ∈ E indicating whether ei ∈ S. This requires d bits for each yS and in
total at most

( 1
t

)
d2 bits for the subset Y \ YG. The next step is to encode all the points

in {EG
y }y∈YG in a way tat will enable to recover all the vectors in the set together with the

indeces. We can do that by writing an ordered list containing d strings (one for each vector
in the set E, according to its order). Each string is of length LG bits, where each point
ei ∈ {EG

y }y∈YG is encoded by its representation in G, i.e., g(f(ei)), and rest of points (if
there are any) are encoded by zeros. This gives an encoding of total length dLG bits.

Now we can encode the points in YG. Each yS ∈ YG is encoded by the encoding of
g(f(yS)) using LG bits, and in addition we add the encoding of the set of indices of the points
in E \ EG

yS
, using at most log

(
d

(1/t)d

)
≤ (1/t)d log(et) bits. Note that this information is not

enough in order to recover the vector yS , as we can’t deduce whether i ∈ S for ei ∈ E \ EG
yS

.
So we add this information explicitly, by writing down whether i ∈ S for each ei ∈ E \ EG

yS
,

using at most (1/t)d bits. In total, it takes LG + (1/t)d log(et) + (1/t)d bits per point in YG.
Therefore, each instance I ∈ P can be encoded using at most

(1/t)d2 + dLG + |YG| · (LG + d(1/t) log(et) + (1/t)d) ≤ (1/t)d2(2 + log(et)) + 2dLG

bits, since |YG| ≤ d. For our choice of t = 8, this is at most 7
8 d2 + 2dLG.

2.2 Decoding algorithm
To recover a set I given the encoding it is enough to recover the set Y , as the sets O and
E are the same in each I. We first recover Y \ YG in a straightforward way from its naive
encoding. To recover a point yS ∈ YG we need to know for each ei ∈ E whether i ∈ S.
An important implication of Corollary 10 is that given g(f(ei)) and g(f(yS)) of any pair
(ei, yS) ∈ YG × EG

yS
, we can decide whether i ∈ S by computing ⟨g(f(ei)), g(f(yS))⟩. Recall

that if i ̸∈ S then ⟨ei, yS⟩ = 0, and if i ∈ S then ⟨ei, yS⟩ ≥ (1/2)γϵ. Therefore, by setting
γ = 48001 we have that if ⟨g(f(ei)), g(f(yS))⟩ ≤ 12000ϵ, then i ̸∈ S, and i ∈ S otherwise.
We can recover each g(f(yS)) for yS ∈ YG from its binary representation. Next, we recover
the set of indices of the points in E \ EG

yS
, from which we deduce the set of indices of the

points ei ∈ EG
yS

. This gives the information about the set {g(f(ei))}ei∈EG
yS

. At this stage we
have all the necessary information to compute the inner products ⟨g(f(yS)), g(f(ei))⟩ for all
the pairs yS and ei that enable us to correctly decide whether i ∈ S. Finally, for the rest
points e ∈ E \ EG

yS
we have a naive encoding which explicitly states whether e is a part of yS .

2.3 Deducing the lower bound
From the counting argument, the maximal number of different sets that can be recovered from
the encoding of length at most ρ = 7

8 d2+2dLG is at most 2ρ. This implies 7
8 d2+2dLG ≥ log|P|.

On the other hand, the size of the family is |P| =
(

d
l

)d. Recall that we have set d = 2l so

we have that |P| ≥
(2l

l

)2l ≥
(

2(2l−1)/
√

l
)2l

≥ 24l2−2l log l ≥ 23.9l2 , where the last estimate
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follows from our assumption on ϵ. Therefore, 7
2 l2 + 4lLG ≥ 3.9l2, implying LG ≥ (1/10)l,

where LG = k log(40/(ϵ
√

k)) = 1
2 k log

(
16( 10

ϵ )2 1
k

)
. This implies that k log

(
16
( 10

ϵ

)2 1
k

)
≥

(1/5)l ≥ 1/(5γ2 · ϵ2). Setting x = k · (5γ2 · ϵ2) we have that

1 ≤ x log
(

0.5
x

· 214γ2
)

= x log(0.5/x) + x log
(
214γ2) ≤ 1/2 + 2x(7 + log γ),

where the last inequality we have used x log(0.5/x) ≤ 0.5/(e ln 2) < 1/2 for all x. This
implies the desired lower bound on the dimension: k ≥ 1/(20γ2(7 + log γ) · ϵ2).

3 Lower bounds for q-moments of distortion

In this section we prove Theorem 5 which provides a lower bound for q-moments of distortion.
Similarly, to the proof for ℓ1-distortion in Section 2, we prove the theorem first for metric
space of fixed size n̂ = O(1/ϵ2) · eO(ϵq), which can be extended for metric spaces of size Θ(n)
for any n via metric composition [9, 8], as described in the full version of the paper.

Assume w.l.o.g that q ≥ 3
ϵ , otherwise the theorem follows from Theorem 4 by monotonicity

of the ℓq-distortion. The proof strategy has exactly the same structure as in the proof of
Section 2, however the sets I are constructed using different parameters. For a given ϵ < 0, let
l = ⌈ 1

γ2ϵ2 ⌉ be an integer for some large constant γ > 1 to be determined later. We construct
point sets I ⊂ ℓd

2, where d = lτ , τ = eϵq, and |I| = 3d. Assume that for all I ∈ P there is a
map f : I → ℓk

2 , with ℓq-dist(f) ≤ 1 + ϵ. We show that this implies that k = Ω(q/ϵ).
As before the strategy is to produce a unique binary encoding of I of length length(I). We

will obtain that |P| =
(

d
l

)d ≥ (d/l)ld, which will give that length(I) ≥ dl log(d/l) = dl log(τ).
We will show that this implies the bound on k ≥ Ω(l log(τ)) = Ω(1/ϵ2 · ϵq) = Ω(q/ϵ).

As in the proof of Theorem 4, we can assume w.l.o.g. that ϵ ≤ 1/γ, which by the choice
of γ later on implies ϵ < 1/36.

▶ Lemma 11. For any I ∈ P let f : I → ℓk
2 be an embedding with ℓq-dist(f) ≤ 1 + ϵ, for

ϵ < 1/36. There is a subset Î ⊆ I of size
∣∣Î∣∣ ≥ (1 − 3/τ4)|I| such that f(Î) ⊂ B2 (1 + 6.02ϵ),

and for 1 − 2/τ4 fraction of the pairs (u, v) ∈
(

Î
2
)

it holds that
∣∣⟨f(u), f(v)⟩ − ⟨u, v⟩

∣∣ ≤ 32ϵ.

Proof. By assumption we have (ℓq-dist(f))q = 1∣∣(I
2)
∣∣ ∑(u,v)∈(I

2) (distf (u, v))q ≤ (1 + ϵ)q.

By the Markov inequality there are at least 1−1/τ4 fraction of the pairs (u, v) ∈
∣∣(I

2
)∣∣ such

that (distf (u, v))q ≤ τ4(1+ ϵ)q ≤ (1+ ϵ)q ·e4ϵq, implying that distf (u, v) ≤ 1+6ϵ. Therefore,∣∣expansf (u, v) − 1
∣∣ ≤ max{expansf (u, v) − 1, 1/expansf (u, v) − 1} = distf (u, v) − 1 ≤ 6ϵ.

For every oj ∈ O, let Fj be the set of points v ∈ I\{oj} such that
∣∣expansf (oj , v) − 1

∣∣ > 6ϵ.
Then the total number of pairs (u, v) ∈

(
I
2
)

with the property that
∣∣expansf (u, v) − 1

∣∣ > 6ϵ

is at least
∑d

j=1 |Fj |/2, implying that there must be a point ô = oj∗ ∈ O such that
|Fj∗| ≤ 1

τ4 · 3d(3d−1)
d ≤ 3

τ4 (3d−1). Define Î = I \Fj∗ to be the complement of this set, so that
|Î| ≤ (1− 3

τ4 )|I|. We assume without loss of generality that f(ô) = 0. Let Ô = O∩ Î. We have
that |expansf (v, ô) − 1| = | ∥f(v)∥2

∥v−ô∥2
− 1| ≤ 6ϵ, and using ∥v − ô∥2 ≤ ∥v∥2 + ∥ô∥2 ≤ 1 + ϵ/100,

so that ∥f(v)∥2 ≤ (1 + 6ϵ)(1 + ϵ/100) ≤ 1 + 6.02ϵ, implying that f(v) ∈ B2 (1 + 6.02ϵ).
Denote by Ĝ the set of pairs (u, v) ∈

(
Î
2
)

satisfying that
∣∣expansf (u, v) − 1

∣∣ ≤ 6ϵ. To
bound the fraction of these pairs from below, we can first bound |Î| ≥ (1 − 3

τ4 )|I| ≥ 5
2 d and

|Î| − 1 ≥ 2d, using that τ > 3 by our assumption on q. Therefore, we have that the fraction
of pairs (u, v) ∈

(
Î
2
)

\ Ĝ is at most 1
τ4 · 3d(3d−1)

|Î|(|Î|−1) ≤ 1
τ4 · 9

5 ≤ 2
τ4 .
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Finally, to estimate the absolute difference in inner products over the set of pairs Ĝ we
recall some of the estimates from the proof of Section 2. For all (u, v) ∈ Ĝ we have:∣∣⟨f(u), f(v)⟩ − ⟨u, v⟩

∣∣ ≤ 1
2

[∣∣∥f(u)∥2
2 − ∥u∥2

2
∣∣+
∣∣∥f(v)∥2

2 − ∥v∥2
2
∣∣]

+ 1
2

[∣∣∥f(u) − f(v)∥2
2 − ∥u − v∥2

2
∣∣] .

We can bound each term as follows:∣∣∥f(u)∥2
2 − ∥u∥2

2
∣∣ =

= |∥f(u) − f(ô)∥2
2 − ∥u − ô∥2

2 + ∥u − ô∥2
2 − ∥u∥2

2|
≤ |∥f(u) − f(ô)∥2 − ∥u − ô∥2| · (∥f(u) − f(ô)∥2 + ∥u − ô∥2)
+ |∥u − ô∥2 − ∥u∥2| · (∥u − ô∥2 + ∥u∥2)
≤ ∥u − ô∥2 |expansf (u, ô) − 1| · (∥f(u)∥2 + ∥u − ô∥2) + ∥ô∥2 · (∥u − ô∥2 + ∥u∥2)

≤
(

1 + ϵ

100

)
|expansf (u, ô) − 1|

(
1 + 6.02ϵ + 1 + ϵ

100

)
+ ϵ

100 ·
(

2 + ϵ

100

)
≤ (2 + 6.06ϵ) |expansf (u, ô) − 1| + ϵ

40 ≤ (2 + 6.06ϵ) · 6ϵ + ϵ

40 ≤ 14ϵ,

where we have used ∥ô∥ ≤ ϵ/100, ∥u − ô∥2 ≤ ∥u∥2 + ∥ô∥2 ≤ 1 + ϵ/100, the bound on the
norms of the embedding within Î, and the property of pairs in Ĝ. Additionally, we have that∣∣∥f(u) − f(v)∥2

2 − ∥u − v∥2
2
∣∣ =

= |∥f(u) − f(v)∥2 − ∥u − v∥2| · (∥f(u) − f(v)∥2 + ∥u − v∥2)
≤ ∥u − v∥2 |expansf (u, v) − 1| · (∥f(u)∥2 + ∥f(v)∥2 + ∥u − v∥2)

≤
√

2
(

2 (1 + 6.02ϵ) +
√

2
)

|expansf (u, v) − 1| ≤ 6|expansf (u, v) − 1| ≤ 36ϵ,

since ∥u − v∥2 ≤ diam(I) =
√

2, and the last step follows using the property of pair in Ĝ.
We conclude that for all (u, v) ∈ Ĝ: |⟨f(u), f(v)⟩ − ⟨u, v⟩| ≤ 1

2 (2 · 14ϵ + 36ϵ) = 32ϵ. ◀

As before, the goal is to encode the images of the embedding using a sufficiently small
number of bits, by rounding them to the points of a grid of the Euclidean ball via the
randomized rounding technique of [6] as to preserve the inner product gap. The following
lemma provides the probability that this procedure fails.

▶ Lemma 12. Let X ⊂ ℓk
2 such that X ⊂ B2(r). For δ ≤ r/

√
k let Gδ ⊆ B2(r) denote the

intersection of the δ-grid with B2(r). There is a mapping g : X → Gδ such that for any η ≥ 1,
there is a 1−4e−η2 fraction of the pairs (u, v) ∈

(
X
2
)

such that |⟨g(u), g(v)⟩−⟨u, v⟩| ≤ 3
√

2ηδr,
and the points of the grid can be represented using LGδ

= k log(4r/(δ
√

k)) bits.

Proof. For each point v ∈ X randomly and independently match a point ṽ on the grid by
rounding each of its coordinates vi to one of the closest integral multiplies of δ in such a
way that E[ṽi] = vi. For any u ̸= v ∈ X we have: |⟨ũ, ṽ⟩ − ⟨u, v⟩| ≤ |⟨ũ − u, v⟩| + |⟨ũ, ṽ − v⟩|.
Now, E[⟨ũ − u, v⟩] =

∑k
i=1 E[ũi − ui]vi = 0 and E[⟨ũ, ṽ − v⟩] =

∑k
i=1 E[ũi]E[ṽi − vi] = 0.

Next, we wish to make use of the Hoeffding bound. We therefore bound each of the terms
|(ũi − ui)vi| ≤ δ|vi| and the sum

∑k
i=1 δ2v2

i = δ2r, and |ũi(ṽi − vi)| ≤ δ(|ui| + δ), so that

k∑
i=1

δ2(vi+δ)2 = δ2
k∑

i=1
(v2

i +2δvi+δ2) ≤ δ2(r+2δ ∥vi∥1+δ2k) ≤ δ2(r2+2δr
√

k+δ2k) ≤ 4δ2r2.

Applying the Hoeffding bound we get that Pr[|⟨ũ − u, v⟩| >
√

2ηδr] ≤ 2e−η2 and
Pr[|⟨ũ, ṽ −v⟩| > 2

√
2ηδr] ≤ 2e−η2 , and therefore Pr[|⟨ũ, ṽ⟩−⟨u, v⟩| > 3

√
2ηδr] ≤ 4e−η2 . This
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probability also bounds the expected number of pairs with this property so there must exist
an embedding to the grid where the bound stated in the lemma holds. The bound on the
representation size is the same as in Lemma 8. ◀

Combining the lemmas we obtain:

▶ Corollary 13. For any I ∈ P let f : I → ℓk
2 be an embedding with ℓq-dist(f) ≤ 1 + ϵ, with

ϵ ≤ 1/36. There is a subset Î ⊆ I of size
∣∣Î∣∣ ≥ (1 − 3/τ4)|I| such that for a fraction of at

least 1 − 6/τ4 of the pairs (u, v) ∈
(

Î
2
)

it holds that:
∣∣⟨g(f(u)), g(f(v))⟩ − ⟨u, v⟩

∣∣ ≤ 42ϵ, where
g : Î → G. Moreover, the points in G can be uniquely represented by binary strings of length
at most LG = k log(5

√
q/(ϵk)) bits.

Proof. The corollary follows by applying Lemma 11 followed by Lemma 12 with X = Î

with δ = 2
√

ϵ/q and η =
√

ln(τ). Note that we may assume that indeed 2
√

ϵ/q = δ <

1/
√

k < r/
√

k, since otherwise we are done. Therefore, the increase in the absolute difference
of the inner products due to the grid embedding is at most: 3

√
2ηδr = 6r

√
2 ln(τ)ϵ/q =

6r
√

2(ϵq)ϵ/q ≤ 10ϵ. The bound on representation of the grid follows from Lemma 12:
LG = k log(4r/(δ

√
k)) = k log(4r

√
q/(ϵk)) ≤ k log(5

√
q/(ϵk)). ◀

We are ready to obtain the main technical consequence which will imply the lower bound:

▶ Corollary 14. For any I ∈ P let f : I → ℓk
2 be an embedding with ℓq-dist(f) ≤ ϵ, with

ϵ ≤ 1/36. There is a subset of points G that satisfies the following: there is a subset YG ⊆ Y

of size
∣∣YG

∣∣ ≥ (1 − 6/τ2)|Y | such that for each y ∈ YG there is a subset EG
y ⊆ E of size∣∣EG

y

∣∣ ≥ (1 − 6/τ2)
∣∣E∣∣ such that for all pairs (y, e) ∈ YG × EG

y we have:
∣∣⟨g(f(y)), g(f(e))⟩ −

⟨y, e⟩
∣∣ ≤ 42ϵ, where g : YG ∪ {EG

y }y∈YG → G. Moreover, the points in G can be uniquely
represented by binary strings of length at most LG = k log(5

√
q/(ϵk)) bits.

Proof. Applying Corollary 13 we have that there are at most 6/τ4 pairs (u, v) ∈
(

Î
2
)

such
that

∣∣⟨g(f(u)), g(f(v))⟩ − ⟨u, v⟩
∣∣ > 42ϵ. It follows that the number of pairs in Y × E that

are in
(

Î
2
)

and have this property is at most 6
τ4 · 3d(3d−1)

2 ≤ 27
τ4 · d2. Therefore there can be at

most 3
√

3
τ2 · d points in u ∈ Y such that there are more than 3

√
3

τ2 d points in v ∈ E with this
property. Since there at most 3

τ4 · d < 0.5
τ2 · d points in each of Y and E which may not be in

Î we obtain the stated bounds on the sizes of |YG| and |EG
y |. ◀

3.1 Encoding and decoding

For a set I ∈ P let f : I → ℓk
2 be a map with ℓq-dist(f) = 1 + ϵ, where Ω

(
1√
n

)
≤ ϵ < 1/36,

and q = O(log(ϵ2n)/ϵ). Let t = τ2/6. Therefore, by Corollary 14, we can find a subset
G ⊆ B2(2), and a mapping g : f(I) → G, and a subset YG ⊆ Y , with |YG| ≥

(
1 − 1

t

)
|Y |,

where for all y ∈ YG we can find a susbet EG
y ⊆ E with |EG

y | ≥
(
1 − 1

t

)
|E|, such that for all

pairs (e, y) ∈ YG × EG
y the inner products

∣∣⟨g(f(y)), g(f(e))⟩ − ⟨y, e⟩
∣∣ ≤ 42ϵ. Moreover, each

point in G can be uniquely encoded using at most LG = k log(5
√

q/(ϵk)) bits.
The encoding is done according to the description in Section 2.1 so we similarly obtain

the following bound on the bit length of the encoding: (1/t)d2(2 + log(et)) + 2dLG.
The decoding works in the same way as before for an appropriate choice of γ = 169.

SoCG 2022
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3.2 Deducing the lower bound
In this subsection we show that k = Ω(q/ϵ), proving the desired lower bound for the case of
n = 3d = O(1/ϵ2) ·eO(ϵq). From the counting argument, the maximal number of different sets
that can be recovered from the encoding of length at most ρ = (1/t)d2(2 + log(et)) + 2dLG

is at most 2ρ. This implies (1/t)d2(2 + log(et)) + 2dLG ≥ log|P|. On the other hand, the
size of the family is |P| =

(
d
l

)d ≥ (d/l)ld = τ ld, so that log(|P|) = ld log(τ). We therefore
derive the following inequality

(1/t)d2(2 + log(et)) + 2dLG ≥ ld log(τ) ⇒ LG ≥ (1/4)l log(τ),

as (1/t)d(2+log(et)) ≤ d(2 log(τ)+4)/τ2 ≤ d/(2τ) log(τ) = l log(τ)/2, using that log(τ) > 4.
Recall that LG = k log(5

√
q/(ϵk)) = 1

2 k log (25(q/(ϵk))). This implies that

k log
(

25
( q

ϵk

))
≥ (1/2)l log(τ) ≥ 1/(2γ2 · ϵ2) · ϵq = 1/(2γ2) · q/ϵ.

Setting x = k · (2γ2 · ϵ/q) we have that

1 ≤ x log
(

0.5
x

· 100γ2
)

= x log(0.5/x) + x log
(
100γ2) ≤ 1/2 + 2x log(10γ),

where the last inequality we have used x log(0.5/x) ≤ 0.5/(e ln 2) < 1/2 for all x. This
implies the desired lower bound on the dimension: k ≥ 1/(8γ2 log(10γ)) · q/ϵ.
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