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—— Abstract

We consider the unlabeled motion-planning problem of m unit-disc robots moving in a simple
polygonal workspace of n edges. The goal is to find a motion plan that moves the robots to a given
set of m target positions. For the unlabeled variant, it does not matter which robot reaches which
target position as long as all target positions are occupied in the end.

If the workspace has narrow passages such that the robots cannot fit through them, then the
free configuration space, representing all possible unobstructed positions of the robots, will consist
of multiple connected components. Even if in each component of the free space the number of
targets matches the number of start positions, the motion-planning problem does not always have
a solution when the robots and their targets are positioned very densely. In this paper, we prove
tight bounds on how much separation between start and target positions is necessary to always
guarantee a solution. Moreover, we describe an algorithm that always finds a solution in time
O(nlogn + mn + m?) if the separation bounds are met. Specifically, we prove that the following
separation is sufficient: any two start positions are at least distance 4 apart, any two target positions
are at least distance 4 apart, and any pair of a start and a target positions is at least distance 3
apart. We further show that when the free space consists of a single connected component, the
separation between start and target positions is not necessary.

2012 ACM Subject Classification Theory of computation — Computational geometry
Keywords and phrases motion planning, computational geometry, simple polygon
Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.12

Related Version Full Version: https://arxiv.org/abs/2205.07777

Funding Mark de Berg: Supported by the Dutch Research Council (NWO) through Gravitation-
grant NETWORKS-024.002.003.

© Bahareh Banyassady, Mark de Berg, Karl Bringmann, Kevin Buchin, Henning Fernau, ]
37 Dan Halperin, Irina Kostitsyna, Yoshio Okamoto, and Stijn Slot; HHH
licensed under Creative Commons License CC-BY 4.0 }

38th International Symposium on Computational Geometry (SoCG 2022). BN
Editors: Xavier Goaoc and Michael Kerber; Article No. 12; pp.12:1-12:16 T

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

]

[N
[



mailto:bahareh.banyassady@fu-berlin.de
https://orcid.org/0000-0002-3422-9028
mailto:m.t.d.berg@tue.nl
https://orcid.org/0000-0001-5770-3784
mailto:bringmann@cs.uni-saarland.de
mailto:kevin.buchin@tu-dortmund.de
https://orcid.org/0000-0002-3022-7877
mailto:fernau@uni-trier.de
https://orcid.org/0000-0002-4444-3220
mailto:danha@post.tau.ac.il
https://orcid.org/0000-0002-3345-3765
mailto:i.kostitsyna@tue.nl
https://orcid.org/0000-0003-0544-2257
mailto:okamotoy@uec.ac.jp
https://orcid.org/0000-0002-9826-7074
mailto:slot.stijn@gmail.com
https://doi.org/10.4230/LIPIcs.SoCG.2022.12
https://arxiv.org/abs/2205.07777
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2

Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds

Dan Halperin: Supported in part by the Israel Science Foundation (grant no. 1736/19), by NSF/US-
Israel-BSF (grant no. 2019754), by the Israel Ministry of Science and Technology (grant no. 103129),
by the Blavatnik Computer Science Research Fund, and by the Yandex Machine Learning Initiative
for Machine Learning at Tel Aviv University.

Yoshio Okamoto: JSPS KAKENHI Grant Numbers JP20H05795 and JP20K11670.

Acknowledgements This research was initiated at the Lorentz-Center Workshop on Fixed-Parameter

Computational Geometry, 2018. We thank Gerhard Woeginger for discussions during the workshop.

1 Introduction

Multi-robot systems are already playing a central role in manufacturing, warehouse logistics,
inspection of large structures (e.g., bridges), monitoring of natural resources, and in the future
they are expected to expand to other domains such as space exploration, search-and-rescue
tasks and more. One of the key ingredients necessary for endowing multi-robot systems
with autonomy is the ability to plan collision-free motion paths for their constituent robots
towards desired target positions.

In the basic multi-robot motion-planning (MRMP) problem several robots are operating
in a common environment. We are given a set of start positions and a set of desired target
positions for these robots, and we wish to compute motions that will bring the robots to
the targets while avoiding collisions with obstacles and the other robots. We distinguish
between two variants of MRMP, labeled and unlabeled, depending on whether each robot has
to reach a specific target. In labeled robot motion planning, each robot has a designated
target position. In contrast, in the unlabeled variant, which we study here, each robot only
needs to reach some target position; it does not matter which robot reaches which target as
long as at the end each target position is occupied by a robot.

MRMP is an extension of the extensively studied single robot motion-planning problem
(see, e.g., [3, 6, 13]). The multi-robot case is considerably harder [7, 8, 23], since the dimension
of the configuration space grows with the number of robots in the system. The configuration
space of a robot system is a parametric representation of all the possible configurations of
the system, which are determined by specifying a real value for each independent parameter
(degree of freedom) of the system.

The system we study consists of unit-disc robots moving in the plane; see below for a
more formal problem statement. Not only is this a reasonably faithful representation of
existing robot systems (e.g., in logistics), but it already encapsulates the essential hardships of
MRMP, as MRMP for planar systems with simply-shaped robots are known to be hard [8, 20].
Surprisingly, when we assume some minimum spacing between the start and target positions,
the problem for robots moving in a simple polygon always has a solution, and the solution
can be found in polynomial time, as shown by Adler et al. [1]. The separation, the minimum
distance between the start and target positions, thus plays a key role in the difficulty of
the problem. However the separation bounds assumed by Adler et al. are not proven to be
tight, so the question remains for what separation bounds the problem is always solvable. In
this paper we determine the minimal separation needed to ensure that the motion-planning
problem has a solution, improving on the bounds obtained by Adler et al. We also describe
an algorithm that plans such motions efficiently, relying on the new bounds that we obtain.

Related work. The multi-robot motion planning problem has received much attention over
the years. Already in 1983, the problem was described in a paper on the Piano Mover’s
problem by Schwartz and Sharir [15]. Later that year, an algorithm for the case of two or
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three disc robots moving in a polygonal environment with n polygon vertices was described,
running in O(n3) and O(n'?) time respectively [16]. This was later improved by Yap [28] to
O(n?) and O(n?) for two and three robots respectively, using the retraction method. A general
approach using cell decomposition was later developed in 1991 by Sharir and Sifrony [17]
that could deal with a variety of robot pairs in O(n?) time.

Unfortunately, when the number of robots increases beyond a fixed constant, the problem
becomes hard. In 1984, a labeled case of the multi-robot motion planning with disc robots and
a simple polygonal workspace was shown to be strongly NP-hard [23]. This is a somewhat
weaker result than the PSPACE-hardness for many other motion planning problems. For
rectangular robots in a rectangular workspace, however, the problem was shown to be
PSPACE-hard [8]. This result has later been refined to show that for PSPACE-completeness
it is sufficient to have only 1 x 2 or 2 x 1 robots in a rectangular workspace [7].

The hardness results for the general problem, as well as the often complex algorithms that
solve the problem exactly [6], led to the development of more practical solutions, which often
trade completeness of the solution for simplicity and speed, and can successfully cope with
motion-planning problems with many degrees of freedom. Most notable among the practical
solutions are sampling-based (SB) techniques. These include the celebrated Probabilistic
Roadmaps (PRM) [9], the Rapidly Exploring Random Trees (RRT) [12], and their numerous
variants [3, 5, 13]. The probabilistic roadmaps can be widely applied to explore the high-
dimensional configuration space, such as settings with a large number of robots or robots with
many degrees of freedom. However, in experiments by Sanchez and Latombe [14] already for
6 robots with a total of 36 degrees of freedom the algorithm requires prohibitively long time
to find a solution. Svestka and Overmars [25] suggested an SB algorithm specially tailored
to many robots. Their solution still requires exorbitantly large roadmaps and is restricted to
a small number of robots. Solovey et al. [21] devised a more economical approach, dRRT (for
discrete RRT), which is capable of coping with a larger number of robots, and which was
extended to produce asymptotically optimal solutions [18], namely converging to optimal
(e.g., shortest overall distance) solution as the number of samples tends to infinity.

Regarding separability bounds, Solomon and Halperin [19] studied the labeled version of
the unit-disc problem among polygonal obstacles in the plane, and showed that a solution
always exists under a more relaxed separation: each start or target position has an aura,
namely it resides inside a not-necessarily-concentric disc of radius 2, and the auras of two
positions (each being start or target) may overlap, as long as the aura of one robot does not
intersect the other robot. They do not however make the distinction between monochromatic
and bichromatic separation, and impose the same conditions for all auras.

With respect to unlabeled motion planning, the problem was first considered by Kloder
and Hutchinson [10] in 2006. In their paper they provide a sampling-based algorithm which is
able to solve the problem. In 2016, Solovey and Halperin [20] have shown that for unit square
robots the problem is PSPACE-hard using a reduction from non-deterministic constraint logic
(NCL) [7]. This PSPACE-hardness result also extends to the labeled variant for unit square
robots. Just recently, the unlabeled variant for two classes of disc robots with different radii
was also shown to be PSPACE-hard [2], with a similar reduction from NCL. In the reduction

1

the authors use robots of radius 5 and 1. In contrast, the earlier NP-hardness result for disc

robots by Spirakis and Yap [23] required discs of many sizes with large differences in radii.

Fortunately, an efficient (polynomial-time) algorithm can still exist when some additional
assumptions are made on the problem. Turpin, Michael, and Kumar [26] consider a variant
of the unlabeled motion-planning problem where the collection of free positions surrounding
every start or target position is star-shaped. This allows them to create an efficient algorithm
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for which the path-length is minimized. In the paper by Adler et al. [1], an O(n log n+mn+m?)
algorithm is given for the unlabeled variant, assuming the workspace is a simple polygon
and the start and target positions are well-separated, which is defined as minimum distance
of four between any start or target position. Their algorithm is based on creating a motion
graph on the start and target positions and then treating this as an unlabeled pebble game,
which can be solved in O(S?) where S is the number of pebbles [11]. Furthermore, in the
paper by Adler et al. [1] the separation bound 4v/2 — 2 (~ 3.646) is shown to be sometimes
necessary for the problem to always have a solution. When the workspace contains obstacles,
Solovey et al. [22] describe an approximation algorithm which is guaranteed to find a solution
when one exists, assuming also that the start and target positions are well-separated and a
minimum distance of v/5 between a start or target position and an obstacle.

Finally, we mention that multi-pebble motion on graphs, already brought up above, is
part of a large body of work on motion planning in discrete domains, sometimes called
multi-agent path finding (MAPF), and often adapted to solving continuous problems; see [24]
for a review, and [4, 27, 29, 30] for a sample of recent results.

Contributions. We distinguish between two types of separability bounds: monochromatic,
denoted by pu, the separation between two start positions or between two target positions,
and bichromatic, denoted by 3, between a start and a target position (see Figure 1).

After introducing necessary definitions and notation in Section 2, we begin with a lower
bound construction for the monochromatic and bichromatic separation in Section 3. We
prove that for y =4 — ¢ or for § = 3 — ¢ (for arbitrarily small positive €) the solution to the
unlabeled multi-robot motion-planning problem in a simple polygon may not always exist.

We devote the remainder of the paper to showing a matching upper bound. We prove
that the unlabeled MRMP problem for unit-disc robots in a simple polygon is always solvable
for monochromatic separation p = 4 and bichromatic separation 8 = 3, assuming that the
number of start and target positions match in each free space component. For the case of
a single free space component, we show an even stronger result that the problem is always
solvable for y =4 and 5 = 0.

Specifically, in Section 4 we devise an efficient algorithm for MRMP for y =4 and 8 = 2
in the case of a single free space component, and then extend it to also work for u = 4
and # = 0. In Section 5 we extend the algorithm to the case of a free space with multiple
components and g = 4 and 8 = 3. Our algorithm runs in O(nlogn + mn + m?) time, where
n is the size of the polygon, and m is the number of robots.

Our results improve upon the results by Adler et al. [1], who describe an algorithm with
the same running time that always solves the problem assuming separation of y = § = 4.
Similarly to their approach, we restrict the robots to move one at a time on a motion graph
that has the start and target positions as vertices. Separation of ;1 = 8 = 4 ensures that the
connectivity of the motion graph never changes. However, in our case, the lower bichromatic
separation results in a dynamic motion graph: existence of some edges may depend on
whether specific nodes are occupied by the robots. Furthermore, the lower bichromatic
separation in the case of multiple free space components leads to more intricate dependencies
between the components. Nonetheless, we show that there is always an order in which we
can process the components, and devise a schedule for the robots to reach their targets.

Due to space restrictions, some proofs are omitted and can be found in the full version of
this paper.
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Figure 1 Basic definitions. The workspace W is the rectilinear polygon, the free space F is the
inner gray area. The aura of a start or target position is shown as a dashed circle of radius two (for
unit-disc robots). The monochromatic separation u = 4, the bichromatic separation 8 = 3.

2 Definitions and notation

We consider the problem of m indistinguishable unit-disc robots moving in a simple polygonal
workspace W C R? with n edges. The obstacle space O is the complement of the workspace,
that is, O = R? \ W. We refer to points z € W as positions, and we say that a robot is at
position z when its center is positioned at point z € W.

For given z € R? and r € R, we define D,.(z) to be the open disc of radius r centered
at x. The unit-disc robots are defined to be open sets. Thus, a robot collides with the
obstacle space O if and only if its center is at a distance strictly less than 1 from O. We
can now define the free space F to be all positions where a unit-disc robot does not collide
with obstacle space, or, more formally, F = {z € R? | D;(z) N O = &}. The free space is
therefore a closed set. We refer to the connected components of F as free space components.

As the robots are defined to be open sets, two robots collide if the distance between their
positions is strictly less than 2. In other words, if a robot occupies a position x then no other
robot can be at a position y € Da(x); we call Da(z) the aura of the robot at position z. In
our figures the auras are indicated by dashed circles (see Figure 1).

Unlabeled multi-robot motion-planning problem. Given a set S of m start positions and a
set T of m target positions, where S, T C F, the goal is to plan a collision-free motion for m
robots from S to T', such that by the end of the motion every target position in 7" is occupied
by some robot. Since the robots are indistinguishable (i.e., unlabeled), it does not matter
which robot ends up at which target position. More formally, we wish to find continuous

paths m;: [0,1] — F, for 1 < i < m, such that m;(0) = s; and {m;(1) |1 <i < m} =T.

Furthermore, we require that, at any moment in time 7 € [0, 1], for all robots 4, no other
robot j is in the aura of robot ¢, m;(7) & Da(m;(7)). In our figures we indicate start positions
by green unit discs centered at points in .S, and target positions by purple unit discs centered
at points in T

For a subset @ C F of the free space, we use S(Q) = SN Q to denote the set of start
positions that reside in @, and similarly T(Q) = T N Q to denote the set of target positions
in Q. We define the charge ¢(Q) as the difference between the number of start and target
positions in @, ¢(Q) = 15S(Q)| — |T(Q)|. For each free space component F;, we require that
q(F;) = 0, i.e., there needs to be an equal number of start and target positions.

Finally, we state below a few useful properties proven by Adler et al. [1].

12:5

SoCG 2022



12:6

Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds

(i)

Figure 2 (i) An instance for ;4 = 4 — ¢ with one free space component. The robots are blocking
each other from entering the corridor. (ii) An instance for 8 < 3 — e. The distance |AB| < 2 is too
small for a robot to pass through, thus there are two free space components. The robot in the top
component is blocking the one in the bottom component.

» Lemma 1 ([1]). Each component F; of the free space is simply connected.

» Lemma 2 ([1]). For any x € F, let F; be the connected component of the free space
containing x. Then the set Da(x) N F; is connected.

3 Tighter separation bounds

In this section we explore the separation between the start and target positions that is
necessary for the problem to always have a solution. We show that, without a certain amount
of monochromatic separation (u) and bichromatic separation (3), there are instances of the
problem that cannot be solved, thus certain separation is necessary for the problem to always
have a solution. We first prove that a separation of u = 4 is necessary. This bound is tight
and it improves a previous lower bound of y = 41/2 — 2 (= 3.646) [1]. We then show that
£ = 3 is also necessary.
The following lemma is proven using the construction in Figure 2 (i).

» Lemma 3. For p < 4 a solution does not always exist, even if the free space consists of a
single connected component containing two start and two target positions.

Thus, for a solution to always exist, a monochromatic separation of ;1 = 4 is necessary. Since
the problem for 4 = § = 4 always has a solution, the monochromatic separation is tight.
Hence, we aim to reduce the bichromatic separation 5. The proof of the following lemma
uses the construction in Figure 2 (ii).

» Lemma 4. For 8 < 3 a solution does not always exist, even if there are only two free space
components, each containing one start and one target position.

The lower bound construction for 5 < 3 has two free space components with one robot in
each. A robot in the top free space component is blocking the motion of a robot in the
bottom component, no matter which position it is in. Thus, the lower bound is not applicable
if the free space has only one component. Indeed, as we show in the next section, in this
case no bichromatic separation is necessary.
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Figure 3 (i) When 8 < 4, a robot cannot cross the intersection of the auras of s and ¢ (in red) if
either s or ¢ is occupied. (ii) D (t1) consists of multiple connected components (remote in red and
non-remote in blue). Remote components r1 and r2 are blocking areas associated with blocker ¢;.

4 A single free space component

In this section we consider the multi-robot motion-planning problem for the case where
the free space consists of a single component F'. Initially, for simplicity, we assume pu = 4
and 8 = 2. That is, no start/target position can be inside the aura of another start/target

position. We later modify the algorithm to handle the case with no bichromatic separation.

The algorithm by Adler et al. [1] uses the separation assumption p = 8 = 4, and cannot
be applied if 5 < 4. Their algorithm greedily moves the robots to the target positions, and
may not always be able to find a solution in our case. Indeed, a pair of a start and a target
positions whose auras intersect can possibly block the path for robots who need to go through
the intersection of these auras (see Figure 3(i)). Therefore, in our algorithm we need to
handle such blocking positions.

4.1 Preliminaries

Remote components. Let A(S) = J,.g D2(s) be the union of all auras of the start positions
S. For a target position t € T, let D5 (t) = (D2(t) N F) \ A(S) be the portion of F within
the aura of ¢ minus the auras of the start positions in S (see Figure 3(ii)). Note that even
though, by Lemma 2, Dy(x) N F' is always connected for any x € F, the region Dy (t) may
consist of multiple connected components (split by the auras of start positions). One of these
components contains ¢ (shown in blue in the figure). A component of D; (¢) that does not
contain ¢ is called a remote component of t (shown in red in the figure). Let R be the set of
remote components for all target positions in 7.

Blockers and blocking areas. Consider the example in Figure 3 (ii). If ¢; is occupied, its
remote components 71, 79, and r3 cannot be crossed by a moving robot. Crossing the remote
component 73 can be avoided by moving along its boundary. However remote components rq

and 79 pose a problem, as they cut the free space, and thus crossing them cannot be avoided.

We call such remote components blocking areas.

For a target position ¢ € T', a blocking area is a remote component of ¢ that partitions F
into multiple components. If ¢ is associated with at least one blocking area, we refer to ¢ as a
blocker. A blocker might have multiple associated blocking areas (as in Figure 3 (ii)). Let
B C R be the set of blocking areas for all target positions in 7.

12:7
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Figure 4 An example with two blockers ¢1 and t2, and their associated blocking areas shown in
red. The corresponding residual components graph H is illustrated on the right side. Note that
there is no edge between Fy and F3, since the blocker t2 is not located in either of them.

For a blocking area b € B associated with position t, let the blocking path be any path
m C Do(t) connecting b to t. By Lemma 2, 7 exists, and by definition of the blocking area, 7
crosses the aura of at least one start position. We further show in the following lemma that
this path does not intersect any other blocking area.

» Lemma 5. For a blocking area b, € B and its associated blocker x, there exists some
blocking path m such that m C Da(x) and m does not intersect a blocking area by, of any other
blocker y.

Residual components. Let F = F'\ |JR be the portion of the free space F that does
not intersect any remote component in R. By definition, a blocking area partitions F' into
multiple connected components. Since some remote components are blocking areas, F' may
consist of multiple connected components. We refer to the connected components of F as
residual components. Next, let F* = F \ A(S) be the portion of the free space F' that does
not intersect either the aura of a start position or a remote component of a target position.

» Lemma 6. Given m starting and target positions in a polygonal workspace of size n,
the subsets F and F* of the free space, and the remote components R, all have complexity
O(m +n) and can be computed in O((m + n)log(m + n)) time.

Residual components graph. We define the residual components graph as H = (V1 E)
where VH contains one vertex for each residual component of F (see Figure 4). There is an
edge between two vertices vy, v € VH if their respective residual components are separated
by a single blocking area b € B and its associated blocker ¢ resides in the respective residual
component of either v; or vo. Although a single blocking area in B can divide F into more
than two connected components, such a blocking area does not create a cycle in H. This is
due to the definition of an edge in H which requires the associated blocker to be in one of
the two components. Next lemma follows directly from Lemma 5.

» Lemma 7. Any blocking area b € B shares a boundary with the residual component
containing its associated blocker t.

Next we show that H is a tree by construction.

» Lemma 8. The residual components graph H is a tree.
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The general idea of our algorithm is to use the residual components graph H to help us
split the problem into smaller subproblems. Using the graph H, we will iteratively choose a
leaf residual component F'; with a non-positive charge (recall that the charge of a component
is the number of start positions minus the number of the target positions), and solve the
subproblem restricted to that component using its motion graph, which we define shortly.
If afterwards F; will require more robots, they will be moved from a neighboring residual
component, ensuring that the blocking area is free for the robots to pass.

4.2 The motion graph

We now introduce the motion graph, which captures adjacencies between the start/target
positions. Similarly to [1], the underlying idea of our algorithm is to always have the robots
positioned on start or target positions and, using the motion graph, to move one robot at a
time between these positions until all target positions are occupied.

Recall that for now we assume that the free space consists of one connected component
F. For a free space F' with start positions S and target positions T', we define the motion
graph G = (V& E), where V¢ = SUT. The edges E€ in G are of two types: guaranteed
or blockable, which we formally define below. Guaranteed edges correspond to so called
guaranteed paths, where a path in the free space F' between u,v € S UT is said to be
guaranteed if it does not intersect the aura of any position other than u and v.

Unlike guaranteed, blockable edges correspond to paths in F' that must cross blocking
areas. Our algorithm requires the motion graph G to be connected. However, as § < 4,
without blockable edges the motion graph may be disconnected. Introducing blockable edges
ensures that G is connected.

Guaranteed edges. First, we define the guaranteed edges in E¢ and show how to construct
corresponding guaranteed paths. Recall that we define the set F* to be the free space minus
the auras of the start positions and the remote components, F* = F'\ (U,cg P2(s) UU R).

> \p_t4/ -

Figure 5 An illustration of generating the guaranteed edges in a single component F;". Component
F; is shown in dark grey; Aj is (ps,, Py, Pso, Psss Pss» Ptas Dts» Psa)- A path between a pair of adjacent
positions is shown in red. The motion graph is shown on the right.
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Consider a connected component F; C F*. Note that F; may not be simply-connected, as
it may contain holes due to subtracted auras of start positions. Abusing the notation, by
OF} we refer to the outer boundary of F. For OF}, we create an ordered circular list A; of
points along OF as follows (see Figure 5).

(i) For each target position ¢ € T'N F whose aura intersects OF}, we pick a set of
representative points P, such that P; contains one point on each connected component
of OF} N'Dx(t). The points P are stored in A; based on their ordering along 9F'.

(i) For each position x which is (1) either a target position in I} whose aura does not
intersect OF}, or (2) a start position corresponding to a hole in F 7, we shoot a ray
vertically upwards until it hits either OF} or the aura of another position y. In the
former case the first intersection point p, is added to A; as a representative point of x.
In the latter case a guaranteed edge is added to £ connecting = and y.

(iii) Now, consider a start position s whose aura shares a boundary with 0F;. Note that
OF; N'Da(s) is connected. If we can pick a representative point ps on 9F; N Da(s) such
that there exists an unobstructed path in F' connecting s to ps, then we insert ps to
A; based on its ordering along OF}". Otherwise, if for every choice of ps € OF} N Da(s)
any path connecting s to ps crosses an aura of some target position ¢, then we add a
guaranteed edge to E¢ connecting s and ¢ (for every such target position ¢). Observe,
that by the definition of remote components, if a path connecting s to ps crosses the
aura of ¢, it must cross it through the non-remote component of ¢. Thus, there must
exist a guaranteed path connecting s and t.

Now that A, is generated, we add a guaranteed edge to the motion graph between any two

nodes in G whose representative points are consecutive in A;. If multiple edges between two

vertices and self-loops are generated, we remove them in a post-processing step. We repeat

this procedure for every connected component F} C F*.

Blockable edges. For any blocking area b € B and its associated blocker ¢, each section
of db is either shared with (1) the boundary of the aura of ¢, (2) with the boundary of the
aura of some start position in S, or (3) with OF. See Figure 6 for an illustration. We call a
section of b which is shared with OF a free boundary segment of b. For any free boundary
segment of b with endpoints z and y, we assign a set of incident positions in SUT to x and
to y (see below for details). We then add a blockable edge to the motion graph between
every pair of incident positions of x and y respectively. Consider an endpoint = of a free
boundary segment of b. The set of incident positions of x is defined as follows.

: F2 ‘\ ‘
/ /
/ / \
\
\ . /\ Fl/
Figure 6 An illustration of a blocking area (in red) with its free boundary (in blue). On the right,
the motion graph is shown, with the guaranteed edges (in black) and blockable edges (in blue).
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Figure 7 The special case when a blockable edge is added across two blocking areas.

(i) If z is also an endpoint of a section of 9b that is shared with 0Dy (s) for s € S, then s
is the only incident position for x.
(ii) If z is also an endpoint of a section of 9b that is shared with 0Dz (t), then z lies on the
boundary of a component of F™*. Let that component be F'. Based on the position of
x on OF}, using A;, we find the predecessor and the successor points of z in A;. By
construction of A;, these points are representative of some positions in SUT. We select
those positions as the incident positions for x. The special case that A; is empty, is
handled separately and is explained next.
For the special case when A; of F}" is empty, if b is the only blocking area incident to OF},
then F does not contain any position in S UT, and can be ignored. Otherwise, if I is
adjacent to another blocking area b’ (of some blocker t'), then from x we follow OF J until we
reach O’ at z’, which must be the endpoint of a free boundary segment of b’ (see Figure 7).
Let 3/ be the other endpoint of that free boundary segment. We now select the incident
positions of 3’ as the incident positions of z, i.e., we add a blockable edge between the
incident positions of y and those of 3. This results in blockable edges associated with two
blocking areas b and b’.

Translating motion graph edges to free space paths. Consider a component F; C F™,
and let A; be the circular list of representative positions constructed for F 7. Let u and v be
two positions whose representative points are adjacent in A;. By definition, (u,v) € EC is a
guaranteed edge, and we claim that there exists a guaranteed path between v and v in F.
We construct such a path 7, in the following way.

(i) First, m,, connects u to its representative point p, by either following an unobstructed
path from u to p, within u’s aura, or by following the vertical ray used to generate p,
outside of u’s aura.

(ii) Next, my, connects p, to the representative point p, of v by following OF ;-

(iii) Finally, m,, connects p, to v similarly to (i).

Now consider the case when a guaranteed edge (u,v) is constructed without adding the
representative points to A;. If (u,v) is constructed according to the case (ii) of the definition
of the guaranteed edges, and without loss of generality the vertical ray emanates from wu,
then the guaranteed path 7, consists of the vertical segment up, and an unobstructed
path connecting the representative point p,, to the node v within the aura of v. If (u,v) is
constructed in case (iii), and without loss of generality u € S and v € T', then the guaranteed
path m,, consists of a path from w until the first intersection with the aura of v and an
unobstructed path to v within its aura.

The paths for blockable edges are constructed in the following way. Each endpoint of a
free boundary segment is incident to at most two representative points in some list A;. Thus,
each free boundary segment (x,y) of every blocking area b contributes up to four edges to
the motion graph. Consider a blockable edge (uz,v,) between an incident position u, of
and an incident position v, of y. The corresponding path consists of three parts.
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(i) From u, to x. This part is generated similarly to the part (i) for guaranteed edges.

(ii) From z to y. This part follows the free boundary of b between z and y.

iii) From y to v,. This part is generated similarly to the part (iii) for guaranteed edges.
Y

The following proposition, lists five properties of the motion graph, which will be used to
derive the correctness and the complexity of the algorithm.

» Proposition 9. The following properties of a motion graph G hold.

1. There exists a guaranteed path in F for each guaranteed edge in G.

2. There exists a path in G consisting solely of guaranteed edges between any two positions
inside the same residual component Fj €F.

3. G is connected.

The number of edges |EC| in G is bounded by O(m).

5. Between any two vertices of G, we can find a path in O(m) time, and the corresponding
path in the free space has complexity of O(m + n).

6. The motion graph G can be created in O(mn + m?) time.

Ea

4.3 The algorithm

We are now ready to describe our algorithm. We use the residual components graph H,
which is a tree, in order to split the problem into smaller subproblems, and recursively solve
them. Using H we select a particular residual component of the free space, and solve the
subproblem restricted to it using the motion graph. Proposition 9 will help us ensure that
such reconfiguration is always possible. One key point is to select a vertex of H, such that,
after solving the subproblem in the corresponding residual component, no robots need to
move across the incident blocking areas. That is, we need to choose the residual components
in such an order that we can ignore blockers in the solved residual components.

Recall that a charge ¢(Q), for some @ C F, is the difference between the numbers of the
start positions and the target positions in Q. Initially, if there is an edge e € E¥ such that
removing e splits H into two subtrees with zero total charge each, then we remove e from H
and recurse on the two subtrees.

Let us now assign an orientation to the edges of H in the following way. For each edge
e = (u,v), let H, and H, be the two trees of H \ {e} containing u and v, respectively. We
orient e from u to v if ¢(H,) > 0 > ¢(H,), and from v to w if ¢(H,) < 0 < ¢(H,).

» Lemma 10. There exists at least one sink vertex in the directed acyclic graph H.

Using Lemma 10, our algorithm selects a sink node o of H. The respective residual component
F, is solved as follows. First, all robots inside F, are moved to unoccupied target positions.
Since all incident edges of o in H are directed inwards, each edge requires one or more
robot(s) to move into F,. The exact number can be computed from the charges of the
subtrees of the adjacent residual components. We then move the required number of robots
the adjacent residual components (and farther residual components if needed) to F, over
the corresponding blocking areas. Consider the blocker t associated with a blocking area b
incident to F,. If t is occupied before the charge of F, becomes zero, then ¢ has to reside
in F,, as the adjacent residual components were not yet processed by the algorithm. Then
we move the robot from t to another unoccupied target in F,, and the now unoccupied
blocker position ¢ is the last target to become occupied by a robot moving across b.

Once all target positions of F, are filled, o and its incident edges are removed from H,
and we recurse on the remaining subtrees. Due to the way we select o, and the number of
robots that are moved into F,, each subtree has a total zero-charge.
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» Theorem 11. When the free space consists of a single connected component, our algorithm
finds a solution to the unlabeled motion planning problem for unit-disc robots in a simple
workspace, assuming monochromatic separation y = 4 and bichromatic separation = 2.
This takes O(nlogn + mn +m?) time.

We now show how to extend our approach to = 0. In the above algorithm, we use the
bichromatic separation 8 = 2 to ensure that at every moment in time any subset of nodes of
the motion graph can be occupied by robots. If 3 < 2 we can no longer assume that any
start position and any target position can be occupied at the same time. Nevertheless, even
when 8 = 0, observe that, due to y = 4, for a pair of start and target positions s; and t;
such that |s;t;| < 2, no other target position ¢ can lie in Ds(s;), and no other start position
s¢ can lie in Dy(t;). Thus, there is a guaranteed path from s; to ¢;. This can be exploited to
adjust the motion graph and the algorithms for 5 = 0. Specifically, for each pair of such s;
and t;, we create a single target node in our motion graph, we move the robot from s; to t;,
and adjust our algorithm to work for the case of different number of start and target nodes
in the motion graph.

» Theorem 12. When the free space F consists of a single component, the algorithm finds a
solution to the unlabeled motion planning problem for unit-disc robots in a simple workspace,
assuming monochromatic separation u = 4. This takes O(nlogn + mn + m?) time.

5 Multiple free space components

In this section we consider the case where the free space F consists of multiple connected
components. Since a separation of 5 = 3 is necessary to guarantee a solution, we now assume
separation bounds of © =4 and g = 3.

Figure 8 An example of a position (s2) blocking movement (s; to ¢1) in another free space
component.

Within each free space component we can use the algorithm from Section 4. However,
paths, that are otherwise valid, may be blocked by a robot from another component (see
Figure 8). In this example, there is a simple solution: Move the robot away from s, toward

to in the upper component, before moving the robot from s; to ¢; in the lower component.

In the following we prove that there always exists an order on the free space components
such that the motion planning problem can be solved by solving the problem component by
component in that order.

Let F, F’ be two distinct components of F, and let z € F be such that Dy(z) N F’ # @.

Since the workspace is simple, it is sufficient to prove that for any such pair of components
there is an order between them such that we can first solve one component and then the
other. There are two reasons why such an ordering may not exist.
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Firstly, there might be a start position s € F and a start position s’ € F’ such that
Do(s) N F' # @ and Dy(s') N F # &, that is, a start position in F interferes with paths in
F’ and vice versa. However, Adler et al. [1] proved that with g = 4, this cannot be the case.
Likewise it cannot happen that a target position in F' interferes with paths in F’ and at the
same time a target position in F’ interferes with paths in F.

Secondly, there might be a start and target positions s,¢ € F' both interfering with paths
in F’. Because we only have a separation bound of 8 = 3 between s and ¢, this may actually
occur. However, interference does not always affect the connectivity of the affected free space
component. Therefore, we define a position = (start or target) to be a remote blocker of
a free space component F” if (1) x ¢ F’, and (2) Da(x) intersects OF’ in more than one
connected component.

» Lemma 13. If the unlabeled motion planning problem has no remote blockers, then there
s always a solution.

Now the key geometric observation is that if auras of both s and ¢ intersect F’, they
cannot be both remote blockers of F’, and as a consequence we can still always find an order
to resolve F' and F”.

» Theorem 14. We are given m unit-disc robots in a simple polygonal workspace W C R?,
with start and target positions S, T and separation constraints =4 and § = 3. Assuming
each connected component I of the free space F for a single unit-disc robot in W contains
an equal number of start and target positions, there exists a collision-free motion plan for the
robots starting at S such that all target positions in T are occupied after execution.

6 Conclusion

In this paper we presented an efficient algorithm for the unlabeled motion planning problem
for unit-disc robots with sufficient separation in a simple polygon. Our result is optimal, in
the sense that with less separation a solution may not exist. Nevertheless, there remain a
number of challenging open problems.

To prove the tightness of the separation bounds, we first constructed domains with
straight-line segments and circular arcs as boundaries, and then obtained simple polygons by
approximating these. This results in polygons of high complexity. An open question remains
whether it is possible to prove the separation bounds with constant-complexity polygons.

Of course, a solution may still exist even if the separation bounds are violated. The
complexity of the problem in this setting remains a challenging open problem. The general
unlabeled motion planning problem in a polygonal environment with holes is PSPACE-
complete [2, 20]. Does the restriction to unit-disc robots and/or simple domains make the
problem tractable, in particular if we still enforce some small separation bound?

What challenges arise when the workspace is no longer simple, but rather contains
obstacles? Intuitively, obstacles seem to pose an issue when defining an ordering for solving
multiple free space components, since positions can interfere between components at multiple
locations. Are there conditions, similar to the separation bounds, which can guarantee a
solution (together with an efficient algorithm) for unlabeled multi-robot motion planning
amidst obstacles?
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