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A proof, a consequence and an application of Boole’s combinatorial

identity

FINBARR HOLLAND

Abstract. Boole’s combinatorial identity is proved, and a consequence of it for
analytic functions is derived that is used to evaluate a sequence of integrals in terms
of Euler’s secant sequence of integers.

1. Boole’s identity

This features early on in [2], (cf. equation (6) on page 20) and states that if n is a
nonnegative integer, then

n
∑

k=0

(

n

k

)

(−1)n−kkn = n!. (1)

In addition, if n ≥ 1, and m is any nonnegative integer less than n, then
n
∑

k=0

(

n

k

)

(−1)n−kkm = 0. (2)

Both of these statements have many proofs; consult [1], and the references cited therein.
Here’s an outline of a combined proof of (1) and (2):

Proof. Write

σn(m) =

n
∑

k=0

(

n

k

)

(−1)n−kkm = n!

n
∑

k=0

(−1)k(n− k)m

k! (n− k)!
, m, n = 0, 1, 2, . . . .

Fix m, and observe that the sequence {σn(m)/n!, n = 0, 1, . . .} is the convolution of
the sequences {(−1)n/n!, n = 0, 1, . . .}, and {nm/n!, n = 0, 1, . . .}. Hence

∞
∑

n=0

σn(m)

n!
zn =

∞
∑

n=0

zn
n
∑

k=0

(−1)k

k!

(n− k)m

(n− k)!

=
(

∞
∑

n=0

(−1)n

n!
zn

)(

∞
∑

n=0

nm

n!
zn

)

= e−zWm(z),

where

Wm(z) =
∞
∑

n=0

nmzn

n!
= Θmez,

Θ standing for the differential operator z d
dz , much used by Boole in his treatment of

linear differential equations with variable coefficients.
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Clearly, W0(z) = ez,W1(z) = zez, and the following recurrence relation holds:

Wm+1(z) = zW ′

m(z) +Wm(z), m = 0, 1, . . . ,

where the prime denotes differentiation. So, Wm(z) is a monic polynomial pm(z) times
ez, and deg pm = m, which is easy to see by induction. Hence,

∞
∑

n=0

σn(m)

n!
zn = pm(z),

from which it follows immediately that σn(m) = 0, ∀n > m and σn(n) = n!. Thus (1)
and (2) are true. �

2. A simple consequence

Suppose f is analytic on a disc D centred at 0 in the complex plane. Then, for any
nonnegative integer n,

lim
x→0

1

xn

n
∑

k=0

(

n

k

)

(−1)n−kf(kx) = f (n)(0). (3)

Proof. Let

F (x) =

n
∑

k=0

(

n

k

)

(−1)n−kf(kx), ∀x ∈ 1

n
D.

Clearly, F is analytic on a subdisc of D centred at 0, on which

F (m)(x) =

n
∑

k=0

(

n

k

)

(−1)n−kkmf (m)(kx).

In particular, it follows from (2) that

F (m)(0) =
n
∑

k=0

(

n

k

)

(−1)n−kkmf (m)(0) = 0, m = 0, 1, . . . , n− 1, (4)

and from (1) that

F (n)(0) =
n
∑

k=0

(

n

k

)

(−1)n−kknf (n)(0) = n!f (n)(0). (5)

Therefore, by integrating by parts multiple times, and applying (4) repeatedly,

F (x) =
1

(n− 1)!

∫ x

0
(x− t)n−1F (n)(t) dt =

xn

(n− 1)!

∫ 1

0
(1− s)n−1F (n)(xs) ds.

Hence

F (x)− xn
F (n)(0)

n!
=

xn

(n− 1)!

∫ 1

0
(1− s)n−1[F (n)(xs)− F (n)(0)] ds.

Let ǫ > 0. By hypothesis, there exists δ > 0 such that |F (n)(z)−F (n)(0)| < ǫ whenever

|z| < δ, and so |F (n)(xs)− F (n)(0)| < ǫ whenever |x| < δ and 0 ≤ s ≤ 1. Consequently,
if 0 < |x| < δ,

∣

∣

∣

F (x)

xn
− F (n)(0)

n!

∣

∣

∣
≤ 1

(n− 1)!

∫ 1

0
(1− s)n−1|F (n)(xs)− F (n)(0)| ds

≤ ǫ

(n− 1)!

∫ 1

0
(1− s)n−1 ds

=
ǫ

n!
.
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In other words,

lim
x→0

F (x)

xn
= f (n)(0),

by (5), as claimed. �

In particular, if f has a power series expansion about 0 so that, for some r > 0,

f(x) =

∞
∑

m=0

amxm, ∀|x| < r,

then

lim
x→0

1

xn

n
∑

k=0

(

n

k

)

(−1)n−kf(kx) = n!an

by (3).

3. An application

Consider the sequence of integrals

In =

∫

∞

0

(ln(x))n

1 + x2
dx, n = 0, 1, 2 . . .

It‘s familiar that I0 = π/2, and clear that

In =

∫ 1

0

(ln(x))n

1 + x2
dx+

∫

∞

1

(ln(x))n

1 + x2
dx

=

∫ 1

0

(ln(x))n

1 + x2
dx+

∫ 1

0

(ln( 1x))
n

1 + x2
dx

= (1 + (−1)n)

∫ 1

0

(ln(x))n

1 + x2
dx.

Hence, I2n+1 = 0, n = 0, 1, 2, . . .. It’s an exercise on page 134 in [3] (Titchmarsh’s
Theory of Functions) that I2 = π3/8, while the computer package MAPLE spews out
values of I2n for n = 2, 3, 4, 5, 6, according to which

I4 =
5π5

25
, I6 =

61π7

27
, I8 =

1385π9

29
, I10 =

50521π11

211
, I12 =

13936098π13

213
.

The numbers 1, 5, 61, 1385, 50521, 139360981 are the first six terms of the integer se-
quence named Euler’s secant sequence, and numbered A000364 in [4] (Sloane’s online
encyclopedia of integer sequences). If a(n) denotes the nth term of this sequence, it’s
tempting to conjecture that

I2n =
a(n)π2n+1

22n+1
, n = 0, 1, 2, . . . .

One way to confirm this is as follows.

Proof. Recall that, for x > 0, lnx is the limit of the decreasing sequence,
m( m

√
x− 1), m = 1, 2, . . .. Hence

In = lim
m→∞

mn

∫

∞

0

(x1/m − 1)n

1 + x2
dx

= lim
m→∞

mn

∫

∞

0

n
∑

k=0

(

n

k

)

(−1)n−k xk/m

1 + x2
dx

= lim
m→∞

mn
n
∑

k=0

(

n

k

)

(−1)n−kJ(k/m),
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where, for |ℜα| < 1,

J(α) =

∫

∞

0

xα

1 + x2
dx =

π

2
sec

(πα

2

)

.

Since sec admits of a power series expansion about 0 of the form

secx =
∞
∑

n=0

a(n)

(2n)!
x2n,

that is valid for all |x| < π/2, it follows that

In =
π

2
lim

m→∞

mn
n
∑

k=0

(

n

k

)

(−1)n−k sec

(

kπm

2n

)

=
π2n+1

22n+1
sec(n)(0),

by (3), and so, in particular, I2n+1 = 0, n = 0, 1, . . ., as we noted above, and

I2n =
a(n)π2n+1

22n+1
,

as desired. �

Remark 3.1. The connection between the values of the sequence In of integrals, and
terms of the sequence A000364, doesn’t appear to have been noticed before.
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