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Abstract: The unassisted transport of inorganic ions through lipid membranes has become increas-
ingly relevant to an expansive range of biological phenomena. Recent simulations indicate a strong
influence of a lipid membrane’s curvature on its permeability, which may be part of the overall
cell sensitivity to mechanical stimulation. However, most ionic permeability experiments employ a
flat, uncurved lipid membrane, which disregards the physiological relevance of curvature on such
investigations. To fill this gap in our knowledge, we adapted a traditional experimental system
consisting of a planar lipid membrane, which we exposed to a controlled, differential hydrostatic
pressure. Our electrophysiology experiments indicate a strong correlation between the changes
in membrane geometry elicited by the application of pressure, as inferred from capacitance mea-
surements, and the resulting conductance. Our experiments also confirmed the well-established
influence of cholesterol addition to lipid membranes in adjusting their mechanical properties and
overall permeability. Therefore, the proposed experimental system may prove useful for a better
understanding of the intricate connections between membrane mechanics and adjustments of cellular
functionalities upon mechanical stimulation, as well as for confirmation of predictions made by
simulations and theoretical modeling.

Keywords: bilayer lipid membrane; conductance; curvature; pressure; electrophysiology

1. Introduction

Mechanical stimulation from the physical environment is one of the most primeval
mechanisms of cellular response [1,2]. The large variety of mechanical stimuli to which cells
and complex organisms are continually exposed led to an evolution-directed development
of distinct mechano-transduction mechanisms, responsible for processes ranging from
sensing changes in osmotic pressure [2,3] to more advanced biological functions, such as
touching and hearing [4–6]. Irrespective of the specific nature of the mechanical stimulus,
the plasma membrane plays a crucial role in mechanical transduction [7]. At the membrane
level, mechano-transduction may be achieved by employing specialized receptors and
transporters [2,3,7–11]. For example, mechano-sensitive channels [1,3,8] are activated by
mechanical stimuli acting upon membranes and mediate the transport of otherwise non-
permeant solutes across them. Such behavior is typical for mechano-regulated, catalyzed
transport of ions through any cell membrane via ion channels. However, investigations
on unassisted ion permeation across lipid membranes are gaining momentum. For a long
time, it was considered that physiologically relevant inorganic ions must overcome the very
large Born energy barrier presented by the lipid membrane [12–14], hence, leading to a very
weak permeability. Nonetheless, numerous simulations and experimental investigations
indicate inorganic ion permeation through bare lipid membranes [15–18], which may be
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easily quantified from conductance measurements carried out in typical electrophysiology
experiments on planar bilayer lipid membranes (BLMs) [17]. However, such membranes
are flat, and they do not replicate the physical features of curved membranes, which are
more relevant from a physiological standpoint. In this respect, simulations performed
on an asymmetric and highly curved model of a plasma membrane predict an increase
of up to three orders of magnitude for the permeability of water, ions, and anti-cancer
drugs [18]. The influence of curvature on a membrane’s structural parameters, such as
thickness, order parameter, area per lipid, and cholesterol’s inclination and distribution [19],
as well as other physical parameters, were intensively scrutinized by simulations [19–21].
Recently, an experimental system consisting of Giant Unilamellar Vesicles with curvature
controlled by osmotic pressure was utilized to investigate the direct entry of cell-penetrating
peptides [22]. All these theoretical and experimental explorations indicate that a better
understanding regarding the influence of mechanical stress on the transport through lipid
membranes provides novel cues for deciphering how ubiquitous environmental factors
modulate cellular physiology in health and disease. In this line, our work addresses this
gap in knowledge by employing an experimental system that facilitates investigations on
the transport of inorganic ions through artificial BLMs exposed to a differential pressure,
simply achieved by adjusting the height of a liquid column in one of the reservoirs bathing a
vertical membrane. Basic electrophysiology measurements of the membrane’s conductance
and capacitance reveal that pressure reversibly modulates the membrane’s permeability
to monovalent inorganic ions. Further, our experiments confirm the numerous prior
observations that the addition of cholesterol to lipid membranes modulates their mechanical
and transport properties.

2. Materials and Methods
2.1. Chemicals

We used two different lipid mixtures to produce starter planar lipid membranes of
compositions close to those of mammalian cell membranes. The cholesterol-free membrane
was composed of Asolectin (Aso, Sigma-Aldrich, St. Louis, MO, USA) and Sphingomyelin
(SM, Avanti Polar Lipids, Alabaster, AL, USA) dissolved in n-decane (TCI America, Port-
land, OR, USA) as stock solutions (100 mg/mL Aso, and 50 mg/mL SM) and mixed to
provide an Aso:SM ratio of 10:4 (w:w). Cholesterol (Chol, Sigma-Aldrich) was dissolved in
n-decane (50 mg/mL) and was used to produce a mixture of Aso:SM:Chol at w:w ratios of
10:4:4. Throughout our experiments we used a buffered electrolyte solution consisting of
135 mM KCl (ThermoFisher Scientific, Waltham, MA, USA) and 20 mM HEPES (pH = 7.2,
ThermoFisher Scientific).

2.2. Production and Characterization of Planar and Curved Bilayer Lipid Membranes (BLM)

The starter planar BLMs were made in a small PTFE film in which we produced a
small hole (~100–150 µm diameter) using an electric spark. The film was sandwiched
between two reservoirs custom machined from black Delrin® (DuPont, Wilmington, DE,
USA), each one capable of holding a total volume larger than 2 mL (see the schematics in
Figure 1a). Each reservoir was filled with 0.8 mL electrolyte solution, and the BLM was
produced using the painting method [23,24]. The electrical circuit was completed with two
Ag/AgCl electrodes inserted in the electrolyte solutions and wired to the headstage of an
Axopatch200B electrophysiology amplifier (Molecular Devices, San Jose, CA, USA). The
analog signal was fed into a DigiData 1440A digitizer (Molecular Devices) connected to
a personal computer for signal monitoring and data recording. The BLM formation was
monitored from the membrane capacitance inferred from the amplitude of the rectangular
capacitive current measured (at 4 µs sampling rate) in response to a triangle-shaped
stimulatory voltage provided by a function generator. For this experimental system, a
capacitance in the range 60–80 pF provided long-term stability; lower capacitances led to
formation of multilayers, while higher capacitances led to premature membrane rupture
upon exposure to a differential hydrostatic pressure. The membrane conductance was
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determined from the slope of the IV plots recorded in response to voltage ramps ranging
from −20 mV to +20 mV at a voltage change rate of 2 mV/s and a sampling rate of 0.1 s. The
constant capacitive component (Ic = CdV/dt) was subtracted from the recorded currents to
eliminate the y offset of the IV plots (which does not affect their slopes).
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air interface. 

Figure 1. The experimental setup for investigations on ionic transport through lipid membranes
exposed to controlled differential pressure. Left (a): a planar bilayer lipid membrane is formed in a
traditional setup. Right (b): the planar membrane is subjected to the pressure created in one reservoir
through addition of electrolyte solution. The physical and transport properties of the membranes are
monitored by electrophysiology measurements (capacitance and conductance). For both schematics,
the Plateau-Gibbs border (annulus) is observed at the lipid membrane-PTFE film interface. The
diagrams are not to scale.

The procedure for achieving pressurized membranes (Figure 1b) was initiated by
creating a differential pressure p = ρg∆h on the two sides of the membrane, where ρ is
the electrolyte density (1.007 ± 0.0015 g/mL, determined by weighing 1 mL of solution,
n = 5), g is the gravitational acceleration, and ∆h is the height difference between the
electrolyte solution levels in the two reservoirs. Upon increasing the volume of the solution
in the grounded reservoir, we assumed that the additional pressure leads to a curved
membrane, with a different geometry from a planar one. This difference in geometry can be
exploited for qualitative description of changes in surface area, as described in the results
section. For the purpose of quantitative evaluations on the differential pressure, we used a
custom-made system to measure the height of the electrolyte upon successive additions and
subtractions of fluid into and from reservoirs (for this experiment, a PTFE partition with no
hole was used between the assembled Delrin® reservoirs). The core of the setup depicted
in Figure 2 is a micrometer screw that moves a plate in contact with the probing rod of a
digital dial indicator (1 µm resolution, DITR-0055 Digital Indicator, Clockwise Tools) at
the same time with a very sharp tip (the curvature of the tip was less than 10 µm) made
of stainless steel and positioned in the center of the reservoir to avoid the menisci formed
at the solution–wall interfaces. A custom sense box containing a current amplifier and
audio/visual indicators was used to precisely detect when the sharp tip made contact with
the electrolyte solution; for completing the electrical circuit, another Pt wire served as an
electrode continually embedded into the bulk solution. This device was utilized to calibrate
each reservoir (from the plot of height vs. added volume) for both insertion and retraction
of the tip into and from solution. For additions, the reservoirs were prefilled with 200 µL
electrolyte solution to ensure proper electrical connections and a flat solution-air interface.

Electrophysiology data recording and preliminary analysis (capacitance and conduc-
tance) were performed with the pClamp10.0 software package (Molecular Devices); the data
were further analyzed and plotted with Origin 8.5.1 (OriginLab Corporation, Northampton,
MA, USA). All the experiments were performed at room temperature (22 ± 1 ◦C).
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3. Results and Discussion
3.1. Height Calibration of the BLM Reservoir

The first investigations aimed at calibrating the chamber with respect to the hydrostatic
pressure and determining the replicability for multiple electrolyte additions and removals.
Both pairs (a total of four identical reservoirs) were tested to ensure that interchangeability
between chambers did not influence the measurements. The custom experimental setup
was utilized to determine the height of the electrolyte column, as described in the Methods
section. Addition of the electrolyte to the reservoirs led to an increase in height, which was
measured with the digital indicator. When the first set of additions was finalized, we also
measured the height upon removal of the solution from the reservoir. The experiments
were carried out in triplicate for all four reservoirs. The plot showing height as a function
of added volume (Figure 3) indicated an excellent linearity for all reservoirs, as well as a
nearly identical slope of 9.2 µm/µL. The differences between the y-intercepts observed for
addition and removal can be easily explained by considering the meniscus that formed
when the sharp probing tip was removed from the solution, which led to the formation of a
conducting channel between the tip and solution’s surface [25].

3.2. Preliminary Investigations on the Influence of Differential Pressure on
Membranes’ Conductance

Next, we proceeded with preliminary setup testing by observing the influence of
the differential hydrostatic pressure on the conductance of a cholesterol-free membrane.
The membrane capacitance measured from the amplitude of the capacitive current in the
absence of pressure (no electrolyte additions) was ~70 pF (Figure 4a), and the conductance
inferred from the IV plot (Figure 4b) was under 0.01 nS (corresponding to a 100 GΩ mem-
brane, indicative of an excellent seal). A crude estimation of the specific capacitance and
conductance by considering a membrane diameter of ~110 µm provides estimated values
well within the range reported in the literature, for both specific capacitance and conduc-
tance (i.e., capacitance over 0.6 µF/cm2 and conductance of ~110 nS/cm2 [26,27]). Upon
addition of 100 µL electrolyte solution to the grounded reservoir, the membrane’s capaci-
tance suddenly increased to ~100 pF (Figure 4c) and the membrane’s conductance increased
and attained a value of ~0.06 nS (as inferred from the IV plot depicted in Figure 4d). Re-
moval of 100 µL solution from the same reservoir in which the addition was performed led
to recovery of both capacitance (~70 pF, Figure 4e) and conductance (~0.01 nS, Figure 4f).
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four reservoirs; the standard deviations are smaller than the size of the symbols.

A reasonable explanation for the changes in conductance may be provided by consid-
ering the effects of applied pressure. The addition of electrolyte solution to the grounded
reservoir led to the development of a differential pressure that pushed the membrane from
one side. This push led to an increased capacitance, which indicates a significant change
in membrane geometry. The changes in the membrane’s capacitance may originate in a
larger surface area, bilayer thinning, or both. Previously reported simulations indicate
that a curved membrane may undergo thinning [19]; since this is predicted to be very
small [19], we concluded that the change in the surface area of a pressurized membrane is
the major contributor to the increased capacitance. However, we may not disregard the
serious gap in our knowledge regarding the absence of conclusive information with respect
to how the planar lipid membranes increase their surface area in response to pressure.
A bilayer lipid membrane is an open system, in which the Plateau-Gibbs (PG) border
(annulus) [28,29] plays the role of a lipid reservoir, an essential feature for the membrane’s
stability. However, we do not know if an increased surface area of the curved membrane is
attained by employing lipids from the PG border, or if the border behaves like a fixed edge
and the only effect is the curving of the membrane. While it seems reasonable to assume
that the bilayer membrane undergoes curving upon application of differential hydrostatic
pressures, irrespective of changes at the PG border, such changes may lead to additional
variations in capacitance and conductance. Imaging may provide information on the size
of the membrane and annulus, but this would be accurate only for the flat membrane.
Bright-field microscopy may provide only a 2D projection of a 3D structure, impeding
a correct determination of the changes in geometry. While curvatures may be easily vi-
sualized at larger scales [26], precise assessments at microscale may be accomplished by
employing Confocal Laser Scanning Microscopy [30], thus, enabling the modelling of indi-
vidual contributions from the membrane and annulus. Another issue may be represented
by the short-chain solvent (i.e., n-decane) used to solubilize the lipids, which may remain



Membranes 2022, 12, 479 6 of 12

embedded in the self-assembled structure, modulating its mechanical and electrical prop-
erties. In this respect, substantial membrane thinning (leading to increased capacitance)
may originate in the solvent exclusion from membranes curved by pressure, but this may
not be reversible. Despite all these shortcomings, we hypothesized that the major contrib-
utor to the observed changes in capacitance of a membrane exposed to small differential
hydrostatic pressure was the change in surface area due to pressure-induced curving. This
hypothesis, though it needs further verification, is supported by the observation that the
recovery of the original electrical properties (i.e., capacitance and conductance) was very
fast for reasonable values in the capacitance of membranes exposed to pressure. For this
lipid composition, capacitances up to ~300 pF attained upon solution additions enabled a
fast recovery after removal of the additional solution volumes, while over this capacitance
value, the recovery was much slower (up to tens of minutes) or completely abrogated (the
initial capacitance was not reinstated even after tens of minutes). We understand that the
fast relaxation of a stressed membrane does not exclude a rapid exchange of lipids with the
PG border; nonetheless, the membranes exposed to differential hydrostatic pressure very
likely still present curvature and additional intramembrane mechanical stress, validating
our experimental results for the conditions described in this work.

3.3. Pressure Influences the Ionic Conductance of Cholesterol-Free Membranes

Next, we investigated the relationship between the cholesterol-free membrane capac-
itance and conductance for an entire range of applied pressures. With all our efforts, it
was impossible to conduct independent experiments in which the initial conditions (i.e.,
conductance and capacitance) were identical. This is not necessarily a consequence of
the different geometrical parameters of the hole produced in the PTFE film (these were
verified by microscopy, and were consistent); therefore, we assumed that the differences in
initial capacitances originated in different sizes of the PG border. In the same line, much
smaller differences (yet not negligible) were measured for the initial conductance of relaxed
membranes. Therefore, to facilitate data comparison between independent experiments,
we opted for plotting the variation in these parameters (both against initial values mea-
sured for the relaxed membranes) for each of the experimental conditions; whatever the
case, membranes with an initial conductance much larger than 0.01 nS (i.e., 100 GΩ) were
discarded to avoid artifacts arising from substantial leakage.

The results for cholesterol-free membranes (plotted in Figure 5) show a quasi-linear
relationship between the changes in conductance and capacitance. Each point in the plot
indicates the average value, determined from at least two experiments carried out on the
same membrane; however, the plot includes the results from eight membranes, in which we
encountered slight variations in initial electrical parameters. In addition, the experimental
values were determined after additions and subtractions of electrolyte solutions from the
grounded reservoirs for each membrane, suggesting good reversibility.

An excellent linear correlation between changes in capacitance and conductance
was determined for all the data plotted in Figure 5; this was indicated by a Pearson
correlation factor of 0.99 and an R2 value of 0.98. Quite interesting is the observation
that very small changes in the differential pressure led to unexpectedly large adjustments
in the capacitance. The slope of the plot presented in Figure 3 enables the calculation
of the differential hydrostatic pressure after each change in height. For the reservoirs
used, the addition of 25 µL electrolyte led to measurable changes in capacitance and
conductance, although the hydrostatic pressure difference was only ~230 µm solution
column, corresponding to ~2.27 Pa (those values were estimated based on the plot depicted
in Figure 2, and the estimated density of the solution). The similar changes in the measured
electrical parameters of curved membranes, for which the starting PG border was different,
suggests that the small, applied pressure most probably curved the membranes without
excessive use of lipids from the PG reservoir.
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Figure 4. Preliminary testing of the experimental system on a cholesterol-free membrane. A relaxed
membrane has a capacitance of ~70 pF (a) and a very low conductance (b). Pressure from the
additional solution in the grounded reservoir leads to an increase in capacitance (c) and conductance
(the slope of the IV plot) (d). The elimination of the differential pressure by solution removal restores
the initial capacitance (e) and conductance (f).
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3.4. Effects of Pressure on the Conductance of Membranes with Cholesterol

The experiments carried out on membranes containing cholesterol led to qualitatively
similar results, but the quantitative parameters were substantially different (Figure 6).
A quasi-linear relationship between changes in conductance and capacitance was also
observed but the changes in conductance were much smaller than what we determined
for a cholesterol-free membrane undergoing similar changes in capacitance (as shown in
Figure 5). This result indicates that pressure-curved membranes containing cholesterol are
less permeable to inorganic ions, which confirms the well-established effects of cholesterol
in adjusting the membrane’s transport properties [31,32]. Similar to the experiments that
employed cholesterol-free membranes, a satisfactory linear match between changes in
conductance and capacitance was also observed for the membranes with cholesterol, as
indicated by a Pearson’s correlation factor of 0.96, and an R2 value of 0.93.

Besides the reduced permeability, another important feature was inferred from our
experimental observations. The changes in conductance and capacitance for a cholesterol-
free membrane started to manifest after only small adjustments in the solution volume,
typically ~25 µL, while the membranes with cholesterol required additions of ~100 µL
for initiating similar changes. In addition, the cholesterol-free membrane underwent
frequent ruptures upon addition of a few hundred µL of solution, while the membrane
with cholesterol displayed an enhanced stability for additions approaching 1 mL. The
repeatability of the changes in capacitance and/or conductance upon identical solution
additions was rather poor between independent experiments; the results from single
experiments presented in Figure 7 show that small volume solution additions had a greater
effect on the conductance of the cholesterol-free membrane compared to membranes
containing cholesterol. Quite often, small additions led to small, yet significant, changes
in capacitance, not accompanied by significant changes in conductance, especially for the
membranes with cholesterol (which is also seen in Figures 5 and 6). Nonetheless, once the
differential pressure increased, the variations in capacitance and conductance varied in
a quasi-linear manner for both lipid compositions. This confirmed the well-known role



Membranes 2022, 12, 479 9 of 12

played by cholesterol in establishing the membrane’s fluidity and elasticity [33–38], which
are important mechanical parameters, contributing to the overall membrane’s stability.
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Our investigations point out a relationship between the geometrical changes induced
on a planar lipid membrane by application of a controlled differential pressure and its
transport properties. Although our experiments employed membranes with solvent, which
may adjust electrical and mechanical properties, it may be easily utilized for solvent-
free membranes, thus, enabling understanding regarding the effects of various solvents
on the ionic permeability of curved membranes. We consider that major limitations of
the approach proposed in our work arise from equating the changes in conductance to
changes in capacitance, as opposed to changes in mechanical stress. For an ideal system,
a relationship between the capacitance and curvature of a spherical cap may be easily
modeled; unfortunately, a simple estimation of the stress in the membrane from capacitance
measurements is not an easy task. It is not clear if the enlarged surface employs pulling
lipids from the PG border, so a fixed edge model may not be realistic. In the same line, the
changes in thickness upon curving are not known; although they have been estimated to be
less than 1 nm [19], they may be much larger for a membrane with n-decane as the solvent
and contribute significantly to the observed changes in capacitance. The asymmetrical
distribution of membrane components, either between leaflets [19] or owing to organization
into lipid rafts [39,40], may introduce additional limitations for adopting one of the largely
utilized membrane bending models [41–43]. A more feasible approach would be the
utilization of membrane tension indicators [44–49], in combination with an easier-to-model
artificial system (i.e., giant vesicles exposed to osmotic pressure [45]) for calibration and
direct measurements on curved membranes. The experiments presented in this work do
not provide direct clues for identifying a particular permeation mechanism from the several
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that are available [15,16]; nonetheless, a comparison between predictions from simulations
and experimental results may help with such identification.
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In conclusion, despite its shortcomings, the proposed experimental setup enabled
investigation into the membrane’s permeability to inorganic ions, upon exposure to me-
chanical stress induced by the differential pressure. This may prove useful for a better
understanding of how mechanical factors modulate the permeability of lipid membranes,
as well as the transport of ions and molecules, through specialized transporters reconsti-
tuted into artificial membrane systems. This is anticipated to provide insight into how
mechanics contribute to the modulation of a large variety of biological activities and cellular
functionalities, adjusted by transmembrane transport phenomena.
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