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Abstract: Detecting newly established invasive plants is key to prevent further spread. Traditional
field surveys are challenging and often insufficient to identify the presence and extent of invasions.
This is particularly true for wetland ecosystems because of difficult access, and because floating
and submergent plants may go undetected in the understory of emergent plants. Unpiloted aerial
systems (UAS) have the potential to revolutionize how we monitor invasive vegetation in wetlands,
but key components of the data collection and analysis workflow have not been defined. In this study,
we conducted a rigorous comparison of different methodologies for mapping invasive Emergent
(Typha × glauca (cattail)), Floating (Hydrocharis morsus-ranae (European frogbit)), and Submergent
species (Chara spp. and Elodea canadensis) using the machine learning classifier, random forest, in a
Great Lakes wetland. We compared accuracies using (a) different spatial resolutions (11 cm pixels vs.
3 cm pixels), (b) two classification approaches (pixel- vs. object-based), and (c) including structural
measurements (e.g., surface/canopy height models and rugosity as textural metrics). Surprisingly,
the coarser resolution (11 cm) data yielded the highest overall accuracy (OA) of 81.4%, 2.5% higher
than the best performing model of the finer (3 cm) resolution data. Similarly, the Mean Area Under
the Receiving Operations Characteristics Curve (AUROC) and F1 Score from the 11 cm data yielded
15.2%, and 6.5% higher scores, respectively, than those in the 3 cm data. At each spatial resolution,
the top performing models were from pixel-based approaches and included surface model data over
those with canopy height or multispectral data alone. Overall, high-resolution maps generated from
UAS classifications will enable early detection and control of invasive plants. Our workflow is likely
applicable to other wetland ecosystems threatened by invasive plants throughout the globe.

Keywords: data fusion; classification algorithms; classification approach; distribution mapping; early
detection; invasion monitoring; invasive species; multiscale assessment; spatial resolutions

1. Introduction

Wetlands are important ecosystems facing many threats across the globe [1]. Invasive
plants are one of the greatest threats to wetlands, as they can reduce native biodiversity,
habitat quality, and oxygen levels in the water column [2,3]. One effective way to mitigate
plant invasions is to identify them early in the invasion process through early detection
and rapid response protocols (EDRR) [4]. An emerging component of EDRR is the use
of unpiloted aerial systems (UAS) to complement field-based monitoring [4]. UAS have
great potential to classify, map, and detect new stands of invasive plants [5–7]. However,
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effective workflows have not yet been established for flying UAS over wetlands and
efficiently detecting invasive plants in UAS imagery.

There are various aspects of the UAS workflow that are relatively well established
in terrestrial systems but less so in wetland systems. First, there is a trade-off between
spatial resolution and image extent. UAS produces imagery with high spatial resolution
(minimum resolvable object sizes in cm) that can be used to map individual plant species
of smaller growth forms, such as herbaceous plants [5,6,8,9] or grasses [10,11]. Specifically,
the centimeter-scale ground sampling distance (GSD, or minimum pixel size) can capture
unique characteristics of invasive species, such as flowering umbels [6], thereby distin-
guishing the target species from the surrounding plant community that would otherwise
be obscured within pixels of coarser resolution imagery [5–7,12]. The main disadvantage
of flying UAS at altitudes necessary to detect small invasive plants (<5 cm pixels) is that
the maximum spatial extent of UAS imagery may be limited in capturing widespread
invasions [6,7,13,14] by flight duration (and flight safety) and increased processing time
due to the additional data capture. Since the user controls the altitude at which to fly
UAS (following local flight laws), s/he can compare different altitudes and determine the
spatial resolution that best captures important characteristics of smaller invasive plants
while covering extents that are relevant for EDRR purposes. The trade-off between spatial
resolution and image extent has not been well studied in wetlands.

A second understudied component of invasive plant detection with UAS in wetlands
is the comparison of pixel-versus object-based methods for image classification [15,16].
While centimeter-scale pixels seem ideal for distinguishing subtle spectral and structural
differences between vegetation types, the features of interest, or image objects, are often
larger than the spatial resolution and/or GSD of the UAS imagery (e.g., stands of invasive
vegetation). Pixel-based approaches involve classifying individual pixels throughout the
image, while object-based approaches involve a preliminary step of segmenting pixels into
“objects” based on similar spectral and structural values, prior to classification [15,17]. Most
off-the-shelf UAS sensors provide high spatial resolution but low spectral/radiometric
resolution, so additional information (e.g., spatial patterns and context) through object-
based approaches may be necessary [9]. Previous work has found object-based methods to
be more effective at accurately mapping invasive plant species in UAS imagery of different
ecosystems [5,6,18]. Since invasive plant species form monotypic stands at various densities
within wetlands [6,19], object-based segmentation algorithms may be necessary to group
pixels into ecologically appropriate objects that provide additional geometric attributes
(e.g., edge-to-area ratio, minimum/maximum segment size, etc.) for image classification
of a single-date image [20]. However, pixel-based approaches may be preferable when
the minimum mapping unit, e.g., an individual of a small plant species, may be equal
to or smaller in size than the GSD (pixel sizes) in spatially heterogeneous environments.
Lastly, pixel-based approaches do not require the computationally intensive segmentation
process, and thus can deliver critical information to end-users (managers) more quickly
than object-based approaches. It is unclear which method (pixel- vs. object-based) and data
(i.e., imagery with different spatial resolutions) will yield more accurate maps of invasive
wetland vegetation in UAS imagery.

The inclusion of structural measures from UAS flights for invasive plants may enable
more accurate detection, but merits further study in wetlands. A single flight mission pro-
vides remote sensing data that can characterize differences in spectral reflectance, structure
(e.g., canopy height and growth form), and/or texture (i.e., local spatial variability in a
moving window of pixels) [21] between species in target communities [7,22,23]. It can be
difficult to differentiate plant species across functional groups using multispectral sensors
alone [24,25], but canopy height (in m) derived from Structure from Motion (SfM) in UAS
flights can supplement machine learning classifiers in mapping vegetation [7,8,11,26,27].
Accurate 3D reconstruction of vegetation structure requires adequate distribution of ground
control points (GCPs) for georeferencing features in the flight footprint, as well as adjusting
forward and side overlap of individual images captured by the UAS sensor [28–30]. The in-
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corporation of accurate structural (or textural) metrics is likely necessary for differentiating
spatially mixed vegetation classes with similar spectral signatures during peak growing
season [6,7,12,16,20,31]. Therefore, leveraging structural data from UAS to map invasive
vegetation in wetlands where many species of various growth forms (e.g., floating and
emergent plants) often grow in close proximity to one another [7,32] shows great promise
for EDRR purposes.

The aim of this study was to explore the effectiveness of UAS data and machine
learning algorithms in mapping the invasive species, floating Hydrocharis morsus-ranae
(European frogbit; hereafter EFB) and emergent Typha × glauca (cattail), along with submer-
gent species and other vegetation (native and non-native) in a wetland near Lake Huron,
MI, USA. EFB is a small free-floating aquatic plant (individual leaves at 5–6 cm in diameter)
that has established in a limited number of wetlands in Michigan, and often grows within
or around taller invasive cattails in Great Lakes wetlands [32]. In contrast, the emergent
leaves of invasive cattails can grow up to 2 m tall at full maturity, forming dense stands
in wetlands throughout the region [32–34]. Thus, the invasive stage of EFB and dominant
stands of cattails provided an ideal study system for creating an UAS workflow for EDRR
of invasive species at various growth forms. We collected UAS imagery during the peak
growing season (August 5th) and then sought to achieve the following objectives: compare
classification accuracies of invasive-dominant vegetation classes between datasets with
(a) different spatial resolutions (3 cm vs. 11 cm pixels), (b) via two common classification
approaches (pixel- vs. object-based), and (c) multispectral only vs. multispectral plus
structural variables at coarser spatial resolutions.

2. Materials and Methods
2.1. UAS, Study Site, & Data Collection

Our research team collected multispectral UAS imagery flown over a wetland in
Alpena Wildlife Refuge, Alpena, Michigan, USA during the peak growing season (5 August)
in 2019 (Figure 1). We used a Parrot Bluegrass Quadcopter™ equipped with a Parrot
Sequoia Sensor™ (Paris, France) with Green (530–570 nm), Red (640–680 nm), Red Edge
(730–740 nm), and Near Infrared (NIR; 770–810 nm) bands. We flew at ~105 m altitude
to capture high-resolution imagery (~11 cm pixels) over 10.1 ha (6.3 km2) and at ~30 m
altitude to capture very-high resolution imagery (~3 cm) over 4.73 ha (4.3 km2). We flew all
flights in a grid pattern with 85% front and side overlaps due to the complex heterogeneity
of vegetation and flat terrain throughout the site (with the exception of the tree canopy;
Figure 1), both of which require higher image overlaps to extract adequate matching points
for 3D point clouds [35]. We parameterized all flight missions in the Pix4Dcapture app on
a field tablet.

The flight footprints covered plant communities primarily consisting of domi-
nant/invasive stands of emergent Typha × glauca (cattails) and floating EFB. There were
also interspersed abundances of floating Lemna minor or Spirodela polyrhiza (duckweeds) and
larger lily species, primarily Nymphaea odorata, throughout the various wetland functional
types or zones of interest (Figures 1 and 2). Less dominant species included emergent
Schoenplectus spp. (bulrush) and submergent vegetation (Chara spp., Ceratophyllum demer-
sum, Elodea canadensis, Myriophyllum spp., and Potamogeton crispus). Other features included
terrestrial vegetation (mixed evergreen-deciduous forest) on an island, open water (areas
with at least 1 m of unvegetated water depth), and Typha × glauca leaf litter. On the flight
date, most of the aforementioned species were fully mature throughout the site.
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Figure 1. (a). Location of the study site and flight footprint in Alpena, MI, USA (approximate centroid (dd): 45.077499 °N, 
83.454249 °W). (b). Multispectral false color composite (Red: NIR, Green: Green, Blue: Red Edge) of the 11 cm dataset with 
overlaid ground reference points of the four primary wetland vegetation classes for training the RF algorithm. 

During each flight campaign, we collected ground control points (GCPs) and ground 
reference points using real-time-kinematic (RTK) GPS equipment (Emlid Reach™ and 
Rover™, Hong Kong, China). The purpose of the high-accuracy GPS data was to (1) 
georeference each UAS dataset using the GCPs [28], (2) use the ground reference data to 
train and test classification algorithms, and (3) interpret classification outputs using the 
community composition data. We collected the ground reference points based on ex-
pected differences in spectral signatures of the features between wetland cover classes on 
the given day of flight. We assigned the following wetland cover classes: Open Water (n 
= 4), Terrestrial Vegetation (n = 2), ‘Emergent Vegetation’ (dominated by Typha × glauca; n 
= 4), ‘Submergent Vegetation’ (Chara spp., Ceratophyllum demersum, Elodea canadensis, 

Figure 1. (a). Location of the study site and flight footprint in Alpena, MI, USA (approximate centroid (dd): 45.077499 ◦N,
83.454249 ◦W). (b). Multispectral false color composite (Red: NIR, Green: Green, Blue: Red Edge) of the 11 cm dataset with
overlaid ground reference points of the four primary wetland vegetation classes for training the RF algorithm.
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throughout the study site (depending on ground access) to achieve sufficient replication 
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cover of the all plant species occurring within a ~30 cm2 area around the GPS unit and 
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Lastly, we corrected and processed the RTK GPS points using EZsurv™ (Effigis™, Mon-
treal, QC, Canada) software, a post-processing software for correcting floating-point 
(RTK) coordinates using global navigation satellite-systems (GNSS) observation files from 
the RTK system. We created point shapefiles from the resulting .csv files of ground refer-
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Figure 2. (a). The RGB orthomosaic overlaid on the 3D digital surface model (11 cm), with labeled 
example locations of the four primary target classes of interest. (b). Field photo (taken from photo 
icon on (a)) of emergent cattails (top half of photo), floating S. polyrhiza (Duckweed spp., yellowish-
green vegetation), floating N. odorata (large lilies) and floating EFB (darker green, small lilies 
sparsely distributed in S. polyrhiza mat). 

Figure 2. (a). The RGB orthomosaic overlaid on the 3D digital surface model (11 cm), with labeled
example locations of the four primary target classes of interest. (b). Field photo (taken from photo
icon on (a)) of emergent cattails (top half of photo), floating S. polyrhiza (Duckweed spp., yellowish-
green vegetation), floating N. odorata (large lilies) and floating EFB (darker green, small lilies sparsely
distributed in S. polyrhiza mat).

During each flight campaign, we collected ground control points (GCPs) and ground
reference points using real-time-kinematic (RTK) GPS equipment (Emlid Reach™ and
Rover™, Hong Kong, China). The purpose of the high-accuracy GPS data was to (1)
georeference each UAS dataset using the GCPs [28], (2) use the ground reference data
to train and test classification algorithms, and (3) interpret classification outputs using
the community composition data. We collected the ground reference points based on
expected differences in spectral signatures of the features between wetland cover classes
on the given day of flight. We assigned the following wetland cover classes: Open Water
(n = 4), Terrestrial Vegetation (n = 2), ‘Emergent Vegetation’ (dominated by Typha × glauca;
n = 4), ‘Submergent Vegetation’ (Chara spp., Ceratophyllum demersum, Elodea canadensis,
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Myriophyllum spp., or Potamogeton crispus; n = 5), Floating ‘EFB and Nymphaea (Lily)
spp.’, and Floating ‘Duckweed spp’ (n = 4). All ground reference points were randomly
assigned throughout the study site (depending on ground access) to achieve sufficient
replication of each wetland cover class. At each ground reference point, we measured
percent areal cover of the all plant species occurring within a ~30 cm2 area around the GPS
unit and assigned a vegetation class based on the dominant species present (>40% areal
cover). Lastly, we corrected and processed the RTK GPS points using EZsurv™ (Effigis™,
Montreal, QC, Canada) software, a post-processing software for correcting floating-point
(RTK) coordinates using global navigation satellite-systems (GNSS) observation files from
the RTK system. We created point shapefiles from the resulting .csv files of ground reference
points and GCPs in R.

2.2. Image Processing

For absolute spatial accuracy, we imported and projected the GCPs into Pix4Dmapper
(Pix4D version 4.5.6) prior to image and point cloud generation. For quality and filtering,
we used a point cloud densification of 1

4 -image size with a minimum number of three
matches. The 3D textured mesh was generated at default medium resolution with a
matching window of 7 × 7 pixels. We then extracted the geotag information of each raw
image and leveraged SfM photogrammetry (i.e., identifying common features in conjugate
images as tiepoints) [36] to create an orthomosaic of the site for each spectral band at
both flight altitudes at the automatic (i.e., user-specified) resolution. All spectral bands
in both datasets were radiometrically calibrated to reflectance with the ‘Camera and Sun
Irradiance’ correction in Pix4D to normalize potentially different illumination conditions
between flights, based on corrections from an upward-facing irradiance sensor. In addition
to the multispectral orthomosaic, we generated a Normalized Difference Vegetation Index
(NDVI) raster from the NIR and Red bands, a Digital Surface Model raster from SfM point
cloud (DSM; 2.9 cm & 11 cm; or modeled representation of the elevation of all features on
the surface), and a Digital Terrain Model (DTM; 55 cm; or a modeled representation of the
bare earth elevation) of the flight footprint. The latter two raster layers generated structural
metrics (i.e., surface and terrain elevation in meters) and were hypothesized to supplement
the spectral reflectance layers in the classification process. The average ground sampling
distance (GSD) for each pixel in the high-resolution imagery was 10.99 cm (hereafter, 11 cm),
covering an area of 0.101 km2 (10.05 ha). For the very-high resolution data, the average
GSD was 2.99 cm (hereafter, 3 cm) for each pixel, covering an area of 0.047 km2 (4.73 ha).
We set the project coordinate system of both datasets to WGS 1984, UTM Zone 17N, and
both achieved georeferencing accuracy of mean RMSE values ≤ 0.001 m for the X, Y, and
Z coordinates. In total, the processing produced seven layers of data (four spectral bands,
NDVI, surface and terrain models) × 2 for both flight altitudes.

2.3. Image Subsetting

Before stacking all raster layers into a composite dataset, we subsetted and aligned all
grid cells (i.e., pixels) of the layers for each spatial resolution separately. We subsetted each
dataset using .exif data on height of captured image and geolocation tags to calculate the
width of each image footprint (via the exifr package in R) [37]. We then used a distance of
seven meters to create a buffered polygon of all the GPS point locations of each photo and
used the convex hull setting in the Minimum Bounding tool in ArcPy [38]. The resulting
polygon indicates the area of the flight footprint with substantive image overlap and
thereby excludes distorted margins of orthomosaics [38].

2.4. CHM vs. DSM for Vegetation Structure

Prior to creating image composites, we generated a Canopy Height Model (CHM) by
subtracting the DTM from the DSM in each dataset. In doing so, we effectively removed
non-vegetated terrain and the resulting CHM consists of vegetation height values only.
However, because the DTM is of coarser resolution than the DSM, we resampled pixels
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(via nearest neighbor algorithm) of the higher resolution DSM to that of the coarser DTM.
Pixel aggregation avoids false accuracies of the pixel values, and thus we subsequently
aggregated the remaining bands of the dataset to achieve coarser spatial resolution of
55 cm pixels for the high-resolution imagery and 15 cm pixels for the very-high resolution
imagery. We aggregated pixels and created CHMs in R, as well as on-the-fly while creating
composites in ArcGIS Pro 2.6.0.

We observed stark differences in canopy height across the wetland (e.g., Floating vs.
Emergent vegetation; Figure 2), so we sought to utilize the generated CHMs to inform
classification algorithms in distinguishing different vegetation functional types. Pho-
togrammetric CHMs, along with multispectral information, have been useful in classifying
vegetation in other systems [7,8,26,27]. However, given that we resampled all raster layers
to the coarser resolution of the CHMs, this poses a tradeoff of obtaining canopy informa-
tion vs. losing spatial resolution that may be key for distinguishing stands of different
vegetation types. As such, we compared classification outputs from multispectral + CHM
datasets for both resampled resolutions (15 cm for very-high resolution and 55 cm for
high resolution) to those derived from the multispectral + surface-based structural metrics
(DSM) that maintained the original, higher spatial resolutions (3 cm and 11 cm). Further,
we calculated the standard deviation of a pixel’s neighborhood (8 surrounding pixels)
modeled surface or canopy height in a moving window [21] using the Focal Statistics tool
in ArcGIS Pro 2.6.0. This textural metric, also known as surface or canopy rugosity (here-
after, “rugosity”) [39,40] captures local variation in vegetation structure within and around
pixels, and ought to be informative for classifying different types of invasive vegetation
in our study site. The final multispectral + structural/textural stacks consisted of the four
spectral bands, NDVI, DSM or CHM, and rugosity (of either surface or canopy height) at
each spatial resolution. We also created multispectral-only stacks (spectral bands + NDVI)
to compare classification accuracies with those from the multispectral + structural datasets
(Tables 1 and 2).

Table 1. The spectral and structural bands generated from Pix4d for the classification analyses.

Parrot Sequoia/pix4d-
Generated

Bands

Spectral Band Width
(nm)/Structural/Textural

Metric

Spatial
Resolution

(cm)

Vertical Range
(m)

Green 530–570 nm 3, 11 NA

Red 640–680 nm 3, 11 NA

Red Edge 730–740 nm 3, 11 NA

NIR 770–810 nm 3, 11 NA

NDVI (included in
Multispectral category

below)
Index between 0–1 3, 11 NA

Digital Surface Model Surface Height in meters 3, 11

178.50–192.30
(3 cm dataset)
177.97–194.21

(11 cm dataset)

Digital Surface Model
Rugosity

SD of Surface Height of 8
neighbor pixels 3, 11 NA

Canopy Height Model Canopy Height in meters 15, 55

−1.15–11.90
(15 cm dataset)
−2.33–24.30

(55 cm dataset)

Canopy Height Model
Rugosity

SD of Canopy Height of 8
neighbor pixels 11, 55 NA
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Table 2. The combinations of spectral, structural, and textural bands in the three raster composites
(Multispectral Only, Multispectral + CHM metrics, Multispectral + DSM metrics) used as predictor
variables to inform classification models.

Classification
Approach Pixel Resolution Dataset (with Pixel Resolution in cm)

Pixel-Based High-Resolution
Multispectral Only (11 cm)

Multispectral + CHM + Rugosity (55 cm)
Multispectral + DSM + Rugosity (11 cm)

Pixel-Based Very-high Resolution
Multispectral Only (3 cm)

Multispectral + CHM + Rugosity (15 cm)
Multispectral + DSM + Rugosity (3 cm)

Object-Based High-Resolution
Multispectral Only (11 cm)

Multispectral + CHM + Rugosity (55 cm)
Multispectral + DSM + Rugosity (11 cm)

Object-Based Very-high Resolution
Multispectral Only (3 cm)

Multispectral + CHM + Rugosity (15 cm)
Multispectral + DSM + Rugosity (3 cm)

2.5. Preliminary Classification, Image Masking, & Layer Stacking

Our goal was to extract features from remotely sensed UAS data to classify and dis-
tinguish different functional types of wetland vegetation (Emergent, Submergent, and
Floating classes) that were dominated by various invasive species, using the two common
workflows. Prior to classification, we masked out pixels across the imagery that were not
appropriate for this objective (i.e., Open Water and Terrestrial Vegetation). To mask out
these areas, we uploaded the multispectral UAS imagery (both resolutions) into Google
Earth Engine (GEE). We used a combination of ground reference points and on-the-ground
familiarity of the site to create points of three different feature classes: “Terrestrial”, “Wet-
land Vegetation”, and “Open Water”. We used stratified random sampling for each of these
classes to achieve a suitable sample size of reference data (at least 50 points/class) [41]. We
then implemented the random forest classifier in GEE to classify the entire image footprint
and validated the classification outputs with hold-out points. Accuracies for all three
classes were desirable (>95%), so we exported the classified raster to mask all multispectral
and structural data. Prior to stacking all layers, we first clipped all layers from both data
by the generated bounding polygons for each resolution (see Image Subsetting). Next, we
overlaid ‘Wetland Vegetation’ pixels from the preliminary classified rasters and masked
out undesired areas (i.e., Open Water and Terrestrial Vegetation) for both datasets. Once
all layers consisted of wetland vegetation area only, we used the ‘Composite Bands’ raster
function to stack all datasets into multiband rasters for each resolution in ArcGIS Pro 2.6.0.

2.6. Reference & Data Extraction

The field-collected ground reference dataset had an inadequate number of ground
reference points due to a loss of connection in the RTK equipment while in the field. There
were 13 ground reference points consisting of Submergent (n = 5), Floating (n = 4), and
Emergent Vegetation (n = 4), below the generally acceptable sample size of at least 50 points
per class [41]. To boost the class sample sizes of our ground reference data, we generated
at least 200 points randomly distributed across the entire extent of each masked dataset.
We then used the RGB orthomosaics to confirm each point as one of the three vegetation
classes via image interpretation. After combining the digitized reference data with the
field-collected ground reference data, we extracted pixel values of all raster bands to the
intersecting point locations (for both datasets) to serve as predictor variables for further
classification. The final sample size was greater than 50 points per class in the 11 cm dataset
(N = 249) and for the 3 cm dataset (N = 229, Table 3). We then used the respective RGB
orthomosaics to confirm each point as one of the three primary vegetation classes (while
also distinguishing the two floating sub-classes). To verify that we classified our digitized
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reference data with reasonable accuracy, we classified our 13 original ground reference
points, based on location only, overlaid on the RGB imagery and compared to the field
notes. For the points for which we had ground data, vegetation classes determined from
RGB imagery agreed 80% on average with ground data (Floating 86%, Emergent 80%,
Submergent 71%). To ensure as accurate of sampling as possible, we used the location
of these points on the RGB and multispectral imagery to train image interpreters when
boosting sample size of each dataset via image interpretation and on-screen digitizing.

Table 3. The number of field-collected, digitized from image interpreation, and total reference points
(and intersecting pixels) for each vegetation class.

Vegetation
Class

Field
Collected

Collected from
Image

Interpretation

Total Reference
Points for

Classification
Dataset

Emergent 4 79 83 11 cm (55 cm for CHM models)
Floating 4 96 100 11 cm (55 cm for CHM models)

Submergent 5 61 66 11 cm (55 cm for CHM models)
Total 13 236 249

Emergent 4 79 83 3 cm (15 cm for CHM models)
Floating 4 90 94 3 cm (15 cm for CHM models)

Submergent 5 49 53 3 cm (15 cm for CHM models)
Total 13 216 229

2.7. Pixel-Based Classification Approach

We used the train function in the caret package [42] in R to run a random forest (RF)
algorithm on our various datasets and classification approaches. We used ‘Class’ as the
outcome variable and the five or seven bands (values extracted from pixels) as individual
predictors with no interactions. We configured the parameters in this ensemble classifier to
have at least five predictor variables (and up to 14) at each split (mtry) with a minimum
terminal node size of five and 300 decision trees (ntree) in each RF run. To obtain average
overall accuracy, we used repeated k-fold cross validation (k = 5) to split 4/5 of the dataset
to train the RF model and test model predictions with the remaining 1/5 until all five
folds were used to validate the model predictions. We ran models 50 times on these
random-stratified splits of the data to obtain average accuracies. The total number of
sample points used to validation predictions was 12,400 for the 11 cm data and 11,450 for
the 3 cm data after the 50 model runs. We then created spectral profiles of the reference data
(Figures S1–S5) as well as error matrices and mapped predictions from the best performing
RF models.

2.8. Object-Based Classification Approach

We sought to compare pixel- and object-based approaches to optimize accuracy when
classifying vegetation classes (or individual species) from UAS imagery [6]. For these
datasets, vegetation stands of various sizes and individuals for each of the three functional
types were usually greater in area than the 3 or 11 cm pixel sizes in our UAS data. We im-
plemented the ArcGIS Mean Shift Segmentation algorithm through the SegOptim package
in R, a newer approach that closely integrates optimization, segmentation and classification
algorithms [43]. To optimize the three segmentation parameters in this function (‘Spectral
Detail’, ‘Spatial Detail’, and ‘Minimum Segment Size’), we ran a genetic algorithm model
to obtain the best “fitness” values, or those parameters that yielded highest classification
accuracies from subsequent RF model runs of 200–500 image segmentations of the datasets
(depending on spatial resolution and time constraints; see Figure 3 for optimal outputs for
each spatial resolution). To obtain these values, we set value ranges for each segmentation
parameter that we thought to be reasonable in representing the realistic conditions of
spectral and spatial ranges, along with minimum segment size, in the imagery. The genetic
algorithm then randomly drew a value from these ranges for each individual segmentation.
We set these values between 10–20 for Spatial and Spectral detail given the heterogeneity of
features and spectral similarity of features/pixels (the higher the value, the more complex
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spectral and spatial configuration of features in imagery, out of 20). We set Minimum pixel
size from 2–50, depending on spatial resolution. We then used the optimal parameters for
a final segmentation and RF classification, using the mean and SD of the band values (of
each generated segment and the intersecting reference point) as predictor variables for the
three vegetation classes.
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2.9. Accuracy Assessment and Model Performance

We utilized multiple accuracy metrics for evaluating the performance of the RF clas-
sifiers from both approaches. We first ran preliminary models on ‘disaggregated’ data
among the Floating class, with floating Duckweed spp. and floating EFB + Lily spp. as
separate classes due to their expected differences in spectral reflectance (Figure S1), as well
as both species’ prevalence in the wetland. However, we found lower accuracies with
these classes separated than when we combined both floating classes into a single Floating
class (Table S1 vs. Table 4). We report the full results of this analysis in the Supplementary
Information. After that, we decided to proceed with models that predicted Floating (with
the two subclasses combined) along with Emergent and Submergent vegetation. We justify
this aggregation of vegetation classes due to the relative dominance of key invasive species
in each class (e.g., Duckweed spp. dominance in the Floating class, EFB and Typha × glauca
dominating the Emergent class) observed from independent field data at Alpena [44].
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Table 4. The performing classification outputs for three different combinations of data for each approach at both spatial resolutions. Overall accuracies (in %) for each datasets of the three
main functional types of wetland vegetation in the high-resolution UAS imagery (11 cm) at Alpena Wildlife Refuge. The best results for each spatial resolution are highlighted in bold; PA
is Producer Accuracy (100%-omission error) and UA is User Accuracy (100%-commission error). Mean AUROC and F1 is the mean metric of all three classes.

Floating Emergent Submergent

Classification
Approach

Spatial
Resolution Data OA PA UA PA UA PA UA Mean

AUROC
Mean F1

Score

Pixel-based 11 cm Multispectral + CHM + Rugosity
(resampled to 55 cm)

76.9 (95% CI
0.761–0.769) 81.8 75.7 88.9 78.7 48.1 75.7 86.0 78.6

Object-based 11 cm Multispectral + CHM + Rugosity
(resampled to 55 cm)

73.4 (95% CI
0.725–0.743) 83.7 70.0 84.8 80.5 34.6 65.1 82.4 76.3

Pixel-based 11 cm Multispectral + DSM + Rugosity 81.4 (95% CI
0.807–0.821) 86.3 76.7 90.0 84.6 63.3 86.7 90.0 80.6

Object-based 11 cm Multispectral + DSM + Rugosity 77 (95% CI
0.762–0.776) 81.9 72.9 86.6 84.3 54.6 73.0 86.9 77.1

Pixel-based 11 cm Multispectral Only 80.8 (95% CI
0.801–0.815) 84.9 76.8 89.6 85.7 63.6 81.3 87.6 80.7

Object-based 11 cm Multispectral Only 77.3 (95% CI
0.765–0.78) 83.2 73.1 88.9 83.5 50.1 75.2 86.8 77.8

Pixel-based 3 cm Multispectral + CHM + Rugosity
(resampled to 15 cm)

58.3 (95% CI
0.574–0.592) 57.2 53.2 79.5 73.2 29.4 38.7 74.8 55.1

Object-based 3 cm Multispectral + CHM + Rugosity
(resampled to 15 cm)

76.7 (95% CI
0.759–0.774) 71.8 70.4 83.1 82.9 75.0 77.8 88.8 71.1

Pixel-based 3 cm Multispectral + DSM + Rugosity 78.9 (95% CI
0.774–0.790) 74.3 73.8 86.5 82.8 72 78.4 74.8 74.1

Object-based 3 cm Multispectral + DSM + Rugosity 77 (95% CI
0.763–0.778) 72.0 72.9 86.6 81.5 70.8 76.9 89.5 72.5

Pixel-based 3 cm Multispectral Only 72.6 (95% CI
0.717–0.734) 66.3 68.3 82.9 76.1 67.6 74.2 85.8 67.3

Object-based 3 cm Multispectral Only 76.6 (95% CI
0.758–0.773) 70.7 74.2 86.9 77.7 70.5 78.7 87.6 72.4
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For all models, we calculated overall accuracy (OA), user’s accuracy (UA; 1 − %
commission error), and producer’s accuracy (PA; 1 − % omission error). In addition, we
assessed how well the classifier ranked patterns by calculating the Area Under the Receiver
Operating Characteristic curve (AUROC) for each class (vs. the other two aggregated
classes). We also report F1 scores (harmonic average of UA and PA) of each model as useful
metrics to account for the imbalance of class sample sizes [45]. For both AUROC and F1
scores, we report the mean metric from the three classes. We also overlaid and sampled
the classified areas onto Mohammadi et al.’s [44] quadrat points and compared relative
abundance of each species, as well as non-native and/or invasive status, within and across
the classified areas to those classified in the field (see more details of field data collection in
Supplementary Materias). Finally, we plotted predictions of best performing models across
the multispectral rasters for both spatial resolutions in R.

3. Results
3.1. Very-High (3 cm) vs. High-Resolution (11 cm) Pixels

The high-resolution data yielded the highest overall accuracies (OA), and most other
metrics, compared to the very-high resolution data (Table 4). Within each dataset, accuracies
yielded only slight differences across the six models, but the ‘Multispectral + DSM +
Rugosity’ dataset resulted in the best performing model at both spatial resolutions. At
the 11 cm spatial resolution, the ‘Multispectral + DSM + Rugosity’ model produced the
highest PA for Floating and Emergent classes, the highest UA for Submergent Vegetation,
as well as the highest Mean AUROC. The 11 cm ‘Multispectral Only’ model produced the
highest UA for Floating and Emergent vegetation, as well as the highest Mean F1 Score. At
the 3 cm spatial resolution, models using “Multispectral + DSM + Rugosity’ produced the
highest PA for Floating, highest UA for Emergent, and highest Mean AUROC and F1 scores.
The ‘Multispectral + CHM + Rugosity’ model produced the highest PA for Submergent
vegetation, while ‘Multispectral Only’ models produced the highest UA for Floating and
Submergent vegetation, and highest PA for Emergent vegetation.

Emergent vegetation had the highest PA and UA among classes, regardless of spatial
resolution, while models generally yielded the poorest PA/UA for Subgmerent vegetation
in both datasets (Table 4). For the overall top performing model, the 11 cm ‘Multispectral +
DSM + Rugosity,’ the most confusion for the classification occurred between the Floating
and Emergent classes (Table 5). Predicted Submergent points were more often misclassified
as Floating than as Emergent (Table 5). When predictions were applied to the entire 11 cm
imagery footprint, the greatest number of pixels were assigned to the Floating class with
the least number of pixels assigned to the Submergent class (Figure 4).

Table 5. Confusion matrix for the best performing model (11 cm ‘Multispectral + DSM + Rugosity’).
Reference data are actual recorded classes from the field (including reference points determined from
the imagery) and predicted points were generated from the random forest model. The greyed out
diagonal values are the number of points correctly classified by the model, with the bold value in the
bottom right cell representing the overall accuracy of the model (sum of the diagonal values/the total
number of points × 100). Producer’s and User’s Accuracy (PA & UA) are displayed in % accuracy.

Reference

Floating Submergent Emergent Total UA

Predicted

Floating 4317 947 366 5630 76.68
Submergent 276 2090 45 2411 86.69

Emergent 407 263 3689 4359 84.63
Total 5000 3300 4100 12,400
PA 86.34 86.34 86.34 81.42
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Figure 4. Mapped predictions for each wetland vegetation class from the best performing RF model (‘Multispectral + DSM
+ Rugosity’ 11 cm data via a pixel-based approach) with overlaid field data points of vegetation zones determined by
Mohammadi et al. (in prep). Model predictions are mapped across the extent of wetland vegetation only, with unmapped
areas including masked-out terrestrial and open water features for reference.

3.2. Pixel- vs. Object-Based Classification Approach

A pixel-based approach yielded the highest accuracies in the high-resolution data
as well as the top model in the very-high resolution data (Table 4). Across all models in
each dataset, pixel-based models outperformed object-based models. However, within the
very-high resolution data, all three object-based models yielded OAs within 2.3 percentage
points of the top performing pixel-based model. For 11 cm models, pixel-based models
outperformed object-based models by up to 8 percentage points in OA.

3.3. Multispectral Only vs. Multispectral plus Structural Layers

Similar to the classification approach, the inclusion of DSM + Rugosity along with
multispectral data resulted in the best performing models in both pixel- and object-based
classification at both high and very-high resolutions. However, models including CHM
did not perform as well as the more parsimonious ‘Multispectral Only’ models at high
resolution (Table 4). Specifically, including DSM metrics in the 11 cm dataset yielded
higher accuracies than the datasets with the CHM metrics, with a similar trend occurring
in the very-high resolution data. Notably, the pixel-based 3 cm dataset with CHM metrics
performed substantially worse than the five other models in the very-high resolution data.
Lastly, the highest mean AUROC and F1 scores often included both spectral and structural
(DSM) data, with the exception of the 11 cm ‘Multispectral Only’ yielding the highest mean
F1 score overall.

3.4. Predicted Vegetation Classes Sampled to Quadrat Data

After extracting the predicted classes from the best performing RF model to the inter-
secting quadrat points (Figure 4), we calculated the mean relative abundance (proportion
of total plant cover) of the three most common species recorded within each class. We
observed inconsistent patterns of each species recorded at the points in the field vs. the
primary functional group defined by the RF classifier based on the UAS data. Namely, we
observed that EFB (H. morsus-ranae) was present and/or dominant across all three vegeta-
tion classes, submergent species (C. demersum) present in areas classified as Floating, and
some floating species (N. odorata, H. morsus-ranae) present in areas classified as Submergent
vegetation (Table 6). We also found that two of three dominant species in the Emergent
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class, the most accurately predicted class overall (Table 4), were considered non-native
and/or invasive to the study site (Table 6). Lastly, points classified as ‘Open Water’ in the
field that overlaid on masked-out areas, from the preliminary classification, were classified
as such (Figure 4).
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Table 6. Relative abundance (proportion of total plant cover) of the three most common species within each predicted vegetation class. The designated vegetation zone indicates what each
of the field point was designated as, per Mohammadi et al. (in prep). The % agreement in the first column denotes the proportion of field-designated points that were classified as the same
by the RF classifier predictions. “EFB and Cattail present?” show how many of the field points recorded either species out of the total assigned to that predicted class. The “Non-native
and/or invasive?” indicates whether the three most common species within each class are considered non-native and/or invasive at the study site.

Designated
Vegetation Zone

(Mohammadi et al.
in prep)

RF Predicted
Vegetation Class
(Total Number of

Points) *

Species
Relative Abundance

(% Cover/Total
Cover)

Percent Cover (%) EFB Present? Cattail Present?
Non-Native and/or

Invasive?
(Yes or No)

Emergent
(90% agreement)

Emergent
(n = 11)

Hydrocharis
morsus-ranae 33.7 28.9

100% of points 90.9% of points
Y

Spirodela polyrhiza 24.4 21.0 N
Typha × glauca 21.7 18.6 Y

Floating
(90% agreement)

Floating
(n = 12)

Nymphaea odorata 14.4 14.3
91.6% of points 16.6% of points

N
Ceratophyllum

demersum 10.4 10.3 N

Hydrocharis
morsus-ranae 7.8 7.8 Y

Submergent
(33% agreement)

Submergent
(n = 3)

Nymphaea odorata 72.2 4.3
33.3% of points 0% of points

N
Spirodela polyrhiza 16.7 1.0 N

Hydrocharis
morsus-ranae 5.6 0.03 Y

Open Water
(47% agreement)

Open Water
(n = 22) **

Ceratophyllum
demersum 22.4 1.0

31.8% of points 4.5% of points
N

Spirodela polyrhiza 14.3 5.0 N
Nuphar variagatum 12.4 4.3 N

* Two of the 50 total field points (see more info in SI; Mohammadi et al. in prep) were located outside of the flight footprint, and thus were not designated with any of the RF- predicted vegetation classes. ** Field
points predicted as “Open Water” were located in masked-out areas from our analysis (see methods) but still within the boundaries of the UAS flight footprint and wetland vegetation, thus they were designated
as “Open Water” via visual interpretation.
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4. Discussion

This study assessed our ability to map wetland vegetation functional types that
are dominated by invasive plants (EFB and cattails) using UAS imagery. Specifically,
we compared how classification accuracy changed when using (a) high- vs. very-high
resolution UAS data, (b) implementing a pixel- vs. object-based classification approach,
and (c) using only multispectral data vs. multispectral plus structural data. Surprisingly,
we obtained higher classification accuracies from the high-resolution data than the very-
high resolution data with no clear trend for accuracy between pixel- and object-based
approaches, but slightly higher accuracy when we incorporated structural data despite the
trade-off in spatial resolution. Overall, there is potential to utilize our workflow to detect
wetland vegetation functional types that include invasive species using UAS data. Below
we discuss specific results, limitations, and potential management implications within each
objective.

4.1. Very-High (3 cm) vs. High-Resolution (11 cm) Pixels

The most surprising finding from our study was that the very-high resolution yielded
lower accuracies than the high-resolution data. We expected that the very-high resolution
data of 3 cm pixels would better capture key morphometric differences between each
vegetation class. However, the heterogeneity of features and biophysical characteristics
of species within each class likely played a role in determining which pixel size was best
for accurate predictions. For example, mature EFB, the dominant invasive plant in the
Emergent and Floating classes, have leaves that are 5–6 cm in diameter. Therefore, we
would expect that 3 cm pixels would be able to delineate individual EFB leaves. Yet, this
resolution may have captured other fine-scale features interspersed with EFB, such as
cattail leaf litter or small water gaps in between floating leaves [6,24], obscuring the RF’s
ability to delineate this species accurately. In 11 cm pixels, much of this heterogeneity is
merged into mixed, but evidently informative pixels that delineate key differences in the
three functional groups as exhibited by the lower standard error in many spectral and
structural bands for each class (Figures S1–S5). We emphasize that this was only the case
for the Emergent and Floating classes, whereas we achieved higher producer accuracy for
Submergent vegetation at the very-high resolution. One explanation for this trend is that
the smaller 3 cm pixels, along with distinct spectral and structural values for this class
(Figure S3), better captured the smaller, interspersed areas of Submergent vegetation in the
masked image footprint. Previous research in UAS forestry classification also found higher
classification accuracies in imagery of coarser spatial resolution depending on the density of
tree stands [46]. Practitioners should carefully consider the biophysical characteristics and
spatial patterns of the target species (or functional group) when selecting the appropriate
spatial resolution to fly UAS for detecting invasive vegetation.

4.2. Pixel- vs. Object-Based Classification Approach

Our results indicate that a pixel-based approach performed slightly better than object-
based methods using the high-resolution data, although this pattern was not as obvious
in the very-high resolution data. Previous UAS studies found that object-based methods
were generally more effective than pixel-based methods at classifying invaded stands in
terrestrial ecosystems [5,6]. We attribute the difference in our findings to the mixed distri-
bution of species across the functional classes that may have prevented the segmentation
algorithms from creating image objects with relatively homogenous spectral or structural
values, or in area. Specifically, one species in the Floating class, S. polyrhiza, which is
spectrally and structurally similar to EFB, was prevalent throughout the site, growing
in between mature EFB and Emergent vegetation. Similarly, Abeysinghe et al. 2019 [7]
found that another abundant duckweed species, L. minor, caused object confusion for
their classifier due to obscured object edges between vegetation classes in UAS imagery
of another Great Lakes wetland site. Dominant EFB within and around Emergent stands
may also have created objects with a mix of species and in slightly coarser 11 cm pixels,
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as observed with the confusion between classifying Floating and Emergent vegetation in
our best performing model. The mixed spatial distribution of species across vegetation
zones resulted in less distinct spectral and structural bands of the image objects for the
classes, and likely led to lower classification accuracy [47]. In the 3 cm data, the finer spatial
resolution better captured these species, producing more appropriately sized objects with
distinct spectral and structural values compared to the segmentation outputs of the 11 cm
data (Table S2, Figure S5). Despite achieving optimal segmentation parameters, we suggest
for future studies to consider the complex spatial distributions of wetland vegetation when
determining whether a pixel- vs. object-based approach is best for classifying invasive
plants in UAS imagery.

4.3. Multispectral Only vs. Multispectral plus Structural Layers

Including structural data (namely, DSM-derived values) with the multispectral bands
generally improved classification accuracy over using multispectral data only. In past UAS
studies, researchers have elucidated the benefits of CHMs that reconstruct 3D structure of
image features as a supplement to the spectral data for mapping heterogeneous vegeta-
tion [7,8,23,26,27,48]. Across spatial resolutions, our results tend to show that incorporating
structural data does increase accuracy, although we observed that DSM structural and
textural layers generally achieved higher accuracy than CHM layers. In the high-resolution
data, the DSM layers, and even ‘Multispectral Only’ data, outperformed the CHM data,
whereas DSM data provided only slightly higher accuracies in the very-high resolution
data. The coarser resampled resolution of the high-resolution CHM data (55 cm pixels) may
have mixed important spectral and structural features that distinguish the three vegetation
classes at our study site. The resampled resolution (15 cm pixels) in the very-high resolution
CHM data, via an object-based approach, may have been more informative for maintaining
these distinctive features. Moreover, there may have been errors within the DTM layers,
as we observed negative values in both CHM layers at both resolutions, obscuring true
heights recorded in pixels or objects of wetland vegetation. The attenuation of light in the
water column could have contributed to inaccurate reconstruction of the ‘bare terrain’ at
our site, as found in imagery of wetland plant communities from other remote sensing
platforms [49]. To compensate for these errors, we agree with the recommendation by
Martin et al. (2018) [8] to instead fly UAS multiple times over a site throughout the year and
incorporate other 2D textural data, such as grey level co-occurrence matrices, for improving
mapping accuracy of invasive vegetation. To our knowledge, our results are the first to
show the utility of structural data derived from DSMs can be just as or more beneficial than
structural data from CHMs when classifying invasive wetland vegetation in UAS imagery.

4.4. Importance of UAS Flight Parameterization and Spectral Resolution of UAS Sensor

To improve future efforts of reconstructing 3D structural features of invasive wetland
vegetation, it is important to assess how varying forward and side overlap of individual
images, and adjusting flight speed, influence classification accuracy [28–30]. One reason
for the lower accuracies from the very-high resolution data was perhaps due to suboptimal
flight parameters for that flight altitude (85% front and side overlap of images flown at
30 m altitude) over our study site. Seifert et al. (2019) [29] found that higher image capture
frequency (forward and side overlap > 90%) at lower flight altitudes (15–20 m above
canopy) yielded highest precision for reconstructing details of tree crowns in 3D point
clouds. Therefore, the 85% overlap may have not been adequate for the image processing
software to find common points (also known as matched keypoints) between consecutive
images at 3 cm pixel resolution. As pixel resolution of small-scale features become finer,
image overlap should increase to optimize the number of matched keypoints between
images for accurate 3D point clouds of reconstructed features in UAS imagery [29]. In
our datasets, we found a 4% greater number of matched keypoints per image, resulting in
100% calibrated images, in the 11 cm orthomosaics and 3D models (high altitude flights)
than the number of matched keypoints per image, resulting in only 93% of calibrated
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images in the 3 cm data (low altitude flights). Therefore, this insufficient parametrization
of the image overlap potentially affected classification accuracy of the very-high resolution
datasets. Considering tradeoffs between varying these flight parameters, processing time
and importance of spatial scales in reconstructing target plant communities in UAS imagery
will ensure that researchers obtain accurate structural values for classification purposes.

It is important to note that there were clear differences in how well we were able
to predict the three different wetland classes, partially due to the spectral resolution of
our sensor. Notably, omission and commission errors were lowest for the Emergent class,
regardless of spatial resolution. The Emergent vegetation class exhibited distinct mean
values across most spectral and structural bands, which likely played a role in the RF
models’ ability to discern patterns and make clear decisions about classifying Emergent
points vs. the other two classes. Across spatial resolutions, the most confusion occurred
between the Submergent and Floating classes. The spectral resolution of our sensor
may have been inadequate (i.e., inappropriate bandwidths and/or number of bands) to
distinguish both classes with such similar structural values, as observed in previous RS
studies of riparian and marine systems [6,47]. Future research should assess the potential
benefits of using higher spectral resolution sensors (e.g., hyperspectral) on UAS in attempts
to distinguish interspersed floating and submergent vegetation in wetlands.

5. Conclusions

Based on our results, we believe that our UAS classification workflow is operational for
detecting and monitoring invasive wetland vegetation. We showed that our classification
scheme is appropriate for mapping wetland functional types dominated by target invasive
species (e.g., dominant EFB and cattails in the Emergent class). The range of accuracy
metrics did not vary significantly across the six models and approaches within each spatial
resolution, although the pixel-based approach most often produced the highest accuracies.
Therefore, managers could save computational time by avoiding the optimization of
segmentation parameters in object-based methods [15,16]. Moreover, since high-resolution
data produced higher accuracies than very-high resolution data, end-users can feel more
confident in predicted vegetation classifications across pixels in larger image footprints
while avoiding longer flight times to obtain <5 cm pixels of the same area. Lastly, we believe
that managers can achieve desirable results from flying UAS during peak growth periods by
utilizing the additional structural data generated from photogrammetric processing of UAS
imagery. Overall, combining UAS data with machine learning algorithms is a powerful
new tool for the early detection and rapid response to invasive wetland vegetation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13234733/s1, Figure S1: Spectral (a), structural (d,e), and textural (b,c) profiles of the
disaggregated vegetation classes: Emergent, Submergent, floating EFB + Lily spp., and floating
Duckweed spp. (S. polyrhiza) extracted from mean pixel values in the 11cm dataset. All bands,
except Rugosity and Surface Height (m), are % reflectance values calibrated for each band during
pix4D processing, Figure S2: Spectral (a), textural (b,c), and structural (d,e) profiles of the three
aggregated vegetation classes: Emergent, Submergent, Floating Vegetation, extracted from mean
pixel values 11cm dataset. All bands, except Rugosity and Surface Height (m), are % reflectance
values calibrated for each band during pix4D processing., Figure S3: Spectral and textural profiles
of the three vegetation classes: Emergent, Submergent, Floating Vegetation, extracted from mean
pixel values in the 3 cm dataset. All bands, except Rugosity and Surface Height (m), are % reflectance
values calibrated for each band during pix4D processing, Figure S4: Spectral and textural profiles of
the three aggregated vegetation classes: Emergent, Submergent, Floating Vegetation, extracted from
mean object values in the 11cm dataset. All bands, except Rugosity and Surface/Canopy Height (m),
are % reflectance values calibrated for each band during pix4D processing, Figure S5: Spectral and
textural profiles of the three vegetation classes: Emergent, Submergent, Floating Vegetation, extracted
from mean object values in the 3 cm dataset. All bands, except Rugosity and Surface Height (m), are
% reflectance values calibrated for each band during pix4D processing, Figure S6: Mean Decrease in
Gini Importance (Importance on x-axis) for each mean and SD reflectance/structure for the 7 bands
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in the pixel-based “Multispectral + CHM’ model of the 3 cm data (resampled to 15 cm). Importance
is based on % increase in mean squared error (MSE) for each band on the out of bag data for each tree
in the RF and then computed after permuting a variable (band),. Figure S7: Mean Decrease in Gini
Importance (Importance on x-axis) for each mean and SD reflectance/structure for the 7 bands in the
pixel-based “Multispectral + DSM’ model of the 3 cm data. Importance is based on % increase in mean
squared error (MSE) for each band on the out of bag data for each tree in the RF and then computed
after permuting a variable (band),. Figure S8: Mean Decrease in Gini Importance (Importance on
x-axis) for each mean and SD reflectance/structure for the five bands in the pixel-based “Multispectral
Only’ model of the 3 cm data. Importance is based on % increase in mean squared error (MSE) for
each band on the out of bag data for each tree in the RF and then computed after permuting a
variable (band),. Figure S9: Variable importance for each mean and SD reflectance/structure of the
segments (image-objects) for the 14 bands in the object-based ‘Multispectral + Both CHM’ model
of the 3 cm data (resampled to 15 cm). Importance is based on % increase in mean squared error
for each band on the out of bag data for each tree in the RF and then computed after permuting a
variable (band),. Figure S10: Variable importance for each mean and SD reflectance/structure of the
segments (image-objects) for the 14 bands in the object-based ‘Multispectral + Both DSM’ model of
the 3 cm data. Importance is based on % increase in mean squared error for each band on the out of
bag data for each tree in the RF and then computed after permuting a variable (band),. Figure S11:
Variable importance for each mean and SD reflectance/structure of the segments (image-objects) for
the 10 bands in the object-based ‘Multispectral + Only’ model of the 3 cm data. Importance is based
on % increase in mean squared error for each band on the out of bag data for each tree in the RF and
then computed after permuting a variable (band),. Figure S12: Mean Decrease in Gini Importance
(Importance on x-axis) for each mean and SD reflectance/structure for the 7 bands in the pixel-based
“Multispectral + CHM’ model of the 11 cm data (resampled to 55 cm). Importance is based on %
increase in mean squared error (MSE) for each band on the out of bag data for each tree in the RF and
then computed after permuting a variable (band),. Figure S13: Mean Decrease in Gini Importance
(Importance on x-axis) for each mean and SD reflectance/structure for the 7 bands in the pixel-based
“Multispectral + DSM’ model of the 11 cm data. Importance is based on % increase in mean squared
error (MSE) for each band on the out of bag data for each tree in the RF and then computed after
permuting a variable (band),. Figure S14: Mean Decrease in Gini Importance (Importance on x axis)
for each mean and SD reflectance/structure for the 7 bands in the pixel-based “Multispectral Only’
model of the 11 cm data. Importance is based on % increase in mean squared error (MSE) for each
band on the out of bag data for each tree in the RF and then computed after permuting a variable
(band),. Figure S15: Mean Decrease in Gini Importance (Importance on x axis) for each mean and SD
reflectance/structure of the segments (image-objects) for the 14 bands in object-based “Multispectral
+ CHM’ model of the 11 cm data (resampled to 55 cm). Importance is based on % increase in mean
squared error (MSE) for each band on the out of bag data for each tree in the RF and then computed
after permuting a variable (band),. Figure S16: Mean Decrease in Gini Importance (Importance on
x axis) for each of the 14 bands in the object-based ‘Multispectral + DSM’ model of the 11 cm data.
Importance is based on % increase in mean squared error (MSE) for each band on the out of bag
data for each tree in the RF and then computed after permuting a variable (band),. Figure S17: Mean
Decrease in Gini Importance (Importance on x axis) for each of the 10 bands in the “Multispectral
Only’ dataset object-based approach for the 11 cm data. Importance is based on % increase in mean
squared error (MSE) for each band on the out of bag data for each tree in the RF and then computed
after permuting a variable (band),. Figure S18: (a) The optimal segmentation layer for the 11 cm
dataset (false color composite) with overlaid training data points from the four vegetation classes. (b)
The optimal segmentation layer for the 3 cm imagery of the same area and training data points. Red
boxes represent areas with varying degrees of segmentation, where OS indicates “Over-Segmented,”
RS indicates “Realistically-Segmented,” and US indicates “Under-segmented. Table S1: Confusion
matrix for the 11 cm ‘Multispectral + DSM + Rugosity’ model on the disaggregated vegetation classes
recorded in the field: floating EFB + Lily spp., floating Duckweed spp., Submergent, and Emergent
vegetation. Reference data are actual recorded classes from the field as well as reference points
determined from the imagery and predicted classes at test points were generated from the random
forest model. The greyed out diagonal values are the number of points correctly classified by the
model, with the bold value in the bottom right cell representing the overall accuracy of the model
(sum of the diagonal values/the total number of points * 100). Producer’s and User’s Accuracy (PA
& UA) are displayed in % accuracy., Table S2: Mean object size (±SD, in m2) of the points for the
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four vegetation classes from the reference data overlaid on the optimal segmentation outputs for the
OBIA.
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