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Chapter 1: Introduction 

 A prominent issue in the diagnosis, prognosis, and treatment of common 

neurodevelopmental disorders (e.g., Attention-deficit/hyperactivity disorder; ADHD, Autism-

spectrum disorder; ASD) is the heterogeneity of their behavioural presentations (Feczko et al., 

2019). To date, one of the largest efforts put forth towards overcoming this issue has been the 

National Institute of Mental Health’s Research Domain Criteria initiative (RDoC; Insel et al., 

2010). The RDoC initiative seeks to identify intermediate neurobiological mechanisms at the 

molecular, circuit, and cognitive level that are capable of explaining how certain patterns of gene 

expression ultimately manifest at the behavioural level (Insel et al., 2010). An understanding of 

how differences in these mechanisms (or ‘endophenotypes’) lead to differences in specific 

human behaviours (or ‘phenotypes’) may allow phenotypes at the extreme ends of human 

behaviour to be divided into more biologically homogenous groups (Cuthbert, 2014). Ideally, 

this homogeneity will then decrease the variability in prognosis and response to treatment. 

Dynamic network configuration as an endophenotype 

 Distinct cognitive processes are increasingly described in terms of how information is 

dynamically transferred within and between broadly distributed, large-scale systems in the brain 

(Braun et al., 2018; Shine & Poldrack, 2018; Mill et al., 2016). As will be described below, the 

mechanisms underlying how exactly this ‘dynamic network configuration’ occurs are starting to 

be identified, and it is currently thought that alterations to these mechanisms may partially 

explain the cognitive dysfunctions observed across a wide range of neurodevelopmental 

disorders (Uddin & Karlsgodt, 2018; Shine & Poldrack, 2018; Bassett & Sporns, 2017; Soto et 

al., 2016; Veit et al., 2021; Thompson & Fransson, 2016; Fornito & Bullmore, 2012). However, 

the precise ways in which differences in these mechanisms will relate with differences in 
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cognitive processing and behaviour, and the developmental trajectories that might give rise to 

these differences, are not yet clear (Braun et al., 2018; Uddin & Karlsgodt, 2018). A better 

understanding of these factors may ultimately allow us to divide the behavioural profiles of 

neurodevelopmental disorders into more biologically homogenous groups (Fornito & Bullmore, 

2012). Because of the potential that dynamic network configuration holds in this regard, it is now 

considered a relevant unit of analysis within the RDoC initiative (National Institute of Mental 

Health, 2022).  

Attention-deficit/hyperactivity disorder: a case in point 

 In the current research, I applied the RDoC framework to the study of ADHD. First, I 

examined the ways in which large-scale functional networks, as assessed through 

electroencephalogram (EEG), dynamically configured during motor response inhibition and 

execution (during a Go/No-Go task). Then, I tested whether differences in this dynamic 

configuration could account for differences in ADHD-related behaviours (hyperactive and 

impulsive vs. inattentive) in a non-clinical sample of emerging adults.  

 ADHD is well-suited to the application of the RDoC framework. First, there is 

considerable heterogeneity observed in the behavioural profiles of the disorder. In fact, it is less 

likely to be diagnosed solely with ADHD than it is to receive a comorbid diagnosis (~61% 

comorbidity, most common being generalized anxiety and oppositional defiant disorder; 

Mohammadi et al., 2019) and behavioural profiles tend to systematically differ as functions of 

age and sex. With age, for example, inattentive symptoms tend to remain relatively static while 

hyperactive/impulsive symptoms tend to decrease (Larsson et al., 2006). Of the three ADHD 

presentations recognized by the DSM-V (inattentive, hyperactive/impulsive, combined), females 
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are most likely to receive an inattentive diagnosis while males are most likely to receive a 

hyperactive/impulsive diagnosis (Quinn & Madhoo, 2014; DSM 5th ed., 2013).  

 Second, it is generally well-accepted that a dimensional, as opposed to a categorial 

framework/disease-model, is most appropriate for ADHD (Marcus & Barry, 2011). For example, 

delayed and variable reaction times during inhibitory tasks are consistently observed in those 

with ADHD, yet differences in these metrics (from those without a diagnosis, to those near a 

borderline diagnosis, to those with a diagnosis) are best captured by a linear model (Marcus & 

Barry, 2011; Kalf et al., 2005; Barkley et al., 1997; Lijffijt et al., 2005). This linearity implies a 

lack of easily delineable boundaries where ADHD behaviours become particularly severe, 

suggesting the dimensional framework may be most appropriate. Indeed, this framework is now 

relatively common in the ADHD-neuroimaging literature (Hilger et al., 2019; Gerrits et al., 

2019).  

 Finally, within the RDoC framework, there is evidence that dynamic network 

configuration may be a relevant endophenotype in ADHD. In brief (given a full discussion is 

held in section 1.3), certain functional regions in the cortex have properties that support their 

ability to initiate dynamic changes in network configuration, and dysconnectivity within these 

same regions are consistently implicated in ADHD (Sha et al., 2018; Senden et al., 2017; 

Crossley et al., 2014). 

Oscillatory Activity in the Cortex: Communication Through Coherence 

 Before applying this framework to ADHD, I provide a detailed discussion of the 

theoretical framework underlying dynamic network configuration. Specifically, in the following 

sections, I discuss:  

(1) The mechanisms thought to underly oscillatory activity in the cortex. 
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(2) How these oscillations are thought to facilitate the transfer of information. 

(3) How certain assumptions allow us to infer this connectivity from empirical data, and how 

this connectivity can then be modelled as a graph, or ‘functional network’. 

(4) How certain topological properties of the functional networks created through such an 

approach are thought to support cognitive function. 

(5) The emerging principles on how these topological properties dynamically change during 

cognitive processing. 

 This overview will lay the groundwork for the manuscript section of the thesis, which 

examines how differences in dynamic network configuration during motor response execution 

and inhibition are associated with ADHD-related traits. 

Circuit-level mechanisms underlying oscillatory activity 

 Certain populations of neurons, as a result of their distinct circuitry, will tend to 

intrinsically oscillate at particular frequencies when subjected to a noisy depolarizing current 

(Jensen et al., 2014; Wal & Tiesinga et al., 2017; Wang et al., 2010). The most well studied 

circuit to exhibit this phenomenon is one with pyramidal and inhibitory interneurons, where 

reciprocal connections exist between pyramidal and interneurons and amongst interneurons 

(pyramidal–interneuron connectivity: excitatory; interneuron-pyramidal connectivity: inhibitory; 

interneuron-interneuron connectivity: inhibitory; Moca & Murecan, 2011). When provided with 

a constant depolarizing input, typically modelled as some combination of constant current 

(which is input to all neurons) and gaussian-noise (which is neuron-specific), many of the 

neurons within these circuits will tend to spontaneously synchronize their firing rates (Tiesinga 

& Sejnowski, 2009; Jensen et al., 2014; Wal & Tiesinga et al., 2017). Due to the specific 

properties of the interneuron receptors, which typically hyperpolarize for around 10ms, this 
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spontaneous synchronization occurs at around 50Hz (gamma frequency, Jensen et al., 2014). The 

activity within this particular kind of circuit is referred to as ‘Pyramidal-interneuronal network 

gamma’ or ‘PING’. The network topology producing PING is repeatedly observed within 

clusters of cortical columns (making it a ‘motif’ in graph-theory terms; Tieinga & Sejnowski, 

2009; Fornito & Bullmore, 2016). For the signal produced by PING to be observable through 

EEG at the sensor level, each of these circuits needs to consist of around 104 neurons, or around 

900 cortical columns (Lee & Jones, 2013).  

 While PING is simply one example of spontaneous synchronization, modifications to the 

topology of PING-producing circuits are theoretically capable of explaining oscillatory activity 

within various frequency bands (theta: ~4-7H, beta: ~13-30Hz; Skinner et al., 2021; Jensen et al., 

2014). For example, beta activity can be produced by changing the strength of interneuron-

interneuron connectivity and by adding connections amongst the pyramidal neurons (Jensen et 

al., 2014). While the precise mechanisms and circuit-types underlying the different canonical 

frequencies observed in the cortex are far from being fully understood, some principles of 

organization have started to emerge (Cohen, 2017). For instance, it is currently thought that 

higher-frequency oscillations (> ~20 Hz) are produced by local circuits, where connectivity 

exists within the same structure (e.g., short-range cortico-cortical connections); while lower 

frequency oscillations (< ~20 Hz), are produced by circuits with connectivity between structures 

(e.g., interhemispheric cortico-cortical connectivity; cortical-thalamic connectivity, Neske et al., 

2016; neocortical-hippocampal theta; Nunez & Buno, 2021). 

Communication through coherence 

 Local oscillatory activity emerges from the spontaneous synchronization (‘coherence’), 

of neurons within particular circuits, like those discussed above. It is the synchronization of 
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activity between these circuits, however, that is thought to facilitate the transfer of information 

that supports cognition. This has been referred to as the ‘Communication through Coherence’ 

hypothesis (CTC; Fries, 2015).  

 Synaptic input will be more effective at initiating an action potential if the membrane 

potential of the receiving neuron is already partially depolarized (Fries et al., 2015; Lee et al., 

2013). The oscillations produced locally within a circuit will periodically hyperpolarize and 

depolarize the membrane potentials of all neurons within the circuit, effectively producing these 

temporal windows where neurons are maximally susceptible to synaptic input (Fries, 2015; Wal 

& Tiesinga, 2017; Lee et al., 2013). It follows, then, that for two regions to communicate more 

effectively, the sending region should alter the phase of its intrinsic oscillations so that it is some 

optimal phase-difference from the receiving region. This is precisely what is thought to occur 

during cognitive processing under the CTC hypothesis (Fries, 2015).  

 Distinct cognitive processes are associated with systematic changes to the phase of 

regional oscillations (Womelsdorf et al., 2007). This allows select regions to transfer information 

more effectively to other regions. The exact phase-lag that will optimally support this 

information transfer is dependent on a number of factors, including the axonal distance between 

sending and receiving regions, the frequency of the oscillation, and the balance of inhibitory to 

excitatory neurons within both regions (Wal & Tiesinga, 2017). Interestingly, as a result of these 

factors, the optimal phase-lag is sometimes such that sending and receiving groups will appear to 

be completely out of phase (i.e. oscillate with a phase difference of π; Wal & Tiesinga, 2017).  

 The outcome of the region-to-region synchronization brought on by these phase-shifts is 

the formation of transient large-scale functional networks (Hipp et al., 2011; Senden et al., 



Dynamic Network Configuration in ADHD  7 

 

2017). Here, we refer to the transient formation of large-scale functional networks during 

cognitive processing as a dynamic network configuration. 

Inferring synchronization from empirical data: functional networks 

 The communication though coherence hypothesis suggests that the transfer of 

information throughout the brain during cognitive processing will often be accompanied by a 

phase-lagged synchronization of electrophysiological activity, which can be examined using 

EEG.  

 In a typical EEG experiment, each participant will have had the voltage fluctuations over 

their scalp recorded during n occurrences of a specific cognitive process (each occurrence 

referred to as a trial). To estimate the degree of sensor–sensor synchronization that tended to 

occur over the course of the cognitive process, we first need to estimate the instantaneous phase 

of the frequency-specific signal over the course of each trial and at each sensor. One such 

approach involves measuring, at each time-point, how similar the signal is to a tapered sine wave 

with a known frequency/phase using the dot product (complex Morlet-wavelet convolution; see 

Cohen, 2019 for a detailed overview). Once these estimates have been obtained, we can quantify 

the average phase-lagged synchronization that occurred between each sensor-sensor pair over the 

course of the cognitive process (within the frequency defined by the wavelet) using the across-

trial phase-lag index (PLI; Stam et al., 2007, p. 1181): 

𝑃𝐿𝐼 =  | 𝑛−1 ∑ 𝑠𝑔𝑛(𝐼𝑚[𝑒𝑖 ( Ɵ𝑗 – Ɵ𝑘)])

𝑛

𝑡 = 1

| 

To calculate PLI at a specific time-point, we first take the instantaneous phase of signals j (Ɵ𝑗) 

and k (Ɵ𝑘) at trial t. Next, we project the difference in these values onto the unit circle in the 

complex plane, e i(Ɵj – Ɵk) (since the natural exponent of any value multiplied by i, where i 
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satisfies the equation i = √−1, will lie on the unit circle of the complex plane; Euler, 1748). 

Next, we take the imaginary component Im() of this value, and apply the signum function sgn(), 

which returns a value of 1 when the input is positive and -1 when negative. These two functions 

effectively remove the size of the phase-difference, and simply tells us whether signal j was 

leading signal k (had a phase difference between 0 and π), or lagging (phase difference between 

π and 2π) signal k. Finally, we estimate this value (lagging or leading) for all trials and take the 

absolute value of the mean. Doing so provides an index ranging from 0 to 1 of how 

asymmetrically a set of phase-differences is distributed. From the CTC hypothesis, we assume 

that two sensors with a more highly asymmetric distribution of phase differences across-trials 

(i.e., PLI closer to 1) are more likely to be transferring information. Because this communication 

is occurring during a particular cognitive function, we say the regions producing these two 

signals are functionally connected. This form of connectivity does not necessarily imply direct 

structural connectivity (i.e., white matter tracts between regions or axonal projections between 

neurons), rather, most functional connectivity is thought to arise through indirect/polysynaptic 

connections (Bazinet et al., 2021). Moreover, simply by definition, functional connectivity exists 

between any given pair of regions (albeit arbitrarily little), whereas structural connectivity exists 

in a more categorical way (Liu et al., 2021). 

 One of the primary limitations of this approach is that, by taking the absolute value and 

removing the information differentiating leading from lagging, we assume connectivity is 

undirected/bidirectional (Stam et al., 2007). This is clearly not the case, and distinguishing 

bidirectional (i.e., feedback loops) from unidirectional (or, ‘effective’) forms of communication 

will be necessary for any mechanistic explanation of cognitive processing (Mill et al., 2017). The 

removal of this information is necessary, however, in that directed measures relying on 
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differentiating lagging from leading tend to be unreliable beyond ~12Hz (Stam et al., 2012). An 

alternative approach, which infers the existence of connectivity when information in one signal 

can be used to predict the other (i.e., Phase-shift Granger causality; Marshall et al., 2014), may 

one day be able to address this limitation. Currently, however, these methods tend to be more 

variable and require a greater quantity of data for similar reliability (Scharwächter et al., 2022). 

 Despite this limitation, however, PLI has been found to show good to excellent test-retest 

reliability (Intraclass correlation coefficient: .68 - .80), particularly for global metrics, and when 

applied to high-density EEG (Hardmeier et al., 2014). PLI is particularly effective compared to 

approaches that are less equipped to handle connectivity that occurs as a result of single-source 

volume conduction (i.e, the imaginary component of coherence; Stam et al., 2007).  

 After calculating the across-trial PLI for each set of sensors at each time-point, we are left 

with a time-series of adjacency matrices indexing the sensor-by-sensor synchronization that 

occurred over the course of the cognitive process. A particularly useful framework is to then 

model these matrices as graphs (in the graph-theoretical sense), also referred to as networks: sets 

of vertices (nodes), and edges (connections; Bullmore & Sporns, 2009). This framework allow us 

to formally analyze high-dimensional data while minimizing the reduction in complexity, and the 

tools within this framework have increased our understanding of the intermediate mechanisms 

mediating genetics and behaviour (Fornito & Bullmore, 2012; Bassett & Sporns, 2017). 

Large-Scale Cortical Networks 

 The CTC hypothesis suggests that the synchronisation of electrophysiological signals 

recorded from the cortex will be associated with the transfer of information between neural 

circuits (Fries, 2015). A direct consequence of this hypothesis is that the topology of functional 

networks, which partially determines how this communication can occur, will be relevant to 
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cognitive function (Bullmore & Sporns, 2012). With this in mind, I will now discuss the 

topological properties that large-scale cortical networks tend to exhibit (small-worldness, 

modularity, and the existence of hubs), how these properties support cognitive function, and how 

these properties tend to dynamically change during cognitive processing.  

Topological properties of large-scale cortical networks  

 Small-Worldness 

 The topology of cortical networks is far from random (i.e., each edge is not wired with a 

fixed probability p) and highly irregular (i.e., each node does not have a fixed degree k; Bassett 

& Bullmore, 2006). These two extremes tend to support distinct processes: networks with a fixed 

degree at each node support local processing, as any node is likely to have similar neighbours 

(quantified by the clustering coefficient; see table 2 for formula); networks with a random degree 

at each node support global processing, as there is likely a short set of connections between any 

two nodes (quantified by the global efficiency; see table 2; Bassett & Bullmore, 2006). 

Interestingly, as a topology shifts from regular (fixed degree) to random, which can occur 

through a random re-wiring of connections, these two features do not diminish linearly (Watts & 

Strogatz, 1998). Rather, there exists a range of topologies between random and regular at which 

the global efficiency of a network is only slightly lower than that of a random network, while at 

the same time, the clustering coefficient is only sightly lower than that of a regular network. 

Cortical networks tend to strike this particular balance (Telesford et al., 2011; Zink et al., 2021). 

In doing so, they are able to support both local/segregated processing, and global/integrated 

processing. This topological property, known as small-worldness, was first defined in the 

seminal paper by Watts & Strogatz (1998). Cortical networks tend to achieve this global property 
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through a ‘hierarchically-modular’ topology that relies on a set of privileged nodes (hubs) for 

long-distance integration (Gallos et al., 2012).  

 Modularity 

 A network that is highly modular can be neatly decomposed into relatively independent 

sub-networks (Sporns & Betzel, 2016). In graph-theory, modularity (Q) is a statistic that 

quantifies the degree to which any given partition of a network into sets of nodes (‘modules’) 

maximizes the proportion of within-module to between-module connectivity, relative to what 

might be expected by chance (i.e, compared to an Erdős–Rényi random graph, wired with fixed 

probability; see table 2). The partition that roughly maximizes this statistic can be found 

algorithmically, and the Q value associated with this partition will define the modularity of the 

network (Blondel et al., 2008).  

 Functional networks identified using both fMRI (Yeo et al., 2011; Power et al., 2011) and 

EEG (Kabbara et al., 2021; Gallen & D’Esposito, 2019) exhibit high modularity. Moreover, this 

modularity is relatively scale-invariant, or hierarchical. That is, modules identified at a whole-

brain level (large-scale networks: e.g., salience, frontoparietal etc.; Yeo et al., 2011; Power et al., 

2011) consist of smaller modules (regions), which themselves consist of smaller modules 

(circuits) in a hierarchical fashion (Meunier et al., 2009).  

 Since cortical networks are a result of developmental mechanisms that have been 

naturally selected for, their topological properties, as described by Ramón y Cajal, are 

“morphological adaptations, governed by laws of conservation for time, space, and material” 

(Cajal, 1911; cited in Laughlin & Sejnowski, 2003). Indeed, it is thought that a modular topology 

has been naturally selected for given it supports the dynamic transfer of information required for 
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cognition in a way that conserves metabolic costs (Bertolero et al., 2018; Bullmore & Sporns, 

2012).  

 Roughly 50% of the brain’s metabolic costs come from the propagation of signals along 

axons and across synapses (Avena-Koenigsberger et al., 2019; Laughlin & Sejnowski, 2003). 

The form of communication discussed earlier, where specific mechanisms alter the phase of a 

circuit’s signal to facilitate effective integration, is thought to be a relatively metabolically 

expensive form of communication (Avena-Koenigsberger et al., 2019; Fries, 2015; Tiesinga & 

Sejnowski, 2010). An inexpensive alternative is to communicate through diffusion, where 

information is transferred indiscriminately between neighbouring circuits without any 

modulation of phase (Misic et al., 2014; Avena-Koenigsberger et al., 2019). In many ways, 

diffusion is a horribly ineffective strategy: signals will take longer to reach their target circuit 

and will be degraded by the time they do. However, a modular topology allows for certain 

circuits (those within a ‘module’ at the large-scale level) to communicate through diffusion, and 

only requires that other, more ‘privileged’ circuits route information in the metabolically 

demanding yet effective way that relies on phase-shifting (Misic et al., 2014; Avena-

Koenigsberger et al., 2019). Thus, a modular topology supports cognitive processing by allowing 

for more energy efficient forms of communication to take place. However, for this to be the case, 

there needs to exist privileged regions capable of routing information between modules. It should 

come as no surprise, then, that these regions, referred to as hubs, are in fact consistently 

identified in large-scale cortical networks (Power et al., 2013).  

 Hubs  

 Conceptually, hubs are simply nodes whose set of edges are disproportionately important 

to the global topology of the network. For instance, one might define the hub-ness of a node by 
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examining how many of the shortest paths between any pair of nodes tend to pass through it 

(betweenness-centrality; Fornito & Bullmore, 2016). While this is one appropriate definition, 

hubs are technically any node with some measure of centrality beyond a given threshold, and 

many forms of centrality are able to satisfy this definition (Bullmore & Sporns, 2009).  

 A definition of centrality that indexes the ability of a node to effectively transfer 

information between large-scale networks during cognitive processing was first proposed by 

Guimera & Amaral (2005), albeit in a different context. They suggested a scheme for classifying 

nodes into distinct functional roles based on their location within a space defined by two 

dimensions: (1) how well-connected a node is to nodes within its own module (measured using 

the within-module degree z-score), and (2) how well distributed a nodes connections are amongst 

modules (measured using the participation coefficient; see table 2). In this approach, ‘connector 

hubs’ (characterized by both a high participation coefficient and high within-module degree) are 

topologically well-suited to drive global network topology towards both segregated states (high 

within-module connectivity) and integrated states (high between-module connectivity) by simply 

altering the strength of their connections (Bertolero et al., 2018). While first applied to metabolic 

networks, this classification scheme has since been used to understand the function of specific 

cortical regions during cognitive processing (Hilger et al., 2019; Sha et al., 2018; Achard et al., 

2006; Fornito & Bullmore, 2016). Using this definition, research has found that these regions 

tend to be disproportionately located in lateral parts of the frontal and parietal cortices, and are 

highly represented in the dorsal-attentional, ventral-attentional, fronto-parietal and default mode 

networks (Sydnor et al., 2021; Yeo et al., 2015).  

 The existence of these regions allows for cortical networks to be highly modular without 

losing the potential for high levels of integration (in other words, it allows for small-worldness). 
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Indeed, both these features (modularity and global efficiency) tend to increase in tandem 

alongside the development of executive functioning abilities (Baum et al., 2018).   

 The importance of these hub-regions for cognitive processing is highlighted by the 

impact that hub dysconnectivity is thought to have. Altered patterns of connectivity in connector 

hubs is observed across a range of neurodevelopmental disorders, including ADHD (Sha et al., 

2018). This hypo-connectivity is thought to result in an inability to appropriately integrate 

information between modules during dynamic network configuration (Crossley et al., 2014; Sha 

et al., 2018; Bassett et al., 2018; Wang et al., 2019).  

 Taken together, it appears that the presence of certain topological properties (small-

worldness, modularity, hubs) support cognitive processing. In the next section, I briefly discuss 

the mechanisms underlying how these properties dynamically change during cognitive 

processing.  

Principles of dynamic network reconfiguration  

 In general, during periods of increased cognitive effort, there tends to be increased 

integration of task-relevant systems (global-workspace hypothesis; Kitzbichler et al., 2011). 

During ‘task-related processing’ (i.e., immediately post-stimulus in a given cognitive paradigm), 

measures of global efficiency, between-module communication, and hub-degree will be higher 

than during periods of relative rest (i.e, during inter-trial intervals or resting-state paradigms; 

Shine et al., 2016; Cohen & D’Esposito, 2016). While the specific systems that will tend to show 

increased between-module connectivity are context-dependent, this simple and broad 

phenomenon of task-relevant integration has been observed across a wide range of cognitive 

processes (e.g., during each of the 7 tasks found in the Human Connectome Project; Shine et al., 

2016). 
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 A few notable phenomenon that provide a more in-depth characterization of this 

integration have since been observed. Specifically, the strength of integration (i.e., between-

module connectivity, global efficiency) is: (1) associated with task complexity and predictive of 

task-performance, (2) attenuates with task-automaticity, and (3) occurs through burst-like 

communication, after a short time of periodic intra-network communication. 

 First, the strength of task-related integration is found to increase alongside task 

‘complexity’ (Russel & Poldrack, 2018; Wig et al., 2017). For example, the strength of 

integration is weaker for simple motor-response tasks than it is for working-memory related 

tasks (Russel & Poldrack, 2018). Additionally, within N-back working memory tasks, the 

strength of this integration tends to positively predict task-performance (Shine et al., 2016; 

Cohen & D’Esposito, 2016; Wig, 2017; Russel & Poldrack, 2018). Strong task-performers also 

tend to remain in this integrated configuration over the course of the paradigm (which can be 

indexed using the temporal correlation coefficient; see table 2), rather than fluctuating between 

integrated and segregated states (Hilger et al., 2019). 

 Second, almost counterintuitively given the above findings, this task-related integration 

tends to attenuate alongside increases in task automaticity (Bassett et al., 2015; Wig et a., 2017; 

Mohr et al., 2016; Finc et al., 2020). That is, the amount of between-system information needed 

to be transferred to accomplish a given cognitive function is reduced as the function becomes 

more automatic. Since first being identified in a simple motor-learning task (Mantzaris et al., 

2013; Bassett et al., 2015), this attenuated-integration phenomenon has been observed alongside 

automaticity in an N-back working-memory task (Mohr et al., 2016), a category-learning task 

(Soto et al., 2016), and during word reading as children’s fluency increased (Kember et al., 

2021). One explanation for this phenomenon is the neural-efficiency hypothesis, formally 
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proposed by Bassett et al. (Bassett et al., 2015; Mantzaris et al., 2013; Soto et al., 2016). Under 

the neural efficiency hypothesis, this attenuated integration can be thought of as a natural 

outcome of learning, assuming there will have been incentive throughout evolution to reduce the 

amount of time spent in integrated, metabolically expensive states.  

 Finally, using intracranial EEG, converging evidence has recently demonstrated that the 

transfer of information between cortical regions occurs first within large-scale networks, then 

between large-scale networks (Veit et al., 2021; Silverstein et al., 2020). Thompson & Fransson 

(2016) also identified that this intra-network transfer of information occurs in a periodic fashion, 

while the inter-network transfer of information occurs in a burst-like fashion. Technically, 

‘burstiness’ is a measure of how inter-contact times are distributed. If one tracks the number of 

time-steps between a series of within-network transfers of information (i.e.: 1msec, 3msec, 

5msec, 7msec…), it will not tend to occur at random (i.e., as a Poisson process), but will occur at 

regular intervals (periodically; Thompson & Fransson, 2016). In contrast, however, 

communication between large-scale networks tends to occur in periods of bursts: distinct ‘On-

Off’ sequences (Kim & Jo, 2016; Thompson & Fransson, 2016; Thompson et al., 2017).  
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Chapter 2: Dynamic configuration of large-scale cortical networks during an inhibitory 

task accounts for heterogeneity in attention-deficit/hyperactivity disorder traits 

 The mechanisms that govern how the topological properties of large-scale cortical 

networks will dynamically change to support cognitive processing are beginning to be 

understood. It is not yet clear, however, how alterations to these mechanisms will constrain 

cognitive processing (Braun et al., 2018; Uddin et al., 2018). In the next section, I assess how 

differences in the dynamic network configuration exhibited during motor response 

execution/inhibition can account for differences in ADHD-related behaviours. As will be shown, 

the application of this framework to ADHD will highlight its potential as a unit of analysis in the 

RDoC framework. Ideally, this framework will eventually help clarify the behavioural profiles of 

ADHD, and other neurodevelopmental disorders, into more biologically homogenous groups. 

This will increase our ability to predict the progression of disorders and provide appropriate 

treatment. 

Abstract 

The heterogeneity of attention-deficit/hyperactivity disorder (ADHD) traits (inattention vs. 

hyperactivity/impulsivity) complicates diagnosis and intervention. Identifying how the 

configuration of large-scale functional brain networks during cognitive processing correlate with 

this heterogeneity could help us understand the neural mechanisms altered across ADHD 

presentations. Here, we recorded high-density EEG while 62 non-clinical participants (ages 18-

24; 32 male) underwent an inhibitory control task (Go/No-Go). Functional EEG networks were 

created using sensors as nodes and across-trial phase-lag index values as edges. Using cross-

validated LASSO regression, we examined whether graph-theory metrics applied to both static 

networks (averaged across time-windows: -500–0ms, 0–500ms) and dynamic networks 

(temporally layered with 2ms intervals), were associated with hyperactive/impulsive and 
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inattentive traits. Network configuration during response execution/inhibition was associated 

with hyperactive/impulsive (mean R2 across test sets = .20, SE = .02), but not inattentive traits. 

Post-stimulus results at higher frequencies (Beta, 14-29Hz; Gamma, 30-90Hz) showed the 

strongest association with hyperactive/impulsive traits, and predominantly reflected less burst-

like integration between modules in oscillatory beta networks during execution, and increased 

integration/small-worldness in oscillatory gamma networks during inhibition. We interpret the 

beta network results as reflecting weaker integration between specialized pre-frontal and motor 

systems during motor response preparation, and the gamma results as reflecting a compensatory 

mechanism used to integrate processing between less functionally specialized networks. This 

research demonstrates that the neural network mechanisms underlying response 

execution/inhibition might be associated with hyperactive/impulsive traits, and that dynamic, 

task-related changes in EEG functional networks may be useful in disentangling ADHD 

heterogeneity. 

Introduction  

 Despite being one of the most prevalent behavioral disorders, thought to affect roughly 

7.2% of the population under 18 worldwide, the diagnostic reliability of attention-

deficit/hyperactivity disorder (ADHD) is an ongoing challenge (1, 2). This is due in part to the 

heterogeneity of ADHD traits (inattention, hyperactivity, impulsivity), which often fail to neatly 

align with the distinct presentations recognized by the DSM-V (3). To overcome this, the 

National Institute of Mental Health proposed that ADHD subtype etiology be refined using 

biologically based measures, which might better capture the altered mechanisms that account for 

the distinct traits (4). To date, however, few studies have successfully used biological measures 

to reliably differentiate the two distinct presentations, characterized by hyperactive/impulsive 
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and inattentive traits (5). The current study examines whether patterns of brain network 

connectivity recorded from electroencephalogram (EEG) during the execution and inhibition of 

motor responses can reliably do so. 

 A primary deficit of those with ADHD is in the ability to appropriately execute and 

inhibit motor responses based on environmental cues, often operationalized through performance 

on an inhibitory task (e.g., Go/No-Go, stop-signal, stroop (6, 7, 8)). Dysfunction in the 

electrocortical responses associated with these functions is consistently implicated in those with 

ADHD using both fMRI and EEG, although EEG often predicts ADHD with higher accuracy 

than fMRI (4, 9, 10). In those with ADHD, motor execution/inhibition dysfunction during the 

Go/No-Go task is evidenced by reduced frontal N2 and central P3 components of the event-

related potential (ERP), and decreased event-related oscillatory alpha power (9, 11, 12). 

 Although inhibitory deficits are pronounced in those with ADHD, some evidence 

suggests individual differences in the mechanisms underlying the ability to execute/inhibit motor 

responses might specifically account for hyperactive/impulsive traits (13, 14). In EEG research, 

for example, compared to the inattentive subtype, those with the combined subtype show higher 

amplitude beta oscillations at electrodes over the sensorimotor cortex during a cued-flanker 

inhibitory task (thought to reflect weaker motor response planning (12)). They also show weaker 

source-localized oscillatory theta power over right frontal areas during the pre-trial intervals of a 

Go/No-Go task (15). However, contradictory evidence complicates this hypothesis: differences 

in cognitive measures of inhibitory control often fail to distinguish between subtypes, and 

electrophysiological research has found no differences between inattentive and 

hyperactive/impulsive subtypes in the event-related potentials thought to underly motor response 

inhibition (6, 16, 17, 18, 19).  
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 This controversy seems to suggest that the neural mechanisms supporting motor response 

execution/inhibition are not a prominent source of heterogeneity in ADHD traits. However, 

diffusion tensor imaging (DTI) has identified white matter damage to frontal-subcortical circuits 

and motor circuits (both strongly implicated in response inhibition) as a primary characteristic of 

the combined subtype compared to the inattentive subtype (20). Additionally, the use of 

methylphenidate (shown to enhance response inhibition on Go/No-Go tasks by reducing task-

irrelevant connectivity), is more effective at reducing hyperactive/impulsive symptoms than 

inattentive symptoms (21, 22, 23). These results suggest instead that the neural correlates of 

execution/inhibition are in fact related to ADHD heterogeneity, but that measures capturing 

neural activity from local regions (MEG/EEG sensors; fMRI regions of interest) might lack the 

sensitivity required to adequately distinguish between subtypes. Instead, examining patterns of 

connectivity between cortical regions in the wide-spread functional networks important for 

cognitive control appears to be necessary. This conclusion– that distinct ADHD symptoms may 

be linked to altered connectivity between cortical regions during the execution/inhibition of 

motor responses– has increasingly been made within the broad shift towards understanding 

ADHD through a network-based approach, rather than a regional-abnormality based approach (5, 

14, 24, 25, 26). This network approach is also in line with research examining the neural 

correlates of response inhibition, which has argued against specific regions functionally 

specialized for inhibitory processing in favour of a domain-general class of ‘network 

mechanisms’, where connectivity patterns initiated by the fronto-parietal network account for a 

variety of functions during cognitive control (27, 28).  

 One approach recently used in ADHD research is that of task-based network measures, 

which characterize the dynamic changes in large-scale functional network organization during 
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distinct cognitive processes (14, 29, 30). Since these changes are closely linked to behaviour, it is 

thought that task-based approaches might better capture sources of ADHD heterogeneity than 

resting-state approaches (14, 29, 31). A network approach might also further the use of EEG in 

clinical ADHD research. Indeed, research examining single features in the EEG signal, such as 

the ratio of theta to beta oscillations or the N2/P3 ERPs, has not yet adequately captured the 

heterogeneity of ADHD (4, 32, 33). While some research has pursued multivariate approaches to 

overcome this, where multiple predictive features within the EEG signal are identified using 

advanced pattern recognition techniques (e.g., convolutional neural networks; 34, 35), their lack 

of interpretability has so far limited their utility in clinical research as well (4, 34). Thus, the 

utility of EEG in clinical research may be furthered by research using network measures to 

identify specific connectivity patterns associated with ADHD heterogeneity (4, 5).  

 In the current study, we examine whether differences in the organization of functional 

EEG networks during response execution/inhibition (Go/No-Go task) are associated with distinct 

ADHD symptoms (inattention and hyperactivity/impulsivity). In line with the Research Domain 

Criteria (RDoC; dimensional framework proposed by the National Institute of Mental Health), 

we recognize ADHD traits as lying on a continuum in the broader population (3, 36, 37, 38, 39).  

 To characterize the dynamic configuration of task-based EEG networks, we use metrics 

derived from graph theory, which describe the networks as ‘graphs’ (sets of nodes and 

connections between them, called ‘edges’). Typically, in EEG networks, nodes are sensors, and 

edges are defined through various functional connectivity measures between sensors. These 

measures are thought to capture the synchronization of neuronal oscillations from distinct 

regions, which is a mechanism for neuronal populations to coordinate information transfer (40). 

In the current study, individual differences in these networks are examined in terms of their 
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integration, segregation, and the balance of these two properties, referred to as ‘small-

worldness’. Decreased small-worldness in EEG beta-networks during cognitive interference has 

been found in those with ADHD compared to controls, and thus might be a specific alteration 

responsible for ADHD heterogeneity (41). Additionally, we examine functionally specialized 

collections of nodes called modules, which show strong connectivity with themselves and weak 

connectivity with the rest of the network (42, 43). Since integration between modules is thought 

to play a mechanistic role in executive functions (e.g., response inhibition/execution), it may also 

account for ADHD heterogeneity (43, 44, 45). 

 Task-based networks are typically analyzed by aggregating over distinct time windows, 

which conceals important information about how networks may dynamically organize to support 

response execution/inhibition (46, 47). Here, we examine the utility of a novel dynamic 

approach, which better captures these changes (46, 47). Given the inherently dynamic way 

information is transferred across regions during specific cognitive functions, we expected this 

approach to be well-suited in identifying subtle individual differences in the neural mechanisms 

supporting response execution/inhibition, and thus be sensitive to differences in ADHD traits. 

Methods and Materials 

Participants 

 Data were collected from 77 university students. 15 participants were excluded from 

analysis due to technical problems in data acquisition and a failure to complete the 

task/questionnaires, resulting in 62 participants entering analysis (see Table 1 for participant 

info).  

Conners’ Adult ADHD Rating Scales 
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 Self-report measures of inattention, hyperactivity and impulsivity were collected using 

Conners’ Adult ADHD Rating scales, which consists of 66 items on a 4-point Likert scale, 

ranging from “Not at all true” to “Very much true” (48). Five subtests were examined (Table 1), 

three of which assess hyperactivity and impulsivity, and two of which assess inattention. These 

scales have high internal and test-retest reliability (α’s = 0.86-0.92; 40). 

Stimuli and Procedure 

Participants underwent an A-X continuous performance task (adapted from Tekok-Kilic 

et al. (49)). Throughout two blocks, 1270 letters (A-H, J, L, X) were presented pseudo-randomly 

in the center of a computer screen. Participants were asked to respond quickly and accurately 

with a thumb press on a response pad to the letter sequence ‘A - X’. The letter ‘A’ was presented 

200 times, and half of letters following ‘A’ were ‘X’. “Go” trials were when ‘X’ was followed 

by ‘A’ and required response execution (100 total); “No Go” trials were when another letter 

followed ‘A’ and required response inhibition (100 total). Each letter was presented for 200ms, 

and there was an 800ms interval between letters. Mean reaction time and error rates measured 

task performance. Half of the trials in the task (n = 50) also included a ‘distractor’: simple line-

drawings of objects (evenly distributed for Go/No-Go conditions) presented 200ms after ‘A’ for 

200ms, although these were excluded from current analyses. This resulted in 50 Go and 50 No-

Go trials being used in analysis. During the task, 128-channel EEG was recorded (sampling-rate: 

500Hz, impedances kept below 100kΩ) from a HydroCel Geodesic sensor net and 300 NetAmps 

amplifier (Electrical Geodesics, Inc., Eugene, Oregon). EEG testing took ~22 minutes, excluding 

breaks between blocks. Several self-report questionnaires were administered after EEG testing 

and took ~20 minutes to complete. For the purposes of the current study, only ADHD scores 

were analyzed. 
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EEG Preprocessing and Phase Synchrony 

 EEG data were preprocessed in Brain Vision Analyzer 2.2.1 (Brain Products). Data were 

re-referenced to an average of all sites, and .5Hz high-pass, 100Hz low-pass, and 60Hz notch 

filters were applied. Gratton and Coles (1983) method was used to correct for eye movements 

(50), and trials with an amplitude difference of 200μV over a 200ms interval, or with an 

amplitude >±200μV were rejected, resulting in 42.18 (SD = 5.89) Go trials and 44.35 (SD = 

5.41) No-Go trials entering analysis. Connectivity between EEG sensors was calculated as in 

Panda et al. (51). Specifically, trial-by-trial data (from 3s pre-stimulus to 3s post-stimulus) from 

each participant were z-scored and filtered into canonical frequency-bands: (1-3Hz; 4-7Hz; 8-

13Hz; 14-29Hz; 30-90Hz). Instantaneous phase estimates were obtained using the Hilbert 

transform, and across-trial phase synchrony was measured using the phase-lag index (PLI; 52). 

PLI measures the consistency of phase-lags between electrodes across trials but does not imply a 

directed relationship. As a result, PLI attenuates zero-lag synchrony that might have occurred as 

a result of volume conduction. With PLI values as edges, sensor-by-sensor adjacency matrices 

were created at 2ms time-steps for each frequency-band. For dynamic networks, each adjacency 

matrix was proportionally thresholded to maintain the strongest 10% of edges (resulting in an 

average of 12.7 edges per node), and binarized. For static networks, adjacency matrices were 

averaged across time-windows (pre-stimulus/baseline processing: -500-0ms; post-stimulus/task-

relevant processing: 0-500ms) before being proportionally thresholded (10%) and binarized. 

Network Analyses 

 Network analyses were conducted in MATLAB using in-house scripts, the Brain-

Connectivity Toolbox (53), and the Dynamic-Graph metrics toolbox (47). Definitions and 

interpretations of metrics used to characterize the networks are presented in Table 2. These 
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include static and dynamic measures of integration (static: global efficiency; dynamic: broadcast 

centrality), segregation (static: clustering coefficient; dynamic: temporal correlation coefficient), 

small-worldness, and modularity (static: modularity, participation coefficient; dynamic: 

flexibility). Node-level measurements were averaged across all nodes to provide one summary 

statistic for each participant. For dynamic integration (broadcast centrality), the value halfway 

between zero and the largest eigenvalue absolute value across all static networks was selected for 

α (54). To measure how information was transferred between nodes over time, the average 

‘burstiness’ of networks was calculated. Communication between nodes is ‘burst-like’ when 

connections are serially correlated (show random-length periods of sequential connections, 

followed by random length periods of sequential disconnections), whereas communication is 

periodic when connections occur at regular intervals (55).   

 The optimal partition of each static network into modules was performed using Louvain’s 

modularity maximization algorithm (γ = 1 (56)). Dynamic modules were detected using the 

method described by Aynaud & Guillaume (57), which applies the Louvain algorithm to each 

static network at time t, except, rather than the algorithm first assigning each node to their own 

module, nodes are first assigned to the module with which they belonged at t – 1. This avoids 

issues that arise from community-detection methods which identify modules at each timepoint 

independently (58). Due to the small variance that arises from Louvain’s algorithm, flexibility 

was averaged across 100 runs (59).  

Regression Analyses 

 To identify network characteristics (features) associated with hyperactivity/impulsivity 

and inattention (outcome variables), regression analyses were conducted using the least absolute 

shrinkage and selection operator (LASSO; 60). LASSO is a statistical learning method that fits 
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data to a multiple linear regression and prevents overfitting by applying a penalty term (which 

includes a hyperparameter lambda) to the cost function used to estimate regression coefficients. 

When lambda is zero, the LASSO simplifies to the least-squares estimates; when lambda is 

sufficiently high, all regression coefficients become zero. By driving small coefficients to zero, 

LASSO results in a relatively interpretable model with a sparse set of features. The optimal 

lambda value, which maximizes the model’s ability to account for variability in future 

observations, was estimated using repeated 10-fold cross-validation. This process is as follows: 

1) partition the data into 10 equal folds, 2) fit the model to all but one of these folds using a wide 

range of lambda values (training set; normalized using the min-max method), 3) for each lambda 

value, measure the mean squared error (MSE) of the model on the fold left out (test set), 4) 

calculate the out-of-sample R2 on this test set using the lambda value that minimizes MSE, 5) 

using each fold as a test set, determine the average MSE across test sets as a function of lambda, 

6) estimate regression coefficients using the lambda value that minimizes this average MSE. Ten 

repetitions of this k-fold cross validation were used to determine MSE as a function of lambda 

before selecting the appropriate value (as this helps avoid biases of unrepresentative partitions). 

This lambda value was used to estimate a final model on the entire dataset (providing the 

regression coefficients to be interpreted). To assess the quality of the model, the average out-of-

sample R2 across test sets was used. To interpret the model, regression coefficients and Pearson’s 

r were used. 

Results 

AX-CPT Task Performance 
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 Across participants, mean reaction time was 360.2 ms (SD = 79.5) and an average of 0.15 

(SD = 0.36) commission errors (incorrect response on No-Go trials) were made. The most 

commission errors made by a participant was four; most participants (n = 38) made zero. 

LASSO Models 

 Separate regression models were estimated for the five ADHD scales during both the pre- 

and post-stimulus windows (-500–0ms; 0–500ms). Static and temporal network measures from 

all frequency-bands and both Go/No-Go conditions were model features. Models conducted on 

post-stimulus data (0-500ms) predicted measures of hyperactivity and impulsivity 

(Hyperactivity/Impulsivity: R2 = .202 SE = .020; Hyperactivity/Restlessness: R2 = .188, SE = 

.022; Impulsivity/Emotionality: R2 = .123, SE = .023; average R2 across test sets provided). This 

can be seen in Figure 1. Conversely, models for inattentive traits had all regression coefficients 

driven to zero (Inattention: R2 = .033, SE = .025; Inattention-Memory: R2 =  .029, SE = .020), 

suggesting the relationship between inattention and network configuration was not strong enough 

to overcome the overfitting penalty. All models conducted on data from the pre-stimulus period 

(-500–0ms) had regression coefficients driven to zero as well, suggesting baseline network 

configuration did not relate to ADHD traits (Inattention: R2 = .051, SE = .017; 

Inattention/Memory: R2 = .071, SE = .014; Hyperactivity/Restlessness: R2 = .031, SE = .046; 

Hyperactivity/Impulsivity: R2 = .082, SE = .015; Impulsivity/Emotionality: R2 = .078, SE = 

.022). 

Condition Analyses 

 Features identified in the Go and No-Go conditions were then examined separately to 

understand differences between the execution (Table 3) and inhibition of motor responses (Table 
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4). Results are presented for Hyperactivity/Impulsivity (R2 = .202) and 

Hyperactivity/Restlessness (R2 = .188).  

 In the Go condition, hyperactive/impulsive traits were associated with the configuration 

of EEG networks following stimulus presentation (0–500ms). The majority of network features 

(Hyperactivity/Impulsivity: 5/7, Hyperactivity/Restlessness: 3/6) were in the beta-band (14-29 

Hz; regression coefficients and Pearson’s r presented in Table 3). The results in Table 3 tell us 

that during response executive in those with high hyperactivity/impulsivity, EEG networks 

oscillating at a beta frequency become less integrated, show a more modular structure, tend to 

form connections within these modules, and communicate more periodically. This dynamic 

configuration can be seen in Figure 2, and predominantly reflects less long-range/burst-like 

communication between frontal-central and bilateral-posterior regions around 200–300ms in 

those with high hyperactivity/impulsivity.  

 Similarly, in the No-Go condition, hyperactive/impulsive traits were associated with the 

configuration of high-frequency EEG networks following stimulus presentation, although the 

majority of features (Hyperactivity/Impulsivity: 5/7, Hyperactivity/Restlessness: 3/5) were in the 

gamma networks (30-90Hz; Table 4). The results in Table 4 tell us that networks oscillating at a 

gamma-frequency in those with high hyperactivity/impulsivity are less stable over time, less 

segregated, and more integrated. However, they exhibit a level of segregation higher than 

expected based on their level of integration (small-worldness), suggesting the configuration did 

not simply tend towards randomness. This configuration can be seen in Figure 3, and 

predominantly reflects communication within left frontal-central regions that is less segregated 

in those with high hyperactivity/impulsivity. 

Discussion 
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 In this study, we investigated whether the dynamic configuration of large-scale cortical 

networks during the execution and inhibition of motor responses acts as a source of 

heterogeneity in ADHD. We found that the dynamic configuration of EEG networks during both 

response execution (Go) and inhibition (No-Go) is altered in those with hyperactive/impulsive, 

but not inattentive, traits. Specifically, hyperactivity/impulsivity was linked to decreased/less 

burst-like integration in networks oscillating at a beta frequency during response execution, and 

increased integration/small-worldness in networks oscillating at a gamma frequency during 

response inhibition. These results suggest that differences in how functional networks are 

dynamically recruited during response execution/inhibition may contribute to ADHD 

heterogeneity. 

Motor Response Execution: Weaker Beta Network Integration Associated with 

Hyperactivity/Impulsivity  

 During response execution (Go), networks oscillating at a beta frequency showed a more 

modular configuration (i.e., could easily be divided into subnetworks), with less integration 

between modules as hyperactivity/impulsivity increased. Dynamically, these networks lacked the 

burstiness (clear on/off periods) seen in those with less hyperactivity/impulsivity. Cortical beta 

oscillations have long been implicated in motor control, and bursts of beta communication within 

the motor cortex are thought to reflect the appropriate selection and initiation of movements (61, 

62). When considered alongside the location of electrodes involved (bilateral central-posterior 

and frontal-central) and its timing (~200-300ms), this finding might reflect difficulty initiating 

integration of prefrontal and motor circuit activity (see Figure 2). This is similar, although 

posterior, to the increased oscillatory beta power found over central-bilateral motor areas during 

response preparation in the combined versus inattentive subtype (12). Our results further explain 
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this effect by suggesting it arises from alterations to the mechanisms driving integration between 

prefrontal and motor circuitry. 

 Given the structure and myelination of white matter tracts is thought to strongly constrain 

EEG connectivity (63), this interpretation may be consistent with abnormal white matter 

structure previously reported in the combined ADHD subtype (20, 64). Abnormalities in the 

circuits associated with motor control/inhibition (supplementary motor area and middle frontal 

gyrus (20)) would be particularly supportive of this explanation and would suggest the lack of 

beta integration observed in those with hyperactive/impulsive traits arises from white matter tract 

abnormalities that hinder the integration between specialized frontal and motor systems. 

 This interpretation, however, should be made with caution. First, difficulty suppressing 

default mode network (DMN) activity during response execution could also influence the 

integration and modularity of oscillatory beta activity (DMN interference hypothesis: 65, 66, 67, 

68). Second, there is some evidence that the DTI findings thought to characterize the combined 

ADHD subtype (20) might not hold up to more stringent analyses practiced today (69). Future 

research, then, might benefit from investigating how white matter abnormalities indexed by 

radial/axial diffusivity (19, 62) restrict the electrophysiological mechanisms driving integration 

between neural circuits (using, for example, dynamic tractography techniques, which examine 

the relationship between cortico-cortical evoked potentials and diffusion MRI measures (70)).  

Motor Response Inhibition: Stronger Gamma Network Integration/Small-Worldness 

associated with Hyperactivity/Impulsivity 

 During response inhibition (No-Go), hyperactivity/impulsivity was associated with 

altered short-range gamma connectivity within left frontal-central areas. Specifically, with 

greater hyperactivity/impulsivity, gamma networks became more integrated/small-world like, 
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showed more between-module communication and were more likely to change over time. This is 

in line with previous findings of decreased oscillatory frontal-gamma power from 300-600ms for 

Go/No-Go conditions in those with ADHD versus non-ADHD controls (9). Event-related fNIRS 

research has suggested reduced activity during Go/No-Go tasks in ADHD might be localized to 

circuitry in the left prefrontal cortex (71).  

 While the “Go” beta network configuration may reflect a mechanism that is insufficiently 

evoked (an inability to integrate functionally specialized systems in the prefrontal and motor 

cortex), this “No-Go” gamma network configuration may instead reflect a mechanism evoked to 

a greater degree. First, increased integration, small-worldness, and between-module processing 

in gamma networks is the same configuration observed during increased cognitive load (e.g., to 

increased n in n-back working memory tasks (72)). These changes are thought to occur when 

specialized sub-networks within the cortex coordinate their processing to successfully complete 

the required function (59, 72). Second, increased small-worldness, a configuration thought to 

minimize metabolic costs while maximizing the potential for complex interactions, was seen in 

the gamma networks of those with hyperactive/impulsive traits (73, 74, 75). Rather than a shift 

towards random or regular structure (an alteration commonly seen in the functional networks of 

those with psychiatric disorders), increased small-worldness is thought to be advantageous 

during periods of increased cognitive demand (73, 74, 75). Together, these results suggest that 

those with hyperactive/impulsive traits respond to the task as though it is more cognitively 

demanding and requires a higher level of integration/small-worldness to be properly completed. 

In other words, those with hyperactive/impulsive traits may have less functionally specialized 

networks and evoke an integrative mechanism to compensate (76).  

Lack of Association Between Inattention and Configuration of Alpha Networks 
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 To our surprise, we found little association between the configuration of oscillatory alpha 

networks and ADHD traits. In attentional networks during Go/No-Go tasks, increases in the 

power of alpha oscillations are thought to suppress task-irrelevant and highlight task-relevant 

sensory information (77, 78, 79), and this suppression is often accompanied by increased alpha 

phase-synchrony (80). A large body of research examining electrophysiological correlates of 

ADHD has suggested individual differences in alpha oscillations may explain inattentive 

symptoms (81, 82). However, in this study, network configuration did not predict inattentive 

traits, and alpha results for hyperactive/impulsive traits were inconsistent (small regression 

coefficients and no linear correlations). The relative simplicity and consistent inter-stimulus 

interval of the current task might have limited the extent to which attentional gating varies within 

typically developing adults. Future research measuring EEG network configuration during more 

cognitively demanding tasks (i.e., cued reaction-time task) might highlight altered mechanisms 

found within the inattentive subtype.  

Limitations 

 Our findings should be considered alongside certain limitations. First, we used a 

conservative estimate of connectivity (phase-lag index), which attenuates ‘pure’ (zero-lag) 

synchronization in an attempt to account for volume conduction (52). Since some of the 

attenuated synchronization likely reflects true neural connectivity between distinct regions rather 

than volume conduction effects (83), methodological advances that allow for the interpretation of 

pure EEG synchronization (i.e., inverse modelling advances) will allow us to draw conclusions 

about these mechanisms more confidently.  

Second, while this research benefitted from a dimensional approach, the extent to which 

ADHD behaviours are dimensional versus categorical is poorly understood, and consideration 
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through both lenses appears to be required (84). Because of this, the extent to which those with 

clinical levels of hyperactivity/impulsivity will exhibit the same alterations is unclear. We 

predict similar findings (weaker beta integration/stronger gamma integration), albeit more 

pronounced.  

 Finally, there is some evidence that high frequency activity (> 30 Hz) recorded using 

EEG might be contaminated by the electromyogram (EMG) signal emitted during muscle 

contraction. While it is difficult to dismiss this as an alternative source of the signal recorded in 

the current study, converging lines of evidence suggest that our gamma signal is neural in nature. 

First, we would expect the EMG signal to be most pronounced at electrodes surrounding the 

neck. While our high-density cap had wide coverage, our gamma effect was most prominent at 

left lateralized frontocentral sites. Second, we would expect EMG signal to be stronger for the 

Go condition, when motor responses were executed. Yet, the gamma effect we observed was 

most prominent during the inhibition of motor responses. Finally, our effect was highly similar to 

a gamma effect previously observed by Baijot et al. (2017) that distinguished those with ADHD 

from controls, in terms of timing (400ms post-stimulus), task demands (No-Go portion of a 

Go/No-Go task), analysis (inter-trial coherence), and location (frontal electrodes). 

Conclusion 

 Accurately distinguishing inattentive and hyperactive/impulsive presentations is 

important when deciding on the appropriate intervention. This is evidenced, for example, by the 

reduced response to methylphenidate found in the inattentive subtype (23). By demonstrating 

that the neural mechanisms underlying this heterogeneity can be captured through functional 

network measures applied to the EEG recorded during a Go/No-Go task, this research furthers 

the use of EEG in clinical research focused on delineating the ADHD subtypes. 
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Figures 

Figure 1. Empirical and predicted hyperactive/impulsive behaviours 

 

Scatterplot of empirical and predicted scores (from LASSO model) on Hyperactivity/Impulsivity 

(least squares regression line plotted in gray). Model included all network measures in low and 

high frequency bands for both Go and NoGo conditions in the post-stimulus condition. Across 

all test-sets used in cross validation, the average out of sample R2  was .202.  
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Figure 2. Post-stimulus beta network configuration (14-29Hz) during execution of a response 

 

 (Go) in those with high and low hyperactivity/impulsivity 

(A) Adjacency matrices with sensors as nodes, and the mean number of connections within each 

time-window as edges. Network are averaged across the 10 participants with the lowest and 

highest hyperactivity scores. 

(B)  Topographical map showing the mean number of connections from 200-300ms (thresholded 

at 10% and binarized), averaged across all participants (n = 62). 
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Figure 3. Post-stimulus (0-500ms) gamma network (30-90Hz) configuration during inhibition of 

a response (NoGo) in those with high and low hyperactivity/impulsivity. 

 

(A) Adjacency matrices with sensors as nodes, and the mean number of connections from 0-

500ms as edges. Each network is averaged across the 10 participants with the lowest and 

highest hyperactivity scores. 

(B)  Topographical map with the mean number of connections show by each node over the same 

time period (thresholded at 10% and binarized). 
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Tables 

 

 

 

 

 

 

 

 

 

 

 

 

Age 20.47 (2.20)

Sex 30 Female, 32 Male

Inattention/Memory 12.13 (5.61)

Inattention 9.77 (4.15)

Hyperactivity/Restlessness 17.89 (6.75)

Hyperactivity/Impulsivity 10.06 (4.35)

Impulsivity/Emotionality 10.63 (5.38)

Table 1

Participant Info and Self-Report Measures

Demographic

Measures

Inattentive 

Measures

Hyperactive/Impulsive 

Measures

n  = 62

Results are presented as Mean (SD)
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Metric Interpretation

Global Efficiency
Measures the ability for any two nodes in the network to 

communicate through a short number of steps.  

N = Number of nodes;  l ij = shortest path between 

nodes i and j .

Clustering Coefficient

Measures the tendency of a node to 'cluster' (have neighbours 

which are also neighbours with each other). 

 ti =  number of neighbours of node i;  ki =  number of  

'closed triangles' (occurs when two neighbours of node i 

are also neighbours with each other). 

Small-Worldness
Measures the level of segregation in the network relative to its 

level of integration.

 l  = equivalent lattice network; r  = equivalent random 

network.  

Modularity

Measures how well a partition divides the network into 

subnetworks that show a large number of within-module 

connections and a small number of between-module 

connections 

E = number of edges; δ = Kronecker-delta function  (1 if 

nodes i and j are in the same module (m), 0 otherwise); e 

= equivalent random network.

Participation Coefficient
Measures a node’s tendency to connect with nodes outside of 

its own module.

Nm = number of modules; Ki = number of connections 

held by node i; Kis =number of connections held by 

node i within module s. 

Broadcast Centrality 

Measures the ability of a node to communicate with all other 

nodes through temporal paths of all lengths. 

I = identity matrix, T = static adjacency matrix at each 

time-point; α = parameter between 0 and 1. 

Temporal Correlation Coefficient

Measures the tendency for nodes to remain connected to the 

same neighbours over time. 

T = temporal length of the network.

Small-Worldness

Measures the level of dynamic segregation relative to the level 

of dynamic integration.

rp = randomly permuted order of the network.

Burstiness Coefficient

Measures the tendency for communication to occur in a burst-

like fashion. 

τ = distribution of inter-contact times.

Flexibility
Measures the tendency of a node to switch modules. 

M = number of times node  i changed modules; T = 

length of network.

Static

Dynamic

Table 2

Static and dynamic graph-theory metrics used in analysis 
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Freq Class Measure β Pearson's r 95% CI

Beta Static Integration -2.48

Beta Static Modularity 1.41 .30, p = .0178 [.06 .51]

Beta Dynamic Burstiness -1.24 -.32, p = .0167 [-.52 -.06]

Beta Static Participation Coefficient -1.11 -.34, p  = .0064 [-.55 -.10]

Beta Dynamic Integration -.90 -.22, p  = .089 [-.44 .03]

Alpha Static Modularity .57

Gamma Dynamic Flexibility .17 .25, p = .0482 [.01 .47] 

Freq Class Measure β Pearson's r 95% CI

Beta Static Participation Coefficient -2.14 -.28, p  = .023 [-.49 -.03]

Beta Static Integration -1.91

Beta Dynamic Integration -.41

Gamma Dynamic Small-Worldness 3.95 0.40, p  = .0011 [.17 .59]

Gamma Static Integration -2.06 -0.23, p  = .076 [-.45 .02]

Alpha Static Segregation 3.10

Table 3

Execution of a motor response (Go)

-

-

-

Features in the LASSO models which were identified as predictive of scores on the CAARS scales. In 

the model (one run for each scale), all frequency bands, static and dynamic measures, as well as Go 

and NoGo conditions were features. For each feature in the Go condition, regression coefficients (β), 

pearson's r  (when p  < .1), and 95% confidence intervals for pearson's r  are provided.

Hyperactivity/Impulsivity

Features Strength

Hyperactivity/Restlessness

Features Strength

-

-
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Freq Class Measure β Pearson's r 95% CI

Gamma Static Small-Worldness 4.76 .43, p  = .0006 [.20 .61]

Gamma Dynamic Integration 2.70 0.36, p  = .0038 [.12 .56]

Gamma Dynamic Small-Worldness 2.16

Gamma Static Integration 1.16 .31, p  = .01 [.06 .52]

Gamma Dynamic Segregation -.44 -.36, p  = .0043 [-.56 -.12]

Alpha Dynamic Integration 0.32

Theta Static Modularity 0.31

Freq Class Measure β Pearson's r 95% CI

Gamma Static Small-Worldness 5.60 .41, p  = .0008 [.18 .60]

Gamma Static Integration 4.90 0.33, p  = .01 [.082 .53]

Gamma Static Participation Coefficient 2.13 .35, p  = .0055 [.11 .55]

Beta Dynamic Integration -1.86 -.28, p = .029 [-.49 -.03]

Delta Dynamic Integration -.49 -.21, p  = .09 [-.43 .04]

Table 4

Inhibition of a motor response (No-Go)

Features in the LASSO models which were identified as predictive of scores on the CAARS scales. In the model 

(one run for each scale), all frequency bands, static and dynamic measures, as well as Go and NoGo conditions 

were features. For each feature in the No-Go condition, regression coefficients (β), pearson's r  (when p  > .1), 

and 95% confidence intervals for pearson's r  are provided.

Hyperactivity/Impulsivity: No-Go

Features Strength

Hyperactivity/Restlessness: No-Go

Features Strength

-

-

-
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Chapter 3: Limitations 

 In the above study, we asked participants to do a simple decision-making task that 

required them to appropriately execute or inhibit motor responses while we recorded the 

associated cortical activity using EEG. We inferred that information was being transferred 

between cortical regions when oscillations in the EEG tended to synchronize, and then modeled 

this sensor-by-sensor synchronization as a graph. In doing so, we were able to quantify how the 

global topology of these graphs, and the amount of integration between functional systems 

within these graphs, dynamically changed during response execution and inhibition. From there, 

we demonstrated that these changes were associated with the extent to which someone showed 

hyperactive/impulsive behaviours. The main result of this study, then, can be thought of as a 

data-based computational model for how dynamic network configuration differs as a function of 

hyperactive/impulsive behaviours (Bassett et al., 2018). This model may be relevant for future 

research interested in parsing the behavioural profiles of ADHD into more biologically 

homogenous groups.  

 Here, to critically examine this model, I discuss a set of methodological limitations and 

perform post-hoc analyses with the aim of strengthening the conclusions that were drawn. 

Specifically, I: 

1) Discuss how our results might be made more specific (i.e., better able to differentiate 

hyperactive/impulsive from inattentive behaviours) using a hierarchical approach. 

a. Test this possibility by using our model to predict the fist two principal 

components of the Connor’s Adult ADHD scales. 
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2) Discuss limitations within the ‘modularity-maximization’ framework that was used to 

detect communities, and how it might be improved upon by the introduction of a 

‘resolution parameter’. 

a. Test whether our primary results are influenced by the introduction of a resolution 

parameter, selected in principled way that relies on the stability of partitions. 

Methodological Limitations 

 One of the primary limitations of our model is the extent to which we can claim that our 

model particularly accounts for Hyperactive/Impulsive and not inattentive behaviours (has high 

specificity). To explain ADHD heterogeneity in the current study, we took a dimensional 

approach, and assumed that a distinct ADHD behaviour could be modeled as the outcome of an 

alteration to a distinct neural mechanism (Insel et al., 2010). An approach that lends itself to 

greater claims about specificity, however, is the hierarchical dimensional approach (Forbes et 

al., 2016). This hierarchical approach makes the same assumptions, except explicitly recognizes 

that alterations to certain neural mechanisms will contribute to general ADHD behaviours 

(hyperactivity, impulsivity, and inattention), which are typically observed together, while others 

will more directly contribute to specific behavioural dimensions (Krueger & DeYoung, 2016). 

This hierarchical dimensional approach has been recommended for research attempting to 

identify distinct mechanisms of executive dysfunction across a wide range of psychopathological 

disorders, including ADHD (Shanmugan et al., 2016). 

 A well-validated model of ADHD within this hierarchical framework is the bi-factor 

model, which first considers a general ADHD dimension that accounts for the majority of 

variance in ADHD behaviours, and then considers orthogonal dimensions that specifically 

account for inattentive and hyperactive/impulsive behaviours (Toplak et al., 2009; Arias et al., 
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2018). The use of this model might have strengthened the specificity of our interpretation: it 

would allow us to claim that our model accounts for hyperactive/impulsive behaviours and not 

inattentive behaviours. Effectively, this approach allows us to account for the shared variance 

across all ADHD-related behaviours. 

 Here, I conduct a principal component analysis with the aim of finding a linear 

combination of ADHD behaviours that specifically distinguishes inattentive from 

hyperactive/impulsive behaviours. Then, to test whether the two putative mechanisms that we 

previously identified (increased burst-like beta integration during the execution of a motor 

response and increased within-module gamma integration during the inhibition of a motor 

response) are specific to hyperactivity/impulsivity, I examine whether they can be used to predict 

scores along the Hyperactivity/Impulsivity-specific dimension. If these mechanisms are truly 

specific, they should predict hyperactive/impulsive traits after ‘controlling for’ the general 

ADHD factor. A formal explanation of this procedure is discussed below. 

 Principal component analysis 

 The principal component axes of a feature-space are the linear combinations of features 

(or, directions, geometrically) that account for the maximum amount of variance within the data, 

subject to being orthogonal to one another (Hastie et al., 2001). They are calculated as the 

eigenvectors of the normalized feature-by-feature covariance matrix. An intuition for how 

principal component axes correspond to the eigenvectors of the covariance matrix can be 

acquired by considering the covariance matrix as a linear transformation (see Figure 4 below).  

Figure 4. Covariance Matrix as a Linear Transformation 
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The above visual provides a useful intuition for how the feature-by-feature covariance matrix 

can be thought of as a linear transformation, and thus, how the eigenvectors of the covariance 

matrix correspond to the principal component axes. Principal component scores are simply 

perpendicular projections of the data points onto the span of the component axes. 

 

In brief, consider normally distributed bivariate data with zero covariance between features. The 

addition of covariance between these two features can be thought of as a transformation– a shear 

along a certain direction within the feature-space. When subjected to the ‘transformation’ of the 

added covariance, certain privileged directions (two, in the case of the bivariate example; 

coloured red in Figure 4) maintain their direction and simply become multiplied. These are 

eigenvectors, by definition. By projecting the original set of features onto the span of these new 

axes, principal component scores can then be identified for each axis and used in further 

analyses. 

 Here, to identify the principal component axes, the five behavioural measures of ADHD 

(CAARS: Hyperactivity/Restlessness, Inattention/Memory, Impulsivity/Emotionality; DSM-IV: 

Hyperactivity/Impulsivity, Inattention) were first z-score normalized, and a feature-by-feature 

covariance matrix was calculated. Then, the eigenvectors and eigenvalues of this covariance 

matrix were identified using R’s decomposition algorithm (function ‘eigen’). To facilitate the 
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interpretation of these axes, the ‘loadings’, which can be thought of as coefficients for the linear 

combination of original features that define the principal component axes, were calculated. This 

was done by taking the eigenvectors and dividing them by the square root of their associated 

eigenvalues. Through this approach, it was found that: (1) the primary component is a relatively 

equal combination of the original ADHD features (loadings: .230, .236, .239, .240, .246), and (2) 

the secondary component distinguishes inattentive behaviours (loadings: -.463, -.656) from 

hyperactive behaviours (loadings: .600, .544). A visualization for how each of these behaviours 

load onto the first two components, along with the distribution of the data, can be seen in the 

biplot of Figure 5, below. It is worth noting that the second principal component tends to be 

more specific to hyperactivity than impulsivity, given the CAARS-Impulsivity/Emotionality 

subtest tends to not load strongly in either direction (loading: -.026).  

Figure 5. Principal Component Analysis Biplot 

 

The first principal component loads relatively equally onto all ADHD behaviours, which is why 

the feature vectors have similar coordinates on the x-axis. The second component distinguishes 

hyperactivity from inattention, as can be seen by the orthogonal nature of their vectors. As is 

typical with biplots, loadings have been rescaled to allow them to be visualized on the same set 

of axes as the principal component scores. 
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Next, principal component scores were created by projecting the original ADHD features onto 

the span of each component axis. The proportion of total variance (total σ2 = p = 5, given data 

were z-score normalized) within the data accounted for by each of these component scores (x) 

was then calculated: 
1

𝑛
∑ (𝑥𝑖 − �̅�𝑛

𝑖 = 1 )2 / 𝑝. A scree plot illustrating these results can be seen in 

Figure 6. Overall, these analyses indicated that 70.42% of the variance in the data could be 

accounted for by the first principal component score, or ‘general ADHD factor’, followed by 

15.4%, 7.3%, 3.5%, and 3.3% of total variance for the following component scores, respectively. 

These results are in line with the previously reported bifactor model of ADHD: they suggest that 

ADHD traits are highly co-occurrent in the population, yet some people with ADHD-like 

behaviours trend towards hyperactivity while others trend towards inattention (Toplak et al., 

2009).  

Figure 6. Scree Plot 
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Scores for the first component accounted for 70.42% of the variance in the data, followed by 

15.4%, 7.3%, 3.5%, and 3.3% for the following component scores, respectively. These results 

demonstrate the high collinearity of ADHD behaviours. 

 

 Assessing the specificity of the model 

 After identifying the principal component scores, two new features were taken for further 

analysis. The first of these distinguished those with ADHD behaviours from those without (the 

first principal component, to be referred to as ‘ADHD scores’), and the second of these 

distinguished hyperactive from inattentive behaviours (the second principal component, to be 

referred to as ‘Hyp–Inat’ scores). We then sought to assess whether either of the mechanisms we 

previously identified were in fact specific to Hyperactivity. That is, we wanted to test whether 

either of the two mechanisms that were originally found to be strongly associated with 

hyperactivity/impulsivity: (1) less beta integration during response execution, and (2) increased 

gamma integration/small-worldness during response inhibition, would successfully predict 

scores along the Hyp–Inat dimension, or whether they tended to simply predict ADHD scores.  

 To this end, we predicted both the ADHD scores and the Hyp–Inat sores using ordinary 

least squares regression. To directly address our research question, only the features that were 

associated with the two putative mechanisms (Beta during response-execution and Gamma 

during response-inhibition) were included as features. Specifically, the features associated with 

the ‘beta mechanism’ were: (1) static integration, (2) static modularity, (3) static participation 

coefficient, (4) dynamic burstiness, and (5) dynamic integration, all during the execution of a 

motor response in oscillatory beta networks. The features associated with the ‘gamma 

mechanism’ were (1) static integration, (2) static small-worldness, (3) static participation 

coefficient, (4) dynamic integration, (5) dynamic segregation, and (6) dynamic small-worldness, 

all during the inhibition of a motor response in oscillatory gamma networks. 
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 When predicting ADHD scores using the beta features, the adjusted R2 was .101 (p = 

.05). When predicting ADHD scores using the gamma features, the adjusted R2  was .121 (p = 

.039). These results show that both mechanisms tend to account for scores along the general 

ADHD dimension. When predicting Hyp–Inat scores using the beta features, the adjusted R2 was 

.014 (p = .33). When predicting Hyp–Inat scores using the gamma features, the adjusted R2 was 

.176 (p = .009). Interestingly, these results suggests that the gamma response-inhibition effect 

may be specific to Hyperactivity, while the beta response-execution effect may not be. Direct 

comparison of the two models, by converting each R2 to a z-statistic using Fisher’s transform and 

then conducting a z-test, revealed this to be a marginally significant effect (z = 1.78, p = .075). 

Model coefficients can be found in table 5 below. 

Table 5. Modeling the Hyp – Inat Principal Component 

 

Freq Class Measure β Pearson's r

Gamma Dynamic Integration -4.45 .124, p  = .338

Gamma Dynamic Segregation -36.25 - .346, p  = .005

Gamma Dynamic Small-Worldness 32.12 .161, p  = .211

Gamma Static Participation Coefficient 1.67 .296, p  = .019

Gamma Static Integration 9.33 .257, p  = .044

Gamma Static Small-Worldness -.48 .302, p  = .017

No-Go: Gamma Effect

Features Strength

R
2
 = .257, adjusted R

2
 = .176, p = .009
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Scores along the Hyperactivity – Inattention dimension could be predicted fairly well 

from the network configuration during motor response inhibition (R2 = .257), although 

less so for network configuration during motor response execution (R2 = .095).  

 PCA conclusions 

 Together, these results suggest that both the dynamic reconfiguration of oscillatory beta 

networks observed during motor response execution and the dynamic reconfiguration of 

oscillatory gamma networks observed during motor response inhibition are associated with 

general ADHD-like behaviours. They each, to some extent, tend to account for inattentive, 

hyperactive, and impulsive behaviours. However, it appears as though the increased gamma-

integration seen during motor response inhibition is specifically associated with hyperactivity, 

and not inattention. This finding is remarkably similar to that made by Baijot et al. (2017). They 

found increased inter-trial frontal gamma coherence in those with ADHD relative to typically 

developing controls during the inhibition of motor responses in a Go/No-Go task (accompanied 

by decreased oscillatory gamma power). This is similar to our result in terms of timing (400-

500ms post-stimulus), frequency (30-50 Hz), and task-demands (equal portion Go and No-Go 

Freq Class Measure β Pearson's r

Beta Static Integration .161 .067, p = .60

Beta Static Modularity -.115 -.135, p = .295

Beta Dynamic Burstiness .139 .126, p = 328

Beta Static Participation Coefficient -.106 -.126, p = .325

Beta Dynamic Integration 0.247 .122, p = .345

R
2
 = .095, adjusted R

2
 = .014, p = .329

Go: Beta Effect

Features Strength
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trials). Whereas Baijot et al. (2017) treated ADHD as a homogenous group, we build on the 

description of this altered mechanism by demonstrating that it particularly accounts for 

Hyperactive/Impulsive behaviours, and not inattentive behaviours.  

Community detection limitations 

 It is increasingly common to describe how functional networks change configuration 

during any given cognitive process in terms of how information is transferred within and 

between the canonical large-scale networks (i.e, those identified by Yeo et al., 2011; Power et 

al., 2011). Response inhibition, for instance, is partially characterized by an increased integration 

between the left fronto-parietal and dorsal/ventral attentional networks (Zhang et al., 2011; Wang 

et al., 2020; although inhibition predominantly relies on the ventral, and not the dorsal, 

attentional network: Cortese et al., 2012). Within this paradigm, accurate module-detection 

methods are crucial. However, in contrast to fMRI studies, which routinely rely on a priori 

atlases for community detection, the electrophysiological correlates of the canonical large-scale 

networks are typically identified though data-driven approaches (i.e., modularity maximization-

algorithms, spatial ICA; Sporns & Betzel, 2016; Sockeel et al., 2016). As a result of this data-

driven approach, it is often difficult to assess the extent to which the estimated community 

structure accurately reflects the ‘ground truth’ community structure found within cortical 

networks during cognition. This ambiguity is another limitation to the current study. To address 

this limitation, I propose a modification to the community detection procedure in the following 

section that might increase the validity of the estimated communities, and then assess whether its 

implementation changes our primary result.  

 Resolution parameter 
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 Community detection methods that rely on modularity-maximization often misestimate 

the resolution of the identified communities (Fortunato & Barthelemy, 2007). The simplest 

solution to this problem is to treat the resolution of the community structure as a degree of 

freedom. One way to accomplish this is to introduce a resolution parameter (𝛾) that controls the 

contribution of the null model (Sporns & Betzel, 2016): 

𝑄 =  
1

𝑣
∑(𝐴𝑖𝑗 −  𝛾 𝑒𝑖𝑗)𝛿(𝑚𝑖, 𝑚𝑗)

𝑖𝑗

 

To find the partition that maximizes modularity, we subtract a null-model from the empirical 

network (𝑒𝑖𝑗; typically with preserved edge strength but random topology), and then find the 

partition that maximizes the total within-module connectivity of this resulting matrix. The 

resolution parameter, then, allows us to control the size of the null model that gets subtracted. 

This effectively controls the size of the network: when 𝛾 = 0 (so that there is no null model and 

all connectivity is positive), Q is maximized by assigning all nodes to the same module; when 

𝛾 ≫ 0 (so that the null model is large and there is no positive connectivity), Q is maximized by 

assigning each node to its own module (since any combination of nodes would result in negative 

within-module connectivity). While the ability to adjust the resolution parameter allows the 

underlying community structure to be better estimated, it requires some heuristic for selecting an 

‘optimal’ value. With prior knowledge of the underlying community structure (i.e., when the 

number of communities is known ahead of time), this problem is trivial, as one can simply select 

𝛾 so that it provides a pre-determined number of communities. In the context of large-scale 

cortical networks, even those defined through EEG during the execution of motor responses, 

however, this is unclear (Fallani et al., 2012).  

  One clever solution for these ill-defined instances involves selecting 𝛾 so as to maximize 

the ‘stability’ of the identified partition. For background, community detection algorithms that 
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attempt to maximize modularity typically have some non-deterministic aspect. Not only does the 

most commonly used Louvain algorithm, for instance, randomly order nodes prior to running 

(Blondel et. al., 2008), it is good practice to recreate the null-model upon each run to avoid 

potentially biased models. As a result of this non-deterministic approach, the estimated partitions 

across runs of the algorithm will be highly variable when the resolution parameter is set to 

identify communities that differ significantly in size from the underlying community structure 

(because there is not a strong community structure to identify). In contrast, when the resolution 

parameter is set to identify communities that are the same size as the underlying community 

structure (or similar in size), the variability across algorithm runs will be low. It follows from 

this reasoning that the resolution parameter should be selected so as to maximize the stability of 

the estimated partitions across runs of the algorithm. Unfortunately, however, the most stable 

partition is in fact one with all nodes in the same module (achieved by some arbitrarily low 

resolution parameter). A more meaningful heuristic, then, involves maximizing the stability of 

the partition relative to a carefully selected null model. The resolution for which the empirical 

network and the null-model maximally differ in terms of stability (i.e., the algorithm tends to 

converge on the same partition for the empirical network but not the null model) will be a 

reasonable estimate for the correct resolution parameter (or so the reasoning goes; Bassett et al., 

2013). 

 There are many ways to assess the ‘stability’ of a set of community partitions. Here, an 

approach recommended by Fornito & Bullmore (2016) using the average Rand-index, a simple 

similarity statistic, is taken. For a set of two partitions, the Rand-index can be directly interpreted 

as the probability that any two node-pairs will be assigned the ‘same way’ in both partitions 
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(note: an assignment is considered the same when nodes i and j are assigned to the same module 

in partitions A and B or when they are assigned to different modules in partitions A and B). 

 Community detection analysis 

 This technique for identifying the optimal resolution parameter was applied to the static 

No-Go gamma networks from 0-500ms. For each participant: (1) a null-network was created by 

randomly re-wiring each node in the subject’s empirical network 100 times, (2) both the 

empirical network and the null-network were subjected to 100 runs of Louvain’s algorithm at a 

specific value of 𝛾, providing two sets of 100 community-partition vectors, (3) the stability of the 

empirical partitions and the stability of the null-network partitions was calculated using the 

average Rand-index across all pairs of partitions, and (4) the ‘relative stability’ of the empirical 

network (empirical stability – null-network stability) was calculated. This process was repeated 

for a sequence of 16 evenly spaced 𝛾 values between 0.5 and 1.25, providing the relative stability 

of the empirical network as a function of 𝛾. To avoid any biased null-networks, this process was 

repeated using 5 different randomly wired null-networks, and the relative-stability as a function 

of 𝛾 was averaged across these null-models. Following these analyses, the 𝛾 value with the 

maximum relative-stability was taken to be optimal.  

 After applying this analysis to each participant, the average optimal resolution parameter 

across participants was 0.789 (SD =.079). This is slightly below, of course, the implicit value of 

γ = 1 used initially. This result suggests that the modules identified initially might have been 

estimated at too ‘fine’ of a resolution, and that a more valid estimation might have been made at  

a ‘coarser’ resolution (one with larger modules). With this in mind, each subject’s community 

partition was then re-estimated using this optimal value (0.789) as the resolution parameter. 

From these new partitions, the participation coefficient was calculated for each participant. 
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Significant correlations between this new value were found for both Hyperactivity/Impulsivity (r 

= .304, p = .0165) and Hyperactivity/Restlessness (r = .391, p = .0017). Interestingly, this is 

actually slightly stronger than the correlation initially identified (Hyp/Rest: r = .35, p = .0055), 

although an r-to-z transform followed by a two-tailed z-test suggested the difference was 

negligible (z = 0.54, p = .59).   

 Overall, while the resolution parameter used initially was not ‘optimal’, it appears to have 

been sufficiently close that the results and interpretations remain the same. It is likely that this 

new resolution parameter had only a minor effect on the results given the participation 

coefficient is a global summary statistic, averaged across all nodes within the network. For 

research questions more directly focused on the location and composition of the partitions, the 

resolution parameter will likely have a larger effect and will need to be more carefully 

considered.  
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Chapter 4: Future Directions 

 An explanation for how a disruption to ‘response inhibition’ at the cognitive level might 

manifest as ‘hyperactivity’ and ‘impulsivity’ at the behavioural level has been apparent for 

decades (Barkley et al., 1997; Lijffijt et al., 2005). Yet, an explanation for how a disruption to 

cortical information-transfer at the neural level might emerge as a disruption to response 

inhibition at the cognitive level has remained elusive (Duffy et al., 2021). Our model begins to 

tap into this explanation by describing how information transfer might be altered during response 

inhibition. However, it begs the natural question: “Why might this information transfer be 

disrupted?”. Here, after providing some background, I discuss one potential explanation recently 

offered by Duffy et al. (2021) for this phenomenon in depth. Specifically, that it might come 

about through a task-independent dysregulation of connectivity between the DMN, salience, and 

somatosensory motor networks. Following this explanation, I discuss how future research might 

directly test this hypothesis.  

Inappropriate regulation of network segregation 

 One of the most consistent findings in the ADHD neuroimaging literature has been that 

those with ADHD exhibit weaker segregation of the canonical large-scale networks at ‘rest’ (i.e., 

periods without explicit task-demands; Mowinckel et al., 2017; Shappell et al., 2021; Gerrits et 

al., 2019). This is driven by a lack of appropriate segregation between task-negative (the default 

mode network; DMN) and task-positive systems (salience, cingulo-opercular, dorsal/ventral 

attentional networks). While an appropriate segregation of these systems is seen during typical 

maturation and is thought to support executive function, this maturation is altered in those with 

ADHD (Baum et al., 2017; Sripada et al., 2014). Research examining the ‘dynamics’ of these 

task-independent periods (ongoing fluctuations into and out of distinct states) has found those 
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with ADHD to spend less time in segregated states and to show greater variability in the 

topology of states visited (Cai et al., 2018; Kaboodvand et al., 2020).  

 One hypothesis is that this lack of segregation specifically arises from the altered 

development of transmodal association cortices (Cao et al., 2016; Arnsten et al., 2009; Sydnor et 

al., 2021; Hilger et al., 2019). These ‘hub’ regions show distinct cytoarchitectural properties, 

including more complex dendritic spines and larger somas (Wei et al., 2018). They also show 

categorically distinct gene expression profiles, with a disproportionate expression of genes 

coding for proteins involved in synaptic transmission and myelination (Vertes et al., 2016; 

Arnatkeviciute et al., 2019; Arnatkeviciute et al., 2021). At the macroscale, these regions have 

topological profiles characterized by high within-module connectivity and high between-module 

connectivity, making them optimally-suited to mediate the transfer of information within and 

between systems (Bertolero et al., 2018). 

 Using fMRI, Duffy et al. (2021) recently tested whether this finding, of an inability to 

appropriately regulate the segregation of task-positive and task-negative networks, might be able 

to explain the response inhibition deficits observed in those with ADHD during a Go/No-Go 

task. Specifically, they tested for an association between: (1) the segregation of the DMN from 

task-positive systems during a resting-state paradigm, and (2) “response-control” (commission 

error rate and response-time variability), in a set of children diagnosed with ADHD (N = 43) and 

a set of typically-developing controls (N = 53; all aged 8-12). First, they divided task-positive 

systems into two broad classes: those associated with cognitive control (fronto-parietal, FP; 

salience/cingulo-opercular, SAL) and those associated with motor response execution 

(somatosensory-motor cortex, MOT; 13 sub-cortical regions, SUB; all networks defined using 

the Power et al., 2011 atlas). They characterized the topology of these resting-state networks 
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using the global participation coefficient, as well as the participation coefficient applied to 

specific network interactions (DMN – FP, DMN – SAL, DMN – SUB, DMN – MOT). Given the 

importance of dynamic variability, as discussed above, they not only calculated the mean 

participation coefficient for the static network averaged across the entire scanning period (~4.5 

minutes) but examined the variability of these metrics across ~120 networks (~3 seconds each). 

They found that increases in static and dynamic measures of integration between the default-

mode and salience/cingulo-opercular network, as well as the default-mode and somatosensory-

motor network, were associated with increased commission errors.  

 Such a lack of segregation at rest, it is hypothesized, will make the dynamic network 

configuration required for appropriate response inhibition more demanding. As previously 

discussed, the increased gamma-integration that we observed during inhibition is highly in line 

with the topological changes expected alongside more ‘demanding’ cognitive processing 

(Kitzbichler et al., 2011). This change is observed to a greater extent, for instance, during 

working memory tasks compared to simple/repetitive finger-tapping tasks and becomes stronger 

as working-memory tasks demands increase (Shine & Poldrack, 2016). Taken together then, 

these results offer a plausible explanation for our observations. It could be that the functional 

network reconfiguration associated with response inhibition requires greater energy to initiate 

(i.e., increased glucose consumption; Hahn et al., 2020) when there is a lack of segregation 

between the default mode network and the salience and somatosensory-motor networks. 

Hyperactive behaviours might then emerge as a result of this additional energy requirement.   

 In contrast to the current findings, however, the effect found by Duffy et al. (2021) was 

only present in those with ADHD behaviours beyond a certain threshold (found in those with 

formal diagnoses, not in typically developing controls). In the current research, we concluded 
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that our effect was linearly dependent on symptom severity and did not test whether our effect 

was driven to a greater extent by those with more severe behaviours (our non-clinical sample 

does not naturally lend itself to such an approach). Were we to have taken a group-comparison 

approach, rather than a continuous/dimensional approach, it is possible that we would have only 

found our effect in those with ADHD behaviours beyond a certain threshold. One way to clarify 

the categorical versus dimensional nature of this relationship is to model ADHD behaviours as a 

non-linear function of cortical-system segregation (potentially by using penalized smoothing 

splines, similar to the approach taken by Baum et al., 2017). Although such an analysis would 

benefit from a larger sample size. 

Investigating the constraints exerted on dynamic network configuration by task-

independent configuration 

 How might future work directly test whether the dynamic network configuration that 

supports response inhibition is made ‘more difficult’ (i.e., ‘constrained’; Bolt et al., 2018) by a 

lack of segregation between the default mode network and the salience and somatosensory-motor 

networks? One approach using EEG would be as follows. First, for a given participant, similar 

analyses as those taken in the current study could be used to characterize the dynamic network 

configuration exhibited during motor response inhibition (Go/No-Go task). This would allow us 

to identify how dynamic network configuration changes alongside differences in inhibitory 

control (i.e., task-performance). Given the current findings, it is predicted that successful 

inhibitory control would be associated with decreased between-module integration in oscillatory 

gamma networks. Next, participants could take part in a resting-state paradigm, and the dynamic 

changes in frequency-band specific connectivity that occured throughout the paradigm could be 

captured. This could be done, for instance, by calculating PLI in ‘sliding’ windows of time, 

where t in the calculation of PLI would correspond to the set of time-points +/–  a specified time-
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window (i.e., 2 seconds), rather than trials. This analysis would provide a time-series of 

frequency-band specific adjacency matrices. From there, distinct ‘states’ that the participant 

visited during the resting state paradigm could be identified using an appropriate clustering 

algorithm (O’Neill et al., 2018). This could be done, for example, by reshaping the adjacency 

matrices into vectors (where each might include all frequency-bands) and clustering these 

vectors into distinct, representative mean-vectors using a k-means algorithm (preferably relying 

on the L1 distance: Byun et al., 2014). The identified clusters would provide a low-dimensional 

view of the mean states visited by each participant. These states can then be reshaped into 

adjacency matrices, and a time-series assessing how similar the state of the participant was to 

each of the identified states during the paradigm could be calculated (providing a measure of 

‘time-visited’ for each state). After identifying a set of canonical states that were visited across 

all participants, we could easily find the state where time-visited correlated most strongly with 

the dynamic network configuration that supported inhibitory control.  

 These precise analyses would allow us to bridge the gap between the vast literature 

implicating a dysregulated resting-state configuration in ADHD and the literature implicating  

motor response inhibition deficits in ADHD. Based on the current and previous research (Cai et 

al., 2018; Kaboodvand et al., 2020; Duffy et al., 2021), I hypothesize that more time spent in 

states with higher between-module connectivity would make participants less likely to exhibit 

the dynamic network configuration associated with successful inhibitory control. Formally, I 

predict that the conditionally expected value of ‘Between-module gamma integration during 

motor-response inhibition’ given ‘Time-spent in a certain resting-state configuration’: E 

(Dynamic network Configuration | Resting-state configuration), will be lowest for the resting-

state configuration with the highest level of integration (global efficiency, between-module 
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connectivity). This would indirectly support the idea that it is more cognitively and metabolically 

demanding. 

Importance 

 If future work can find direct support for this hypothesis, it would fit nicely with research 

examining the ways in which methylphenidate influences ADHD behaviours. It is currently 

thought that methylphenidate attenuates activity within the DMN, and that this might regulate the 

level of segregation between the DMN and the salience network (Santos et al., 2019). Support 

for the above theory: that this segregation improves inhibitory abilities by increasing the 

probability of a successful dynamic network configuration, would clarify methylphenidate’s 

mechanism of action, and ultimately provide insight into the behavioural profiles that might 

respond most effectively to treatment. While methylphenidate is often found to be more effective 

at reducing hyperactive compared to inattentive symptoms, the precise behavioural profile that 

will be most likely to respond to treatment is unclear (Gorman et al., 2006; Beery et al., 2007). 

While this theory has yet to be fully tested, this example highlights the practical implications of 

research in this direction. Methylphenidate is the most commonly prescribed ADHD medication 

in Ontario, costing Ontario-funded drug programs around $87 million/year (Martins et al., 2015). 

If clinicians could better predict response to medication based on behavioural profiles, this would 

greatly reduce the number of inaccurate, expensive prescriptions. For the patients who suffer 

adverse side effects from these inappropriate prescriptions, this would surely be meaningful. 

Modelling dynamic reconfiguration 

 Another way future research might build on our results is to specify a principle for how 

exactly the dynamic integration we indexed should unfold during response inhibition. That is, 

rather than simply describing the changes in network configuration, future research might 
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specify the first-principles, or rules, governing these changes. Such a model would provide direct 

predictions, in the form of a time-series of synthetic ‘states’, that could then be compared against 

empirical data. 

 Interesting work has been done in the field of network control theory towards this end. In 

this framework, the ‘state’ of the cortex (i.e., the level of activation at a set of n cortical regions) 

at two time-points are captured in the vectors x0 (initial state) and xt (final state). Then, a set of 

dynamics governing how certain state-changes can occur is defined. Typically, these dynamics 

are a function of the topology of the participants structural network, A, and some additional input 

to the system over time u(t) (Karrer et al., 2019; Gu et al., 2017; Cornblath et al., 2020). The 

structural network, A, is typically a weighted region-by-region adjacency matrix whose edges 

index the integrity of white matter tracts between any two regions, which can be estimated by 

applying tract-tracing algorithms to the tensors obtained from diffusion-weighted MRI. One 

commonly used set of dynamics is to define the change in state from one time-point to the next, 

(�̇�) equal to: Ax(t) + In u(t) (were I is the identity matrix; see Karrer et al., 2019 for a detailed 

overview). With this definition, closed-form solutions are capable of finding the minimal input 

u(t) that will enact a given state transition (x0 to xt) in a given number of time-points. This input 

can then be used to generate synthetic time-series of state (Karrer et al., 2019; Tang & Bassett, 

2017). Recently, Cui et al. (2020) demonstrated the potential for this framework by finding that 

structural networks develop during adolescence in a way that minimizes the ‘cost’ (summed 

input, u) it takes to transition between a resting-state and a state supportive of executive function.  

 This approach may eventually be used to model the dynamic changes that support motor 

response inhibition. With such a model in hand, we can then go about finding the modifications 

to this model that minimize the error between synthetic and empirical trajectories for each 
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participant, and study how these differences are associated with different behavioural profiles 

(i.e., hyperactive/impulsive symptoms). By interpreting the modifications that are required to 

account for these differences, we may gain important insight into how the mechanisms 

underlying dynamic configuration are disrupted in ADHD (Bassett et al., 2018). 

Conclusion 

 This research identified how large-scale cortical networks dynamically configure during 

motor response inhibition differently in those with varying levels of hyperactive/impulsive 

behaviours. These results highlight the utility that dynamic network configuration holds as an 

endophenotype in ADHD. To build on these results, it has been suggested that future research do 

two things, both meant to provide a deeper explanation for why these differences might have 

been observed. First, test whether a lack of appropriate segregation between DMN, salience, and 

sensorimotor networks during resting-state paradigms is associated with an increase in the level 

of between-module gamma integration seen during motor response inhibition. Second, specify a 

model that governs how dynamic network configuration should unfold with sufficient detail that 

synthetic data can be generated, and then examine how this model needs to be modified to 

account for the differences observed in those with hyperactive/impulsive behaviours.  

 Hopefully, this research may one day help clinicians divide ADHD into more 

biologically homogenous groups (Cuthbert, 2014). Doing so might help decrease the variability 

in prognosis and response to treatment, assisting those for which ADHD-related behaviours 

interfere with day-to-day life. 
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