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SUMMARY 

With the increase in demand for oil and oil products, the petroleum industry is faced with the 
requirement for more complex tools to increase production at lower prices. The complexity of 
drilling tools is manifested in the complex geometry, fabrication, assembly, deformations, stresses 
and loads acting on them. This study introduces a dual derrick simulation procedure in a marine 
environment which provides a step towards a better understanding by giving a simulation close 
to the real state. The derrick was considered in equilibrium, and then the derrick vibration was 
simulated using field data in order to obtain stress distribution. This implies that the derrick can 
move freely and cause deformations in all directions without constraints. In this paper, the finite 
element method was employed to simulate the derrick in a static state and in motion, and then 
the obtained stress distribution was compared for both cases. A literature review on the analysis 
of environment working conditions is provided. The results showed that the vibration of the 
platform increased the stress considerably. The maximum combined stress increased by 27 %, 
while the maximum bending stress increased by 40 % and reached considerably higher values in 
the beams connected to the top of the derrick. 

KEYWORDS: Dual-derrick; offshore drilling; simulation; structural analysis; transient analysis. 

1. INTRODUCTION The dual derrick is a drilling tower (mast) mounted on floating offshore platforms and used to reinforce drilling operations in remote locations. By holding two separate drilling groups, the dual derrick helps to reduce the drilling time and improve the efficiency of drilling operations. Simulation methods used to obtain characteristics such as natural frequencies and mode shapes, design assessment and safety, and vibration response are becoming more popular and useful for performing studies on the derrick [1-6]. Due to the complex conditions of marine environments [7-9], extensive research is needed to understand the nature of loads acting on structures operating in the marine environment [10,11]. The derrick is a lattice structure, hence, various approaches such as mathematical approaches [12], experimental approaches [13], and simulation approaches are used to evaluate stress and loads acting on its structure. 
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According to [14], irregular water waves are mostly disturbed by winds in accordance with a logarithm profile, the governing equations are written as: 
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Where û  and ŵ  are x-direction and y-direction disturbed velocities, respectively; u  is mean velocity in x-direction; j the order of the Stokes waves, ρ1 air density; P pressure over wave surface. Equations 2-4 can be used to obtain the transferring energy Ej. Then, the relationship between the wave Power Spectral Density Swaves and the transferring energy Ej can be expressed as follows [14]: 
 ( ) j

waves j2 2
j

E
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where ρ2 is water density; ω  is the wave frequency. The IEC (International Electrotechnical Commission) Kaimal spectral equation can be used to model the wind (PSD) as [18]: 
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Where f is the wind frequency; x is the standard deviation of velocity component; L is the integral scale parameter of velocity component; and V0 is the average wind velocity at the height of 10 meter above sea surface level. The wave Power Spectral Density Swaves (PSD) can be derived by [14,18]: 
 ( ) ( ) ( )

1 2

1 22 3 2
waves 0 1S 2 g V β A γρ ρω = ⋅ ϖ ⋅ ⋅ ϖ ⋅ϖ  (7) Where ϖ  is the modified wave frequency; β1 is the energy transfer coefficient; ( )A ϖ is the wave amplitude; γ is the peak adjusting coefficient, ρ2 is water density. According to [25], using the basic principle of proper orthogonal decomposition (POD), the time series of wind/waves can be expressed as: 

 ( ){ } [ ] ( ){ }y t a tφ=  (8) Where ( )y t  is time series of wind or waves; ( )a t is a matrix of time principle coordinate; and 
[ ]φ  is a POD mode matrix of a covariance matrix which is expressed as [26]: 
 [ ][ ] [ ]C φ λ φ=  (9) Where [ ]C is a covariance matrix; λ  is the corresponding eigenvalues, where λ ’s value and quantity determine the energy related to the POD modes, and: 
 [ ] ( ) ( )C R 0 S d⎡ ⎤ ⎡ ⎤= = ω ω∫⎣ ⎦ ⎣ ⎦  (10) Where [ ]R is a correlation matrix; and ( )S⎡ ⎤ω⎣ ⎦ is the PSD matrix [26]. 
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Solving the aforementioned equations, the low-order PSD matrix ( )Ŝ⎡ ⎤ω⎣ ⎦  is expressed as [26]: 
 ( ) [ ] ( ) [ ]TŜ Saφ φ⎡ ⎤ ⎡ ⎤ω = ω⎣ ⎦⎣ ⎦  (11) Here, ( )Sa⎡ ⎤ω⎣ ⎦  is the PSD matrix related to ( )a t . Other methods for decomposing the wind/wave signal can be used as wavelet packet transform [27] or convolution wavelet packet transform [28]. Generally speaking, the Bernoulli equation is used to calculate wave forces [22]: 
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∂∫  (12) where ρw is the water density. The function ( )f t  here expresses the dynamic boundary condition at the wave surface where the pressure is zero; and gz is the hydrostatic pressure at the free surface produced by waves. According to [22], the total water pressure at any point is expressed as: 
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The dynamic pressure P at any point is related to water element acceleration and velocity. In terms of the velocity potential function Φ , it can be written as [22]: 
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According to [29], the Morison’s equation is defined as a distributed wave force per unit length of the structure in the normal direction: 
 D Mv v vf C C= +m  (15) where CD expresses the hydrodynamic drag force influence; CM expresses the mass force influence; v  is the velocity components of water at the wave-free surface; and v  is the acceleration components of water at the wave-free surface. For a cylindrical member, as defined in [22,29]: 
 D 0.5 DC cdw   ρ=  (16) 

 M
20.25πDC cmw ρ=  (17) where D is the diameter of the cylindrical member, ρw is the density of water, cd and cm are the drag and mass force coefficients of Morison’s equation, respectively. The above analysis enables an estimation of the offshore structure state of motion based on spectral analysis of the wave sea state. For most problems of structural dynamics of a mechanical system, the spatial discretization for the principle of virtual work using the finite element method gives the semi-discrete finite element equation of motion as follows [30]: 

 [ ]{ } [ ]{ } [ ]{ } ( ){ }M u C u K u F t+ + =  (18) 
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in which [ ]M  is the structural mass matrix; [ ]C  is the damping matrix; { }u is the nodal acceleration vector; { }u is the nodal velocity vector;  is the nodal displacement vector; 
[ ]K is the stiffness matrix;  ( ){ }F t  is the applied load vector [14,15]. The damping matrix 
[ ]C is determined by the following equations [30]: 
 [ ] [ ] [ ]C M K= α +β  (19) where α and β  are the constants in Rayleigh damping [30]. This paper provides a simplified unlimited simulation procedure for simulating the derrick in motion. Generally speaking, the procedure to be followed in performing such as simulation depends on given instructions such as providing fixed supports or limited directions or points. However, in this paper, no fixed supports or restrictions are used. The simulation procedure followed in this research brings the derrick to equilibrium conditions using vertical loads. To capture the impact of motion, characteristics of the platform’s motion are modelled using rotational velocity, linear velocity, and rotational acceleration features; based on field data from the South China sea estimated from [6]; to obtain a simulation close to reality. The distribution of direct stress, maximum combined stress, and maximum bending stress was analysed using this procedure which emphasized the complexity of stress distribution and the stress concentration locations. 
2. SIMULATION PROCEDURE The derrick model was built in ANSYS WORKBENCH, using DESIGN MODELER (DM). The main points of the derrick are created in a text form using a notepad. The points are then imported to DM from the points file. Beams, columns, and bracing members are first formed in linear shape and then a cross-section of the I-beam is assigned to these members. The base is created using the surface feature and a surface thickness is assigned to the surface. This base is used to model the motion of the platform. The model created in (DM) is then transferred to the mesh cell in STATIC STRUCTURE, MECHANICAL. Structural steel with a density of 7850 Kg/m3 and tensile yield strength of 2.5e8 Pascal was assigned to create the structure of the derrick. The joints between different members are assumed as fixed joints, as shown in Figure 2a. The next step is meshing, the mesh generator used a mechanical mesh type to produce (55882) elements, starting from (82284) nodes. The static analysis is performed considering the maximum design loads in the two drilling centres while fixed support is assigned to the base. After performing the static analysis, the model is transferred from the mesh cell in the static block to the mesh cell in the transient block, which transfers the mesh and joints created previously, but no loads or results are transferred. Three vertical forces are applied, as depicted in Figure 2b. Two forces (C, E) represent the maximum design vertical loads acting downwards in both drilling centres, and one vertical load (F) acting upwards represents the buoyancy force. These three loads create an equilibrium condition, i.e. the structure cannot move, according to Newton’s laws of motion, the vibration and translation of the derrick are modelled using rotational velocity (A), linear velocity features (D), and rotational acceleration (B) feature are applied as in Figure 2b. The 
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