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Abstract. In this paper, based on the shift splitting of the coefficient
matrix, a generalized two-sweep shift splitting (GTSS) method is intro-
duced to solve the non-Hermitian positive definite linear systems. Theo-
retical analysis shows that the GTSS method is convergent to the unique
solution of the linear systems under a loose restriction on the iteration pa-
rameter. Numerical experiments are reported to the efficiency of the GTSS
method.

1. Introduction

Consider the numerical solution of the following linear system

(1.1) Ax = b,

with A being non-Hermitian positive definite (that is, its Hermitian part H =
1
2 (A + A∗) is positive definite, where A∗ denotes the conjugate transpose of
the matrix A), x and b be an unknown vector and a given vector, respectively.
The non-Hermitian positive definite linear systems (1.1) is a class of important
equations and often arises in many problems in scientific and engineering
computing, including quantum chemistry, electrical engineering, Helmholtz
equation, and so on. One can see [10, 7, 11, 9] for more details.

In recent years, to efficiently solve the non-Hermitian positive definite
linear systems (1.1), a large amount of iteration methods have been proposed
in the literature, such as the Hermitian and skew-Hermitian splitting (HSS)
method in [3], the preconditioned HSS (PHSS) method in [4], the accelerated
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HSS (AHSS) method in [2], the modified HSS (MHSS) method in [1] and so
on.

In [5], Bai et al. designed the following shift splitting of the matrix A

A =
1

2
(βI +A)− 1

2
(βI −A), β > 0.

This splitting naturally leads to the shift splitting (SS) iteration scheme for
solving the large sparse non-Hermitian positive definite linear systems (1.1)
and is described below.

The SS method : Given an initial guess x(0), for k = 0, 1, 2, . . . until {x(k)}
converges, compute

(1.2) (βI +A)x(k+1) = (βI −A)x(k) + 2b,

where β is a given positive constant.
Bai et al. proved in [5] that the SS method (1.2) converges unconditionally

to the unique solution of the linear systems when A is non-Hermitian positive
definite. Meanwhile, in theory, the optimal iteration parameter β = ‖A‖2,
where ‖A‖2 denotes the 2-norm of the matrix A, is obtained to minimize an
upper bound of the spectral radius of the iteration matrix of the SS method
(1.2).

In this paper, the shift splitting technique is generalized and a generalized
two-sweep shift splitting (GTSS) iteration method for the non-Hermitian pos-
itive definite linear systems (1.1) is proposed. Theoretical analysis shows that
the GTSS method is convergent to the unique solution of the linear system
under a loose restriction on the iteration parameter. Numerical experiments
are reported to the efficiency of the GTSS method.

The remainder of this paper is organized as follows: in Section 2, the
generalized two-sweep shift splitting (GTSS) iteration method is described
and the convergence properties of the GTSS method are studied. In Section
3, numerical experiments are provided to show the effectiveness of the GTSS
method. Finally, some concluding remarks are given in Section 4.

2. The GTSS method

In this section, to establish the GTSS method, we can express A as

A = αI − (αI −A) = (βI +A)− βI.

Based on this, the linear systems (1.1) has the following two equivalent forms,

αx = (αI −A)x + b,(2.1)

(βI +A)x = βx+ b.(2.2)

Based on the fixed-point equations (2.1) and (2.2), the following generalized
two-sweep shift splitting (GTSS) iteration method is established to solve the
non-Hermitian positive definite linear systems (1.1).
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The GTSS method. Let x(0) ∈ Cn be an arbitrary initial guess. For
k = 0, 1, 2, . . . until the sequence of iterates {x(k)}∞k=0 converges, compute the

next iterate x(k+1) by the following procedure

(2.3)

{

αx(k+ 1

2
) = (αI −A)x(k) + b,

(βI +A)x(k+1) = βx(k+ 1

2
) + b,

where α, β are given positive constants and I is the identity matrix.

Eliminating the intermediate vector x(k+ 1

2
) in (2.3) leads to the following

iteration in fixed-point form

(2.4) x(k+1) = Mα,βx
(k) +Nα,βb, k = 0, 1, 2, . . .

where

Mα,β =
β

α
(βI +A)−1(αI −A)

and

Nα,β =
α+ β

α
(βI +A)−1.

In addition, let

M = (α+ β)−1α(βI +A) and N = (α+ β)−1β(αI −A).

Then A = M −N and Mα,β = M−1N . Therefore, the GTSS method is also
obtained by the matrix splitting A = M −N . It follows that the matrix M

can be used as a preconditioner for the non-Hermitian positive definite linear
systems (1.1).

It is noted that when α = β in (2.3), the two-sweep shift splitting (TSS)
iteration method is obtained and described below.

The TSS method. Let x(0) ∈ Cn be an arbitrary initial guess. For k =
0, 1, 2, . . . until the sequence of iterates {x(k)}∞k=0 converges, compute the next

iterate x(k+1) by the following procedure

(2.5)

{

αx(k+ 1

2
) = (αI −A)x(k) + b,

(αI +A)x(k+1) = αx(k+ 1

2
) + b,

where α is a given positive constant and I is the identity matrix.
In fact, the TSS method (2.5) is equal to the SS method (1.2).
The GTSS method (2.3) is convergent if and only if the spectral radius

ρ(Mα,β) of the iteration matrix Mα,β is less than one, where ρ(·) denotes the
spectral radius of the matrix.

For the convergence property of the GTSS method (2.3), we have the
following theorem.

Theorem 2.1. Let A ∈ Cn×n be non-Hermitian positive definite with
α, β > 0. Then the spectral radius ρ(Mα,β) of the iteration matrix Mα,β of
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the GTSS method (2.3) is bounded by

(2.6) δα,β =
β

α

√

α2 − 2αηl(H) + ‖A‖22
β2 + 2βηl(H) + ‖A‖22

,

where ηl(H) is the smallest eigenvalue of the matrix H = 1
2 (A+ A∗). More-

over,

(i) if α ≥ β, then δα,β < 1, namely, the GTSS method (2.3) is conver-
gent;

(ii) if ηl(H) +
‖A‖2

2

β
>

‖A‖2

2

α
, then δα,β < 1, namely, the GTSS method

(2.3) is convergent.

Proof. Let t = x∗Hx
x∗x

> 0. By the direct calculations, we have

ρ(Mα,β)
2 =

β2

α2
ρ((βI +A)−1(αI −A)(αI −A)∗(βI +A)−∗)

=
β2

α2
max
x 6=0

x∗(αI −A)(αI −A)∗x

x∗(βI +A)(βI +A)∗x

=
β2

α2
max
x 6=0

α2x∗x− αx∗(A∗ +A)x+ x∗A∗Ax

β2x∗x+ βx∗(A∗ +A)x + x∗A∗Ax

=
β2

α2
max
x 6=0

α2 − 2αt+ ‖A‖22
β2 + 2βt+ ‖A‖22

.

Let

f(t) =
α2 − 2αt+ ‖A‖22
β2 + 2βt+ ‖A‖22

.

Then

f ′(t) =
−2(α+ β)(αβ + ‖A‖22)
(β2 + 2βt+ ‖A‖22)2

< 0.

Thus, it holds that ρ(Mα,β) ≤ δα,β.
Clearly, δα,β < 1 is equal to

(2.7) αβηl(H) + ‖A‖22(α− β) > 0.

If α ≥ β, then (2.7) is true for any α > 0, i.e., the GTSS method (2.3)

is convergent; if ηl(H) +
‖A‖2

2

β
>

‖A‖2

2

α
, then δα,β < 1 holds, i.e., the GTSS

method (2.3) is convergent.

When α = β in Theorem 2.1, the following corollary 2.2 is obtained.

Corollary 2.2. Let A ∈ Cn×n be non-Hermitian positive definite with
α > 0. Then the spectral radius ρ(Mα) of the iteration matrix Mα of the
TSS(SS) method is bounded by

(2.8) δα =

√

α2 − 2αηl(H) + ‖A‖22
α2 + 2αηl(H) + ‖A‖22

,
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where ηl(H) is the smallest eigenvalue of the matrix H = 1
2 (A+A∗).

Corollary 2.2 is a mail result in [5]. That is to say, 2ηl(H) in ̺u(α) in
Theorem 2.2 [5] should be 2αηl(H).

Since β2 < β2 + 2βηl(H) + ‖A‖22, from (2.6), we have

β

α

√

α2 − 2αηl(H) + ‖A‖22
β2 + 2βηl(H) + ‖A‖22

<

√

α2 − 2αηl(H) + ‖A‖22
α

.

Further, we have the following theorem.

Theorem 2.3. Let A ∈ Cn×n be a non-Hermitian positive definite with
α, β > 0. Then the spectral radius ρ(Mα,β) of the iteration matrix Mα,β of
the GTSS method (2.3) is bounded by

(2.9) δ̄α =

√

α2 − 2αηl(H) + ‖A‖22
α

,

where ηl(H) is the smallest eigenvalue of the matrix H = 1
2 (A+ A∗). More-

over, if

(2.10) α ≥ ‖A‖22
2ηl(H)

,

then δ̄α < 1, which means that the GTSS method (2.3) is convergent.

Proof. Here, we just need to prove δ̄α < 1, which is equal to

α2 − 2αηl(H) + ‖A‖22 < α2.

Further,

α ≥ ‖A‖22
2ηl(H)

.

The proof of Theorem 2.3 is completed.

Next, the theoretical optimal parameter to minimize the upper bound δ̄α
is obtained.

Corollary 2.4. Let the conditions of Theorem 2.3 be satisfied. Let ηl(H)
be the smallest eigenvalue of the matrix H = 1

2 (A+A∗). Then

α∗ =
‖A‖22
ηl(H)

, δ̄α∗ =

√

‖A‖22 − η2l (H)

‖A‖2
.

Proof. Let

g(α) =
α2 − 2αηl(H) + ‖A‖22

α2
.

Simple calculation gives

g′(α) = 2
αηl(H)− ‖A‖22

α3
.
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It is obvious that g′(α) > 0 for α >
‖A‖2

2

ηl(H) and g′(α) < 0 for α <
‖A‖2

2

ηl(H) . Hence,

the upper bound δ̄α of the spectral radius ρ(Mα,β) achieves its minimum at

α∗ =
‖A‖2

2

ηl(H) , and its minimum value of δ̄α∗ is obtained.

3. Numerical experiments

In this section, we present numerical results to demonstrate the perfor-
mance of the GTSS method (2.3) for solving the linear systems (1.1) on the
basis of the following two examples. Numerical comparisons with the GTSS,
TSS(SS) and HSS methods are also presented to show the advantages of the
GTSS method, where the HSS method is of the form

{

(βI +H)x(k+ 1

2
) = (βI − S)x(k) + b,

(βI + S)x(k+1) = (βI −H)x(k+ 1

2
) + b,

with β > 0, H = 1
2 (A+A∗) and S = 1

2 (A−A∗).

Example 3.1. We consider the two-dimensional convection-diffusion
equation

−(uxx + uyy) + γ(ux + uy) = g,

where γ is a constant and g is a given function, and u satisfies Dirichlet
boundary conditions in [8]. The following coefficient matrix

A = T ⊗ I + I ⊗ T

can be obtained by the five-point centered finite difference discretization on
the unit square [0, 1] × [0, 1] with mesh-size h = 1

m+1 , where ⊗ denotes the
Kronecker product, T is a tridiagonal matrix given by

T = tridiag(−1−Re, 2,−1 +Re),

and Re =
γh
2 is the mesh Reynolds number.

β 0.05 0.1 0.2 0.3 0.4
GTSS IT 7 9 12 19 31

CPU 0.014 0.016 0.017 0.035 0.061
RES 2.2292e-7 2.2487e-7 9.1099e-7 6.2602e-7 9.3442e-7

TSS IT − 373 187 125 94
CPU − 0.536 0.275 0.183 0.147
RES 9.8509e-7 9.5615e-7 9.2682e-7 8.9718e-7

HSS IT − 279 143 98 74
CPU − 0.764 0.392 0.272 0.211
RES 9.5485e-7 9.1787e-7 8.6613e-7 9.1156e-7

Table 1. IT, CPU and RES for GTSS, TSS(SS) and HSS
with n = 162 and γ = 10 for Example 3.1.
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β 0.05 0.1 0.2 0.3 0.4
GTSS IT 15 23 35 44 51

CPU 0.084 0.128 0.191 0.234 0.270
RES 9.5876e-7 8.8880e-7 9.1589e-7 8.9723e-7 8.8086e-7

TSS IT − 353 177 118 88
CPU − 1.800 0.897 0.608 0.450
RES 9.7855e-7 9.4910e-7 9.4583e-7 9.9649e-7

HSS IT − 278 144 102 81
CPU − 2.637 1.358 0.970 0.775
RES 9.8040e-7 9.2622e-7 9.0817e-7 9.6609e-7

Table 2. IT, CPU and RES for GTSS, TSS(SS) and HSS
with n = 322 and γ = 10 for Example 3.1.

β 0.05 0.1 0.2 0.3 0.4
GTSS IT 6 8 13 19 32

CPU 0.013 0.016 0.023 0.033 0.055
RES 2.8001e-7 4.3173e-7 3.3476e-7 7.1884e-7 7.7294e-7

TSS IT − 385 193 128 96
CPU − 0.573 0.286 0.192 0.153
RES 9.7739e-7 9.4929e-7 9.9936e-7 9.9494e-7

HSS IT − 309 157 107 81
CPU − 0.875 0.450 0.308 0.248
RES 9.9697e-7 9.6736e-7 8.9043e-7 9.1950e-7

Table 3. IT, CPU and RES for GTSS, TSS(SS) and HSS
with n = 162 and γ = 15 for Example 3.1.

β 0.05 0.1 0.2 0.3 0.4
GTSS IT 12 17 24 29 33

CPU 0.067 0.092 0.130 0.153 0.177
RES 4.5502e-7 4.8172e-7 6.2649e-7 7.3884e-7 8.0411e-7

TSS IT − 357 179 119 90
CPU − 1.818 0.911 0.608 0.462
RES 9.8438e-7 9.5509e-7 9.7911e-7 8.9547e-7

HSS IT − 310 158 107 84
CPU − 2.904 1.492 1.008 0.787
RES 9.6398e-7 9.7616e-7 9.5343e-7 8.6008e-7

Table 4. IT, CPU and RES for GTSS, TSS(SS) and HSS
with n = 322 and γ = 15 for Example 3.1.
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In our implementations, the initial guess is chosen to be x(0) = 0 and the
stopping criteria for the GTSS, TSS(SS) and HSS methods is

RES =
‖b−Ax(k)‖2

‖b‖2
≤ 10−6,

where ‘RES’ denotes the relative residual error. We compare three methods
from aspects of the number of iterations, the relative residual error and the
average value of the CPU times. Since the CPU time could be measured
multiple times, in our computations, we investigate the average value of the
CPU times in seconds (denoted as CPU) for three methods for 50 times.
In this process, every time, the CPU time merely shows that the algorithm
execution costs time when it is used to solve the corresponding non-Hermitian
positive definite linear systems. All the test results are executed in MATLAB
7.0, which run on an Intel@ Celeron@ G4900, where the CPU 3.10GHz and
the memory is 8.00 GB.

In our experiments, to test the convergence behavior of the GTSS,
TSS(SS) and HSS methods, the value of γ is chosen to be 10, 15. In this way,
Tables 1-4 list the iteration numbers, the average value of the CPU times and
the relative residual error for the GTSS, TSS(SS) and HSS methods under
the same parameter β for the different problem sizes of n. The value of β is
selected by the statement on the choice of the iteration parameter [6], that is,
experience suggests that in most applications and for an appropriate scaling
of the problem, a ‘small’ value of (usually between 0.01 and 0.5) may give
good results. In the meantime, based on Theorem 2.1, the value of β satisfies
β ≤ α. In our experiments, for convenience, we take α = 0.5 for the GTSS
method. In Tables 1-4, ‘IT’ denotes the number of iterations, ‘CPU’ denotes
the average value of the CPU times, and ‘−’ denotes the non-convergences of
the TSS(SS) method and the HSS method when the number of iterations of
the TSS(SS) method and the HSS method achieve 500.

From Tables 1-4, the presented results show that in all cases GTSS is
superior to TSS(SS) and HSS in terms of the iteration numbers and the av-
erage value of the CPU times if it is appropriate to choose the value of the
iteration parameters. This implies that the GTSS method may be given prior-
ity under certain conditions, compared with the TSS(SS) and HSS methods.
In addition, we find that the variation trends of the iteration steps of the
GTSS, TSS(SS) and HSS methods are that the iteration steps of the GTSS
method may be decreased with γ increasing, whereas, the iteration steps of
the TSS(SS) and HSS methods may be increased with γ increasing.

Example 3.2. ([1]) We consider the following non-Hermitian positive
definite linear systems

[

(

K +
3−

√
3

τ
I

)

+

(

K +
3 +

√
3

τ
I

)

i

]

x = b,
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where i =
√
−1, K = I ⊗ Vm + Vm ⊗ I with Vm = h−2tridiag(−1, 2,−1) ∈

Rm×m and the mesh-size h = 1
m+1 , τ is the time step-size, and b is composed

of the entries bj = (1−i)j
τ(1+j)2 , j = 1, 2, . . . , n. Here, matrix K ∈ Rn×n with

n = m2 is from the five-point centered difference matrix approximating the
negative Laplacian operator L = −∆ with homogeneous Dirichlet boundary
conditions, on a uniform mesh in the unit square [0, 1] × [0, 1]. In our tests,
we take τ = h for Example 3.2.

β 0.05 0.1 0.2 0.3 0.4
GTSS IT 6 9 16 27 62

CPU 0.016 0.023 0.039 0.065 0.139
RES 9.9518e-7 5.0797e-7 4.2254e-7 9.9196e-7 9.0626e-7

TSS IT − − − − −
CPU − − − − −
RES − − − − −

HSS IT − − − − −
CPU − − − − −
RES − − − − −

Table 5. IT, CPU and RES for GTSS, TSS(SS) and HSS
with n = 162 for Example 3.2.

β 0.05 0.1 0.2 0.3 0.4
GTSS IT 6 9 16 28 62

CPU 0.055 0.087 0.145 0.252 0.537
RES 9.9852e-7 5.1076e-7 4.2734e-7 6.0798e-7 9.5698e-7

TSS IT − − − − −
CPU − − − − −
RES − − − − −

HSS IT − − − − −
CPU − − − − −
RES − − − − −

Table 6. IT, CPU and RES for GTSS, TSS(SS) and HSS
with n = 322 for Example 3.2.

In our computations, we extend the test method of Example 3.1 to Ex-
ample 3.2, and give some numerical results for three testing methods in terms
of the number of iterations, the relative residual error and the average value
of the CPU times in seconds. Specifically, see Tables 5 and 6. From Tables 5
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and 6, numerical results show that the GTSS method is convergent, whereas,
the TSS(SS) and HSS methods are not convergent. This further confirms that
the GTSS method overmatches the TSS(SS) and HSS methods in terms of
the number of iterations and the average value of the CPU times. That is to
say, the GTSS method for solving the non-Hermitian positive definite linear
systems can be an attractive alternative to the original one.

4. Conclusions

In this paper, a generalized two-sweep shift splitting (GTSS) iteration
method has been presented to solve the non-Hermitian positive definite linear
systems on the base of the shift splitting of the coefficient matrix and its some
convergence conditions under certain conditions are given. Numerical exper-
iments show that the GTSS method for solving the non-Hermitian positive
definite linear systems is feasible and effective.
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