Ringing & Migration (2010) 25, 71–87



# The migration seasons of birds as recorded at Dungeness Bird Observatory in southeast England

IAN NEWTON<sup>1,4\*</sup>, ANNA EKNER<sup>2</sup>, DAVID WALKER<sup>3</sup> and TIM H. SPARKS<sup>1,5</sup>

<sup>1</sup>NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS, UK <sup>2</sup>Department of Behavioural Ecology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland <sup>3</sup>11 RNSSS Cottages, Dungeness, Romney Marsh, Kent TN29 9NA, UK <sup>4</sup>current address: Old Mill, Mill Lane, Pickworth, Sleaford, Lincs NG34 0TE, UK <sup>5</sup>current address: Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71 C, 60-625 Poznań, Poland

This paper summarises the migration periods of birds at Dungeness Bird Observatory, Kent, southeast England, as calculated from daily counts conducted over an 18-year period. Mean spring migration dates for different species ranged between 6 February (Greenfinch *Carduelis chloris*) and 26 May (Reed Warbler *Acrocephalus scirpaceus*), and mean late summer/autumn dates between 11 August (Reed Warbler) and 27 November (Great Crested Grebe *Podiceps cristatus*). In general, species which arrived early in spring tended to depart late in autumn and vice versa. The overall average spring passage date for all species was 9 April and the overall autumn date 3 October. Long-distance migrants, wintering in sub-Saharan Africa, tended to arrive later and depart earlier, spending a shorter period in Britain than short-distance migrants wintering within Europe. Although the population levels of birds are higher in autumn than in spring, in some species the spring totals at Dungeness far exceeded their autumn totals. The annual cycles of the birds passing through Dungeness, as reflected in their migration dates, were centred not on the longest day, nor on the warmest, but roughly midway between the two.

Most recent interest in the migration dates of birds has been generated by concern over the impacts of climate change, and little attention has been paid to other aspects of migration dates. Our aim in this paper is to examine the migration seasons of various bird species that passed through Dungeness Bird Observatory (50.9°N, 1.0°E) during 1990-2007. Situated on the southeast corner of England, this Observatory is ideally sited to record the movements of birds in and out of Britain, as well as those passing through the English Channel. Moreover, the Observatory is permanently manned, and systematic records have been kept of all the birds recorded there on a daily basis over many years. Some of the findings are known in general terms but, to our knowledge, have not been quantified or examined in detail. Because the total study period is relatively short (16-18 years, depending on species), we will forgo in this paper discussion of any changes in migration dates that may have occurred within this period. Nevertheless, bear in mind that this study period included some of the warmest years on record for southeast England.

Several previous studies gave quantitative information on the seasonal occurrence of birds at British and Irish observation sites, including Cape Clear (Sharrock 1973), Lundy Island (Dymond 1980), Bardsey Island (Roberts 1985), Calf of Man (Cullen & Jennings 1986), Fair Isle (Dymond 1991) and North Ronaldsay (reported in Forrester & Andrews 2007). Other studies gave details from one or more Bird Observatories for particular groups of species (eg see Davis 1967 for Sylvia warblers at seven British Bird Observatories, Riddiford & Findley 1981 for 39 summer-visiting species at nine Observatories), or for individual species (for Common Redstart<sup>1</sup> see Hope Jones 1975; for Ring Ouzel see Durman 1976; for Pied Flycatcher see Hope Jones et al 1977; for Black Redstart see Langslow 1977; for Reed and Sedge Warblers see Insley & Boswell 1978; for Blackcap see Langslow 1979). However, in none of these studies was any comparative statistical analysis made of the data presented. Similar information on seasonal occurrence is available for a number of Bird Observatories in continental Europe, as may be seen from their respective web sites.

<sup>1</sup> Scientific names are given in Appendix 1 or, for species not listed in Appendix 1, at first mention in the text

<sup>\*</sup> Correspondence author Email: ine@ceh.ac.uk

## **METHODS**

We used the daily totals of all the birds counted at Dungeness Bird Observatory during the 18 years 1990-2007. More than eight million birds were recorded in this period. However, in the first two years, some species were noted as present only, with no numbers given, so for these species only data for the years 1992-2007 were included. Each morning during the study period, weather permitting, all birds were counted within an approximate 2-km<sup>2</sup> area, which included willow scrub, open shingle with patches of broom and gorse, and two gravel pits edged with additional willow scrub. The numbers counted on any particular day were a function of the numbers of new arrivals and the numbers remaining from previous days, which in migration seasons could not normally be distinguished. The count area did not change substantially during the study period, except that some of the bushes became larger (for more detailed description of the general area see Scott et al 1976). Throughout the period from March to October/November, 'daily' counts were made by the Warden and Assistant Warden, and these counts formed the basis for assessing the daily totals of each species present. During the winter months, only one person (the Warden) was there to make the counts, but far fewer birds were present then. The numbers of additional observers present at the Bird Observatory fluctuated greatly during the year, but their records, along with ringing results, were taken into account in assessing the daily totals of each species judged to have been present, and entered into the Observatory logbooks. It is the view of the Observatory Warden (DW) that fluctuations in observer numbers would not have influenced the recorded passage periods of different species, as documented here. The seawatch counts refer to all observations of passing seabirds made during specified watch periods (using telescopes), and for some purposes (see below) these counts were expressed on a 'birds per hour' basis.

To assess the overall seasonal pattern in numbers of each species, the data for all 16–18 years were combined, and expressed as the average number of individuals seen per day in each five-day period (pentad). Only the 154 species recorded in at least 10 of the 18 years and averaging at least 10 birds in any one season were included in further analyses. Seven main patterns emerged:

- Birds present mainly or entirely in the spring and/or autumn migration seasons, with only occasional or no individuals recorded between these seasons, in summer and winter; a pattern shown by passage migrants to the area. Fifty-two species showed this type of pattern (Appendix 1), exemplified by the Spotted Flycatcher in Fig 1a.
- 2. Birds present mainly during the migration seasons and in smaller numbers in summer, but absent in winter; a

pattern with clearly defined migration seasons shown mainly by summer visitors to the area and beyond. Sixteen species showed this pattern (Appendix 1), exemplified by the Northern Wheatear in Fig 1b.

- 3. Birds present mainly during the migration seasons and in smaller numbers in winter, but entirely or largely absent in summer; a pattern with clearly defined migration seasons shown by winter visitors to the area and beyond. Thirty-eight species showed this pattern (Appendix 1), exemplified by the Redwing in Fig 1c.
- Birds present year-round, but with clearly defined autumn and/or spring peaks during migration seasons. Twenty-six species showed this pattern (Appendix 1), exemplified by the Robin in Fig 1d.
- Birds present in summer only, but with no clearly defined peaks during migration seasons. Six species showed this pattern (Appendix 1), exemplified by the Swift in Fig 1e.
- Birds present in winter only, but with no clearly defined peaks during migration seasons. Eight species showed this pattern (Appendix 1), exemplified by the Redthroated Diver in Fig 1f.
- Birds present year-round, but with no clearly defined migration seasons. Eight species showed this pattern (Appendix 1), exemplified by the Gannet in Fig 1g.

Only for the 132 species in the first four categories could one or both migration seasons be discerned from the counts. For the 52 species present only in migration seasons, such as the Spotted Flycatcher, these seasons could be clearly and unequivocally defined, enabling calculation of first, last, mean and peak dates for each year (Fig 1a). The remaining species were also present at times outside the migration seasons, making it hard to delimit these seasons precisely. We therefore adopted an arbitrary procedure for all species in categories 1-4, counting the first half of the year (1 January-30 June) as 'spring' and the second half of the year (1 July-31 December) as 'autumn'. Peak migration dates for each species were then taken as the particular fiveday period (pentad) when peak counts were recorded in each half of the year. This was done separately for each year, and standard deviations for each season were also estimated for each year and averaged (Appendix 1). Mean dates were calculated from the daily counts in each half of the year, and standard deviations of the overall means were again estimated from the separate means for individual years. Although, for most species, some daily counts would have fallen outside the migration seasons (referring to summer or winter residents), these counts usually involved relatively small numbers of individuals (note the log scale in Fig 1), and the overall mean dates for different species were highly correlated with the overall peak pentad dates (spring: r =0.912; autumn: r = 0.880; both P < 0.001). In view of these



high correlations, most of the remaining analyses were conducted on mean dates alone.

For the remaining species (categories 5–7), mean and peak migration dates could not be calculated, but first or last spring and/or autumn dates could be calculated for all species present during only part of the year, whether summer or winter visitors or passage migrants. These dates are given in Appendix 1 for whichever species they could be calculated. Only for the eight species that were present year-round, with no clearly defined seasonal peaks, such as the Gannet, could no useful information on migration seasons be calculated, and these species are excluded from further consideration.

A record of time spent on sea-watch hours had also been kept. For seabirds only, we recalculated the above statistics based on the mean number of individuals of each species observed passing by per sea-watch hour (Appendix 2). For most species totals were much smaller than in the overall data (which included resting and feeding birds), and for seven species migration peaks that were clearly evident in the overall data were not apparent in the sea-watch data. These seven species were therefore re-allocated to different groups in Appendix 2, and no migration peaks from sea-watch data were calculated: they were Northern Fulmar, Great Cormorant, European Shag, Glaucous Gull, Common Tern, Scaup and Common Goldeneye. For other seabird species, mean migration dates calculated from sea-watch data differed slightly from those calculated from the overall data. Our purpose in Appendix 2 is to present these sea-watch data in a way that they can be compared with similar data collected elsewhere (*eg* Cooke 2006), and unless stated otherwise, the remaining text is based on the overall data in Appendix 1.

# RESULTS

#### **General patterns**

The overall average spring migration date of all species was 9 April (day 99 from 1 January), and the overall autumn date 3 October (day 276) (Fig 2). However, great variation was apparent in the migration dates of different species,



**Figure 2.** Distribution of species mean spring and autumn migration dates (upper), and the distribution of mid dates (bisectrix) between their mean spring and autumn migration dates (lower). Histograms are based on five-day intervals (pentads), with initial letter of months marking the approximate midpoint of each month. Overall mean dates are indicated by vertical dashed lines. Based on the 132 species for which mean autumn and/or spring migration dates could be calculated.

with mean spring dates ranging between 6 February (day 37, Greenfinch) and 26 May (day 146, Reed Warbler), and mean autumn dates between 11 August (day 223, Reed Warbler) and 27 November (day 331, Great Crested Grebe). There was a broad correlation between spring and autumn dates: species which passed through Dungeness late in spring tended also to pass early in autumn, while species which passed through early in spring tended to pass late in autumn (r = -0.713, P < 0.001, Fig 3).

Other patterns were apparent across species. For example, the first spring date was correlated with the mean spring date (r = 0.719, P < 0.001, Fig 4), and the last autumn date was correlated with the mean autumn date (r = 0.703, P < 0.001, Fig 5). Furthermore, the standard deviation of mean spring date was correlated with the mean spring date (r = -0.468, P < 0.001, Fig 6), reflecting greater variation in the inter-annual arrival dates of early spring migrants than later ones. In contrast, the standard deviation of the mean autumn dates of different species was not significantly correlated with their mean autumn dates (r = 0.158, P = 0.081). However, the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean spring date was correlated with the standard deviation of the mean sp

In general, the arrival and departure dates of migrants at Dungeness reflected some well-known patterns among closely related species hitherto studied mainly by first arrival dates. For example, the three hirundine species arrived



**Figure 3.** Relationship between mean spring and autumn migration dates for species recorded in both seasons. In general, species that passed through early in spring tended also to pass through late in autumn, and vice versa (r = -0.713, P < 0.001).

(mean dates) in spring in order Sand Martin (day 126), Barn Swallow (day 132) and House Martin (day 138), and left in the same order (days 238, 262 and 266 respectively). In the last respect, they differed from the general trend among all species. Similarly, eight different warblers in the genera Phylloscopus, Sylvia and Acrocephalus arrived (mean dates) in the sequence: Chiffchaff (day 102), Willow Warbler (114), Blackcap (118), Sedge Warbler (129), Whitethroat (131), Garden Warbler (132), Lesser Whitethroat (134) and Reed Warbler (146). They left in the order Reed Warbler (223), Whitethroat (227), Sedge Warbler (233), Willow Warbler (234), Garden Warbler (245), Lesser Whitethroat (246), Blackcap (274) and Chiffchaff (276). Compared with the hirundines, these warbler species more closely approximated the overall pattern among all species, with the earliest to arrive being last to leave.

Reflecting another well-known pattern, long-distance migrants, wintering in sub-Saharan Africa, tended to arrive later and depart earlier, spending a shorter period in Britain than short-distance migrants that winter within Europe. This pattern is shown for passerines in Fig 7, but it also occurs in some other groups (Appendix 1). Most large bird species raise only one brood per year in Britain, but among passerines, almost every species would have time to raise more than one brood (or at least attempt a repeat nest if the first failed).

### Annual cycle in relation to seasonal daylength and temperature changes

Following Preston (1966), we calculated the midpoints (bisectrix dates) between mean autumn and spring migration dates of 108 bird species for which these dates could be reliably obtained. The average mid date for all



0 20 40 60 80 100 120 140 First spring migration (day of year) Figure 4. Relationship between the first spring date and the mean spring date for 51 species in which both dates could be calculated (r = 0.719, P < 0.001).

150

125

100

75

50

Mean spring migration (day of year)



Last autumn migration (day of year)

**Figure 5.** Relationship between last autumn date and mean autumn date for 59 species in which both dates could be calculated (r = 0.703, P < 0.001).



**Figure 6.** Relationship between the standard deviation of mean spring migration date and the mean spring migration date across species (r = -0.468, P < 0.001).

species combined fell on 7 July (day 188). These mid dates varied considerably between species (day 166-214), but all except one fell after the summer solstice. The bisectrix dates at Dungeness are shown in Fig 8 in relation to the seasonal changes in daylength (taken at London, c.50 km further north than Dungeness) and temperature (Central England series) recorded over the same period. As in the rest of the northern hemisphere, the longest day fell on 21 June (at London 16.6 hours), and the shortest on 21 December (at London 7.8 hours). The annual temperature cycle lagged more than a month behind the daylight cycle, with the hottest pentad falling, on average, in early August, and the coldest, on average, in late January. It is clear from Fig 7 that the annual cycles of the birds passing through Dungeness, as reflected in their migration dates, were centred not on the longest day nor on the warmest but about midway between.

In calculating the difference between mean spring and mean autumn passage dates, considerable variation was apparent between categories 1-4 in Appendix 1 (one-way ANOVA of difference on group category;  $F_{3, 104}$ = 32.72, P < 0.001, all significantly different from one another using a Tukey multiple comparison). Passage migrants at Dungeness (category 1) showed a mean difference of 159 days (n = 35), summer visitors (category 2) of 123 days (n = 15), winter visitors (category 3) of 190 days (n = 34), residents/passage migrants (category 4) of 225 days (n = 21). For none of these categories were these periods likely to entirely reflect residence periods within Britain, because some individuals seen at Dungeness could have been on passage between breeding and wintering areas beyond Britain. The interval between mean spring and mean autumn peak dates for particular species varied between 77 days (Reed Warbler) and 282 days (Greenfinch).

## Autumn and spring totals

All species would be expected to have larger populations in autumn than in spring, as a result of summer breeding, and in most species counted at Dungeness the autumn count was indeed higher than the spring one. However, some species showed larger spring counts than autumn ones (Appendix 1). Species in which spring counts were more than twice as high as autumn counts included (in order of disparity): Bar-tailed Godwit (spring count 25.0× higher than autumn count), Garganey (15.0×), Whimbrel (13.9×), Glaucous Gull (10.0×), Jay (9.5×), Pomarine Skua (8.8×), Greylag Goose (8.5×), Shoveler (8.0×), Little Tern (7.1×), Razorbill (6.1×), Black-throated Diver (4.9×), Fulmar (4.8×), Common Scoter (4.5×), Scaup (4.5×), Brent Goose (3.7×), Great Crested Grebe (3.6×), Tufted Duck (3.6×), Velvet Scoter (3.4×), Red-breasted Merganser (3.1×), Eider (3.0×), Sanderling (2.6×), Knot (2.6×), Shag (2.4×), Oystercatcher (2.4×), Grey Plover (2.2×), Pintail



Figure 7. Mean spring and autumn migration dates of various passerines at Dungeness shown separately for 11 short-distance migrants wintering within Europe (upper) and 15 long-distance migrants wintering in Africa south of the Sahara (lower). The mean spring and autumn dates for short-distance migrants were days 102 and 277 respectively, and for long-distance migrants days 128 and 245. Spring and autumn mean dates differed significantly between short-distance and long-distance migrants (spring:  $F_{1,23} = 33.82$ , P < 0.001; autumn: F<sub>1.24</sub> = 57.98, P < 0.001). Histograms are based on five-day intervals (pentads), and overall means indicated by vertical dashed lines. Short-distance migrants included Skylark, Meadow Pipit, Grey Wagtail (autumn only), Pied/White Waatail, Black Redstart, Stonechat, Ring Ouzel, Blackcap, Chiffchaff, Goldfinch and Linnet. Long-distance migrants included Sand Martin, Barn Swallow, House Martin, Tree Pipit, Yellow Wagtail, Common Redstart, Whinchat, Wheatear, Sedge Warbler, Reed Warbler, Lesser Whitethroat, Common Whitethroat, Garden Warbler, Willow Warbler and Spotted Flycatcher.



**Figure 8.** Daylength (hours) for London (solid line), mean daily Central England temperature 1990–2007 (°C, dotted line) and distribution of mid dates between spring and autumn mean migration dates for 108 species at Dungeness.

 $\ensuremath{\textcircled{\sc 0}}$  2010 British Trust for Ornithology, Ringing & Migration,  $\ensuremath{\textbf{25}}$  , 71–87

(2.1×), and Redshank (2.1×). All these species were waterbirds or waders which presumably had mainly different routes or stopover behaviour in the two seasons. None of these species is likely to have been more detectable in spring than in autumn, so that the difference in counts reflected a genuine difference in seasonal occurrence. Some other species, generally considered as resident in Britain, also had noticeably higher peaks in spring than in autumn, a difference to which seasonal detectability may have contributed (Corn Bunting 12.1×, Red-legged Partridge 2.1×).

Some seabird species were virtually restricted to one time of year. Thus, Balearic Shearwaters were seen almost entirely in the period mid July to mid September, Sooty Shearwaters in the period August to November, Little Auks mainly in November, and Yellow-legged Gulls in the second half of the year (peaking in early August). Fulmars showed a unique pattern, in being largely absent for a postbreeding period from mid September to mid November, a pattern which was repeated at another sea-watch site on the Norfolk coast, and corresponded to the time when breeding colonies were deserted (Cooke 2006).

### DISCUSSION

The advantage of the Dungeness data is that counts of both land-birds and seabirds were available year-round over a long period of years, rather than merely at recognised migration seasons. The position of this Observatory on the coast of southeast England meant that all migratory species breeding or wintering in Britain were likely to occur there, but so were conspecifics travelling to breeding areas further north or to wintering areas further south. It was therefore not possible to separate populations from different parts of Europe, and recorded migration dates are likely to have included breeders from a wider spread of latitude than Britain alone, which in turn is likely to have lengthened the migration seasons beyond those of British birds alone. Moreover, some of the individuals associated with breeding areas within Britain, but which do not breed at Dungeness, still passed through Dungeness (such as Spotted Flycatcher and Arctic Skua).

The midpoints between the mean spring and autumn migration periods of different species were clustered not around the longest day (21 June), nor around the warmest day (early August), but roughly midway between the two. This was not surprising if both daylength and temperature were the main factors influencing vegetation growth and bird food supplies. In general, species which arrived at Dungeness early in spring departed relatively late in autumn, and vice versa, but exceptions occurred. No species could arrive before its particular food became available in

spring, nor stay on longer than its food remained available in autumn. In fact, the presence of different summervisiting species in Britain may have more or less coincided with the periods that their foods were most available here. Thus seed-eaters tended to arrive earlier and depart later than insectivores, and among the latter, hirundines feeding on aerial insects arrived earlier and departed later than the majority of warblers which depended on insects from developing leaves. However, it was also apparent that those species which wintered in sub-Saharan Africa arrived later and left earlier than those that wintered within Europe. Further work is needed to separate the roles of diet and migration distance in influencing the migration and residence periods of different migratory species in Britain, for almost certainly diet influences both wintering area and migration dates (Newton 2008).

The most accurate migration dates recorded here are likely to have derived from passage migrants: the 52 species that were seen at Dungeness only at migration times. The estimated mean migration dates for the remaining species were calculated as half-yearly means, so may have been affected to varying degrees by the numbers of birds seen outside migration seasons. Their effect is likely to have been trivial, however, because their numbers were very small compared to those counted within migration seasons. We judged this procedure the best for calculating mean migration dates from such count data, considering that the alternative would have entailed making separate subjective decisions on migration periods for each species.

The arrival and departure periods of land-bird migrants in Britain are well known to bird-watchers from their own observations, but the emphasis has generally been on first arrival and last departure dates because these are easiest to record (Lehikoinen *et al* 2004). Bird Observatory records provide some of the best available data on the seasonal patterns of migration from which mean or median dates and measures of spread can be calculated (Newton 2008). In future, the BirdTrack programme of the British Trust for Ornithology is likely to provide similar data for the whole of Britain, enabling the movements of different species through the country to be tracked each year (Baillie *et al* 2006). This should represent an improvement on sitespecific data of the type we have analysed here.

Although the migration periods of land-bird migrants could be considered relatively well known, with records extending back many years, this is less true for seabirds, because systematic sea-watching is less common. As far as we are aware, the data presented here are the most extensive yet published for seabirds around Britain. Nevertheless, the patterns recorded at Dungeness seem broadly similar to those recorded elsewhere in southeast England. This is evident, for example, in the recent records from Holme Bird Observatory on the North Norfolk coast (Cooke 2006), although not all species were well represented at both sites. As such records are assembled and analysed, it should become possible to build up a more complete picture of offshore seabird movements around Britain and Ireland.

Some of the bird-species that are generally regarded as resident within Britain were recorded as migrants at Dungeness. There were several reasons for this. First, some of the species that are resident in Britain appear at Dungeness as passage migrants or winter visitors from the continent. For some species this was evident not only from observations, but also from the plumage of trapped individuals. For example, almost all the Coal Tits trapped at Dungeness were of the continental race Periparus a. ater, rather than of the British race P. a. britannicus. Second, it is likely that many of the species regarded as resident in Britain are in fact partial migrants, with a small proportion of the British population undertaking regular migratory movements, as yet unsupported by ring recoveries. This may well account for the spring and autumn peaks at Dungeness of species such as Tree Sparrow and House Sparrow. Yet other species, such as Hobby and Tree Pipit, were recorded at Dungeness only as migrants even though they were nesting a few kilometres inland, there being little or no suitable habitat around Dungeness itself.

To our knowledge, no other study of migration seasons, as recorded at British Bird Observatories, has presented a comparative quantitative analysis of the data similar to ours. The main aim was to elucidate the patterns in migration dates across species at a particular well-studied site, and not to examine either geographical or temporal trends in migration dates. Nevertheless, previous published information indicate species-specific dates roughly similar to ours, but varying according to location and year, and with the spring arrival dates of many species having become earlier in recent years (Lehikoinen et al 2004). The earlier studies of migration dates recorded at British and Irish Bird Observatories, mentioned above, presented the data as histograms, showing the totals in five-day or 10-day periods through the year (or through most of the year), without giving means or standard deviations of seasonal peaks. Together with the difficulty of reading individual values from histogram axes, especially when plotted on a logarithmic scale, this makes it impossible to make meaningful comparisons with our data. In any case, assessing phenological time trends was not one of our aims, but it was evident that the status of several species at Dungeness has changed to some degree since 1974-78, the period considered by Riddiford & Findley (1981). For example, several species which were regular as migrants in 1974–78, such as Wryneck Jynx torquilla, Grasshopper

Warbler Locustella naevia, Wood Warbler Phylloscopus sibilatrix and Red-backed Shrike Lanius collurio, hardly occurred at all during 1990–2007, while the Black Redstart and Firecrest, seen only at migration times during 1974–78, were seen frequently in some summers and some winters respectively during 1990-2007, though no more than a few individuals at a time. Yet other species, such as Whinchat and Turtle Dove, were generally more abundant during 1974-78 than in 1990-2007, while others were much more often seen in summer during 1974–78 than in 1990–2007. These changes at Dungeness accord with known changes in the status of these species in Britain over the period concerned (www.bto.org/birdtrends/). The information collected over the decades at British Bird Observatories comprises some of the longest-running data sets available on the timing of bird migration, and would surely repay more detailed study.

#### ACKNOWLEDGEMENTS

We would like to thank all the Observatory personnel and visitors who contributed to this data set, and two anonymous referees for their helpful comments on the manuscript.

#### REFERENCES

- Baillie, S.R., Balmer, D.E., Downie, I.S. & Wright, K.H.M. (2006) Migration watch: an internet survey to monitor spring migration in Britain and Ireland. *Journal of Ornithology* **147**, 254–259.
- **Cooke, F.** (2006) Sea watching at Holme Bird Observatory 2005. Norfolk Ornithologists' Association Annual Report 2005, 61–66.
- **Cullen, J.P. & Jennings, P.P.** (1986) *Birds of the Isle of Man.* Bridgeen Publications, Douglas.

Davis, P. (1967) Migration seasons of the Sylvia warblers at British Bird Observatories. Bird Study 14, 65–95.

Durman, R.F. (1976) Ring Ousel migration. Bird Study 23, 197–205.

- **Dymond, J.N.** (1980) *The Birds of Lundy.* Devon Birdwatching and Preservation Society, Plymouth.
- **Dymond, J.N.** (1991) *The Birds of Fair Isle*. Fair Isle Bird Observatory.
- Forrester, R.W. & Andrews, I.J. (2007) The Birds of Scotland. The Scottish Ornithologists' Club, Aberlady.
- Hope Jones, P. (1975) The migration of Redstarts through and from Britain. *Ringing & Migration* 1, 12–17.
- Hope Jones, P., Mead, C.J. & Durman, R.F. (1977) The migration of the Pied Flycatcher from and through Britain. Bird Study 24, 2–14.
- **Insley, H. & Boswell, R.C.** (1978) The timing of arrivals of Reed and Sedge Warblers at south coast ringing sites during autumn passage. *Ringing & Migration* **2**, 1–9.
- Langslow, D.R. (1977) Movements of Black Redstarts between Britain and Europe in relation to occurrences at Observatories. *Bird Study* 24, 169–178.
- Langslow, D.R. (1979) Movements of Blackcaps ringed in Britain and Ireland. Bird Study 26, 239–252.
- Lehikoinen, E., Sparks, T.H. & Zalakevicius, M. (2004) Arrival and departure dates. Advances in Ecological Research 35, 1–31.
- **Newton, I.** (2008) *The Migration Ecology of Birds*. Academic Press, London.
- Preston, F.W. (1966) The mathematical representation of migration. Ecology 47, 375–392.
- Riddiford, N. & Findley, P. (1981) Seasonal movements of summer migrants. BTO Guide 18. BTO, Tring.
- **Roberts, P.** (1985) *The Birds of Bardsey.* Bardsey Bird and Field Observatory.
- Scott, B., Cawkell, H. & Riddiford, N. (1976) Dungeness. In Bird Observatories in Britain and Ireland (ed R. Durman), pp 94–114. T. & A.D. Poyser, Berkhamsted.
- Sharrock, J.T.R. (1973) The Natural History of Cape Clear Island. T. & A.D. Poyser, Berkhamsted.

(MS received 14 October 2009; accepted 19 January 2010)

Appendix 1. A summary of the seven groups of birds at Dungeness Bird Observatory 1990-2007. Species within groups are arranged in taxonomic order.

- Key to columns A: No. of spring/autumn years of data (if not 18/18).
- Species marked by an asterisk are based on years 1992–2007 (see text for details) Mean number of birds recorded per year in spring
  - Mean first spring date (day of year)
    - SD of previous column
- Mean average spring date (day of year)
  - SD of previous column
    - Mean spring peak pentad
- Mean within-spring SD (pentads)
- Mean last spring date (day of year) SD of previous column

- Mean number of birds recorded per year in autumn Mean first autumn date (day of year) ∺ دن نخ Z Ö ن خ Ö ن خ X
  - SD of previous column
- Mean average autumn date (day of year)
  - SD of previous column
    - Mean autumn peak pentad
- Mean within-autumn SD (pentads)
- Mean last autumn date (day of year)
  - SD of previous column
- Difference (days) between spring and autumn mean dates

1 H

|                                   | ۷             | ۵          | U         | ۵  | ш   | u.             | G    | Ŧ        | _   | -  | ¥   | -   | ٤      | z       | 0        | ٩    | Ø            | 2   | S      | H    |
|-----------------------------------|---------------|------------|-----------|----|-----|----------------|------|----------|-----|----|-----|-----|--------|---------|----------|------|--------------|-----|--------|------|
| mining and lor antimum 1          |               |            | الد<br>في |    |     | 0              |      | hird.    |     |    |     |     |        |         |          |      |              |     |        |      |
| GREVLAG GOOSE                     | <b>1</b> 8/13 | 210<br>212 | 49 Vern   | 20 | 106 | ~<br>5 √⊂<br>5 | 18.5 | 4 8      | 154 | 15 | 25  | 268 | 46     | 191     | 30       | 579  |              | 307 | 38     | 18.5 |
| Anser anser                       |               | 1          |           | 1  | )   | )              | 2    | 2        | )   | 2  | 0   | )   |        |         | )        |      |              | 5   | 0      | -    |
| CANADA GOOSE                      | 18/14         | 41         | 68        | 18 | 101 | 10             | 21.0 | 3.8      | 139 | 21 | 30  | 256 | 22     | 257     | 22       | 48.6 | 0.2          | 258 | 21     | 156  |
| Branta canadensis                 |               |            |           |    |     |                |      |          |     |    |     |     |        |         |          |      |              |     |        |      |
| GADWAIL                           |               | 71         | 35        | 28 | 88  | 10             | 16.8 | 4.9      | 133 | 16 | 64  | 259 | 32     | 297     | 21       | 57.4 | 5.1          | 336 | 17     | 209  |
| Anas strepera                     |               |            | ç         | Ģ  | 1   | ç              |      | c        | 0   | ç  |     |     | ç      | 200     | 5        |      | -            |     | 5      |      |
|                                   |               | 7007       | 7         | 7  | 0   | 7              | 4.0  | 0.0      | 0   | 4  | 00  | 007 | 7      | 047     | <u>_</u> | 0.70 | <del>.</del> | 000 | 2      | 777  |
| Arias acuia<br>GARGANEY           | 18/2          | 15         | 86        | 14 | 101 | 1              | 20.3 | 2.9      | 122 | 16 | -   |     |        |         |          |      |              |     |        |      |
| Anas querquedula                  |               | ò          | 1         | č  | -   | L              |      | 0        | 0   | c  | 0   |     | (<br>- |         | c        | 0    |              | 1   | (<br>- |      |
|                                   |               | 96         | /7.       | 34 | _   | ç              | 23.6 | 5.<br>2. | 42  | ω  | 20  | 2/0 | 20     | <u></u> | x        | 62.6 | 4.0          | 34/ | 2      | 206  |
| Gavia arctica<br>SOOTY SHEARWATER | 4/18          | C          |           |    |     |                |      |          |     |    | 47  | 247 | 19     | 277     | 11       | 55.1 | 3.6          | 314 | 25     |      |
| Puffinus ariseus                  |               | I          |           |    |     |                |      |          |     |    |     | :   |        |         |          |      |              |     |        |      |
| BALEARIC SHEARWATER               | 9/15          | 15         |           |    |     |                |      |          |     |    | 18  | 213 | 22     | 238     | 13       | 44.9 | 3.5          | 276 | 31     |      |
| Puffinus mauretanicus             |               |            |           |    |     |                |      |          |     |    |     |     |        |         |          |      |              |     |        |      |
| MARSH HARRIER                     |               | 5          |           |    |     |                |      |          |     |    | 18  | 223 | 13     | 258     | 6        | 51.1 | 4.9          | 308 | 26     |      |
| Circus aeruginosus                |               |            |           |    |     | I              |      | 1        |     | 1  |     |     |        |         | I        |      |              |     |        |      |
| MERLIN                            |               | 40         | 17        | 16 | 81  | ~              | 14.9 | 5.0      | 123 | =  | 65  | 238 | 12     | 297     |          | 58.7 | 4.9          | 352 | 12     | 216  |
| Falco columbarius                 |               |            |           |    |     |                |      |          |     |    |     |     |        |         |          |      |              |     |        |      |
| EURASIAN HOBBY                    |               | 31         | 117       |    | 141 | 2              | 26.9 | 3.1      | 170 | 10 | 16  | 205 | 24     | 253     | 14       | 48.6 | 4.9          | 282 | 6      | 112  |
| Falco subbuteo                    |               |            |           |    |     |                |      |          |     |    |     |     |        |         |          |      |              |     |        |      |
| PIED AVOCET                       | 14/10         | 31         | 84        | 21 | 103 | 15             | 16.3 | 3.0      | 129 | 15 | 17  | 303 | 33     | 307     | 35       | 50.8 | 0.5          | 310 | 37     | 204  |
| Recurvirostra avosetta            |               |            |           |    |     |                |      |          |     |    |     |     |        |         |          |      |              |     |        |      |
| EUROPEAN GOLDEN PLOVER            | 12/18         | 9          |           |    |     |                |      |          |     |    | 73  | 233 | 24     | 275     | 19       | 55.5 | 5.1          | 313 | 19     |      |
| Pluvialis apricaria               |               |            |           |    |     |                |      |          |     |    |     |     |        |         |          |      |              |     |        |      |
| BAR-TAILED GODWIT                 | ~,            | 5,762      | 58        | 30 | 119 | ო              | 23.8 | 1.<br>4. | 143 | Ξ  | 230 | 229 | 28     | 259     | 24       | 51.4 | 3.6          | 301 | 37     | 140  |
| Limosa lapponica                  |               |            |           |    |     |                |      |          |     |    |     |     |        |         | ,        |      | 1            |     |        |      |
| WHIMBREL                          |               | 640        | 66        | 6  | 121 | 4              | 24.9 | 1.6      | 149 | 13 | 46  | 196 | [      | 229     | 6        | 46.3 | 3.5          | 267 | 21     | 108  |
| Numenius phaeopus                 |               |            |           |    |     |                |      |          |     |    |     |     |        |         |          |      |              |     |        |      |

|                                                          | A    | ß   | U   | <b>_</b> | u   | <b>_</b> | U    | F    | _   | -     | ×   |     | ٤  | z   | 0        | •    | σ   | ~   | s      | ⊢   |
|----------------------------------------------------------|------|-----|-----|----------|-----|----------|------|------|-----|-------|-----|-----|----|-----|----------|------|-----|-----|--------|-----|
| CURLEW .                                                 |      | 302 | 27  | 19       | 95  | ω        | 19.1 | 5.0  | 170 | 14    | 167 | 188 | œ  | 259 | 4        | 52.4 | 6.2 | 332 | 17     | 165 |
| Numenius arquata<br>COMMON SANDPIPER                     |      | 6   |     |          |     |          |      |      |     |       | 13  | 196 | 12 | 224 | œ        | 44.5 | 3.8 | 253 | 20     |     |
| Actifis hypoleucos<br>COMMON GREENSHANK                  | 7/16 | 4   |     |          |     |          |      |      |     |       | 15  | 209 | 16 | 235 | 10       | 46.4 | 3.2 | 264 | 24     |     |
| Iringa nebularia<br>POMARINE SKUA                        |      | 167 | 77  | 42       | 125 | 5        | 25.6 | 1.8  | 142 | 9     | 19  | 238 | 23 | 275 | 25       | 53.9 | 5.1 | 320 | 26     | 150 |
| Stercorarius pomarinus<br>ARCTIC SKUA                    |      | 273 | 63  | 36       | 119 | 7        | 23.3 | 2.3  | 159 | 14    | 463 | 197 | 13 | 256 | œ        | 51.3 | 4.0 | 323 | 19     | 137 |
| Stercorarius parasiticus<br>GREAT SKUA                   |      | 98  | 26  | 37       | 105 | 1        | 21.6 | 4.7  | 153 | 21    | 120 | 210 | 18 | 273 | 11       | 54.4 | 5.1 | 342 | 16     | 168 |
| Sfercorarius skua<br>YELLOW-LEGGED GULL 11               | /11* | 16  | 31  | 51       | 120 | 30       | 10.8 | 10.6 | 177 | 6     | 134 | 183 | -  | 232 | 6        | 40.7 | 7.3 | 349 | 15     | 112 |
| Larus micnanellis<br>BLACK TERN                          |      | 199 | 110 | 4        | 130 | 5        | 25.9 | 1.9  | 163 | 15 1, | 120 | 197 | 12 | 241 |          | 49.0 | 2.5 | 281 | 19     | 112 |
| Common riger<br>COMMON KINGFISHER                        | 5/18 | -   |     |          |     |          |      |      |     |       | 15  | 228 | 25 | 273 | 19       | 48.7 | 5.7 | 310 | 35     |     |
| Alcedo atmis<br>GREAT SPOTTED WOODPECKER 1.              | 21/2 | Ξ   | 19  | 21       | 55  | 18       | 6.9  | 4.9  | 06  | 29    | 89  | 206 | 15 | 278 | 12       | 53.7 | 6.8 | 348 | 4      | 223 |
| Denarocopos major<br>HOUSE MARTIN                        |      | 231 | 105 | 6        | 138 | 5        | 27.6 | 2.5  | 172 | 9 21, | 435 | 197 | 12 | 266 | 5        | 53.4 | 1.7 | 308 | $\sim$ | 128 |
| Veilcrion urbicum<br>TREE PIPIT<br>A_d                   |      | 21  | 101 | 8        | 119 | 9        | 23.9 | 1.1  | 137 | 10    | 144 | 220 | 6  | 254 | œ        | 51.7 | 2.9 | 284 | ω      | 135 |
| Antrus trivialis<br>ROCK PIPIT                           | 7/18 | Ŷ   |     |          |     |          |      |      |     |       | 56  | 264 | 21 | 293 | 5        | 58.6 | 2.6 | 325 | 11     |     |
| YELLOW WAGTAIL                                           |      | 157 | 79  | $\sim$   | 121 | m        | 24.5 | 2.2  | 166 | 15 1, | 828 | 188 | 8  | 240 | с        | 48.5 | 2.8 | 285 | 6      | 118 |
| Moracilla nava<br>GREY WAGTAIL                           |      |     |     |          |     |          |      |      |     |       | 147 | 213 | 21 | 267 | 4        | 53.4 | 3.2 | 308 | 12     |     |
| PIED/WHITE WAGTAIL                                       | 6/15 | 67  | 68  | 6        | 87  | \$       | 15.2 | 2.5  | 127 | 18    | 474 | 233 | 25 | 285 | 4        | 53.9 | 2.8 | 323 |        | 198 |
| Molacilla diba<br>COMMON REDSTART                        |      | 25  | 100 | 6        | 115 |          | 22.6 | 2.0  | 134 | 1     | 87  | 221 | 16 | 258 | <b>v</b> | 51.8 | 3.0 | 289 | ω      | 143 |
| WHINCHAT                                                 |      | 16  | 116 | 9        | 126 | 2        | 24.9 | 1.5  | 139 | 6     | 143 | 219 | [] | 251 | 2        | 50.2 | 2.7 | 289 | 14     | 125 |
| Saxicola ruberra<br>RING OUZEL<br>T                      |      | 14  | 06  | 22       | 109 | 10       | 21.3 | 2.0  | 123 | 13    | 112 | 264 | 16 | 283 | 15       | 56.9 | 1.7 | 305 | 6      | 174 |
| Iuraus Torquarus<br>BLACKCAP<br>S. Juriz attriana: Illa  |      | 52  | 82  | 30       | 118 |          | 23.8 | 2.8  | 149 | 14    | 196 | 217 | 24 | 274 | <b>v</b> | 55.4 | 3.6 | 333 | 17     | 157 |
| Sylvia arricapiria<br>GARDEN WARBLER<br>S. J. ito: Louis |      | 31  | 118 | $\sim$   | 132 | 9        | 26.0 | 2.0  | 149 | Ξ     | 50  | 215 | 12 | 245 | 4        | 47.7 | 4.0 | 292 | 10     | 113 |
|                                                          |      | 99  | 115 | 5        | 134 | 9        | 25.4 | 3.0  | 170 | 12    | 287 | 198 | 18 | 246 | 4        | 49.7 | 3.4 | 287 | 17     | 111 |
| syrva curruca<br>CHIFFCHAFF<br>Phylloscopus collybita    |      | 557 | Ξ   | 18       | 102 | ω        | 19.8 | 5.0  | 173 | 9 1,  | 528 | 197 | 20 | 276 | e        | 54.5 | 3.7 | 356 | $\sim$ | 175 |

|                                                              | 4        | •             | U      | <b>_</b> |                      |            | U                     | F   | ¥     | - | ٤ | z   | 0      | •    | σ   | ~   | s      | -   |
|--------------------------------------------------------------|----------|---------------|--------|----------|----------------------|------------|-----------------------|-----|-------|---|---|-----|--------|------|-----|-----|--------|-----|
| BLACK REDSTART                                               |          | 172           | 35     | 30       | 106                  | 16         | 19.4                  | 5.8 | 138   |   |   | 272 | 18     | 58.0 | 7.4 | 342 | 15     | 166 |
| Phoenicurus ochruros<br>NORTHERN WHEATEAR                    | *        | 908           | 70     | 9        | 120                  | 13         | 21.4                  | 5.1 | 1,151 |   |   | 242 | 28     | 46.5 | 4.8 | 304 | 11     | 122 |
| Cenanthe oenanthe<br>SEDGE WARBLER                           |          | 17            | 109    | 10       | 129                  | 8          | 24.1                  | 2.6 | 66    |   |   | 233 | 9      | 45.4 | 3.3 | 269 | $\sim$ | 104 |
| Acrocephalus schoenobaenu:<br>EURASIAN REED WARBLER          | *        | 348           | 113    | 5        | 146                  | 5          | 30.3                  | 3.2 | 381   |   |   | 223 | 12     | 43.6 | 4.2 | 288 | 12     | 77  |
| Acrocephalus scirpaceus<br>COMMON WHITETHROAT                | *        | 721           | 103    | Ŷ        | 131                  | 1          | 26.3                  | 3.1 | 841   |   |   | 227 | 6      | 44.7 | 4.1 | 288 | 12     | 96  |
| Sylvia communis<br>CHAFFINCH<br>E-in ailla contobe           | *        | 676           | 40     | 22       | 118                  | 28         | 19.4                  | 6.6 | 3,051 |   |   | 295 | 5      | 60.1 | 3.8 | 346 | $\sim$ | 177 |
| LINNET                                                       | * 2      | ,659          | 44     | 26       | 112                  | 16         | 20.6                  | 3.8 | 8,562 |   |   | 268 | 14     | 55.0 | 4.4 | 349 | $\sim$ | 156 |
| Carduelis cannabina<br>COMMON CROSSBILL<br>Loxia curvirostra | 9/15     | ς             |        |          |                      |            |                       |     | 21    |   |   | 251 | 32     | 46.5 | 3.8 | 282 | 35     |     |
| <b>3. Spring and/or autumn F</b><br>MUTE SWAN                | oeaks, I | but wi<br>127 | th sum | mer aı   | <b>nd win</b><br>121 | l5         | <b>esence</b><br>23.8 | 6.5 | 175   |   |   | 264 | 14     | 51.0 | 6.9 |     |        | 143 |
| Cygnus olor<br>COMMON SHELDUCK                               |          | 304           |        |          | 92                   | 10         | 19.9                  | 7.0 | 180   |   |   | 308 | 15     | 62.9 | 6.1 |     |        | 216 |
| ladorna tadorna<br>MALLARD                                   |          | 129           |        |          | 89                   | 14         | 14.1                  | 7.1 | 96    |   |   | 275 | 19     | 54.4 | 8.0 |     |        | 187 |
| Anas platyrhynchos<br>COMMON EIDER                           | -        | ,055          |        |          | 79                   | 1          | 18.3                  | 5.8 | 350   |   |   | 318 | 14     | 65.5 | 6.0 |     |        | 239 |
| Somateria mollissima<br>COMMON SCOTER                        | 19       | ,884          |        |          | 102                  | <b>v</b> 0 | 19.2                  | 4.7 | 4,379 |   |   | 286 | 19     | 59.1 | 9.0 |     |        | 184 |
| RED-LEGGED PARTRIDGE                                         | 8/12     | 63            |        |          | 105                  | 17         | 16.0                  | 5.0 | 29    |   |   | 256 | 38     | 46.2 | 5.8 |     |        | 151 |
| GREAT CRESTED GREBE                                          | С        | ,326          |        |          | 54                   | Ξ          | 7.5                   | 5.8 | 932   |   |   | 331 | $\sim$ | 69.1 | 5.2 |     |        | 277 |
| roaiceps cristatus<br>NORTHERN FULMAR                        | -        | ,397          |        |          | 103                  |            | 22.2                  | 7.0 | 293   |   |   | 253 | 22     | 52.1 | 8.8 |     |        | 149 |
| ruimarus giacialis<br>GREAT CORMORANT                        | ო<br>*   | '77           |        |          | 38                   | 8          | 3.1                   | 6.6 | 2,280 |   |   | 308 | 20     | 68.4 | 9.3 |     |        | 270 |
| Phalacrocorax carbo<br>EUROPEAN SHAG                         |          | 12            |        |          | 88                   | 23         | 18.4                  | 6.5 | 5     |   |   |     |        |      |     |     |        |     |
| Phalacrocorax aristotelis<br>GREY HERON                      |          | 26            |        |          | 115                  | 17         | 24.5                  | 7.2 | 54    |   |   | 266 | Ξ      | 52.3 | 7.0 |     |        | 151 |
| Ardea cinerea<br>EURASIAN SPARROWHAWK                        |          | 65            |        |          | 94                   | 6          | 15.7                  | 6.4 | 139   |   |   | 281 | ω      | 55.6 | 6.0 |     |        | 187 |
| Accipiter nisus<br>COMMON KESTREL                            |          | 260           |        |          | 106                  | 12         | 23.4                  | 8.9 | 435   |   |   | 267 | $\sim$ | 53.5 | 8.4 |     |        | 160 |
| raico tinnuncuius<br>WATER RAIL<br>Rallus aquaticus          | 14/17    | 6             |        |          |                      |            |                       |     | 16    |   |   | 306 | 17     | 58.5 | 5.5 |     |        |     |

|                                                       | •       | •    | υ | D  | "        | G     |         | -   | - | ×     | Z | z   | 0        | •      | σ   | ~ | s | ⊢   |
|-------------------------------------------------------|---------|------|---|----|----------|-------|---------|-----|---|-------|---|-----|----------|--------|-----|---|---|-----|
| COMMON MOORHEN                                        |         | 172  |   | õ  | -        | 9 14. | 2       | .4  |   | 276   |   | 277 | 2        | 55.9   | 8.3 |   |   | 188 |
| Gallinula chloropus<br>COMMON COOT                    | *       | ,350 |   | œ  | <u>–</u> | 9 5.  | о.<br>С | L.  |   | 1,523 |   | 287 | 23       | 63.7   | 9.1 |   |   | 204 |
| Fulica afra<br>EURASIAN OYSTERCATCHER                 | *       | ,015 |   | 10 | 0        | 3 17. | 6       |     |   | 431   |   | 279 | 28       | 59.4   | 9.6 |   |   | 179 |
| Haematopus ostralegus<br>RINGED PLOVER                |         | 49   |   | 11 | -<br>-   | 5 21. | 4       | .2  |   | 62    |   | 239 | 10       | 48.3   | 4.6 |   |   | 125 |
| Charadrius hiaticula<br>COMMON REDSHANK               |         | 19   |   | 11 | 4        | 2 23. | r<br>M  | 6.1 |   | 6     |   |     |          |        |     |   |   |     |
| Iringa totanus<br>LITTLE GULL                         |         | 552  |   | 10 | <u>-</u> | 9 21. | 7       | 8.  |   | 1,332 |   | 278 | <u>e</u> | 58.5   | 5.3 |   |   | 176 |
| Hydrocoloeus minutus<br>LESSER BLACK-BACKED GULL      | *       | 616  |   | œ  | 5<br>8   | 8 17. | 3 10    | .1  |   | 1,022 |   | 258 | 24       | . 48.1 | 9.0 |   |   | 170 |
| Larus ruscus<br>STOCK DOVE                            |         | 176  |   | 1  | -        | 3 21. | \$      | .4  |   | 1,152 |   | 296 | <u>e</u> | 62.0   | 5.1 |   |   | 177 |
|                                                       | ന്<br>* | ,854 |   | 1  | <br>~    | 4 20. | 0       | .4  |   | 4,076 |   | 277 | 23       | 57.5   | 6.3 |   |   | 165 |
| Columba palumbus<br>GREEN WOODPECKER                  |         | 95   |   | Ň  | 3<br>2   | . Ч   | 6       | .5  |   | 193   |   | 271 | 13       | 51.6   | 7.9 |   |   | 194 |
| Picus viriais<br>SKYLARK                              | *       | 483  |   | 6  | 5        | 8 14. | 5       | .2  |   | 1,315 |   | 282 | 29       | 61.3   | 5.9 |   |   | 185 |
| Alauda arvensis<br>MEADOW PIPIT                       | *       | ,602 |   | œ  |          | 3 16. | 9       | 0.0 |   | 7,481 |   | 271 | (1       | 54.0   | 4.1 |   |   | 183 |
| WINTER WREN                                           | *       | 262  |   | 9  | 3.       | 7 13. | 5       | .3  |   | 613   |   | 297 | 18       | 59.7   | 6.2 |   |   | 229 |
| Irogioaytes trogioaytes<br>DUNNOCK                    | *       | 456  |   | œ  | 33       | l 16. | 9       | .5  |   | 455   |   | 273 | 16       | 53.8   | 7.8 |   |   | 191 |
| EUROPEAN ROBIN                                        | *       | 247  |   | ý  | -        | 4 10. | 6       | .9  |   | 1,605 |   | 293 | 14       | 58.8   | 5.4 |   |   | 228 |
| STONECHAT                                             |         | 114  |   | N  | 5        | 9 13. | 80      | .9  |   | 221   |   | 282 | 10       | 56.3   | 5.6 |   |   | 204 |
| Saxicoia Torquarus<br>BLACKBIRD<br>T                  | *       | 811  |   | œ  |          | 5 14. | w<br>m  | 0.0 |   | 1,619 |   | 295 | 20       | 60.4   | 6.4 |   |   | 207 |
| BLUE TIT                                              | *       | 458  |   | Ň  | 4        | 9 10. | ~       | .3  |   | 788   |   | 279 | 12       | 56.5   | 8.2 |   |   | 204 |
| Cyanistes caeruleus<br>GREAT TIT<br>P                 | *       | 441  |   | ō  | •        | 9 18. | w<br>m  | .1  |   | 623   |   | 270 | 14       | 51.8   | 8.6 |   |   | 171 |
| rarus major<br>MAGPIE                                 | *       | 503  |   | Ň  | -        | 1 12. | 6<br>0  | 8.4 |   | 360   |   | 28C | 16       | 55.8   | 9.3 |   |   | 200 |
| CARRION CROW                                          | *       | 963  |   | õ  | 0        | 8 19. | e<br>e  | с.  |   | 652   |   | 284 | 14       | . 58.7 | 7.9 |   |   | 195 |
| CONMON STARLING                                       | *       | ,704 |   | 10 | 0 2(     | 0 22. | 4       | 2.7 | с | 6,582 |   | 288 | 33       | 61.0   | 7.9 |   |   | 187 |
| Surrus vuigaris<br>HOUSE SPARROW<br>Passer domesticus | *       | 400  |   | œ  | <u> </u> | 5 16. | 2       | .2  |   | 613   |   | 272 | 1        | 54.6   | 7.9 |   |   | 184 |

|                                                    | ۷                 | ß                      | υ        | D              | ш.   | Q    | т   | -   | -      | ¥     | -   | ٤  | z   | ο  | ٩    | Ø   | 2 | s | ⊢   |
|----------------------------------------------------|-------------------|------------------------|----------|----------------|------|------|-----|-----|--------|-------|-----|----|-----|----|------|-----|---|---|-----|
| BULLFINCH<br>Pyrrhula pyrrhula                     | 12/16             | б                      |          |                |      |      |     |     |        | 14    |     |    | 304 | 10 | 58.2 | 1.6 |   |   |     |
| <b>4. Spring and/or autumn</b><br>BRENT GOOSE      | <b>peaks</b> , 18 | <b>with w</b><br>3,135 | rinter p | oresence<br>76 | 4    | 15.7 | 3.6 | 144 | 12 4   | 1,897 | 246 | 27 | 297 | Γ  | 59.1 | 3.3 |   |   | 221 |
| Branta bernicla<br>EURASIAN WIGEON                 |                   | 580                    |          | 48             | 3 18 | 9.2  | 5.3 | 115 | 13     | 800   | 244 | 14 | 306 | 12 | 61.8 | 5.5 |   |   | 258 |
| Anas penelope<br>EURASIAN TEAL                     |                   | 384                    |          | 71             | 17   | 14.2 | 5.5 | 130 | 19     | 401   | 223 | 15 | 294 | 18 | 59.4 | 6.0 |   |   | 223 |
| Anas crecca<br>NORTHERN SHOVELER                   |                   | 442                    |          | 88             | \$   | 17.6 | 3.3 | 135 | 16     | 55    | 237 | 24 | 291 | 12 | 56.9 | 5.7 |   |   | 203 |
| Anas clypeata<br>TUFTED DUCK                       |                   | 182                    |          | 62             | 13   | 10.8 | 5.6 | 141 | 24     | 51    | 255 | 45 | 319 | 14 | 64.2 | 4.8 |   |   | 257 |
| Aythya tuligula<br>GREATER SCAUP                   | 12/14             | 27                     |          | 72             | 24   | 10.6 | 2.5 | 66  | 25     | Ŷ     |     |    |     |    |      |     |   |   |     |
| Velvet scoter                                      |                   | 154                    |          | 66             | 8    | 21.1 | 4.8 | 133 | $\sim$ | 45    | 283 | 33 | 322 | 10 | 64.6 | 4.3 |   |   | 227 |
| Melanifta tusca<br>COMMON GOLDENEYE                | 17/18             | 1                      |          | 90             | ) 18 | 9.9  | 5.3 | 93  | 17     | ω     |     |    |     |    |      |     |   |   |     |
| Bucephala clangula<br>RED-BREASTED MERGANSER       |                   | 656                    |          | 26             | 5    | 19.7 | 3.8 | 140 | 13     | 209   | 271 | 25 | 316 | 5  | 63.1 | 3.3 |   |   | 219 |
| Mergus serrator<br>LITTLE GREBE                    | 14/18             | $\sim$                 |          |                |      |      |     |     |        | 12    | 279 | 31 | 317 | 12 | 61.9 | 5.2 |   |   |     |
| Iacnybaptus ruticollis<br>PEREGRINE                |                   | 13                     |          | 61             | 18   | 15.4 | 6.4 | 132 | 24     | 16    | 222 | 22 | 281 | 15 | 51.9 | 7.3 |   |   | 061 |
| raico peregrinus<br>GREY PLOVER                    |                   | 289                    |          | 114            | 1 22 | 24.2 | 4.4 | 142 | $\sim$ | 131   | 218 | 19 | 278 | 22 | 59.6 | 6.6 |   |   | 164 |
| Pluvialis squatarola<br>RED KNOT                   |                   | 545                    |          | 66             | 35   | 20.7 | 4.5 | 134 | 16     | 208   | 238 | 15 | 301 | 30 | 61.8 | 5.2 |   |   | 202 |
| Caliaris canutus<br>SANDERLING                     |                   | 524                    |          | 112            | 14   | 23.1 | 6.1 | 153 | 12     | 202   | 216 | 21 | 288 | 24 | 58.8 | 6.8 |   |   | 176 |
| DUNLIN                                             |                   | 487                    |          | 77             | 24   | 12.0 | 7.5 | 142 | 9      | 577   | 199 | Ξ  | 294 | 20 | 61.2 | 7.0 |   |   | 217 |
| Callaris alpina<br>COMMON SNIPE                    | 17/18             | 13                     |          | 62             | 22   | 9.8  | 5.2 | 100 | 16     | 32    | 225 | 22 | 287 | 17 | 56.0 | 5.9 |   |   | 225 |
| Callinago gallinago<br>EURASIAN WOODCOCK           | 15/18             | 13                     |          | 69             | 18   | 11.4 | 2.9 | 86  | 6      | 6     |     |    |     |    |      |     |   |   |     |
| scolopax rusricola<br>GLAUCOUS GULL                | 15/6*             | 10                     |          | 36             | 24   | 4.7  | 3.9 | 57  | 35     | -     |     |    |     |    |      |     |   |   |     |
| Larus nyperboreus<br>RAZORBILL                     | *                 | 795                    |          | 40             | 21   | 4.6  | 5.3 | 138 | 20     | 129   | 233 | 41 | 317 | 16 | 64.1 | 5.2 |   |   | 277 |
| Alca rorda<br>FIELDFARE                            |                   | 362                    |          | 76             | 16   | 13.3 | 4.5 | 119 | 15     | 284   | 283 | 10 | 306 | 9  | 61.4 | 1.9 |   |   | 230 |
| lurdus pilaris<br>SONG THRUSH<br>Turdus philomelos | *                 | 150                    |          | 76             | 15   | 18.3 | 5.7 | 145 | 22     | 674   | 225 | 30 | 292 | \$ | 57.4 | 3.3 |   |   | 216 |

|                                                          | ٩                       | •            | U        | ٥       |    |       | 6   | _     |    | ×        | -   | ٤  | z   | 0  | •    | σ   | ~   | s  |    |
|----------------------------------------------------------|-------------------------|--------------|----------|---------|----|-------|-----|-------|----|----------|-----|----|-----|----|------|-----|-----|----|----|
|                                                          |                         |              |          |         |    |       |     |       |    |          |     |    |     |    |      |     |     |    |    |
| REDWING<br>Turdus iliacus                                | *                       | 686          |          |         | 77 | 6     | 2.2 | 2.8   | 19 | 19 935   | 273 | œ  | 293 | 19 | 58.9 | 2.8 |     | 7  | 16 |
| GOLDCREST                                                | *                       | 314          |          |         | 61 | 21 1. | 5.1 | 5.0 1 | 18 | 18 1,416 | 246 | 15 | 298 | 10 | 59.8 | 3.7 |     | 0  | 37 |
| FIRECREST<br>Pression                                    |                         | 105          |          |         | 68 | 15 13 | 3.4 | 5.3 1 | 29 | 14 231   | 254 | 12 | 297 | 13 | 57.8 | 4.3 |     | 5  | 29 |
| keguus ignicapiila<br>LONG-TAILED TIT                    | 12/10                   | 32           |          |         | 50 | 28    | 5.9 | 2.5   | 20 | 28 49    | 302 | 11 | 319 | 12 | 51.5 | 2.6 |     | Ż  | 69 |
| Aegimalos cauaarus<br>GREENFINCH<br>Carduelis chloris    | *                       | 977          |          |         | 37 | 52    | 2.6 | 5.6 1 | 63 | 17 7,736 | 210 | 22 | 319 | 39 | 59.9 | 3.9 |     | Ď  | 82 |
| <b>5. Winter presence, migra</b><br>POCHARD              | <b>tion pe</b><br>17/15 | aks no<br>22 | t discer | rnible  |    |       |     |       | 80 | 31 25    | 280 | 35 |     |    |      |     |     |    |    |
| Aythya ferina<br>RED-THROATED DIVER                      | 4)                      | 5,840        |          |         |    |       |     | -     | 46 | 8 2,069  | 252 | 31 |     |    |      |     |     |    |    |
| Cavia stellata<br>TURNSTONE                              |                         | 602          |          |         |    |       |     | -     | 42 | 11 746   | 211 | 12 |     |    |      |     |     |    |    |
| Arenaria interpres<br>ICELAND GULL                       | 12/2                    | 10           |          |         |    |       |     |       | 95 | 44 0     |     |    |     |    |      |     |     |    |    |
| Larus glaucoides<br>COMMON GUILLEMOT                     | *                       | 2,292        |          |         |    |       |     | -     | 70 | 13 2,772 | 195 | 21 |     |    |      |     |     |    |    |
| urra aaige<br>LITTLE AUK<br>Alle alle                    | 3/17                    | 0            |          |         |    |       |     |       |    | 36       | 298 | 22 |     |    |      |     |     |    |    |
| 6. Summer presence, migr                                 | ation p                 | eaks n       | iot disc | ernible |    |       |     |       |    |          |     |    |     |    |      |     |     |    |    |
| MANX SHEARWATER                                          | 18/12                   | 140          | 66       | 25      |    |       |     |       |    | 60       |     |    |     |    |      |     | 289 | 37 |    |
| MEDITERRANEAN GULL                                       |                         | 275          | $\sim$   | 11      |    |       |     |       |    | 207      |     |    |     |    |      |     | 353 | 14 |    |
| Larus melanocephalus<br>ROSEATE TERN                     | 15/18                   | 6            |          |         |    |       |     |       |    | 13       |     |    |     |    |      |     | 243 | 28 |    |
| Sterna dougallii<br>COMMON CUCKOO                        |                         | 106          | 113      | Ŷ       |    |       |     |       |    | 41       |     |    |     |    |      |     | 250 | 15 |    |
| Cuculus canorus<br>SWIFT                                 | 7                       | 1,225        | 116      | т       |    |       |     |       |    | 4,344    |     |    |     |    |      |     | 267 | 19 |    |
| Apus apus<br>WOODLARK                                    | 12/18                   | 2            |          |         |    |       |     |       |    | 15       |     |    |     |    |      |     | 333 | 17 |    |
| Lullula arborea<br>MISTLE THRUSH                         |                         | 33           | 42       | 33      |    |       |     |       |    | 78       |     |    |     |    |      |     | 325 | 71 |    |
| Turdus viscivorus<br>YELLOWHAMMER<br>Emberiza citrinella | *                       | 429          | 49       | 24      |    |       |     |       |    | 210      |     |    |     |    |      |     | 317 | 21 |    |

|                                                 | ٩            | •           | υ      | ٥          |           | <b>u</b> | U            | Ŧ           | -          | -        | ×            | -          | ٤        | z          | 0        | ٩            | σ              | ~          | S        | F           |
|-------------------------------------------------|--------------|-------------|--------|------------|-----------|----------|--------------|-------------|------------|----------|--------------|------------|----------|------------|----------|--------------|----------------|------------|----------|-------------|
| 7. No discernible pattern, I                    | present      | all ye      | r      |            |           |          |              |             |            |          |              |            |          |            |          |              |                |            |          |             |
| GANNET                                          | *            | ,894        |        |            |           |          |              |             |            | Ξ        | ,562         |            |          |            |          |              |                |            |          |             |
| Morus bassanus<br>LAPWING                       |              | 300         |        |            |           |          |              |             |            |          | 264          |            |          |            |          |              |                |            |          |             |
| Vanellus vanellus<br>BLACK-LEGGED KITTIWAKE     | ×            | .912        |        |            |           |          |              |             |            | ~0       | .733         |            |          |            |          |              |                |            |          |             |
| Rissa tridactyla                                | *            |             |        |            |           |          |              |             |            | -        |              |            |          |            |          |              |                |            |          |             |
| BLACN-TEADED GULL<br>Chroicacephalus ridibundus | ко           | /04/        |        |            |           |          |              |             |            | -        | /230         |            |          |            |          |              |                |            |          |             |
|                                                 | *            | ,525        |        |            |           |          |              |             |            | က        | ,047         |            |          |            |          |              |                |            |          |             |
| HERRING GULL                                    | *57          | ,211        |        |            |           |          |              |             |            | 22       | 2,585        |            |          |            |          |              |                |            |          |             |
| Larus argentatus<br>GREAT BLACK-BACKED GUIL     | *            | 3529        |        |            |           |          |              |             |            | 10       | ),515        |            |          |            |          |              |                |            |          |             |
| Larus marinus<br>PIED WAGTAIL<br>Motacilla alba |              | 454         |        |            |           |          |              |             |            |          | 640          |            |          |            |          |              |                |            |          |             |
|                                                 | ٩            | •           | υ      | 6          |           |          | U            | Ŧ           | -          | -        | ×            | -          | ٤        | z          | 0        | •            | σ              | ~          | S        | -           |
| 1. Spring and autumn mig                        | ration,      | few or      | ino vi | inter o    | r sumr    | ner bi   | rds          |             |            |          |              |            | !        |            | :        |              |                |            |          |             |
| sooty shearwater<br>Balearic shearwater         | 4/18<br>9/15 | 0.0<br><0.1 |        |            |           |          |              |             |            |          | 0            | 246<br>216 | 23       | 275<br>233 | 18       | 55.0<br>45.4 | 5.9<br>6.1     | 312<br>272 | 26<br>18 |             |
| BLACK-THROATED DIVER                            |              | 0.1         | 31     | 39         | 102       | 16       | 21.5         | 6.8         | 137        | 14       | 0.1          | 291        | 28       | 325        | 13       | 66.0         | 3.0            | 344        | 17       | 223         |
| Pomarine skua<br>arctic skila                   |              | 0.0         | 82     | 38<br>7 42 | 7117      | 27       | 24.2<br>22 4 | 2.0         | 133<br>148 | 27       | c<br>0       | 254<br>214 | 30       | 279<br>258 | 26<br>12 | 50.6<br>50.8 | 4 Q            | 310        | 31       | 162<br>142  |
| GREAT SKUA                                      |              | 0.1         | 23     | 36         | 95        | 21       | 19.1         | 7.6         | 140        | 19       | 0.2          | 229        | 37       | 278        | 28       | 55.0         | 5.9            | 343        | 15       | 184         |
| YELLOW-LEGGED GULL 11<br>BLACK TERN             | /11*         | <0.1<br>0.2 | 110    | 6 0        | 73<br>132 | 35       | 20.0<br>27.6 | 13.0<br>2.9 | 139<br>147 | 44<br>13 | 0.3<br>1.5   | 227<br>219 | 51<br>19 | 268<br>247 | 43<br>10 | 50.5<br>49.7 | 6.5<br>2.9     | 348<br>277 | 17       | 195<br>115  |
| 2. Spring and autumn mig                        | ration p     | oeaks,      | with s | umme       | r pres    | ence     |              | 1<br>0      |            |          | -            |            |          |            | 1        | -            | Ċ              | ò          | ÷        | (<br>-<br>- |
| LITTLE TEKN<br>SANDWICH TERN                    | *            | 0.0<br>12.6 |        | 0          | 116       | 4 [      | 20.0<br>23.9 | 4.0         |            |          | <br>6.3      |            |          | 247<br>247 | 7        | 48.0         | а.<br>3.5<br>0 | 307        | 24       | 131         |
| ARCTIC TERN                                     | *            | 0.5         | 67     | 28         | 123       |          | 25.7         | 2.9         |            |          | 1.0          |            |          | 259        | 13       | 53.1         | 3.7            | 298        | 26       | 136         |
| 3.Spring and autumn migr                        | ation p      | eaks,       | but wi | th sum     | imer a    | nd wi    | nter pi      | resenc      | Ø          |          |              |            |          |            |          |              |                |            |          |             |
| COMMON EIDER                                    |              | 2.3<br>25.0 |        |            | 63<br>07  | 18       | 14.7<br>Γ αι | 7.2         |            |          | 20.3<br>20.3 |            |          | 326<br>200 | 36<br>36 | 66.5<br>47 3 | 5.5<br>7 0     |            |          | 263<br>205  |
| GREAT CRESTED GREBE                             |              | 24.4        |        |            | 51        | 2 2      | 9.1          | 5.6         |            |          | 9.1          |            |          | 340        | o, o     | 69.3         | 4.6            |            |          | 289         |
| LITTLE GULL<br>LESSER BLACK-BACKED GULL         | *            | 0.6<br>2.4  |        |            | 87<br>65  | 33<br>28 | 17.7<br>14.1 | 6.8<br>8.1  |            |          | 2.4<br>3.2   |            |          | 283<br>279 | 26<br>31 | 57.4<br>53.1 | 5.0<br>8.4     |            |          | 196<br>214  |

|                                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |          |            |              |        |     |     |          |            | :   | 2   |            |              | 5          | ٤   | n  | -     |
|------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|------------|--------------|--------|-----|-----|----------|------------|-----|-----|------------|--------------|------------|-----|----|-------|
| 4. Spring and autumn migr                | ation pec | iks, wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ith winte | er prese | ance<br>-  |              | u<br>P |     | -   | c        |            | ç   |     | -          |              | c          |     |    | 1.70  |
| velvet souter<br>red-breasted merganiser | o c       | чœ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | - 00     | <u>^</u> : | 20.1<br>20.1 | C \ 2  | 136 | 4 6 | 7.0<br>0 | 301<br>278 | 4 M | 322 | <u>4</u> 7 | 07.5<br>04 1 | ი ი<br>ი ი |     |    | 102   |
| UITTLE GREBE                             | 1/18 <0.  | ) —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | )        | -          |              | :      | )   | -   | 0.1      | 290        | 35  | 324 | 2 [        | 64.5         | 5.2        |     |    | -<br> |
| RAZORBILL                                | * 2.      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 33       | 18         | 5.9          | 5.6    | 129 | 19  | 0.5      | 254        | 46  | 320 | 15         | 65.7         | 6.4        |     |    | 287   |
| 5. Winter presence, migratic             | on peaks  | i not di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iscernibl | e        |            |              |        |     |     |          |            |     |     |            |              |            |     |    |       |
| SCAUP 12                                 | /14 <0.   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |            |              |        | 93  | 30  | <0.1     |            |     |     |            |              |            |     |    |       |
| COMMON GOLDENEYE 17                      | 7/18 <0.  | ۲.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |            |              |        | 92  | 19  | <0.1     |            |     |     |            |              |            |     |    |       |
| RED-THROATED DIVER                       | 22.       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |            |              |        | 137 | 26  | 13.9     | 274        | 29  |     |            |              |            |     |    |       |
| EUROPEAN SHAG                            | .0<br>V   | ۲.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |            |              |        | 115 | 35  | <0.1     |            |     |     |            |              |            |     |    |       |
| ICELAND GULL                             | 2/2 <0.   | ۲.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |            |              |        | 96  | 39  | 0.0      |            |     |     |            |              |            |     |    |       |
| GLAUCOUS GULL 15                         | 5/6* <0.  | ۲.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |            |              |        | 64  | 37  | <0.1     |            |     |     |            |              |            |     |    |       |
| COMMON GUILLEMOT                         | * 53.     | e<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second<br>Second |           |          |            |              |        | 147 | 33  | 9.1      | 225        | 42  |     |            |              |            |     |    |       |
| LITTLE AUK                               | 8/17 0.   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |            |              |        |     |     | <0.1     | 303        | 26  |     |            |              |            |     |    |       |
| 6. Summer presence, miara                | tion peal | cs not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | discerni  | ble      |            |              |        |     |     |          |            |     |     |            |              |            |     |    |       |
| MANX SHEARWATER 16                       | 1/17 0.   | 2 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01 80     |          |            |              |        |     |     | 0.1      |            |     |     |            |              |            | 281 | 27 |       |
| <b>MEDITERRANEAN GULL</b>                | Ö         | .5 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 16      |          |            |              |        |     |     | 0.4      |            |     |     |            |              |            | 349 | 14 |       |
| COMMON TERN                              | * 22.     | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39 4      |          |            |              |        |     |     | 35.6     |            |     |     |            |              |            | 295 | 17 |       |
| ROSEATE TERN                             | 5/18 <0.  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |            |              |        |     |     | <0.1     |            |     |     |            |              |            | 254 | 25 |       |
| 7. No discernible pattern, p             | resent al | l year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |          |            |              |        |     |     |          |            |     |     |            |              |            |     |    |       |
| NORTHERN FULMAR                          | 2.        | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |            |              |        |     |     | 0.9      |            |     |     |            |              |            |     |    |       |
| Northern gannet                          | * 18.     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |            |              |        |     |     | 44.6     |            |     |     |            |              |            |     |    |       |
| GREAT CORMORANT                          | * 17.     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |            |              |        |     |     | 16.2     |            |     |     |            |              |            |     |    |       |
| BLACK-LEGGED KITTIWAKE                   | * 58.     | e<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |          |            |              |        |     |     | 30.2     |            |     |     |            |              |            |     |    |       |
| BLACK-HEADED GUIL                        | * 141.    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |            |              |        |     | -   | 04.6     |            |     |     |            |              |            |     |    |       |
| COMMON GULL                              | * 54.     | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |            |              |        |     |     | 17.7     |            |     |     |            |              |            |     |    |       |
| Herring Gull                             | * 228.    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |            |              |        |     | -   | 25.4     |            |     |     |            |              |            |     |    |       |
| GREAT BLACK-BACKED GULL *                | 54        | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |          |            |              |        |     |     |          |            |     | 48  | <i>.</i> 0 |              |            |     |    |       |