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SUMMARY 
Research background. Commercialization of Mauritia flexuosa (buriti) fruits 

in Brazil is at an early stage. Herein, we evaluate the nutritional value of pulp, 
peel and endocarp samples from buriti fruits, perform macroscopic and mi-
croscopic evaluations and analyze their physicochemical properties. 

Experimental approach. Size and mass, pH, sugar and protein contents, 
soluble/insoluble fiber, total titratable acidity and energy value of the sam-
ples were analyzed. Mineral profiling was performed by energy dispersive 
X-ray fluorescence spectrometry, and fatty acids and phytosterols were de-
termined by gas chromatography-mass spectrometry. Samples were also sub-
mitted to differential scanning calorimetry coupled to a thermal analyzer, and 
microstructure, morphology, surface and viscosity were evaluated by scan-
ning electron microscopy (SEM) and X-ray diffraction (XRD) with copper radi-
ation. Rheological behavior was also studied.

Results and conclusions. Lyophilized pulp had higher nutritional content of 
minerals, proteins, carbohydrates and energy than in natura pulp. Lyophilized 
pulp and its by-products showed suitable yields (>17.31 %) and low aw, and 
potassium, manganese and monounsaturated fatty acid contents. Peels 
showed elevated amounts of saturated and polyunsaturated fatty acids and 
phytosterols (β-sitosterol and stigmasterol), and endothermic behavior. The 
reductions of calcium, magnesium and manganese ranging from 18.5 to 22.7 
% were observed following the lyophilization. Drying processes generated 
semi-crystalline powders. Both peels and endocarp contained higher amounts 
of insoluble fiber and lower contents of sugars. Similar results were obtained 
by microscopic morphological analysis, differential scanning calorimetry and 
XRD analysis. Pulp and endocarp exhibited pseudoplastic non-Newtonian be-
havior, and flow behavior index values were lower than 1, while peels present-
ed dilatant behavior. Thus, physicochemical and nutritional characterization 
of pulp and by-products, such as peels and endocarp, are essential to support 
scientific research and exploration of new sustainable products. 

Novelty and scientific contribution. Processing and conservation tech-
niques, like lyophilization, maintain the good quality of nutritional contents 
and bioactive compounds of buriti whole fruits, and can be used to extend 
their shelf life, preserve alimentary characteristics and provide wider purpos-
es and availability. Such parameters may generate income and food security 
for local and regional communities. 

Keywords: fatty acids; phytosterols; rheology; scanning electron microscopy; 
nutritional composition 

INTRODUCTION 
Mauritia flexuosa L., popularly known as buriti, belongs to the Brazilian 

Amazon and Cerrado biomes (1). In producing regions, buriti fruit pulp or 
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mesocarp is mainly used for the preparation of cookies (2), 
sweets, juices and ice cream, as well as for oil consumption 
(3).

Buriti pulp and oil have been investigated for their nutri-
tional and sensory values and are even considered function-
al foods due to their content of bioactive compounds such as 
carotenoids, tocopherols, phenolic compounds and radical 
scavenging capacity (4–6). This nutritional value may contrib-
ute to the buriti pharmacological and medicinal properties, 
namely hypoglycaemic (5), antitumor (7), antioxidant, chemo
preventive (5,6) and antimicrobial (7), and thus improve pub-
lic health. Moreover, bioactive compounds found in buriti 
fruits have also aroused interest in the cosmetic, biofuel and 
nanotechnology industries (3,5).

However, there are no reliable estimations about the 
commercialization of buriti fruits and by-products in Brazil, 
since such production is still at an early stage, although these 
fruits present great biotechnological and economic potential 
(2–4). Buriti (Mauritia flexuosa), gueroba (Syagrus oleracea 
Becc.) and aricuri (Scheelea phalerata Mart. ex Spreng) are na-
tive, exotic fruits from Brazilian Arecaceae family with frag-
mented data about their phytochemical and ethnopharma-
cological aspects despite their wide popular use due to 
functional and nutraceutical properties (5,8). Using conserva-
tion methods such as lyophilization, it is possible to preserve 
bioactive compounds, and make products more convenient 
for consumption and storage, thus consequently, extend 
their shelf life and better availability for commercialization, 
which reduces the influence of seasonality on fruits (9). Addi-
tionally, physicochemical, rheological and technical analyses, 
such as energy dispersive X-ray spectroscopy, chromatogra-
phy coupled with mass spectrometry, differential scanning 
calorimetry, X-ray diffraction and scanning electron micros-
copy in food matrices, help to determine nutritional compo-
sition and biotechnological potential to better target sustain-
able usage for manufacturing purposes (10). Thus, this study 
evaluates the nutritional value of pulp, peel and endocarp 
samples of buriti (Mauritia flexuosa) fruits, using macroscopic 
and microscopic evaluations and analyzes their physico-
chemical properties. 

MATERIALS AND METHODS 

Collection of samples

A sample of Mauritia flexuosa (buriti) was deposited in the 
Graziela Barroso Herbarium at Federal University of Piauí 
(UFPI) (voucher specimen 30567). The sample (#A690444) was 
registered in SisGen (Sistema Nacional de Gestão do Pat-
rimônio Genético e do Conhecimento Tradicional Associado, 
i.e. National System of Management of Genetic Heritage and 
Associated Traditional Knowledge, Glück Informatica, Rio de 
Janeiro, Brazil) (11) according to the Brazilian biodiversity leg-
islation (Federal Law No. 13.123/2015) (12). Approximately 300 
fruits were collected in Água Branca, Piauí, Brazil, in Decem-
ber 2014 (latitude: 5°54’50.5” S; longitude: 42°38’03.4” W) and 

taken to the Federal Institute of Education, Science and Tech-
nology of Piauí, Teresina, Brazil. Fruit selection, cleaning, sep-
aration, lyophilization, packaging, refrigeration and pulveri-
zation were carried out according to Pereira-Freire et al. (6). 
Briefly, all fruits were separated into pulp, peel and endocarp 
and frozen at −70 °C. For the lyophilization, fruits were placed 
on a stainless-steel tray of lyophilizer model L101 (Liotop, São 
Carlos, Brazil). Lyophilization conditions (temperature: 40 °C, 
vacuum pressure: <500 mmHg, lyophilization rate: 1m/h) 
were controlled during 72 h. Afterwards, the fruits were pack-
aged in plastic bags under refrigeration at 4 °C before pro-
cessing into powder using a rotor mill (0.08 mm; Retsch, Haan, 
Germany). 

 

Macroscopic characterization and yield of fruits

The yield before lyophilization (Y1) of samples was ob-
tained on the total fruit mass basis. The average mass (g) of 
fruits was measured on a semi-analytical scale, and longitu-
dinal and transversal diameter was determined using a digital 
caliper with 0−150 mm capacity and resolution of 0.01 mm 
(Digmess, São Paulo, Brazil). Sampling for physical measure-
ments: average fruit mass, transverse diameter (cm) and lon-
gitudinal diameter (cm) was performed by using 10 % of sam-
ples, i.e. 30 units of fresh fruits (1.46 kg). All measurements 
were done in triplicate.

To calculate the yield of all samples after lyophilization 
(Y2), the following equation was used: 

	 Y2=(Yi–Yf )/100	 /1/

where Yi is the yield of samples before lyophilization (in nat-
ura) and Yf is the yield of samples after lyophilization. 

 

Physicochemical characterization

To measure pH, a bench potentiometer (model EEQ9002G-2; 
A. Científica, Santo André, Brazil) was used. Sugar content in 
°Brix was measured using a refractometer (DR500; New In-
struments, Piracicaba, Brazil), total titratable acidity was de-
termined by the volumetric method, water activity (aw) (No-
vasina, Aqualab, São José dos Campos, Brazil) and moisture 
content were determined by drying in an oven at 105 °C to 
constant mass, ash content was measured by incineration in 
a muffle oven at 550 °C, protein content was measured by the 
Kjeldahl method, lipid content was measured by direct hex-
ane-based extraction using the Soxhlet technique, and car-
bohydrates were calculated by difference method (13). The 
total dietary fiber, soluble and insoluble contents were quan-
tified by the enzymatic-gravimetric method (14). All analyses 
were performed in triplicate.

The total energy value (E) was calculated based on the 
conversion factors for protein (4 kcal/g or 16 736 kJ), lipids (9 
kcal/g or 37 156 kJ) and carbohydrates (4 kcal/g or 16 736 kJ), 
expressed in kilocalories per 100 g of dried sample (15), using 
the following equation:

	 E=(E(protein)·4)+(E(lipid)·9)+(E(carbohydrate)·4)	 /2/
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Mineral composition

The mineral composition of pulp, peel and endocarp was 
determined by energy dispersive X-ray fluorescence spec-
trometry using energy dispersive X-ray spectroscopy (EDX- 
-720; Shimadzu, Kyoto, Japan). Parts were placed in their own 
sample support separately, sealed with thin polypropylene 
film to avoid extrusion of samples by activating the vacuum 
and analyzed (16).

 

Identification of fatty acids and phytosterols by gas  
chromatography-mass spectrometry 

The fatty acid profile was determined after the esterifica-
tion of lipid extracts to obtain methyl esters (17), and fatty 
acids and phytosterols were quantified using GC-17A gas 
chromatograph with QP5050A mass spectrometer (GC-MS) 
(Shimadzu). A total of 5 mL of methanolic sodium hydroxide 
solution (5 %) was added to the oil, and the mixture was re-
fluxed for 5 min. Then, 10 mL of esterifying reagent (2 g NH4Cl 
in 60 mL MeOH refluxed in concentrated sulfuric acid) were 
added and refluxed for an additional 5 min. The obtained 
mixture was transferred to a separatory funnel, and 20 mL of 
distilled water and 30 mL of ethyl ether were added. The ethe-
real phase was separated, dried using anhydrous sodium sul-
fate, filtered and evaporated on a rotary evaporator at 30 °C 
(17).

Chromatographic separation was performed by a capil-
lary chromatographic column Rxi-5HT (5 % diphenyl and 95 
% dimethylpolysiloxane) (Restek, Bellefonte, PA, USA), 30 
m×0.25 mm×0.25 µm, with the following temperatures: ini-
tial temperature 70 °C (kept for 2 min) followed by a heating 
ramp of 6 °C/min to a final temperature 310 °C for 10 min. The 
quadrupole-type mass spectrometer was operated in scan 
mode in the mass range of 47−600 Da. The ion source was set 
to operate in electron ionization mode at 70 eV. The total scan 
time for the chromatographic run was 52 min, including a 
3-minute solvent delay. Fatty acids and phytosterols were 
identified by comparing the fragmentation pattern and re-
tention times observed in the mass spectra with library soft-
ware (18). The results are expressed as the percentage of the 
area of each signal of the total fatty acid signal area. There-
fore, quantification was not performed since percentages of 
each constituent were calculated from the integration of the 
area, and relative but not absolute values of the constituents 
in each sample were determined.

Differential scanning calorimetry 

Differential scanning calorimetry (DSC) curves were ob-
tained in a differential scanning calorimetric module DSC 910 
(TA Instruments, Waters, New Castle, DE, USA) (heat flow 
type) coupled to a TA2000 (TA Instruments, Waters) thermal 
analyzer, using aluminum sample support under air and ni-
trogen atmosphere. To demonstrate the influence of the para
meters, 3 mg of heated sample were used under a dynamic 

atmosphere of synthetic air (100 mL/min) and increasing 
heating (2.5, 5, 10, 15, 20 and 40 °C/min) for each sample (19).

 

X-ray diffraction 

Triturated samples were fixed in a glass holder, and read-
ings were carried out in an X-ray diffractometer (model Mini-
Flex; Applied Rigaku Technologies, Inc., Austin, TX, USA) with 
copper radiation (Cu Kα=1.5418 Å) operating at 40 kV and 25 
mÅ equipped with a curved pyrolytic graphite monochroma-
tor positioned between the sample and the scintillation de-
tector. X-ray diffractograms were obtained with angle 2θ 
ranging from 3 to 120° at a step time 2°/min (20).

 

Rheological analysis

The rheological properties of the pulp, peel and endo-
carp were determined using Searle principle in a concentric 
cylindrical roller (rheometer model R/S plus SST 2000; Brook-
field, Stoughton, MA, USA) at 25 °C. The equipment provided 
shear stress and strain rate data through Rheo3000 v. 2.2.28 
software (Brookfield AMETEK) (21).

Rheological analyses were obtained by deformation rate 
ranging from 0 to 500/s (upward curve) and from 500 to 0/s 
(downward curve), with a time of 1 min and reading of 25 
points for each curve. Curves of apparent viscosity as a func-
tion of the strain rates were plotted using the experimental 
viscosity data and theoretical values calculated from the ide-
al model (Ostwald-de-Waele), taking the following into con-
sideration: 
	 τ=K·γn	 /3/

where τ is shear stress (Pa), K is consistency index (Pa·s), n is 
behavior index (dimensionless) and γ is deformation rate (s–1) 
(22,23).

 

Structural characteristics by scanning electron microscopy

Microstructure, morphology and surface evaluations of 
pulp, peel and endocarp powders were performed by scan-
ning electron microscopy (SEM, SSX-550 Superscan; Shimad-
zu). The powders were fixed on metal support under vacuum 
and metallized with a thin gold film. Micrographs were ob-
tained at different magnifications using acceleration voltag-
es of 8 to 15 kV. The metal plate was covered with platinum 
(model K 550 metallizer; Emitech, Ashford, UK) and operated 
at 10 kV, providing a coverage of approx. 25 μm. Images were 
captured and scanned.

Statistical analysis

All analyses were performed in triplicate, and the results 
were analyzed by ANOVA followed by Tukey’s test consider-
ing a 5 % significance level (p<0.05) using SPSS software v. 
24.0 for Windows (24). All analyses were performed in tripli-
cate. 
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Table 1. Physical characteristics and yield of buriti (Mauritia flexuosa) 
fruits before and after lyophilization

Parameter Mean±S.D. CV/% Y1/% Y2/%
m(fruit)total/g* 48.7±1.3 2.7 nd nd
m(pulp)/g 11.0±0.9 7.9 22.6 17.3
m(peel)/g 13.0±0.6 4.5 26.7 26.0 
m(endocarp)/g 8.1±0.8 9.7 16.6 20.7 
m(seed)/g 16.6±0.5 2.9 34.0 n.d.
dtransverse/cm 4.3±0.2 5.0 n.d. n.d.
dlongitudinal/cm 5.3±0.5 9.1 n.d. n.d.

S.D.=standard deviation. n.d.=not detected. CV=coefficient of 
variation, Y1 and Y2=yield of samples before (in natura) and after 
lyophilization, d=diameter. *N(fruit)=30 sampled out of 300 fruits 

Table 2. Physicochemical characteristics of pulp and by-products of buriti (Mauritia flexuosa) fruits 

Parameter Fresh pulp Lyophilized pulp Lyophilized peel Lyophilized endocarp
aw (0.96±0.00)a (0.65±0.00)b (0.25±0.00)c (0.38±0.00)d

pH (3.94±0.03)b (4.08±0.02)a (3.52±0.02)d (3.71±0.02)c

w(TTA)/% (7.60±0.23)b (8.1±0.4)a (2.61±0.09)d (4.1±0.1)c

w(TSS)/% (7.73±0.06)ª (5.77±0.35)b (2.8±0.2)c (1.3±0.2)d

w(moisture)/% (54.8±0.6)a (4.8±0.2)b (3.3±0.2)c (5.21±0.08)d

w(mineral)/(mg/100 g)* (2.27±0.05)c (2.18±0.02)d (2.9±0.2)b (4.64±0.03)ª
w(protein)/%* (2.47±0.07)d (5.6±0.2)a (4.13±0.02)b (4.8±0.2)c

w(carbohydrate)/(mg/100 g)* (15.1±0.3)d (35.7±0.5)c (77.5±0.2)ª (73.8±0.1)b

w(lipid)/%* (26.6±0.3)b (51.67±0.09)a (12.13±0.02)c (11.54±0.08)d

w(total fiber)/%* (38.0±0.3)b (38.9±0.6)b (50.5±0.6)a (28.14±0.05)c

w(IF)/% (27.3±0.4)b (28.8±1.0)b (50±1)a (24.66±0.01)c

w(SF)/% (10.6±0.3)a (10.1±0.2)a (0.55±0.03)c (3.48±0.08)b

w(IF)/w(SF) (2.6±0.4)a (2.8±0.5)a (90.8±0.7)a (7.09±0.04)a

E/(kcal/100 g) (310±4)d (630.3±0.7)a (435.8±0.9)b (418.3±0.7)c

Values are expressed as mean±S.D. Different letters in same row differ according to Tukey’s test (p<0.05). TTA=total titratable acidity, TSS=total 
soluble solids, *on wet mass basis, IF and SF=insoluble and soluble fiber 

RESULTS AND DISCUSSION

Physical characteristics of fresh and lyophilized buriti fruits

In general, most buriti fruits had the typical ellipsoid-ob-
long shape, in a very similar way to the globular-oblong 
shape reported by Milanez et al. (1) and Lorenzi et al. (8). The 
coefficients of variation showed low uniformity of fruits in 
relation to the analyzed parameters (Table 1) given that cul-
tivation is not planned, as occurs in other countries of South 
America. Seed and pulp mass, and consequently, yield (34.04 
and 22.6 %, respectively) were lower than those described by 
Milanez et al. (1). These results indicate that the production of 
fruits is strongly influenced by environmental factors such as 
temperature, solar radiation and rainfall (1). Consequently, 
such factors alter the yield of fresh and processed fruits.

After lyophilization, peels (26.0 %) and endocarp (20.72 
%) had higher yields (Table 1) and lower aw (0.25 and 0.38; Ta-
ble 2) than pulp (p<0.05). It is noteworthy that pulp yield is a 
very important quality parameter for the production of de-
hydrated products containing 15–20 % moisture, caramels, 
honey and candies, since fruits with high pulp yield have a 
higher yield of product after processing, a clear criterion of 
productivity. Moreover, peels and endocarp have too low aw 

values for microbial growth/proliferation, an excellent feature 
for future uses in food industries and fabrication of cookies, 
crackers, breakfast cereals, dry pet food, peanut butter, whole 
milk powder, dried vegetables, corn starch and potato chips 
(25).

 

Physicochemical properties of buriti fruit samples

Lyophilized pulp had higher nutritional contents of ash 
(i.e. minerals) (2.18±0.02) mg/100 g, protein (5.6±0.2) %, car-
bohydrates (35.7±0.5) mg/100 g, lipids (51.67±0.09) % and en-
ergy (630.3±0.7) kcal/100 g than in natura pulp ((2.27±0.05) 
mg/100 g, (2.47±0.07) %, (15.1±0.3) mg/100 g, (26.6±0.3) % 
and (310±4) kcal/100 g, respectively, p<0.05). This is obvious-
ly related to the reduction in water content after lyophiliza-
tion. Similarly, lyophilized peels and endocarp were richer in 
minerals, protein, carbohydrates and energy, but poorer in 
lipids (p<0.05) (Table 2). These outcomes indicate that pulp 
is a good source of lipids. Indeed, buriti pulp oil has carot-
enoids, tocopherols and monounsaturated fatty acids, which 
makes it a valuable product with functional potentialities (4–
6).

Previous investigations have demonstrated that buriti 
fruits are sources of carbohydrates, whose amount is con-
trolled by the levels of biosynthetic enzymes and gene ex-
pression (26). In a similar way, lyophilized peel samples had 
higher fiber mass fraction ((50.5±0.6) %), higher content of 
insoluble ((50±1) %) and lower values of soluble fiber 
((0.55±0.03) %) than fresh pulp samples ((38.0±0.3), (27.3±0.4) 
and (10.6±0.3) %, respectively, p<0.05). This can be consid-
ered an advantage since insoluble fiber is widely used to in-
crease the content of compounds added to foods to improve 
the rheological properties of dietary products, increasing sa-
tiety, and the volume and faecal mass, which clearly improves 
digestive system performance (27).

Buriti pulp, peels and endocarp had lower contents of sol-
uble fiber than the by-products from other fruits such as 
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mango (28.2 %), passion fruit (35.5 %) and guava (11.1 %) (28). 
However, lyophilized buriti peel had a greater quantity of in-
soluble fiber than mango (41.5 %) and passion fruit (46 %) by-
-products (28). Soluble fiber is advantageous because when 
incorporated into food, it increases viscosity and the ability 
to form gels and/or act as emulsifier. In addition, consump-
tion of soluble fiber-rich foods may reduce blood glucose and 
cholesterol levels (29). In this context, 30 g of pulp, peel or 
endocarp samples can be used to provide more than 15 % of 
the dietary reference intake (DRI) (30), which recommends 
consumption of 21 to 38 g/day dietary fiber, taking into con-
sideration different human factors, such as age, physiological 
condition and sex.

It is worth noting that the consumption of fresh buriti 
fruits has limitations, mainly due to high water loss and sus-
ceptibility to chilling injuries when stored under refrigeration 
(31). Therefore, processing buriti fruits, such as by lyophiliza-
tion, and its use for the development of new comestible prod-
ucts is effective for nutrient conservation, increased produc-
tion, shelf-life extension and availability independent of season 
(32). Therefore, buriti pulp used for processing should derive 
from by-products if their chemical and physicochemical char-
acterization is acceptable, which supports a sustainable des-
tination and nutritional applications.

 

Mineral profile of buriti fruit samples

Lyophilized pulp had higher mass fraction of potassium 
(712.0±0.4) and chlorine (72.0±0.2) mg/100 g, peels had more 
phosphorus (26.0±0.1) and iron (19.00±0.02) mg/100 g, and 
copper (1.00±0.01) µg/100 g, and endocarp was richer in po-
tassium (713.0±0.3) and calcium (159.0±0.1) mg/100 g, and 
copper (1.00±0.01) µg/100 g than fresh pulp (Table 3, p<0.05). 
Interestingly, chromium ((4.00±0.01) µg/100 g) was detected 
only in lyophilized peels. In general, the reductions of calci-
um, magnesium and manganese ranging from 18.5 to 22.7 % 
were observed following the lyophilization.

Lyophilization preserves the unique properties of bio-
products such as minerals, vitamins, bioactive compounds, 
color and flavor (9), although Marques et al. (32) reported a 
reduction in mineral content after lyophilization and rehydra-
tion of freeze-dried fruits. Peels reveal higher contents of po-
tassium, iron and manganese and lower contents of copper 
and zinc than Amazonian native fruits, such as biribá (Rollinia 
mucosa), cubiu (Solanum sessiliflorum Dunal), sapota (Quara-
ribea cordata H.B.K.) and umari (Poraqueiba sericea Tulasne) 
(33).

All analyzed buriti fruit samples are considered suitable 
sources of potassium and manganese (30,34). Potassium is 
essential for blood pressure control and improves cardiovas-
cular function (35), and manganese is considered a structural 
co-enzymatic component and protects cell membranes 
against oxidative processes (36).

 

Fatty acid and phytosterol profiles

Fresh or lyophilized pulp had a higher mass fraction of 
total monounsaturated fatty acids (both 80.11 %), especially 
oleic acid (79.15 and 80.11 %, respectively; Table 4). Mean-
while, lyophilized peels had elevated mass fractions of total 
saturated (23.18 %) and polyunsaturated (2.11 %) fatty acids, 
and they were the only by-product containing phytosterols 
(β-sitosterol 1.37 and stigmasterol 0.37 %). Such results are 
similar to those in the literature, since previous investigations 
report oleic (75.7 %), palmitic (18.9 %), linoleic (2.1 %), arachi-
donic (1.7 %), palmitoleic (0.3 %) and stearic (1.3 %) acids in 
fruits (4,6).

The identification and quantification of fatty acids in food 
is necessary given that clinical and epidemiological studies 
have established that the quantity and type of lipids have a 
great influence on cardiovascular risk factors and inflamma-
tory processes (37). Essential long-chain fatty acids belonging 
to the family omega 6 and 3 have healthy effects on physio-
logical processes, including the prevention and treatment of 
cardiovascular diseases, atherosclerosis, hypertriglyceridaemia, 

Table 3. Mineral composition of pulp and by-products of buriti (Mauritia flexuosa) fruits 

Mineral
Fresh pulp Lyophilized pulp Lyophilized peel Lyophilized endocarp

w(mineral)/(mg/100 g)
Potassium (672.0±0.4)b (712.0±0.4)a (595.0±0.3)c (713.0±0.3)a

Calcium (148.0±0.3)b (120.0±0.3)c (101.0±0.4)d (159.0±0.1)a

Chlorine (65.0±0.2)b (72.0±0.2)a (53.0±0.1)c (41.0±0.3)d

Magnesium (50.0±0.3)a (40.0±0.2)b (41.0±0.1)b (39.0±0.3)b

Phosphorus (21.0±0.2)b (19.0±0.1)b (26.0±0.1)a (11.0±0.1)c

Manganese (18.0±0.2)a (14.0±0.2)b (14.0±0.1)b (18.0±0.1)a

Sulfur (12.0±0.2)a (12.0±0.2)a (11.0±0.1)a (6.0±0.3)b

Iron (2.00±0.02)b (2.00±0.04)b (19.00±0.02)a (2.00±0.03)b

Zinc (1.00±0.01)b (1.00±0.02)b (1.00±0.02)a (1.00±0.02)b

w(mineral)/(µg/100 g)
Copper (0.40±0.01)c (0.40±0.01)c (1.00±0.01)b (1.00±0.01)a

Chromium n.d. n.d. (4.00±0.01)a n.d.

Values are expressed as mean±S.D. Different letters in the same row differ according to Tukey’s test (p<0.05). n.d.=not detected
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hypertension, cancer diabetes, arthritis and inflammation-re-
lated conditions (37,38). Indeed, we have recently reported 
the anti-edematogenic effect of epicarp and mesocarp aque-
ous extracts from buriti fruits against phlogistic agents (car-
rageenan, compound 48/80, histamine, serotonin and pros-
taglandin E2) and reduction of tissue inflammation and the 
migration of peritoneal leukocytes and TNF-α in meso-
carp-treated mice, but only epicarp reduced inflammatory 
abdominal pain induced by acetic acid (39).

For the first time, this study has described the presence 
and quantity of phytosterols in lyophilized peels. Phytoster-
ols reduce cholesterol absorption in the intestine by up to 30 
% by competition due to the structural similarity between 
molecules and decrease serum LDL cholesterol levels by 8–10 
% when 1.6–2.0 g of phytosterols are consumed daily (40). Al-
though our study did not find phytosterols in the pulp sam-
ples, it should be pointed out that 100 g of buriti pulp often 
contains brassicasterol, campesterol, stigmasterol, β-sitoster-
ol and sitostanol. Obviously, samples from Brazilian savannas 
have nutritional profile distinctions when compared with 
those from the Amazon region, explained, at least in part, by 
differences in the Amazon biome conditions (5).

 

Thermoanalytical data

In recent decades, thermoanalytical techniques have re-
ceived increasing attention in most areas of basic and applied 
chemistry. For natural products, it is worth mentioning that 
evaluation of their quality depends not only on the chemical 
composition of the product but also on the quality of the raw 
material and it reflects processing and storage conditions 
(41). Therefore, differential scanning calorimetry (DSC) is an 

additional analysis widely used to detect the thermotropic 
behavior of complex inorganic and organic materials, such as 
buriti samples, and variations in melting, boiling and subli-
mation points or disappearance of these records (42).

Fig. 1 illustrates DSC thermograms of pulp, peel and en-
docarp powders. The endothermic peak observed at 87.8 °C 
for peels refers to an endothermic reaction, i.e. melting and 
loss of residual water. Crystallization after glass transition and 
subsequent melting were observed, indicating that the sam-
ple was in an amorphous state with little crystallization by 
quenching after heating. Endothermic peaks were not ob-
served in the pulp and endocarp samples, which may indicate 
that some components present in the peel have a higher af-
finity for water molecules. Therefore, higher temperatures 
are necessary for such elimination (which does not occur in 
lyophilization), or the material may have absorbed some 
moisture after drying. In addition, three exothermic peaks 
were observed between 240 and 530 °C, probably due to the 
degradation of some components in the peel, whose peak at 
296 °C was found in thermograms of peel powder only (Fig. 
1b).

The DSC curves for pulp and endocarp were similar (Figs. 
1a and 1c), where exothermic degradation peaks were ob-
served at 200 °C. A peak temperature of 327 °C found in en-
docarp samples was displaced to 331 °C in pulp, requiring a 
higher temperature to start the process. Moreover, it was also 
observed that for degradation of the pulp less energy was 
required than for the endocarp. This lower temperature nec-
essary to disorganize the components of freeze-dried pulp 
suggests that physicochemical differences, such as the shape 
and distribution of fiber and the presence of lipids, have a 
pronounced influence on the thermal behavior (42).

Table 4. Mass fractions of fatty acids and phytosterols and rheological parameters of pulp and by-products of buriti (Mauritia flexuosa) fruits

Parameter
Fresh pulp Lyophilized pulp Lyophilized peel Lyophilized endocarp

w(fatty acid)/%
Palmitic acid (C16:0) 15.96 17.71 20.81 16.72
Stearic acid (C18:0) 4.60 1.59 2.37 1.46
Total saturated fatty acids 20.56 19.30 23.18 18.18
Palmitoleic acid (C16:1) n.d. n.d. 0.77 n.d.
Oleic acid (C18:1) 79.15 80.11 67.39 78.28
Total monounsaturated fatty acids 79.15 80.11 68.16 78.28
Linoleic acid (C18:2) n.d. n.d. 2.11 1.71
Linolenic acid (C18:3) n.d. n.d. n.d. n.d.
Total polyunsaturated fatty acids n.d. n.d. 2.11 1.71

w(phytosterol)/%
β-sitosterol n.d. n.d. 1.37 n.d.
Stigmasterol n.d. n.d. 0.37 n.d.
Total phytosterols n.d. n.d. 1.74 n.d.
Total fatty acids and phytosterols 99.71 99.41 95.19 98.17

Rheological parameters
K n.d. 0.001±0.000 3.0±0.6 2.1±0.5
n n.d. 1.47±0.07 0.38±0.04 0.30±0.04
R2 n.d. 0.99 0.86 0.89

n.d.=not determined, K=consistency index, n=flow behavior index 
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The enthalpy (ΔH) was also measured by DSC analysis to 
determine qualitative parameters based on shape, position 
and number of peaks during heating or cooling, while the 
area under the curve supports quantitative examinations to 
recognize how external factors can affect DSC results (43).

 

X-ray diffraction and microscopy observations

Fig. 2 shows that drying processes generated semi-crys-
talline powders, characterized by the presence of larger and 
more intense peaks ranging from 15 to 25° diffraction angles 
(2θ) and a lower intensity peak close to 90°. These results dif-
fer from those of other lyophilized fruits (44) and imply that 
constituents from buriti samples (minerals, proteins, lipids 
and crude fiber) alter the crystallinity of granules (45). 

To confirm the XRD results, SEM of all samples was per-
formed. The results corroborated XRD studies, since amor-
phous structures were visualized (Fig. 2) but with a semi-crys-
talline appearance.

Amorphous structures can be visualized in systems con-
sisting of sugars. Buriti fruits are rich in different types of car-
bohydrates, and such structures are characterized by a 
non-crystalline structure in which there is no repetition of 
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Fig 1. Differential scanning calorimetry (DSC) of: a) pulp, b) peel and 
c) endocarp samples of Mauritia flexuosa fruits

Fig. 2. Morphological aspects of: a) pulp, b) peel and c) endocarp 
samples of buriti (Mauritia flexuosa) fruits analyzed by scanning elec-
tron microscopy at magnification of 1000×; d) X-ray diffractograms 
were obtained with 2θ from 3° to 120° at a step time 2°/min 
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geometric unit cell or the presence of well-established flat 
faces, a finding more common in freeze-dried products (46). 
Therefore, the presence of sugars such as fructose, mainly in 
the pulp, as well as the use of lyophilization, are predisposing 
factors to generate amorphous microstructures. In the 
freeze-drying process, the glass transition temperature (Tg) is 
exceeded during freezing, which makes the concentrated 
amorphous solution less viscous. Subsequently, product col-
lapse may occur when ice is sublimated (47).

As described above, peels and endocarp contained high-
er mass fractions of insoluble components (fiber) than pulp 

and lower mass fractions of sugars. This composition was 
confirmed by comparable microscopic morphological anal-
ysis and similar thermograms and XRD curves.

 

Rheological characteristics of buriti fruit samples

Pulp and endocarp showed pseudoplastic non-Newto-
nian behavior (Fig. 3), and the flow behavior index values 
were lower than 1 (n<1) at 25 °C. However, peel had dilatant 
behavior (n>1), similar to a suspension of insoluble particles 
(48), probably due to the insoluble/soluble fiber ratio that was 
about 90-fold higher (Table 2). Therefore, peels showed an 
inverse behavior since apparent viscosity increased propor-
tionally to the deformation rate γ, which is related to the total 
dissolution of particles in the sample and direct contact among 
them, increasing viscosity (49).

CONCLUSIONS
Lyophilized buriti fruit samples (pulp, peel and endocarp) 

contained high mass fractions of carbohydrates, lipids, fiber, 
potassium, manganese and monounsaturated fatty acids, 
and had suitable yield and low aw. The peels had increased 
mass fractions of saturated and polyunsaturated fatty acids, 
endothermic features and phytosterols. Drying resulted in 
semi-crystalline powders, whose amorphous properties were 
confirmed by microscopic examination. Peels and endocarp 
contained higher mass fraction of insoluble components (fib-
er) than the pulp and lower mass fraction of sugars. This com-
position was confirmed by comparable microscopic morpho-
logical analysis, and similar thermograms and XRD results. 
From a rheological point of view, pulp and endocarp showed 
pseudoplastic non-Newtonian behavior, while peels had dila-
tant behavior. Considering these aspects, physicochemical 
and nutritional characterization of pulp and by-products, 
such as peels and endocarp, are essential to support scientif-
ic research and exploration of new sustainable products. 
Therefore, processing and conservation techniques, such as 
lyophilization of whole buriti fruits, maintain the good qual-
ity of nutritional components and bioactive compounds, and 
they can be used to extend fruit shelf life, preserve alimenta-
ry characteristics and extend its usage and availability. Such 
molecular characteristics and properties may provide income 
and improve food safety in local and regional communities. 
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