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Abstract. Naval military units are complex systems required to operate in fixed 
time frames in offshore tasks where maintenance operations are drastically 
limited. A failure during a mission is a critical event that can drastically 
influence the mission success. The decision of switching a unit to a mission 
hence requires complex judgments involving information about the health 
status of machineries and the environmental conditions. The present procedure 
aims to support the decision about switching a unit to a mission considering that 
vague and uncertain information by means of fuzzy theory and emulates the 
decision process of a human expert by means of a rule-based inference engine. 
A numerical application is presented to prove the effectiveness of the approach.  
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1   Introduction 

Naval military units are complex systems required to operate in fixed time frames in 
offshore tasks where maintenance operations are drastically limited. The sequence of 
operations to be performed in a fixed time frame constitutes the mission the ship is 
engaged for. A failure during a mission is a critical event that in some cases can be 
handled on board, but that in other cases, when it affects a critical component such as 
an engine or steering mechanism, requires the ship to return to a port with suitable 
repair facilities. Critical failures may hence prevent the ship to return to the port and 
consequently require the ship to be towed by another vessel. In such situations, the 
impossibility to perform the mission tasks in the time frame assigned eventually 
results in a mission failure. The evaluation of the likelihood of a failures  is hence an 
issue of primary interest for commercial and military navies, not only because it 
prevents the ship to perform its functions, but also because it can be a costly event and 
a treat for the safety of the crew. In the traditional military, in particular, units must be 
“operation ready,” meaning they must be ready to accomplish the missions they are 
assigned to. The decision of switching a unit to a mission however requires complex 
judgments requiring information about the health status of machineries, the available 
resources and the environmental conditions. The health status of machineries here 
refers mainly to information about the availability and condition of equipment, 
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resource information concerns the availability and condition of personnel; the types of 
training available and the training actually received, and environmental information, 
refers to information about the threat situations and alert conditions in which units 
must operate, and information about weather and ocean conditions etc.. As it 
frequently happens in decision problems, some of these of information can be 
quantified, and some are merely descriptive: purely descriptive information may 
however be very valuable in the decision process.  

In the present paper a decision support tool is presented to assist the decision 
maker in the decision of deploying a military unit to a mission. A problem that 
frequently arises when designing a decision support tool is to represent the vagueness 
and uncertainty that typically affects information which cannot be handled with 
traditional (crisp) mathematical models. The proposed approach takes into account 
such vagueness and uncertainty by means of fuzzy sets and emulates the decision 
process of a human expert by means of a rule-based inference engine. Experts’ 
knowledge may in fact efficiently be represented  in the form of rules when fuzzy 
logic is employed. Rule-based expert systems, use human expert knowledge to solve 
real-world problems that normally would require human intelligence. Fuzzy Inference 
Systems (FIS) are popular computing frameworks based on the concepts of fuzzy set 
theory, which have been applied with success in many fields like control [1] [2], 
decision support [3], system identification, etc.. Their success is mainly due to their 
closeness to human perception and reasoning, as well as their intuitive handling and 
simplicity, which are important factors for acceptance and usability of the systems 
[4].  

2   The fuzzy rule-based expert system for decision support 

The procedure here presented, as mentioned before, aims to be a support tool to make 
a decision about the switching a unit to a specific mission. As stated before several 
parameters that influence such decision should be taken into account, this paper 
however aims at presenting a methodology rather than formalizing the complete 
decision framework, therefore three representative parameters only have been taken 
into account and they have been identified by interviewing some captains of military 
ship. Such parameters are the reliability, the distance from the closest port (in marine 
miles) and the conditions of the sea (ranging from 0 to 9).  

The reliability of the system involved in a mission is a primary concern since, as 
stated before,  maintenance operations are drastically limited in offshore conditions. 
In addition the operating conditions of systems and machineries must be considered 
according to the specific mission profile since only a limited number of machines are 
required in each mission. For this reason it is preliminarily needed to individuate the 
ship subsystems (propulsion, power, etc..) whose operability is required to accomplish 
mission tasks. Moreover, for each subsystem, the critical components must be 
identified and their reliability must be linked to the reliability of the entire ship 
according to the functional relations expressed by the reliability block diagrams  
(RBD). As mentioned before, the two more input parameters here proposed in 
addition to the reliability; are the (maximum) distance from the closest port which is a 
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key parameter in estimating the likelihood of returning to port in case of failure [5] 
and of the sea conditions.  

The FIS is applied to each subsystem by using IF-THEN rules and fuzzy operators, 
to determine the impact of each subsystem on the operational readiness. At the last 
step of the proposed procedure, by taking the minimum value among the output 
values, a measure of the ship operational readiness, with relation to a given mission, is 
supplied. The minimum operator is chosen to assure a pessimistic assessment of the 
likelihood to successfully perform mission tasks. 

Fig. 1 shows the whole procedure to evaluate the ship operational readiness with 
relation to a mission.  

Fig. 1-Proposed procedure block diagram 
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where 
i = 1,…, I    is the generic subsystem;  
j = 1,…, J    represents the mission for which to make the decision. 

  Rij = subsystem i reliability with relation to the mission j; 
  dj= mission distance 
  cj = conditions of the sea 
  I ORij = impact of subsystem i on the global score of the likelihood to perform 

mission j; 
ORj = global score expressing the likelihood of performing mission  

 
As well known, a basic fuzzy logic system is constituted four components: a rules 

set, a fuzzifier, an inference engine and a defuzzifier. The core of a FIS is its 
knowledge base, which is expressed in terms of fuzzy rules and allows for 
approximate reasoning [6]. The fuzzy logic system here used is a Multi Input- Single 
Output System (MISO), using the Mamdani implication [7] and the center of area 
method (COA) as defuzzifier. At first step of the inference process, it is needed to 
define the fuzzy set numbers to represent the crisp input value, that is the fuzzification 
process, which  consists in assigning fuzzy linguistic variables in the universe of 
discourse of each input value. In particular, in this paper each input parameter is 
described by triangular and trapezoidal fuzzy numbers. Triangular fuzzy numbers are 
widely used for their simplicity and solid theoretical basis [8]. The membership 
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function of a triangular fuzzy number A is µA: R→ [0,1] and it can be represented by 
the equations 1, where l<m<u. Consequently, a triangular fuzzy number is fully 
characterized by three real numbers (l, m, u). The parameter m gives the maximum 
grade of µA(x) that is equal to 1; l and u are the lower and upper bounds of the 
definition interval.  

 

                           −
−

x l
m l

   when x ∈  [l, m] 

                           µA(x) =  −
−

u x
u m

  when x ∈  [m ,u]                                   (1) 

 

 0           otherwise 

 
Analogously, the membership function of a trapezoidal fuzzy number B is µB: 

R→ [0,1] and it can be represented by the equations 2: 
 

−
−

x l
m l

    when x ∈ [l, m] 

1        when x ∈  [m, n] 

                              µB(x )=    −
−

u x
u n

     when x ∈  [n ,u]                                        (2) 

                                               0          otherwise 

 
where l<m<n<u. 
 
Similarly, a trapezoidal fuzzy number is fully characterized by four real numbers 

(l, m, n, u). The parameter m and n give the maximum grade of µB(x). 
The next step in the fuzzy logic system is to define the possible rules arising from 

combining the fuzzy inputs. Rules are usually provided by a team of experts and are 
introduced into the FIS. Later, since the values of the assessment parameters are crisp, 
the fuzzifier maps the input crisp numbers into the fuzzy sets to obtain degrees of 
membership. The inference engine of the FIS maps the antecedent fuzzy (IF part) sets 
into consequent fuzzy sets (THEN part) taking into account the rules already stated. 
The inference process determines the fuzzy subset of the output variable for each rule 
by using the MIN operator (Mamdani operator) as implication operator. If more than 
one rule produces the same consequence, an operator must aggregate the results of 
these rules. In particular, the MAX operator is used. Finally, the defuzzifier maps the 
fuzzy output into a crisp number, which becomes the output of the fuzzy logic system, 
that is the impact of generic subsystem on ship operational readiness.  
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As mentioned before in this case the COA method is applied and it is the most 
prevalent of all the defuzzification methods [9], [10]. 
The Fig. 2 represents the inference process.  

 
Fig. 2. Block diagram of Fuzzy inference procedure 
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3   Numerical application 

The proposed procedure is here applied to a simulated case with relation to a 
military ship. The inference process is carried out by Informs software package Fuzzy 
Tech. It is supposed that the ship is constituted by the following subsystem 
individuated as critical for the mission’s success: Propulsion; Power production; 
Command and control; and Weapon. Such system may undergo different loading and 
employment conditions in different missions profiles thus resulting in different 
reliability values. For example, the propulsion subsystem is constituted by redundant 
engines and, depending on the speed required to perform the mission, they can be 
employed in different configurations: the reliability relation is hence different 
according to the specific stand-by/parallel or series configuration. The conceptual 
framework here considered is hence constituted by the systems reliability (according 
to the mission profile), the distance from the closest port and the conditions of the sea. 
Each input parameter has three linguistic variables (low, medium and high) described 
by triangular and trapezoidal fuzzy numbers, as shown in the Fig. 3, 4 and 5. Instead, 
the output parameter has five linguistic variables (very low, low, medium, high and 
very high) as shown in the Fig. 6. 
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Fig. 3. Subsystem reliability Fig. 4. Mission distance Fig. 5.Sea conditions  
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Fig. 6. Impact of each subsystem on the ship operational readiness 
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The contribution of the generic subsystem i to the likelihood of performing the 

mission ORij is expressed by values belonging to the range [0; 1] and it can be 
represented, for example, by a corresponding chromatic scale. The reliability of each 
subsystem for the generic mission j, which constitutes an input to the decision system, 
are given in table 1. The other input data of the mission j are shown in table 2. The set 
of rules individuated by the experts given in table 3.The related output value obtained 
by the inference process are reported in table 4. Thus, in this simulated case, by 
applying the proposed procedure, that is by taking the minimum value among the 
output values, the ship operational readiness with relation to a given mission is 0.2029 
measured in the range [0,1]. 

 
 Subsystem Reliability 
Propulsion  0.98 

Power production  0.96 
Command and control  0.94 
Weapon  0.93 

Tab.1. Subsystem reliability 
 

Distance 
 

Sea condition 
 

220 5 

Tab. 2.Other input parameters 
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If then 

Reliability  Distance Sea condition
Impact on ship 

O.R. 
Low Low Low Low 
Low Low Medium Very Low 
Low Low High Very Low 
Low Medium Low Low 
Low Medium Medium Very Low 
Low Medium High Very Low 
Low High Low Low 
Low High Medium Very Low 
Low High High Very Low 

Medium Low Low High 
Medium Low Medium High 
Medium Low High Medium 
Medium Medium Low Medium 
Medium Medium Medium Medium 
Medium Medium High Low 
Medium High Low Medium 
Medium High Medium Medium 
Medium High High Low 

High Low Low Very High 
High Low Medium High 
High Low High medium 
High Medium Low High 
High Medium Medium Medium 
High Medium High Low 
High High Low High 
High High Medium Medium 
High High High Low 

Tab. 3. Set of rules 
 

Subsystem 
Impact on mission 

success. 
Propulsion 0.4630 

Power production 0.455 
Command and control 0.2974 

Weapon 0.2029 

Tab. 4. Subsystem impact on mission likelihood.   
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4   Conclusions 

In the present paper the decision of deploying a military naval unit to a mission has 
been considered. Such decision generally requires a human decision process involving 
information about the environmental conditions, the operational status of machines 
etc. Such information can be hardly formalized by means of traditional (crisp) 
mathematical models, due to its vagueness and uncertainty, whereas such 
characteristics can be efficiently taken into account using approximate reasoning. In 
the present paper an expert decision support based upon a fuzzy inference engine is 
presented, which allows to take into account experts’ experience in the judgments of 
the likelihood of a military naval unit performing a mission. The mission is described 
by a specific mission profile which defines the mission starting and ending time, and 
the set of subsystem involved The numerical application presented shows that the 
methodology presented may efficiently be employed to support the decision maker in 
the decision process providing a global score expressing the likelihood of the ship to 
perform the mission tasks, thus confirming the effectiveness of fuzzy inference 
systems in decision analysis.  
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