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Self-diffusion of spherocylindrical particles
flowing under non-uniform shear rate†

D. Hernández-Delfin, *ab T. Weinhart c and R. C. Hidalgo*a

This work is devoted to study numerically the self-diffusion of spherocylindrical particles flowing down

an inclined plane, using the discrete element method (DEM). This system is challenging due to particles

being non-spherical and because they are subjected to a non-uniform shear rate. We performed

simulations for several aspect ratios and inclination angles, tracking individual particle trajectories. Using

the simulation data, we computed the diffusion coefficients D, and a coarse-graining methodology

allowed accessing the shear rate spatial profiles _g(z). This data enabled us to identify the spatial regions

where the diffusivity strongly correlates with the local shear rate. Introducing an effective particle size

d>, we proposed a well-rationalized scaling law between D and _g. Our findings also identified specific

locations where the diffusivity does not correlate with the shear rate. This observation corresponds to

zones where _g has non-linear spatial variation, and the velocity probability density distributions exhibit

asymmetric shapes.

1 Introduction

Granular flows commonly appear in natural and technological
processes, and their rheology depends on a multitude of
factors, such as the grains’ shape, hardness, and friction. Here,
we study the self-diffusion of the grains, which results from the
random fluctuations of their motion, induced by the unceasing
inelastic collisions. Diffusion even occurs when granular flows
are in steady-state conditions, and it shows analogous behavior
to the thermal diffusion of molecules in dense gases,1,2 even
though granular materials are athermal. Hence, diffusion
theory is a pillar of granular hydrodynamic models, describing
the macroscopic response of granular systems.

Self-diffusion in dilute and dense ensembles of macroscopic
disks and spheres has been studied experimentally3,4 and
theoretically.5–14 All these investigations focused on addressing
scaling laws15 that relate the self-diffusion transport coefficient
D to the particle diameter d, the shear rate _g, the granular

temperature T, or the effective inertial number I ¼ d_g=
ffiffiffiffiffiffiffiffiffi
P=r

p
;

with P and r indicating the pressure and particle density,
respectively.

To model how diffusion occurs, we need to account for the
macroscopic density of the granular system: in dilute systems, the
analysis is typically done assuming the collisions are binary, which
is very plausible. However, this assumption fails in dense scenarios.
Three main scaling laws predicting particle diffusivity have been
observed: in dilute systems, theoretical and numerical approaches

have proven that D � d
ffiffiffiffi
T
p

.5,14,16 In dense situations, simulations
of quasi-static flows for low inertial numbers I t 0.01 resulted in

D � d2 _g=
ffiffiffi
I
p

.12,13 In rapid dense granular flows, experiments3,4 and
simulations11–14 have suggested the diffusivity scales as D B d2_g.

In the past, several authors have numerically explored the self-
diffusivity of particles within uniform shear-rate conditions, which
is generally attained by applying Lees-Edwards’ boundary conditions
in the absence of gravity.6,14,17,18 The advantage of this method is
that it allows deducing the value of D as an average over the whole
spatial domain. Nevertheless, systems under non-uniform shear
rate _g are more frequent in nature and industrial processes. Thus,
researchers have paid efforts in investigating self-diffusion of
particles in rapid granular flows such as: rotating drums,4

inclines,19 and heaps.11,19,20 For open and closed heaps, Y. Fan
et al. made the remarkable observation that particle size and shear
rate determine self-diffusion at relatively high shear rates. At low
shear rates, however, self-diffusion is a phenomenon totally gov-
erned by the particle stiffness and the intensity of the external
field.11

Researchers have also found that the scaling law D B d2 _g for
dense rapid flows is still valid for mixtures of particles that
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differ in size21,22 or density.19 However, the case of non-
spherical particles has been less studied, though they are
ubiquitous in nature and industry. Investigating the phenom-
enon of self-diffusion in polydisperse non-spherical ensembles
is challenging, due to the need to differentiate self-diffusion
from other complex mechanisms involved in macroscopic
mixing and segregation. In fact, monodisperse assemblies of
non-spherical particles are suitable to isolate diffusion from
other mechanisms. Recently, R. Cai et al.23 numerically exam-
ined self-diffusion in a system of ellipsoids, using Lees-Edwards
boundary conditions, and varying the particle aspect ratio
systematically. They proposed a generalized scaling law for
the diffusivity in the direction perpendicular to the flow in
terms of an effective particle size deff, the aspect ratio x and the
solid fraction f, namely, D B w (f, x)_gdeff

2. It is worth
mentioning that H. Ma and Y. Zhao investigated the flow of
ellipsoidal particles in a horizontal rotating drum24 in the
rolling regime, i.e., particles moving under non-uniform shear
rate. They detected differences in the slopes of mean squared
displacements curves (MSD) for particles with different shapes
under the same excitation conditions. However, they neither
computed the self-diffusion coefficient nor evaluated its depen-
dence on the shear rate.

Here, we numerically investigate the self-diffusion in a
dense rapid flow of sphero-cylindrical particles driven by grav-
ity down an inclined plane. This system is challenging not only
because particles are non-spherical, but also because they are
submitted to a non-uniform shear rate. In addition, there are
places where the shear rate profile varies nonlinearly along the
direction perpendicular to the incline. The work is organized as
follows: in Section 2, the numerical algorithm is summarized
and the model system is described. In Section 3, the numerical
results are presented, and the scaling analysis is elaborated and
discussed. Finally, conclusions are given, and ideas for
improvement and further work are proposed.

2 Numerical method
2.1 DEM simulations details

For simulations, the discrete element method (DEM) is
adopted. Specifically, we employ a 3D, hybrid CPU-GPU imple-
mentation introduced earlier.25,26 The modeled particles are
shapes composed of a cylinder of length l and diameter d, and
two hemispherical ends of diameter d. Thus, the particle’s
aspect ratio can be defined as x = L/d, where L = (l + d) is the
particle total length.

The DEM framework resolves the translational and rota-
tional equations of motion of each particle i (i = 1,. . ., Np). It
considers body forces like gravity as well as pairwise interac-
tions between contacting particles i and j. The contact force Fij

includes a tangential and normal component, Fij = Fn
ij + Ft

ij. The
normal force reads Fn

ij = � kndn � gnvn
rel, where kn is the spring

constant in the normal direction, dn denotes the overlap
between particles, gn is the normal damping coefficient and
vn

rel is the normal relative velocity between particles i and j.

The tangential force Ft
ij also contains an elastic term and a

frictional term, accounting for friction between the grains.
Taking into account Coulomb’s friction constraint, which reads
Ft = min{�ktdt � gt|vt

rel|,mFn}, where m is the friction coefficient,
gt is the damping coefficient in tangential direction, vt

rel is the
tangential component of the relative contact velocity of the
overlapping pair. dt represents the elastic deformation of an
imaginary spring with spring constant kt at the contact, which
increases as dd(t)/dt = vt

rel as long as there is an overlap between
the interacting particles. The elastic tangential elongation dt is
kept orthogonal to the normal vector (truncated if necessary).27

The equations of motion read as

XNc

j¼1
jai

Fij þmig ¼ mi _vi (1a)

XNc

j¼1
jai

sij ¼ Ii _xi þ xi � ðIixiÞ (1b)

where mi and Ii are the mass and the moment of inertia tensor
of the particle i, respectively, and Nc accounts for the number of
contacts for each particle i. sij are the torques corresponding to
each contacting force Fij, since they generally are non-central
forces. g represents the acting gravitational acceleration. More-
over, vi and xi are the translational and rotational velocities
whose integrations are performed differently. A velocity Verlet
numerical algorithm28 is used to integrate the translational
equations of motion of each particle, while the rotational
degrees of freedom were resolved using a modified leap-frog
algorithm.29

2.2 Chute flow of sphero-cylindrical particles

Recently, the macroscopic properties of a chute flow of sphero-
cylindrical particles driven by gravity were investigated.26 Here
we adopt the same configuration but focusing on the random
motion of each particle. We perform a systematic study,
exploring the impact of the particle shape on the individual
particle motion. For the sake of simplicity, the length of the
particle is fixed at L = 2/16m, and several aspect ratios x =
{1.00,1.01,1.30,1.50,2.00,2.50,3.00} are studied.

The simulation domain is a 3D rectangular box. In the
directions x and y, the system dimensions are fixed to DX =
DY = 16� L and periodic boundaries conditions are used. Thus,
once a particle reaches the extremes of the domain along the x
and y axis, it re-enters the domain on the opposite side with the
same velocity and orientation. This, combined with the fact
that the particles located in regions close to one extreme can
interact with particles in the another one, ensures the periodi-
city of the system. In direction z, the bulk thickness DZ(x) is
kept constant to about 20L by varying the number of particles.
We consider that the gravitational field acts in the x–z plane,
forming an angle a with the x-axis. Thus, gravity acts in
direction g = g [sin a, 0, �cos a] with magnitude g = 1 m s�2.
To avoid extreme crystallization of the flow, a bottom plate is
built of spherical particles with radius R = L/2, placed randomly.
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This procedure reproduces the macro and microscopic condi-
tions presented in ref. 30 (see it for more details).

Granular flows down inclined surfaces are typically charac-
terized by two critical angles. For angles below ac1, friction
dominates over gravity, and the system is at rest. However,
above an inclination ac2, gravity dominates over friction, and
the material accelerates. Between these two angles, steady flow
is possible. In ref. 26, the values of ac1(x) and ac2(x) corres-
ponding to granular beds of DZ E 20 � L were identified
accurately. Here, we focus on the steady-flow configurations,
examining inclinations in the regime ac1(x) o a o ac2(x) for
each elongation x, which guaranties steady-state conditions in
all cases (see ref. 26).

In the calculations the particle density was rp = 2600 kg m�3,
and the stiffness was set to kn = 2 � 105 (mpg/l) and kt = 2/7kn,
where mp is the particle mass. The particle friction was m = 0.5
and the dissipation coefficients gn, gt were set by setting

effective restitution coefficients en, b ¼ ln enffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln en2 þ p2

p in normal

and tangential direction, respectively. A simulation time step
was chosen equal to dt = tc/50, where tc is the contact time.

The DEM algorithm is able to model the trajectories of all
particles, during the simulation. Fig. 1(a) illustrates the trajec-
tories of twenty randomly chosen particles after reaching the
steady regime. The data correspond to the case x = 2.5 and
a = 31.01.

2.3 Coarse-graining average

A useful approach to obtain macroscopic fields is the called
coarse-graining technique. With this technique, density r(r, t),
velocity V(r, t), and the kinetic part of the stress tensor rk(r, t)
fields are obtained from individual positions ri and velocities vi

using the methodology described in ref. 30–33. The methodol-
ogy requires a non-negative integrable function that maps the
microscopic details into macroscopic fields.

Here, we use a truncated Gaussian function fi(r) =
Ao
�1exp[�(r � ri)

2/2o2], the cutoff distance is rc = 4o and

o = L/4. The contact stress rc(r, t) field is computed from forces
and branch vectors rij using the function cij, which is the lineal

integral rij, cij ¼
Ð 1
0cðr� ri þ srijÞds; thus rc

ij(r, t) = rij # Fijcij.

The total stress results in r(r, t) = rk(r, t) + rc(r, t).
For the sake of simplicity, our analysis is done in steady-

state conditions. The steady-state momentum balance requires
that the stress divergence and gravitational forces are in
balance27,

sxz/szz = tan a. (2)

The simulations are executed until the system’s kinetic energy
reaches a constant value, approximately after 160 seconds.
Thus, using the averaged fields sxz and szz, the validity of
eqn (2) is proven (see ref. 26), and will be used to determine
when the system is in steady state.

Once the system is in steady-state, the macroscopic fields are
averaged over 240 seconds, sampling every 1.0 seconds. As the
results are practically uniform in the x- and y-directions, we
further averaged over those directions. Thus, we obtained the
time-, width-, and length-averaged density r(z), linear momen-
tum density Px(z), and velocity Vx(z) = Px(z)/r(z). As a result, the

local shear rate field _gðzÞ ¼ dVxðzÞ
dz

is accessed. The spatial

profiles of the coarse-grained contact stress, sc
ab(r), were also

computed in all cases. Our outcomes are totally consistent with
earlier findings.26 Fig. 1(b) illustrates both the numerical set-up
and the velocity field corresponding to the case x = 2.5 and
a = 31.01. The red curve indicates the x-component of the
velocity profile along the z-direction, %vx(z). The color map also
quantifies the vx(z) values. Note that gravity g forms an angle a
with the vertical direction.

3 Results

Although the particles experience a complex 3D motion, our
analysis is focused on the diffusivity along the z-direction only.
The results are therefore related to the diffusion in the direc-
tion perpendicular to the advective plane. Firstly, we examine
the particles’ mean squared displacements (MSD) as a function
of the time-lag t. MSD is calculated as

MSDðtÞ ¼ 1

Nk

XNk

i

ðziðtþ tÞ � ziðtÞÞ2

averaged over specific particle ensembles with Nk particles, with
a mean trajectory located at the same vertical position. As the
shear rate _g(z) is variable, we split the system in vertical
direction into 20 blocks of width DH = L in terms of the
particle’s longest side L. Thus, the particles whose mean
trajectory are located in each block are roughly submitted to
the same _g.

Fig. 2 shows examples of the MSD(t) curves (in log–log scale)
for a subset of the sections labeled with H representing the
region height z = H. The insets illustrate the same data but
using linear scale. The outcomes correspond to two systems, in
(a) aspect ratio x = 1.3 and inclination a = 271 and (b) aspect

Fig. 1 (a) Trajectories of twenty randomly chosen particles after reaching
the steady regime. (b) Snapshot of the numerical setup; the red curve
indicates the mean value of the x-component of the velocity profile along
the z-direction, %vx(z). The figures correspond to the case x = 2.5 and
a = 31.01. A particle’s color quantifies the x-component of its velocity. Note
that gravity g acts at an angle a to the vertical direction.
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ratio x = 2.5 and inclination a = 301. The resolution of t is dt =
0.05 s and the particles are followed during a total time elapsed
of tT = 120 s = 12 000dt. As a reference, the graphs include
continuous lines representing power-law functions with expo-
nent 2 and 1, indicating the ballistic and diffusive limit,
respectively. As noticed, in all cases, the MSD curves seem to
change their behavior close to tE 1 s. In detail, for t o 1 s, the
movement of the particles is ballistic, while the movement is
diffusive for t4 1 s. Note that the limited range of the explored
_g values leads to the same transition time-lag t E 1 s,
approximately.

Assuming, hz(t)2i = 2Dt, the diffusion coefficient can thus be
computed from the slope of each curve in the region t4 1 s. In
the insets of Fig. 2(a) and (b), it is noticeable that the slopes of
the curves vary. For the sake of clarity, in the main figures, the
data values have been distinctly shifted in the y-direction,
highlighting the two different motion regimens. Interestingly,

the slope seems to vary non-monotonically with the height,
which is expected as _g(z) also varies in that way.

Going deeper inside the previous observations, we deter-
mine the diffusion coefficient D and the shear rate _g corres-
ponding to each region. Fig. 3 and 4 display the profiles of D(z)
and normalized by the maximum diffusion coefficient Dmax and
the maximum shear rate _gmax for x = 1.3 and x = 2.5, respec-
tively. Remarkably, the spatial profiles indicate that the local
values of D and _g strongly correlate in practically the whole
system, regardless of the value of _gmax. However, for z t 5L, the
values which correspond with _go _gmax, tend to separate in both
cases. Moreover, for smaller x, the profiles also tend to decorr-
elate as z increases. A similar split into three distinct regions
was observed in ref. 34, which analysed the flow profiles of
chute flows composed of monodisperse spherical particles. The
central region, where D and _g strongly correlate, corresponds to
the region where the local m(I)-rheology holds. That is, flowing
conditions where the local _g(z) is only determined by the local
shear stress s(z), and the flow resistance is only function of the
local _g(z). However, the flow between the basal surface and the
peak in shear rate showed boundary-layer effects; and the top
layer showed effects of dilation due to the vanishing pressure.
Indeed, the same effects likely affect the D(_g)-relation.

To assess the last argument, we plot the probability density
function (PDF) of the vertical velocity vz(z, t) for the different
blocks in Fig. 5(a) and (b). PDFs have been standardized to
compare with the Gaussian distribution. In general, the out-
come evidence a good agreement with a Gaussian shape,
detecting small discrepancies at the tails. Furthermore, the
statistics corresponding to the blocks closer to the bottom or
the surface of the bed posses shapes, which differ from the
Gaussian shape, noticeably. Additionally, Fig. 5 shows the third
moments, also known as skewness, of the PDFs as a function of
z, whereby the asymmetry is characterized. The results show
that the PDFs tend to be more asymmetric for the heights

Fig. 2 The mean squared displacements (MSD) vs. t for the cases (a) x =
1.3, a = 271 and (b) x = 2.5, a = 301 (both in log–log scales). Each curve
represents the MSD calculated for each block of base equivalent to the
system and width L whereas lines show the powers 1 and 2. In both cases,
the inset shows the same but on linear scale.

Fig. 3 Plots of D/Dmax (markers) and _g/ _gmax (curves) against the height z
for x = 1.3 and several inclinations. The sets _gmax = [0.013, 0.017, 0.022,
0.026, 0.031] s�1 and Dmax = [0.026, 0.034, 0.038, 0.042, 0.056] L2 s�1

correspond to a = [26.0, 26.5, 27.0, 27.5, 28.0]1.
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where D and _g profiles deviate from each other, consistent with
the particles in these zones follow a diffusive regime affected by
variations in _g.

To determine the scaling relation between D and _g, it is
necessary to identify the most relevant particle length scale, of
interest for diffusion on the direction perpendicular to the
macroscopic flow. In ref. 26, the particle size perpendicular to
the flow direction, d>(x), was found to be an appropriate length
scale to define an effective inertial number, Ieff. Note that this

length scale only depends on x (d>(x)) and neither on the
inclination angle a nor the height z, as was evidenced in the
same work.26 In detail, d> is obtained by finding the mean area
of the orthographic projection of the particles, and then, the
diameter of the area-equivalent circle is employed. For spher-
ocylinders, d2

> = 4/p(dlhcos(y)i + pd2/4), where lhcos(y)i is the
averaged projection of the particles with respect to the vertical
direction.

Motivated by this outcome, Fig. 6(a) displays D/ _g as a
function d2

>. As a characteristic length scale d>, we use the
diameter of the orthographic projection of the particle on the
plane perpendicular to the flow lines. In all cases, the data
displayed corresponds to the range 6L o z o 14L, avoiding the
values close to the bottom plane neither the free surface. The
data is rationalized using the mean value and standard

Fig. 4 Plots of D/Dmax and _g/ _gmax against the height z for x = 2.5 and
several inclinations. The sets _gmax = [0.022, 0.034, 0.045, 0.058, 0.071] s�1

and Dmax = [0.016, 0.022, 0.029, 0.036, 0.042] L2 s�1 correspond to
a = [29.0, 29.5, 29.0, 29.5, 30.0]1.

Fig. 5 Vertical velocity vz PDFs standardized for comparison for (a) x = 1.3,
a = 271 and (b) x = 2.5, a = 301. (c) Displays the skewness of PDFs against z.

Fig. 6 (a) Ratio of diffusion coefficient and shear rate, D/ _g, plotted against
the square of the characteristic particle length d2

> for all inclinations a and
elongations x. The red points are the mean values of all D/ _g for each x, and
the error bars indicate the standard deviation thereof. The black line
represents the resultant linear fit. For all x values, a representation of the
particle is illustrated. (b) Measured D values against � _gd2

>. The result of the
linear regression is represented by the line, and the obtained slope is
annotated. For both plots, only D, g values from the central part of the flow
(6L o z o 14L) are shown.
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deviation, obtained for each particle aspect ratio x, marked by
red points and error bars, respectively. For comparison, the
linear fit of the data is shown by the dot-dashed line. For the
sake of clarity, the specific shapes of the particles are also
displayed in Fig. 6(a). The data show a good agreement with the
linear fit, thereby indicating the goodness of the scaling D/ _g B
d2
>. It is worth mentioning, that similar analysis have been

done using other particle characteristics sizes, specifically, the
spherodiameter d and the equivalent spherical diameter. In
both cases, the quality of the scaling analysis is reduced notably
(data not shown).

Once the scaling using the characteristic length d> is
confirmed, we propose D B d2

> _g, as the most appropriate
relationship between the particle diffusivity D and the local
shear rate _g. Fig. 5(b) illustrates the collapse of all the measured
coefficients of diffusion D against _gd2

>. The line represents a
linear regression, which is included for comparison. The data
shows a reasonable correlation coefficient of R = 0.94. As the
abscissa values increase, however, D values diverge from the
linear trend. Despite the fact that we tried to introduce other
scalings, involving the inverse of local solid fraction f(z) (d2

>g/

f(z)) or I d2
?g=

ffiffiffi
I
p� �

, none of them resulted in a better collapse of
the data points.

Recently, P. Kharel and P. Rognon stated that the collective
movement of partially jammed clusters of grains or granular
vortices might enhance particle self-diffusion.12 They found
that the average vortex size is also a significant length to
evaluate the D vs. _g scaling. Thus, in other to gain insight, we
looked into the spatial vertical velocities correlations of the
particles within each block located at a height z computing

Cðr; zÞ ¼ hvzðri; zÞvzðrj ; zÞi ¼ 1=Nc

XNc

i;j; jo i

vizv
j
zXðr� rijÞ; (3)

where ri and rj are the radial position of particles i and j, and
rij = rj � ri is the distance between particle i and j. The function
X (x) yields 1 if nL/4 o x o (n + 1) L/4 else returns 0, and Nc is
the number of pairs that fulfills the first condition. That is to
say, the spatial correlation is averaged over all particle pairs
located at the same distance, using a fine grid of width L/4.

Fig. 7 presents the profiles obtained from eqn (3) for (a) x =
1.3, a = 271 and (b) x = 2.5, a = 301, normalized by C (0, z). The
insets exhibit the same profiles on log–log scale, and the dotted
black lines are linear fits of the tails. Note, the slope of the
curve defines the inverse of the correlation length lx, corres-
ponding to each case. For locations closer to the bottom plate,
our outcomes indicate that the particle velocities have shorter
correlation length lx, which is in the order of the particle
dimension of L. However, it is also evidenced that lx increases
when exploring regions at higher locations, up to a point where
H reaches the free surface. Thus, the system presents long-
distance correlations close to the free surface, although the
correlations can be classified as short-distance at regions,
which are close to the bottom plane. The D values are less than
the beforehand expected for short-distance correlations, while
they are greater for long-distance. This observation suggests
that a collective movement scale might also be involved in the D
and _g dependency.

As the last point, it is worth mentioning that a similar
analysis has been done, exploring the component of the diffu-
sivity tensor in the y-direction and the off-diagonal components
yz. The ESI† illustrates the outcomes obtained for the mean
squared displacements (MSD) and the diffusivity in compar-
ison with the shear rate fields. In those cases, we found that
local diffusivity values do not correlate with the local shear rate
values. Consequently, the simple scaling relation D B d2 _g does
not seem to be a good choice in those cases. Here, we could
argue that the notably lower strength of the energy fluctuations
might impact the quality of the numerical data. Thus, a more
complete analysis is needed to confirm this. In addition, a
natural progression of this work is to analyze other scaling
laws, such as those based on granular temperature, like in
ref. 14

4 Conclusions

In this study, we carried out DEM simulations of spherocylin-
ders driven by gravity on an incline. Our aim was to quantify the
diffusivity of non-spherical particles, assessing the scaling
relations involving the particle dimensions and the shear rate
_g. Our efforts have identified that the particles follow a diffusive
movement for temporal scales higher than one second. The
diffusion coefficient D depends on the height, and as a con-
sequence on the local non-linear shear rate. Our results indi-
cate that D and _g correlate for almost all heights and aspect
ratio x, excepting those values that are close to zones where _g
varies non-linearly. Through finding the velocity PDFs and their
skewness parameters, we have found that D values which do
not collapse with _g coincide with skewness values far from zero.
Thus, the PDFs are more asymmetric for the points where D
and _g do not collapse. In addition, the spatial correlations of
the velocity showed that the correlation length lx is not con-
stant, obtaining shorter values of lx close to the bottom plane
and higher values of lx close to the free surface. Although our
scaling analysis does not involve the particle correlation length

Fig. 7 C(r) profiles for (a) x = 1.3, a = 271 and (b) x = 2.5, a = 301,
normalized by C(0). Each curve represents a different z, and the insets
display the same data on a log scale. The black dotted lines are the linear
fits for each correlation curve.

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
7 

A
pr

il 
20

22
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
it 

T
w

en
te

 o
n 

7/
29

/2
02

2 
4:

12
:0

0 
PM

. 
View Article Online

https://doi.org/10.1039/d1sm01436f


This journal is © The Royal Society of Chemistry 2022 Soft Matter, 2022, 18, 3335–3341 |  3341

lx, our finding suggests that collective movement may play a
crucial role in diffusive dynamics of the present system.

One of the main findings emerging from this study is that
d>(x) collapsed the scaling of D vs. _g for all aspect ratios x with
reasonable accuracy. However, the scaling fails to reproduce
this behavior for more elongated particles. Moreover, the
efforts for introducing either solid fraction f or inertial number
I worsened the scaling. The question raised by this research is
how to introduce the scale of the collective movement into the
scaling. Further work needs to be done to establish a better
scaling, especially for larger particles when submitted to vari-
able _g.
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