
Neural Computing and Applications manuscript No.
(will be inserted by the editor)

An Active Adaptation Strategy for Streaming Time Series
Classification based on Elastic Similarity Measures

Izaskun Oregi∗ · Aritz Pérez · Javier Del Ser · Jose A. Lozano

Received: date / Accepted: date

Abstract In streaming time series classification prob-

lems, the goal is to predict the label associated to the

most recently received observations over the stream ac-

cording to a set of categorized reference patterns. In on-

line scenarios, data arise from non-stationary processes,

which results in a succession of different patterns or

events. This work presents an active adaptation strat-

egy that allows time series classifiers to accommodate

to the dynamics of streamed time series data. Specifi-

cally, our approach consists of a classifier that detects

changes between events over streaming time series. For

this purpose, the classifier uses features of the dynamic

time warping measure computed between the streamed

data and a set of reference patterns. When classifying

a streaming series, the proposed pattern end detector

analyzes such features to predict changes and adapt off-
line time series classifiers to newly arriving events. To

evaluate the performance of the proposed scheme, we

employ the pattern end detection model along with dy-

namic time warping based nearest neighbor classifiers

over a benchmark of ten time series classification prob-

lems. The obtained results present exciting insights into

the detection accuracy and latency performance of the

proposed strategy.

∗: Corresponding author: izaskun.oregui@tecnalia.com

Izaskun Oregi, Javier Del Ser
TECNALIA, Basque Research and Technology Alliance
(BRTA), 48160 Derio, Spain

Aritz Perez, Jose A. Lozano
Basque Center for Applied Mathematics (BCAM), 48009 Bil-
bao, Spain

Javier Del Ser, Jose A. Lozano
University of the Basque Country (UPV/EHU), 48013 Bil-
bao, Spain

Keywords Time Series Classification, Streaming

data, Deep Learning, Dynamic Time Warping

1 Introduction and Related Work

Time series are present in a large number of domains. In

many application scenarios, time series are produced by

dynamic processes, where data instances are streamed

continuously at high speed, generating large volumes of

samples that must be analyzed as fast as possible to

comply with the limited memory and processing capa-

bilities of current computer architectures [1, 2]. Illustra-

tive examples of such continuously generated streaming

time series (STS) include electricity supply data [3],

human activity signals issued from wearable sensors [4]

or car flow sequences [5], among many others.

It is common knowledge that successive measure-

ments in time series are usually correlated with each

other, i.e., there is dependence among observations. Such

dependence has prompted the design of techniques that

exploit correlations among the constituent measurements

of time series to efficiently undertake diverse tasks which

are defined either on streaming or conventional time se-

ries data. Such tasks include a manifold of challenging

learning problems, such as forecasting [6], classification

[7] and clustering [3]. Time series classification (TSC)

is, arguably, among the most extensively studied prob-

lems [8, 9, 10, 11]. When formulated over STS, we define

the streaming time series classification (STSC) as the

problem of building a classifier that predicts the cate-

gory of new incoming points based on a set of reference

time series. Hence, the classifier issues a prediction ev-

ery time a new point arrives over the stream.

Due to the dynamic nature of data sources, STS can

also be non-stationary, in the sense that the temporal

2 I. Oregi et al

structure of the continuously flowing time series can

evolve over time1. Accordingly, the STS can be thought

as being composed of a concatenation of stationary in-

tervals, each associated to an event that takes place for

a limited period, such as a jump or weight lifting

in a human activity signal (see figure 1). As a result,

STS can be defined as the concatenation of stationary

intervals related to different events.

When addressing TSC tasks defined over dynamic

streaming time series data, it is of utmost importance

that predictive models accommodate appropriately to

changes between events. To this end, two main strate-

gies can be followed depending on the mechanism uti-

lized for adaptation [12]. On the one hand, passive (or

blind) strategies use forgetting mechanisms or sliding

window methods to adapt predictive models to non-

stationarities of the received data [13, 14]. On the con-

trary, active (or informed) adaptation strategies employ

auxiliary procedures to determine whether upcoming

data have changed, and adjust the classifier accordingly

[3, 8, 15].

Event change

Jump
Weight

lifting
Jump

Event 1 2 3

Time

Fig. 1: Example of a streaming time series composed

of two event types, jump and weight lifting. This

work aims at detecting the changes between consecutive

events so as to adapt the underlying STSC model.

In this context, this research work tackles the prob-

lem of developing an active adaptation strategy for stream-

ing time series classifiers. Similarly to the change point

detection problem [16], which aims at identifying abrupt

changes in time series, the goal of our method is to

detect changes in STS to actively adapt conventional

(off-line) time series classifiers to upcoming events (see

Figure 1). For this purpose, we develop the pattern end

detection (PED) model. This procedure consists of a

1 Formally, a time series is said to be stationary when its
statistical properties, such as mean and variance, do not de-
pend on the timestamp at which it is measured, i.e., do not
change over time.

convolutional neural network (CNN) whose trainable

parameters are learned from streaming frames, namely,

images made up of similarity measurements computed

between streamed observations and a set of reference

patterns that are representative of the events in the

STS. To ensure that the computation of such measure-

ments meet the computational requirements of stream-

ing scenarios (bounded memory and computation time),

we resort to the on-line dynamic time warping (ODTW)

[17, 13] – an adaptation of the conventional dynamic

time warping for streaming scenarios – to determine the

similarity among sequences. We assess the performance

of the proposed PED when used together with DTW-

based nearest neighbor classifiers to address STSC tasks

defined over 10 benchmark problems from the UCR Archive

[18]. The obtained experimental results show that an

active adaptation strategy based on the proposed PED

significantly outperforms other state-of-the-art distance-

based classifiers used for STSC tasks. Furthermore, this

work evidences the rich information embedded in stream-

ing frames, which can be exploited for many other tasks

apart from STSC.

The rest of the paper is organized as follows: Section

2 provides background information on STSC tasks and

similarity measures. Section 3 details the proposed ac-

tive strategy, including the concept of streaming frames

and the pattern end detection model. Next, Section 4

presents the simulation setup, and Section 5 discusses

the results drawn from the conducted experiments. Sec-

tion 6 summarizes the main contributions of this work,

and outlines future research directions. For the sake of

understanding in subsequent derivations, Table 1 sum-

marizes terms and abbreviations used throughout the

paper. Additionally, some notation conventions have

been established to describe the formulation: indexes

are denoted with a small Latin letter; vectors with cap-

ital Latin letter; matrices with bold capital Latin letter;

and datasets with a calligraphic capital Latin letter.

2 Background

In this section we pose the streaming time series clas-

sification problem (Section 2.1), as well as the funda-

mental concepts on the on-line version of the dynamic

time warping (DTW) ESM (Section 2.2).

2.1 Problem Statement

As has been mentioned in the introduction, we assume

that STS are composed of the concatenation of pat-

terns/events belonging to different labels (see Figure

Active Adaptation Strategy for Streaming Time Series Classification 3

Abbrv. Meaning Definition
STS Streaming Time Series Eqs. (1) and (2)

STSC
Streaming Time Series
Classification

Section 2.1

PED Pattern end Detection Model Section 3.2

DTW Dynamic Time Warping Eq. (3)

ODTW On-line Dynamic Time Warping Eq. (10)

GS Gold-standard scenario
A classification framework
with a complete a priori
knowledge on data

DTW-NN
DTW-based Nearest Neighbor
Classifier

NN classifier with DTW as
similarity measure

PED-NN
PED-based Nearest Neighbor
Classifier

A DTW-NN model that
uses the predicted changes
of PED

ODTW-
NN

ODTW-based Nearest Neighbor
Classifier

NN classifier with DTW as
similarity measure

Table 1: List of abbreviations.

1). Specifically, we consider that each event is repre-

sented by a time series whose data points arrive over

time. Hence, the task of classifying a STS can be de-

fined as the problem of labeling every streamed data

point based on a set of known class labels. Formally, let

S = (s1, . . . , st, . . . , sn) ∈ Rn (1)

be a STS, where st is the t-th observation and n is

the number of data points received so far. Following

our assumption that S is the concatenation of labeled

events, we can alternatively define a STS as

S = ⟨S1, . . . , Sk, . . . , SK⟩ ∈ Rn, (2)

where ⟨·⟩ denotes concatenation, Sk = (sk1 , . . . , s
k
mk

) is

the k-th event with an associated label lk ∈ {1, . . . , L},

and K is the total number of received events, so that

n =
∑K

k=1 mk as per Equation (1). Based on this redef-

inition, the goal of the STSC problem is to carry out a

classification of the stream every time a new data point

st arrives in accordance with the class of the event to

which it belongs, namely, lk if st ∈ Sk.

2.2 Dynamic Time Warping for On-line Scenarios

Distance-based procedures, such as nearest neighbor

(NN), are widely used to address TSC tasks [7, 19, 20].

In this context, elastic similarity measures (ESMs) are

frequently used [21, 9, 22]. In general terms, ESMs are

a family of similarity measures – including, among oth-

ers, dynamic time warping (DTW) [23] – that shrink or

stretch the time axis to find the best alignment between

the time series under comparison. In this work, we use

an on-line version of the DTW (ODTW [13, 17]) to de-

velop the PED model. We begin this section by briefly

introducing the naive DTW measure, with the aim of

subsequently reviewing the ODTW used in the rest of

the work.

2.2.1 Fundamentals of Dynamic Time Warping

Let us denote two time series as X = (x1, . . . , xi, . . . , xm)

and Y = (y1, . . . , yi, . . . , yn), where m,n ∈ N represent

the number of observations in each sequence. Mathe-

matically, the DTW between X and Y is defined as

Dm,n =minimize
p∈P

∑
(iq,jq)∈p

∣∣∣∣xiq − yjq
∣∣∣∣
2

(3)

subject to:

(iq, jq) ∈ {1, ...,m} × {1, ..., n}, (4)

(i1, j1) = (1, 1), (5)

(iQ, jQ) = (m,n), (6)

(iq − iq−1, jq − jq−1) ∈ {(0, 1), (1, 1), (1, 0)},
(7)

∀q ∈ {1, ..., Q}, (8)

where ||·||2 represents the Euclidean distance, (iq, jq)

the alignment between observations xiq and yjq , and

p = {(iq, jq) : 1 ≤ q ≤ Q} ∈ P is a path – or

sequence – of data point alignments that satisfies con-

straints (4) to (8). That is, DTW consists of finding

the path p that aligns X and Y – from their beginning

to their end, and without skipping a point or going

backward in time – with minimal total Euclidean dis-

tance cost. Figure 2a depicts a feasible solution to this

optimization problem, where each red line represents

an alignment. In this context, we use p∗ to denote the

optimal path, that is, to refer to the sequence of align-

ments that results in the minimum distance, such that

Dm,n =
∑

(i,j)∈p∗ ||xi − yj ||2.

Xm

Y n

Time

(a) Optimal path p∗
Time

Y n

Xm

(b) Measurement matrix M

Fig. 2: DTW between X and Y time series, each com-

posed of m = n = 25 data points.

Solutions to (3) can be efficiently obtained by dy-

namic programming methods [24], which leads to the

following recursion:

Dm,n = ||xm − yn||2+min {Dm−1,n, Dm−1,n−1, Dm,n−1} ,

4 I. Oregi et al

(9)

where D0,0 = 0 and D0,j = Di,0 = ∞ for i = 1, 2, ...,m

and j = 1, 2, . . . , n. An example of the DTW com-

putation through recurrence (9) is depicted in Figure

2b, where the red curve indicates the optimal path

p∗ between Xm and Y n (black curves). Each pixel in

the colored square represents the similarity Di,j for

i = 1, . . . ,m and j = 1, . . . ,m, in such a way that D1,1

and Dm,n are located in the lower-left and upper-right

corners, respectively.

2.2.2 On-line Dynamic Time Warping

In order to harness the advantages of DTW in stream-

ing scenarios, the ODTW proposed in [13, 17] includes

a forgetting mechanism that under-weights the contri-

bution of past data observations for the similarity to

evolve according to the characteristics of the streaming

time series at hand. Specifically, the ODTW is defined

between a stored reference time series X – with m data

points – and a streaming time series Y n – with n points

received so far – as:

Dm,n = ||xm−yn||2+min {ρDm−1,n−1, Dm−1,n, ρDm,n−1} ,
(10)

where ρ ∈ (0, 1] represents the memory parameter. It is

important to note that, when the range of the memory

is small (i.e., when ρ ≪ 1), the ODTW substantially

decreases the contribution of past observations of Y n

to the actual value of the similarity, thus favoring the

ODTW to adjust immediately to newly arriving data.

In contrast, when ρ increases, old data points acquire

a higher relevance in the computation of the similarity

measure, thereby making the similarity less reactive to

changes in the stream. However, it provides a more real-

istic measure between the stored pattern and the under-

lying structure of the stream. Finally, when ρ = 1 – i.e.,

when ODTW takes into account all past observations

– the recurrence in (10) becomes equal to Expression

(9), hence, ODTW and DTW are completely equiva-

lent to each other. The authors also used a computa-

tion/storage scheme to avoid unnecessary calculations

when computing the ODTW, enabling the similarity to

be updated in constant time.

It follows from recurrence (10) (also from expres-

sion (9)) that the computation of the ODTW (corr.

DTW) requires intermediate results among all Xi =

(x1, . . . , xi) for i = 1, . . . , n and Y j = (y1, . . . , yj) for

j = 1, . . . ,m subsequences. That is, when calculating

Dm,n, we compute the measurement matrix:

M =


D1,1 D1,2 . . . D1,n

D2,1 D2,2 . . . D2,n

...
...

...

Dm,1 Dm,2 . . . Dm,n

 = (Di,j) ∈ Rm×n, (11)

where each entry is given by the similarity measure.

Actually, the measurement matrix contains useful

information that can be analyzed to discover knowl-

edge from data [25]. To provide evidence on the rich

structure of M, Figure 3 shows, for different values of

the memory parameter, examples of the ODTW mea-

surement matrix between a generic reference pattern

(black sequence on the left) and an evolving streaming

time series composed of 7 events (black sequence on the

top). Images of matrix M in the first row of this figure

correspond to the gold-standard (GS) scenario, namely,

the measurement matrix with complete a priori knowl-

edge on the event changes occurring over the stream.

Thanks to this knowledge, in the GS, scenario the DTW

similarity is automatically tailored to the streaming se-

ries change dynamics by initializing it at every change

between consecutive events. As can be observed in this

figure, the red curve indicating the alignment with the

smallest ODTW between the reference pattern and each

observation in the STS presents a periodic behavior,

featuring an abrupt change within the boundary be-

tween consecutive events resulting from the initializa-

tion of the DTW. In other words, the initialization leads

to coherent alignments between the reference pattern

and the events held over the streaming time series.

Similarly, plots from rows 2 to 5 in Figure 3 display

the measurement matrix M for short (ρ = 0.00011/m

with m = 100 the length of the reference time se-

ries), middle (ρ = 0.011/m), large (ρ = 0.11/m) and

full (ρ = 1, which is equivalent to computing the näıve

DTW) memory ranges 2. In contrast to the GS sce-

nario, in these cases stream changes are unknown, so

the ODTW cannot be reinitialized. However, the reini-

tialization can be overridden by making the ODTW fo-

cus on recent observations, e.g., by using a small mem-

ory range through the choice of the ρ value. By doing

so, M is more reactive to local changes, thus providing

more detailed insights about the configuration of the

streaming time series.

If we closely inspect the image maps of the measure-

ment matrix, we notice that the structure of M delays

with respect to the GS (first row) more severely as ρ in-

creases. Accordingly, pmin (red curve depicting the po-

sition of the minimum ODTW measurement over time)

2 By using these ρ values, we coerce the contribution of the
data point m steps prior to the sample at hand be weighted
by 0.0001, 0.1, 0.5, 1

Active Adaptation Strategy for Streaming Time Series Classification 5

2.5

0.0

2.5
Stream

gold

short

middle

large

2.5 0.0 2.5
Ref.

0

50

Ti
m

e

500 600 700 800 900 1000 1100 1200
Time

full

Fig. 3: Measurement matrix for gold-standard, short-

, middle-, large- and full-range (ρ = 1) memory sce-

narios. In each plot, dark colors represent high Di,j

values, whereas light colors correspond to small Di,j

values. Vertical lines represent the boundaries (or tran-

sitions) between consecutive events (stationary inter-

vals). In the gold-standard scenario, the red curve illus-

trates the optimal path p∗, computed separately within

each event. In the remaining figures, the red curve de-

picts pmin (i.e., the position of the minimum ODTW

measurement at each time stamp), which can be inter-

preted as the optimal path of the ODTW when config-

ured with the corresponding memory parameter (short,

middle, range, full).

features an increasing delay with ρ (compare red curves

around pattern limits), meaning that the ODTW com-

puted with large/full range memory needs more time

to accommodate newly arriving events. For instance, in

the full-range memory example (ρ = 1, i.e. the ODTW

does not forget anything from the past), pmin yields

from matching the last data points in the reference pat-

tern with every point in the stream. Similarly, in the

large-range memory example, pmin shows that ODTW

requires at least half of the interval to forget the past

and adapt to new stream events (remarkably, pmin is

almost a diagonal in the second half of every event).

By contrast, when using short- (and, to some extend,

middle-) memory ranges, the adaptation of the ODTW

is completed in the first half of the period, thus show-

ing that the reference series aligns with newly appearing

stream events properly.

3 The Active Adaptation Strategy

This section introduces in detail the proposed active

adaptation strategy. As already mentioned, the objec-

tive of our procedure is to design a CNN classifier that

aids conventional time series classifiers to cope with the

STSC problem stated before in Section 2.1. To this end,

we use images of the ODTW –streaming frames in Sec-

tion 3.1, and a CNN binary classifier – the PED model

in Section 3.2.

3.1 Streaming Frames

Rather than relying on single values of the similarity

as described at the end of Section 2. Our active adap-

tation strategy uses sub-matrices of M to determine

whether the sequence associated with an event has fin-

ished. Such sub-matrices, which we hereafter refer to as

streaming frames, result from the computation of the

ODTW between a reference pattern and the last ϖ ob-

servations of the streaming time series at hand. If we

assume that yn is the last streamed observation, the

streaming frame is given by

Mn =


D1,n−ϖ+1 . . . D1,n

D2,n−ϖ+1 . . . D2,n

...
. . .

...

Dm,n−ϖ+1 . . . Dm,n

 , (12)

namely, the last ϖ columns of the measurement matrix

as per (11). Just as frames in a video stream, these

sub-matrices are computed and stored in an on-line

fashion, as new data points are received. To this end,

we apply the ODTW computation/storage procedure

presented in [17], under which we can update M incre-

mentally along time. As mentioned previously in Sec-

tion 1 (Introduction), the ODTW includes a computa-

tion/storage procedure to efficiently update the com-

putation of the similarity by recording a small set of

intermediate ODTW measurements over time. Hence,

every time a new data point arrives, we do not compute

the whole measurement matrix, but only the ODTW

measurements of the arriving data. That is, if we re-

ceive yn+1 after computing M (see Expression (11)),

we can use the elements of the last column of the mea-

surement matrix (Di,n for i = 1, . . . ,m) to update it by

just calculating

(D1,n+1, D2,n+1, . . . , Dm,n+1) , (13)

which depend on the ODTW measurements concerning

the received observation.

3.2 Pattern End Detection Model

This section describes the proposed PED model which,

as stated previously, is used to detect label changes

6 I. Oregi et al

in streaming time series. In essence, PED consists of

a binary CNN classifier learned from ODTW stream-

ing frames. Just as in conventional CNN architectures

[26], the classifier utilized in this work is composed of

two main blocks: i) a set of convolutional layers, which

extract features from raw data (in our case, ODTW

streaming frames); and ii) a series of fully-connected

neural layers, which map the extracted features to a

binary label indicating whether a change among events

has occurred at the timestamp corresponding to the in-

put streaming frame.

Let B = {(Rp, lp)}Pp=1 denote a set of reference pat-

terns, where Rp = (rp1 , . . . , r
p
i , . . . , r

p
m) represents an

event with an associated label lp ∈ {1, . . . , L}. We fur-

ther define a streaming time series as S = (s1, . . . , sn),

which has been previously labeled, so we know all la-

bels occurring in the stream (see Section 2.1). In this

context, the PED learning procedure is carried out by

following the following steps in order:

1. Computation of streaming frames: we define a

(m× n) image M composed of P channels as:

M = [M1, . . . ,Mp, . . . ,MP] , (14)

where Mp is the measurement matrix resulting from

the computation of the ODTW between S and Rp ∈
B for a given value of the memory parameter ρ.

Streaming frames are obtained by applying a fixed-

size sliding window. That is, moving a window of w

time units across the measurement matrix (sample

by sample along the stream time axis), we extract a

set of n− w streaming frames given by:{
Mw, . . . ,Mi, . . . ,Mn

}
, (15)

where Mn = [Mn
1 , . . . ,M

n
P] represents the n-th stream-

ing frame as per (14). Red square areas overlaid in

Figure 4 indicate Mi and Mn streaming frames.

2. Construction of the database of labeled stream-

ing frames M: the next step is to generate the

streaming frame database by assigning labels to the

streaming frames in Mi for i = w, . . . , n. To this

end, each streaming frame is assigned a binary {0, 1}
label, such that frames falling within the 0 (1) cat-

egory represent no event change (correspondingly,

event change) in the stream. Accordingly, we gener-

ate the database of streaming frames as:

M =
{(

Mi, ci
)}n

i=w
, (16)

where the category ci of the i-th streaming frame is

set to 1 (i.e., event change) if the frame falls within

a transition; and 0 (i.e., no event change) otherwise.

Accordingly, in Figure 4, Mi frame is categorized

as 1 and Mn as 0. Since the goal of PED is to de-

tect limits between consecutive events, w needs to be

small so that the procedure can detect event changes

close to the instant where they truly occur.

2.5

0.0

2.5
Stream

Mi
1 Mn

1

Mi
2 Mn

2

Mi
3 Mn

3

Mi
4 Mn

4

Mi
5 Mn

5

2.5 0.0 2.5
Ref.

0

50

100

Ti
m

e

600 700 800 900 1000 1100 1200
Time

Mi
6 Mn

6

Fig. 4: Illustration of an online scenario composed of

a streaming time series of n = 1200 observations (top)

and a reference pattern database of P = 6 sequences

(left). Event changes are highlighted with black ver-

tical dashed lines. The set of vertical red squares de-

pict the i-th (Mi =
[
Mi

1, . . . ,M
i
6

]
) and n-th (Mn =

[Mn
1 , . . . ,M

n
6]) streaming frames. The label of the for-

mer frame Mi corresponds to ci = 1 as the event change

falls within the frame. Likewise, Mn represents a no

event change frame (cn = 0). The sliding window size

has been set to w = 15 samples.

Given a value of w, it is important to note that

the sliding window method can yield a highly im-

balanced database M. In particular, if small window

sizes are chosen, the number of streaming frames be-

longing to the no event change class is significantly

higher than that of frames labeled as event change. It

is widely acknowledged that, unless properly coun-

teracted, learning from imbalanced databases can

lead to imprecise models [27]. Hence, we apply a ran-

dom under-sampling technique to decrease the num-

ber of no event change frames. Specifically, the uti-

lized technique generates a balanced database M by

keeping samples of the minority class, and by sam-

pling uniformly at random as many frames from the

majority class as those of the minority class.

3. Training of the binary CNN classifier: we train

the CNN classifier over the generated database M
of labeled streaming frames by using conventional

Active Adaptation Strategy for Streaming Time Series Classification 7

gradient-based backpropagation algorithms. This pro-

cess yields the proposed PED that can be used to

detect changes among events from new streaming

frames.As we explain in detail in the following sec-

tion, a variety of CNN structures have been consid-

ered for this purpose. Table 5 outlines such evaluated

CNN structures.

4 Experimental Setup

In order to empirically assess the performance of the

PED model and the value of streaming frames as infor-

mation source, we design an experimental setup with

two complementary goals in mind:

1. To evaluate the performance of the proposed PED

approach when detecting event changes over STS.

2. To measure the efficiency of PED when used as a

compounding part of an active adaptation strat-

egy for STSC. That is, the objective is to analyze

whether event changes predicted by the PED can

be leveraged when addressing the on-line STSC task

described in Section 2.1.

This section details how the above goals are approached

experimentally, stressing on how performance is gauged

in each case (Subsections 4.1 and 4.2), the STSC prob-

lems over which the evaluation is done (Subsection 4.3)

and the model structure and learning methodology fol-

lowed to train the PED model (Subsection 4.4).

4.1 Goal 1: Predictive Performance of the PED model

We first analyze the precision and the prediction delay

of the PED model when detecting event changes in the

streaming time series. To this end, we fit the trainable

parameters of the CNN to each of the STSC databases.

Then, we examine the PED model accuracy in terms

of precision, recall and the distribution of the detection

delay. In particular, the precision returns the propor-

tion of correctly predicted changes among all predicted

changes, i.e.,

precision =
true positives

true positives + false positives
, (17)

where we consider that the PED model correctly identi-

fies a change in the streaming time series if a streaming

frame labeled as event change contains a real change

of the test streaming time series. The recall returns the

proportion of actual positives that are correctly identi-

fied, that is,

recall =
true positives

true positives + false negatives
. (18)

(a) True negative (b) False negative

(d) True positive(c) False positive

True
change

PED

True
change

no change
PED

no change

PED
change

PED
change

Delay

(∀t ∈ [T, T + w])

T t

(for t ∈ [T, T + w])(at time t)

(at time t)

T t

Fig. 5: Diagram showing (a) a true negative; (b) a

false negative; (c) a false positive; and (d) a true posi-

tive when the PED model is used for detecting change

events.

In this case, we assume a data point is received at each

time stamp. Therefore, PED delivers as many predic-

tions as observations received over the streaming time

series. Figure 5 depicts a true negative, false negative,

false positives and true positive in the context of this

work.

On the other hand, the delay measures the distance

(in time units) between the real event change and its

estimation by the PED model. Hence, when a streaming

frame is correctly labeled as event change, the delay is

set to 0 if a true event change occurs at any of the time

instants spanned by the streaming frame. We use the

distribution of this difference to evaluate the lag when

decided to trigger an active adaptation strategy as the

one evaluated in the experiments (re-initialization of

the DTW computation).

4.2 Goal 2: Performance of an active PED-based

approach for STSC

To fulfill the second goal, we evaluate the performance

of the PED by combining it with conventional time se-

ries classifiers such as DTW-based NN classifiers (DTW-

NN) [7]. The active adaptation strategy embedding the

PED model at its core consists of exploiting the event

change detection flag issued by PED to trigger the adap-

tation of DTW-NN classifiers to upcoming events. That

is, we use the output of PED when analyzing new stream-

ing frames over time to i) let a DTW-NN classifier pre-

8 I. Oregi et al

dict the label of the received stream sample (if PED

model outputs no change); or ii) adapt the overall model

to the new event by resetting the measure of similarity

(if the PED issued event change).

In the experiments later discussed we compare the

classification accuracy of the above strategy (a DTW-

NN model using the predicted changes of PED, which

we hereafter refer to as PED-NN) with (i) that of the

GS (i.e., perfect a priori knowledge of the instants when

event changes occur), and with (ii) that of a ODTW-

based NN classifier (ODTW-NN) that passively adapts

to event changes via a forgetting mechanism [17].

It is important to note the main difference between

the PED-NN and the GS procedures: while GS is unre-

alistically aware of the event changes occurring in the

stream, PED-NN depends on the predictions issued by

PED. Thereby, GS is expected to perform better than

the PED-NN approach, as it does not undergo any false

positives, nor does it suffer from any delay in the de-

tection of the event change. Consequently, GS serves

as an upper bound of the performance that the PED-

NN model could achieve. The closer the outcome of

PED-NN is to that of GS, the more accurate the PED

model can be considered to be. Therefore, GS can be

thought of as being the perfect model because it essen-

tially reduces to an off-line DTW-NN model performed

separately for each event of the test stream.

However, in most realistic streaming scenarios it is

difficult to know when an event will end. Therefore, to

ensure a more realistic comparison we use the ODTW-

NN classifier, so that we can assess the performance of

passive and active event change adaptation strategies

in STSC tasks. In this case we use middle (0.11/m) or

middle-short (0.011/m) range memory values depend-

ing on the classification problem at hand (see Table

3 for a list of the specific values in use). That is, we

use the same memory parameter values for both the

PED model and the ODTW-NN approach for two rea-

sons: i) to evaluate whether the proposed PED-based

adaptation is less reactive than the passive adaptation

strategy included in the ODTW-NN classifier; and ii)

to compare both PED-NN and ODTW-NN classifiers in

terms of accuracy. Moreover, an accurate PED model

implies that the streaming time series can be divided

into meaningful sub-sequences with critical event infor-

mation, which can be used for other tasks apart from

classification. Section 6 will focus on future research

lines in this direction.

4.3 Generation of STSC Problems

Our STSC problems are built on 10 benchmark time

series databases extracted from the UCR Archive [18]

and the time series generation procedures provided in

the supplementary material of [28]. The main features

of these databases are summarized in Table 2. From

left to right, columns denote the name, length of the

patterns, total number of classes L, and the number

of elements in each database. Among them, we have

identified those synthetically generated databases with

a symbol “♢” which, as stated before, have been pro-

duced by following the procedure described in [28]. Pa-

rameters for the synthetic sequences have been set to

5 for the noise level, 10 for the shift level (except for

TWO PATTERNS and TWO PATTERNS MOD, where the shift

level is 5), and 10 for the warp level. Furthermore, none

of the generated databases include outlier patterns or

observations (check supplementary material in [28] for

detailed information about each parameter). The rest

of the databases in Table 2 correspond to those down-

loaded directly from the UCR Archive.

Table 2: Main features of benchmark databases.

Database (U)
Pattern length

(m)
Num. of classes

(L)
Num. patterns

(K)

CBF (♢) 100 3 2223
TWO PATTERNS (♢) 100 4 2444
TWO PATTERNS MOD (♢) 100 2 2082
SYNTHETIC CONTROL (♢) 100 6 2946
RATIONAL (♢) 100 4 2444
FACES UCR 131 14 2205
GUN POINT 150 2 200
PLANE 144 7 210
TWO LEAD ECG 81 2 1162
WAFER 152 2 7164

For each database in Table 2, we construct a STSC

problem which, we recall, consists of categorizing stream-

ing time series based on a set of stored reference pat-

terns (see Section 2.1). For this purpose, we split each

database to craft the (i) reference pattern database, (ii)

the PED training set, and (iii) the query set of stream-

ing time series.

Let U = {(Uk, lk)}Kk=1 be a benchmark database

with K examples, where Uk = (u1, . . . , um) represents

the k-th sequence, and lk ∈ {1, . . . , L} its class label.

Given this notation, each set is given by:

– Reference pattern database (B), which is a sub-

set of U composed of L sequences, that is, one ref-

erence pattern per class. Each reference pattern in

B results from the computation of the medoid over

a randomly drawn set of 10 time series belonging to

the class of the reference pattern at hand.

– PED training database (Dtrain), which is used

for fitting the PED model. It consists of a set of la-

beled streaming time series, each generated by ran-

domly selecting and concatenating time series from

a subset of U . In this case, training STS are given

Active Adaptation Strategy for Streaming Time Series Classification 9

by:

Dtrain =
{
Strain
k

}Ktrain

k=1
, (19)

where Ktrain represents the number of streaming

time series in the training set Dtrain. Each stream

time series Strain
k is composed of βtrain = 10·L events

(i.e., 10 events drawn uniformly at random for every

class), yielding a total of 10 · L ·m data points (see

Section 2.1).

– Query STS database (Dquery), which is created

to assess the performance of the STSC task. Again,

concatenating randomly selected sequences from a

subset of U , the query STS database consists of

Kquery = 12 streams, each composed of βquery =

20 · L events (i.e., 20 events per class selected uni-

formly at random without considering those in the

training set, see Figure 6), and 20 ·L ·m data points.

Formally, the set of query streaming time series is

defined as:

Dquery = {Squery
k }Kquery

k=1
, (20)

where Squery
k denotes the k-th query STS.

Table 3: Summarized description of developed STSC

problems.

Database (U) |B|
Dtrain Dquery

Ktrain βtrain Kquery βquery

CBF (♢) 3 50 30 12 60
TWO PATTERNS (♢) 4 37 40 12 80
TWO PATTERNS MOD (♢) 2 80 20 12 40
SYN. CONTROL (♢) 6 25 60 12 120
RATIONAL (♢) 4 37 40 12 80
FACES UCR 14 13 140 12 240
GUN POINT 2 80 20 12 40
PLANE 7 25 70 12 140
TWO LEAD ECG 2 80 20 12 40
WAFER 2 80 20 12 40

Table 3 shows a summarized description of the gen-

erated STSC problems. It is important to remark that

the subsets (U1, U2 and U3) of time series used to build

B, Dtrain and Dquery as per the processes explained

above are completely disjoint, i.e., no time series is uti-

lized for constructing more than one of these databases.

Figure 6 visually explains the disjoint nature of the gen-

erated databases.

4.4 Structure and Learning Process of the PED Model

Given one of the classification problems listed in Table

3, the memory parameter ρ, and the size of the sliding

window w, we construct a PED model by following the

steps described in Section 3.2. That is, we first com-

pute the ODTW measurement matrix for each stream-

ing time series in Dtrain. Subsequently, we apply the

sliding window to extract streaming frames, and label

them to yield the set of supervised streaming frames

M. Finally, we learn a binary CNN classifier from M.

To this end, we split M into two non-overlapping sub-

sets: training (Mtrain) and validation (Mval). The first

set comprises 80% of the streaming frames in M, and is

used to train the CNN. The second set Mval contains

the remaining 20%, and is utilized for validating the

trained model.

Table 4: Main characteristics of the DNN training

databases.

Database U
Memory ρ Mtrain Mval

Range Value # frames # streams # frames # streams

CBF (♢)
middle

0.11/m
0.9772 18640 40 4660 10

RATIONAL (♢)
middle

0.11/m
0.9772 18780 30 4382 7

TP (♢)
middle

0.11/m
0.9772 18780 30 4382 7

TP MOD (♢)
middle

0.11/m
0.9772 18360 60 6120 20

TWO LEAD ECG
middle-short

0.011/m
0.9719 18360 60 6120 20

SYN. CONTROL♢
middle

0.11/m
0.9772 18920 20 4730 5

PLANE
middle-short

0.011/m
0.9685 22120 20 5530 5

FACES UCR
middle

0.11/m
0.9826 22260 10 6678 3

GUN POINT
middle

0.11/m
0.9848 18360 10 6120 10

WAFER
middle

0.11/m
0.9850 18360 10 6120 10

For each STSC problem, Table 4 provides details

on the memory and databases of the streaming frames

considered for its training. Regarding the memory of

the ODTW, we choose the value of ρ that performs

the best for the PED model. To this end, we have con-

sidered three different CNN classifiers, each trained on

frames of a particular ρ, and we have selected the pa-

rameter that produces the best validation AUC. In this

design phase we have considered short (ρ = 0.00011/m),

short-middle (ρ = 0.011/m) and middle (ρ = 0.11/m)

range memories. These proposed values meet our claims

made at the end of Section 2.1, where we stated that

the ODTW should be computed with short-to-middle

range memories. As mentioned at the end of Section

3.2, the size of the sliding window needs to be small, so

as to enclose predictions of the PED close to the true

limits between consecutive events. Thus, we use a fixed

value of w = 7 time units for all the problems in Table

3.

Likewise, Tables 5a to 5c display the architecture

of the CNN used for every STSC task. As can be ob-

served in these tables, all classifiers consist of a series of

stacked convolutional layers and a final fully-connected

layer mapping the output of the last convolutional out-

put to the binary target to be predicted. When back-

propagating the gradients to learn the parameters of

the model, we use the standard binary cross-entropy

10 I. Oregi et al

𝒰

𝒰1

𝒰2

𝒰3

split

ℬ

𝒰 = 𝒰1 ∪𝒰2 ∪𝒰3

∅ = 𝒰1 ∩ 𝒰2

medoid

𝒟trainrandom

sampling

𝒟queryrandom

sampling

𝑆𝑘
train

𝑆𝑘
query

(𝑈𝑘 , 𝑙𝑘)

𝑙𝑘 ∈ ∎,∎ ∅ = 𝒰1 ∩ 𝒰3

∅ = 𝒰2 ∩𝒰3

Fig. 6: Given a time series classification database U , composed of two categories (grey and red), reference time

series (B) and streaming time series (Dtrain and Dquery) database generation process.

Table 5: DNN architecture for the considered STSC

problems. The utilized epochs and batch sizes are spec-

ified in brackets next to the name of the databases.

Layer Type Description Databases

16 filters (3× 3)
2D Convolutional

stride (1, 1), same, ReLu

2D Convolutional
32 filters (1× 1)
stride (1, 1), valid, ReLu

2D Max Pooling Pool size (2× 2), valid

2D Convolutional
64 filters (1× 1)
stride (1, 1), valid, ReLu

2D Max Pooling Pool size (2× 2), valid
Linear 20 units
Dropout 0.3 rate
Sigmoid 2 units

CBF (100, 100)
TWO PATTERNS (50, 100)
TWO PATTERNS MOD (50, 100)
SYNTHETIC CONTROL (25, 200)
RATIONAL (75, 100)
TWO LEAD ECG (50, 100)
GUN POINT (50, 100)

(a)

Layer Type Description Databases

16 filters (3× 3)
2D Convolutional

stride (1, 1), same, ReLu

2D Convolutional
1 filters (1× 1)
stride (1, 1), valid, ReLu
32 filters (3× 3)

2D Convolutional
stride (1, 1), same, ReLu

2D Max Pooling Pool size (2× 2), valid
64 filters (3× 3)

2D Convolutional
stride (1, 1), same, ReLu

2D Convolutional
64 filters (3× 3)
stride (1, 1), valid, ReLu

2D Max Pooling Pool size (2× 2), valid
Linear 20 units
Dropout 0.3 rate
Sigmoid 2 units

PLANE (20, 100)
FACES UCR (10, 500)

(b)

Layer Type Description Database

16 filters (3× 3)
2D Convolutional

stride (1, 1), same, ReLu

2D Convolutional
32 filters (1× 1)
stride (1, 1), valid, ReLu
32 filters (3× 3)

2D Max Pooling Pool size (2× 2), valid

2D Convolutional
64 filters (3× 3)
stride (1, 1), valid, ReLu
128 filters (1× 1)

2D Convolutional
stride (1, 1), same, ReLu

2D Max Pooling Pool size (2× 2), valid
Linear 100 units
Dropout 0.3 rate
Linear 20 units
Sigmoid 2 units

WAFER (25, 100)

(c)

loss and an Adam optimizer with a learning rate equal

to 0.001.

Before proceeding with the discussion of the results

from these experiments, we note that a public reposi-

tory has been made available at https://git.code.

xx/active-stream-classifier.git, which lists the

databases, specifies the required Python packages and

provides the scripts that reproduce all the results dis-

cussed in what follows.

5 Results and Discussion

We now discuss the obtained simulation outcomes, fol-

lowing the two-fold aim of the designed experimenta-

tion: to evaluate the accuracy of the proposed PED

model when detecting changes between events (Subsec-

tion 5.1); and to analyze the contribution of PED when

used to trigger active adaptation mechanisms in STSC

problems (Subsection 5.2).

5.1 Performance Results of the PED Model

We recall that the detector is assumed to perform cor-

rectly if the predicted event changes overlap the true

changes of the streaming time series. That is, given

a streaming time series, we consider that PED cor-

rectly predicts event changes if the streaming frame

corresponding to the i-th arriving observation, namely,

Mi+1−w,i, is labeled as event change, and a real event

change takes places between i + 1 − w and i time in-

stants.

This being said, we evaluate the accuracy of the

PED by computing the precision and delay of its pre-

dicted changes for each database U in Table 3, and for

each Squery
k ∈ Dquery. Results corresponding to CBF, TWO

PATTERNS, TWO PATTERNS MOD, WAFER and GUN POINT

databases are shown in Figure 7, whereas outcomes for

FACES UCR, RATIONAL, SYNTHETIC CONTROL, TWO LEAD

ECG and PLANE databases are depicted in Figure 8. In

both cases, histograms on the top represent the distri-

bution of the delay of predicted changes, where the red

areas in the background lie between 0 and w, represent-

ing the temporal range over which true event changes

take place. Accordingly, the more delay measurements

fall within this band, the more accurate the PED is.

Active Adaptation Strategy for Streaming Time Series Classification 11

Table 6: Summary of the performance statistics of the PED model over the STSC problems under consideration.

Regarding classification accuracy results, reported values correspond to mean and standard deviation of ACC(i)

as per Expression (21) over the entire simulated period.

Database U Precision Recall Delay
Classification Accuracy

PED-NN GS ODTW-NN

CBF (♢) 0.39± 0.06 0.41± 0.06 −0.06± 8.73 0.76± 0.24 0.88± 0.17 0.63± 0.42
TWO PATTERNS (♢) 0.26± 0.06 0.31± 0.07 −1.85± 18.31 0.47± 0.26 0.58± 0.30 0.40± 0.37
TWO PATTERNS MOD (♢) 0.32± 0.08 0.32± 0.08 0.14± 8.73 0.80± 0.23 0.85± 0.21 0.64± 0.43
SYNTHETIC CONTROL (♢) 0.84± 0.03 0.91± 0.03 0.98± 8.10 0.82± 0.17 0.88± 0.11 0.30± 0.15
RATIONAL (♢) 0.90± 0.04 0.90± 0.04 3.72± 4.07 0.53± 0.28 0.57± 0.28 0.46± 0.24
FACES UCR 0.67± 0.02 0.80± 0.02 0.43± 13.34 0.39± 0.20 0.45± 0.20 0.20± 0.21
GUN POINT 0.60± 0.09 0.62± 0.09 1.55± 8.24 0.74± 0.14 0.78± 0.12 0.53± 0.15
PLANE 0.96± 0.01 0.97± 0.01 4.08± 5.77 0.73± 0.34 0.87± 0.20 0.47± 0.40
TWO LEAD ECG 0.74± 0.06 0.74± 0.06 1.38± 2.81 0.69± 0.15 0.72± 0.12 0.68± 0.18
WAFER 0.56± 0.08 0.79± 0.09 −1.17± 24.89 0.55± 0.13 0.58± 0.14 0.51± 0.13

250 25

0.00

0.02

0.04

D
is

tri
bu

tio
n

250 25 250 25
Delay

40 0 40 300 30

CBF TP TPMOD WAFER GUNPOINT

0.0

0.5

1.0

Pr
ec

is
io

n

0.0

0.5

1.0

R
ec

al
l

Fig. 7: PED model performance results for CBF, TWO

PATTERNS (TP), TWO PATTERNS MOD (TP MOD), WAFER

and GUN POINT STSC problems. On the top of the fig-

ure, histograms depict the distribution of the detection

delay, where negative (positive) delays indicate the de-

tector has predicted changes before (after) the real oc-

currence. In the lower part, boxplots illustrate the pre-

cision and recall of the PED model as per (17) and (18)

respectively.

When examining these figures in depth, we observe

that PED trained over databases corresponding to Fig-

ure 8 shows delay distributions with lower variance than

those in Figure 7. However, it is important to note that,

given the shape of the patterns within this last group

(see CBF in Figure 9), the limits established for these ex-

amples become unclear for the ODTW/DTW, due to

their elasticity property. Hence, although the predictor

appears to be quite imprecise, such an inaccuracy does

not alter the main structure of the patterns, as will be

300 30

0.00

0.02

0.04
D

is
tri

bu
tio

n

250 25 250 25
Delay

200 20 50 0 50

FACESUCR RATIONAL SC TWOLEADECG PLANE

0.0

0.5

1.0

Pr
ec

is
io

n

0.0

0.5

1.0

R
ec

al
l

Fig. 8: PED model performance results for FACES UCR,

RATIONAL, SYNTHETIC CONTROL (SC), TWO LEAD ECG

and PLANE classification problems. Similarly to Figure

7, histograms illustrate the distribution of the delay,

and boxplots the PED model precision and recall.

later supported by the STSC performance results (see

discussion at the end of Section 5.2).

Regarding the precision of PED, boxplots depicted

at the bottom of Figures 7 and 8 illustrate the distribu-

tion of this score for each of the databases. According

to Expression (17), the precision lies between 0 and 1,

where 0 indicates failure, and 1 perfect performance.

In line with the delay results, PED models learnt for

databases in Figure 8 are more precise than those mod-

els in Figure 7.

A summarized overview of these results is given in

Table 6, which numerically exposes the average pre-

cision and delay for each database. We can observe

that except for CBF, TWO PATTERNS, TWO PATTERNS MOD

12 I. Oregi et al

and GUN POINT, the reported results for the consid-

ered benchmark are good in terms of precision. As ar-

gued previously, the limits between consecutive events

in CBF, TWO PATTERNS, TWO PATTERNS MOD and GUN POINT

databases are diffuse for the ODTW/DTW similarity as

per a visual inspection of the events in Figures 9 and

10. Specifically, each black curve in these plots repre-

sents a streaming time series (last five events) of the

Dquery set; vertical dashed lines depict limits between

consecutive events; and red dots indicate changes pre-

dicted by the PED, respectively. Since the boundaries

between events is diffuse in these databases, streaming

frames loose discrimination power, leading to a degra-

dation of the precision and an increase of the delay of

PED for these databases.

5.2 Efficiency of PED for STSC problems

We now proceed by evaluating the efficiency of PED

when combined with a DTW-NN classifier to solve STSC

problems. As stated in Section 4, we use two alternative

NN-based classifiers to compare the performance of our

PED based DTW-NN classifier: (i) gold-standard (GS)

and (ii) the ODTW-based nearest neighbor (ODTW-

NN) procedure. To this end, we define the classification

accuracy for the i-th arriving query stream point of

Squery
k ∈ Dquery as:

ACCk(i) =

{
1 if PL(i) = TL(i),

0 otherwise,
(21)

where PL(i) and TL(i) are the predicted and true label

for the arriving point i, respectively. Accordingly, TL(i)

is the same for all instant i belonging to the same event.

Results corresponding to CBF, RATIONAL and TWO

LEAD ECG STSC problems are displayed at the bottom

of Figure 9 and 10, where each curve shows the per-

formance of PED-NN (green), GS (black) and ODTW-

NN (gray) classifiers. More precisely, such plots display

the accuracy over time averaged over the Kquery = 12

streaming time series in Dquery, namely:

ACC(i) =
1

Kquery

Kquery∑
k=1

ACCk(i), (22)

where ACCk(i) represents the accuracy of the i-th ar-

riving point as per Equation (21).

We focus on the results obtained for CBF STSC prob-

lem (Figure 9a) due to its simplicity and straightfor-

ward interpretation. For this problem, we observe that

both PED-NN and GS render similar average accuracy

results, especially in the middle of every event. On the

contrary, at the beginning/end of the event the pre-

dictions issued by the PED-NN model degrade, getting

closer to those corresponding to the ODTW-NN ap-

proach. Indeed, if we pay attention to the outputs of

PED (red dots), we observe that such predictions have

an ample variability, which implies that the similarity

is reset in the PED-NN model sooner/later than ex-

pected. As a result, the accuracy decreases around the

true limits of the event.

For the sake of brevity, we have only described in de-

tail the evolution of ACC(i) over time for CBF, RATIONAL

and TWO LEAD ECG representative experiments. The de-

tailed results for the remaining databases are depicted

in Figures 9 and 10. According to the division made

in the previous section, we have grouped in Figure 9

the databases with diffuse event changes (e.g., CBF).

On the other hand, results in Figure 10 correspond to

databases with well-delimited event changes, such as

RATIONAL and TWO LEAD ECG problems.

Averaged results obtained from all the STSC exper-

iments are summarized in Table 6. For each approach

in the benchmark (PED-NN, GS and ODTW-NN), the

last three columns show the ACC(i) results averaged for

all data points arriving over the simulated period. As

can be concluded from these results, both PED-NN and

GS render similar performance levels in almost all the

conducted experiments, which suggests that decisions

made on predictions of the PED model do not affect the

structure of the events composing the streaming time

series. Moreover, if we compare the results of PED-NN

and ODTW-NN classifiers, we can see that the former

leads to better results. Hence, our proposed PED not

only permits to efficiently adapt the NN classifier to

upcoming events without disturbing any essential rela-

tionship among consecutive data points, but also yields

more accurate results as it incorporates DTW (which

uses information of the full event) instead of ODTW

(which forgets information of the past as it moves for-

ward in the event).

On a closing note, these results are conclusive in

regards to the convenience of active adaptation strate-

gies for streaming time series classification in contrast

to passive adaptation methods such as the ODTW pro-

posed in [17]. Furthermore, they emphasize the rich in-

formation about the stream dynamics contained in the

measurement matrix. The use of this information has

spanned several research lines that are outlined in the

next section.

6 Conclusions and Future Work

In this work we have proposed to exploit the infor-

mation embedded in streaming frames (namely, par-

tial similarity measurements among all sub-sequences

of streaming time series) towards identifying the change

Active Adaptation Strategy for Streaming Time Series Classification 13

(a) CBF

5500 5600 5700 5800 5900 6000
Time

0.0

0.5

1.0

A
C

C
(i

)

(b) TWO PATTERNS

7500 7600 7700 7800 7900 8000
Time

0.0

0.5

1.0

A
C

C
(i

)
(c) TWO PATTERNS MOD

3500 3600 3700 3800 3900 4000
Time

0.0

0.5

1.0

A
C

C
(i

)

(d) WAFER

5400 5500 5600 5700 5800 5900 6000
Time

0.0

0.5

1.0

A
C

C
(i

)

(e) GUN POINT

5300 5400 5500 5600 5700 5800 5900 6000
Time

0.0

0.5

1.0

A
C

C
(i

)

Fig. 9: Results of the PED model in terms of event change predictions (top) and classification accuracy of the

PED-NN model over STSC problems (bottom) for (a) CBF, (b) TWO PATTERNS, (c) TWO PATTERNS MOD, (d) WAFER

and (e) GUN POINT problems. On the top, black curves depict the last 5 events of each streaming time series

in Dtest, black vertical lines depict event changes and red dots PED model change predictions. On the bottom,

black, grey and green curves illustrate average accuracy scores ACC along the last 5 events of test streams for GS,

ODTW-NN and PED-NN classifiers, respectively.

between consecutive events in streaming time series.

Our motivation for this purpose is to adapt DTW-NN

models to such changes by leveraging the identifica-

tion of such event changes. To this end, we have pro-

posed PED, a model that categorizes streaming frames

over time into event change or no event change classes.

When a change is detected, a DTW-NN can adapt to

the upcoming event by resetting the computation of

the DTW on which it relies to predict the class of the

arriving stream data.

A benchmark comprising 10 streaming time series

classification databases has been designed to assess the

performance of the proposed model. Specifically, we

have compared it to that of i) the passive adaptation

mechanism proposed in [17], and ii) a GS DTW-NN

scheme that assumes perfect a priori knowledge of the

instants at which event transitions occur to reset the

DTW computation. The reported results of PED in

terms of delay and false alarms have provided empiri-

cal insights on the utility of the proposed method when

combined with DTW-based NN classifiers. In partic-

ular, classifiers endowed with the proposed PED and

a GS detector have been found to behave similarly in

terms of predictive performance, which ultimately but-

tress the suitability of streaming frames to detect event

changes.

Several research directions rooted in this work are

planned for the future aimed at investigating further

uses of the information contained in streaming frames,

including clustering and early classification formulated

over streaming time series. Moreover, alternative deep

neural network architectures can also be studied to de-

14 I. Oregi et al

(a) FACES UCR

36100 36200 36300 36400 36500 36600
Time

0.0

0.5

1.0

A
C

C
(i

)

(b) RATIONAL

7500 7600 7700 7800 7900 8000
Time

0.0

0.5

1.0

A
C

C
(i

)

(c) SYNTHETIC CONTROL

11500 11600 11700 11800 11900 12000
Time

0.0

0.5

1.0

A
C

C
(i

)

(d) TWO LEAD ECG

2900 3000 3100 3200
Time

0.0

0.5

1.0

A
C

C
(i

)

(e) PLANE

19500 19600 19700 19800 19900 20000 20100
Time

0.0

0.5

1.0

A
C

C
(i

)

Fig. 10: PED model change predictions (top) and average accuracy of the PED-NN model (bottom) for (a) FACES

UCR, (b) RATIONAL, (c) SYNTHETIC CONTROL, (d) TWO LEAD ECG and (e) PLANE STSC problems.

crease the variability of predicted event changes. Fi-

nally, given the potential of streaming frames to detect

changes between events, further efforts will be invested

towards examining whether streaming frames by them-

selves can discriminate among labels in streaming time

series classification, without requiring any additional

classifier.

Acknowledgements This research work has been supported
by the Basque Government through the EMAITEK and ELKA-
RTEK funding programs (3KIA, ref. KK-2020/00049), as well
as by the Consolidated Research Group MATHMODE (IT1294-
19) granted by the Department of Education of this insti-
tution. A. Pérez and J. A. Lozano are supported by the
Basque Government through the BERC 2018-2021 program
and by the Spanish Ministry of Economy and Competitive-
ness MINECO through BCAM Severo Ochoa excellence ac-
creditation SEV-2017-0718. A. Pérez also acknowledges fund-
ing support from AEI/FEDER (UE) through project TIN2017-
82626-R. J. A. Lozano is also supported by Spanish Min-

istry of Economy and Competitiveness MINECO through
TIN2016-78365-R.

Author contributions

Conceptualization: I. Oregi, A. Pérez, J. Del Ser; Method-

ology: I. Oregi, A. Pérez; Formal analysis and investi-

gation: I. Oregi, A. Pérez, J. Del Ser; Writing - original

draft preparation: I. Oregi, A. Pérez; Writing - review

and editing: I. Oregi, A. Pérez, J. Del Ser, J. A. Lozano;

Funding acquisition: J. Del Ser, J. A. Lozano; Supervi-

sion: A. Pérez, J. Del Ser.

Conflict of interest

The authors declare no conflict of interest.

Active Adaptation Strategy for Streaming Time Series Classification 15

References

1. Joao Gama. Knowledge discovery from data

streams. CRC Press, 2010.

2. Georg Krempl, Indre Žliobaite, Dariusz Brzeziński,

Eyke Hüllermeier, Mark Last, Vincent Lemaire,

Tino Noack, Ammar Shaker, Sonja Sievi, Myra

Spiliopoulou, et al. Open challenges for data

stream mining research. ACM SIGKDD Explo-

rations Newsletter, 16(1):1–10, 2014.

3. Pedro Pereira Rodrigues, João Gama, and Joao Pe-

droso. Hierarchical clustering of time-series data

streams. IEEE Transactions on Knowledge and

Data Engineering, 20(5):615–627, 2008.

4. Jorge-L Reyes-Ortiz, Luca Oneto, Albert Samà,

Xavier Parra, and Davide Anguita. Transition-

aware human activity recognition using smart-

phones. Neurocomputing, 171:754–767, 2016.

5. Eric L Manibardo, Ibai Laña, Jesus L Lobo, and

Javier Del Ser. New perspectives on the use

of online learning for congestion level prediction

over traffic data. arXiv preprint arXiv:2003.14304,

2020.

6. Ibai Lana, Javier Del Ser, Manuel Velez, and Eleni I

Vlahogianni. Road traffic forecasting: Recent ad-

vances and new challenges. IEEE Intelligent Trans-

portation Systems Magazine, 10(2):93–109, 2018.

7. Anthony Bagnall, Jason Lines, Aaron Bostrom,

James Large, and Eamonn Keogh. The great time

series classification bake off: a review and experi-

mental evaluation of recent algorithmic advances.

Data Mining and Knowledge Discovery, 31(3):606–

660, 2017.

8. Leandro L Minku, Allan P White, and Xin Yao.

The impact of diversity on online ensemble learning

in the presence of concept drift. IEEE Transactions

on knowledge and Data Engineering, 22(5):730–

742, 2009.

9. Zoltán Bankó and János Abonyi. Correlation based

dynamic time warping of multivariate time series.

Expert Systems with Applications, 39(17):12814 –

12823, 2012.

10. Charlotte Pelletier, Geoffrey I Webb, and François

Petitjean. Temporal convolutional neural network

for the classification of satellite image time series.

Remote Sensing, 11(5):523, 2019.

11. Mahtab J Fard, Abhilash K Pandya, Ratna B Chin-

nam, Michael D Klein, and R Darin Ellis. Distance-

based time series classification approach for task

recognition with application in surgical robot au-

tonomy. The International Journal of Medical

Robotics and Computer Assisted Surgery, 13(3),

2017.

12. João Gama, Indrė Žliobaitė, Albert Bifet, Mykola

Pechenizkiy, and Abdelhamid Bouchachia. A sur-

vey on concept drift adaptation. ACM computing

surveys (CSUR), 46(4):1–37, 2014.

13. Izaskun Oregi, Aritz Pérez, Javier Del Ser, and

José A Lozano. On-line dynamic time warping for

streaming time series. In Joint European Confer-

ence on Machine Learning and Knowledge Discov-

ery in Databases, pages 591–605. Springer, Cham,

2017.

14. Gregory Ditzler, Manuel Roveri, Cesare Alippi, and

Robi Polikar. Learning in nonstationary environ-

ments: A survey. IEEE Computational Intelligence

Magazine, 10(4):12–25, 2015.

15. Rodolfo C Cavalcante, Leandro L Minku, and Adri-

ano LI Oliveira. Fedd: Feature extraction for ex-

plicit concept drift detection in time series. In Neu-

ral Networks (IJCNN), 2016 International Joint

Conference on, pages 740–747. IEEE, 2016.

16. Samaneh Aminikhanghahi and Diane J Cook. A

survey of methods for time series change point

detection. Knowledge and information systems,

51(2):339–367, 2017.

17. Izaskun Oregi, Aritz Pérez, Javier Del Ser, and

Jose A Lozano. On-line elastic similarity measures

for time series. Pattern Recognition, 88:506–517,

2019.

18. Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar,

Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh

Gharghabi, Chotirat Ann Ratanamahatana,

Yanping, Bing Hu, Nurjahan Begum, An-

thony Bagnall, Abdullah Mueen, and Gustavo

Batista. The ucr time series classification archive,

2018. https://www.cs.ucr.edu/~eamonn/time_

series_data_2018/.

19. Zhengzheng Xing, Jian Pei, and Eamonn Keogh. A

brief survey on sequence classification. ACM Sigkdd

Explorations Newsletter, 12(1):40–48, 2010.

20. Amaia Abanda, Usue Mori, and Jose A Lozano. A

review on distance based time series classification.

Data Mining and Knowledge Discovery, 33(2):378–

412, 2019.

21. Tomasz Górecki and Maciej Luczak. Multivariate

time series classification with parametric derivative

dynamic time warping. Expert Systems with Appli-

cations, 42(5):2305–2312, 2015.

22. François Petitjean, Alain Ketterlin, and Pierre

Gançarski. A global averaging method for dynamic

time warping, with applications to clustering. Pat-

tern Recognition, 44(3):678–693, 2011.

23. Donald J Berndt and James Clifford. Using dy-

namic time warping to find patterns in time se-

ries. In Workshop on Knowledge Discovery in

16 I. Oregi et al

Databases, pages 359–370. Seattle, WA, 1994.

24. Richard E Bellman and Stuart E Dreyfus. Applied

dynamic programming. Princeton university press,

2015.

25. Feng Zhou, Fernando De la Torre, and Jessica K

Hodgins. Hierarchical aligned cluster analysis for

temporal clustering of human motion. IEEE Trans-

actions on Pattern Analysis and Machine Intelli-

gence, 35(3):582–596, 2013.

26. Ian Goodfellow, Yoshua Bengio, Aaron Courville,

and Yoshua Bengio. Deep learning, volume 1. MIT

Press Cambridge, 2016.

27. Bartosz Krawczyk. Learning from imbalanced data:

open challenges and future directions. Progress in

Artificial Intelligence, 5(4):221–232, 2016.

28. Usue Mori, Alexander Mendiburu, and Jose A

Lozano. Similarity measure selection for cluster-

ing time series databases. IEEE Transactions on

Knowledge and Data Engineering, 28(1):181–195,

2015.

