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Summary 
In this paper we describe portfolio selection models using Lévy 
processes. The contribution consists in comparing some portfolio 
selection strategies under different distributional assumptions. We 
first implement portfolio models under the hypothesis the log-
returns follow a particular process with independent and 
stationary increments. Then we compare the ex-post final wealth 
of optimal portfolio selection models with subordinated Lévy 
processes when limited short sales and transaction costs are 
allowed. 
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1. Introduction 

The portfolio selection problem finds its origin with De 
Finetti and Markowitz’ studies (see Markowitz (1987), 
Pressacco and Serafini (2007) and the references therein) 
that suggested to describe optimal portfolios as function of 
their mean and variance. Mean-variance analysis is fully 
justified under the assumption that the asset returns are 
elliptically distributed. Elliptical distributions are 
particular symmetric distributions that generalize the 
Gaussian one. However, the sample data often displays a 
certain level of skewness and, moreover, their 
distributions present fatter tails than the Gaussian one. In 
order to avoid misspecifications several alternative 
distributional assumptions have been proposed to describe 
the asset price evolution. Subordinated Brownian motions 
are stochastic processes whose distribution at a fixed time 
is able to own a skewness different from zero and a 
kurtosis bigger than three. These features make 
subordinated Brownian motions good substitutes to the 
normality assumption.  
In this paper, we model the returns as a multidimensional 
time-changed Brownian motion where the subordinator 
follows either an Inverse Gaussian process or a Gamma 
process. The dependence structure implied by these 
distributional hypotheses gives more possibility to joint 
extreme events. In this framework it is possible to take 
into account the jumps often observed in the stock prices 
that could imply large  losses  for  the  investors.   Under  

these  different distributional hypotheses we discuss static 
and dynamic portfolio selection models in a mean-risk 
framework. In particular, we compare these models with 
the assumption that the log-returns follow a Brownian 
motion. We evaluate the distributional hypotheses by the 
point of view of several typologies of investors: investors 
with exponential utility functions, investors that maximize 
the mean-Value at Risk ratio, investors that recalibrate 
periodically their portfolios.  
In Section 2, we discuss the different distributional 
hypotheses and we compare them by the point of view of 
investors with exponential utility function. In Section 3 we 
analyze multivariate subordinated Lévy processes and we 
propose an ex-post comparison of optimal portfolios in a 
mean-Value at Risk framework. Section 4, deals and 
compares dynamic portfolio strategies. Finally, we briefly 
summarize the results in Section 5.  

2. A first empirical comparison among 
portfolio selection models based on 
different Lévy processes 

In this section, we compare the optimal portfolio 
composition under different distributional hypotheses. In 
particular, we consider Lévy processes with semi heavy 
tails. Thus, this analysis differs from other studies that 
assume Lévy processes with very heavy tails (see Rachev 
and Mittnik (2000), Ortobelli et al. (2004)). For sake of 
completeness, we recall some basic notions on Lévy 
processes. Lévy processes are all processes with stationary 
and independent increments with stochastically continuous  
paths. Typical examples are the Normal Inverse Gaussian  
process (NIG) and the Variance-Gamma one (VG). Many 
Lévy processes are often seen as subordinated Brownian 
motions where the subordinator is a Lévy process whose 
paths are almost surely non-decreasing. The NIG process 
and the VG process can be seen as subordinated Lévy 
processes where the subordinators are respectively the 
Inverse Gaussian process and the Gamma process.  
Inverse Gaussian: An Inverse Gaussian process 

{ }( ) ( )

0

IG IG
t t

X X
≥

=  assumes that any random variable 
( )IG
tX  admits the following density function: 
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that is defined as Inverse Gaussian distribution ( , )IG ta b  
where a, b are positive. 
Gamma: A Gamma process { }( ) ( )

0

Gamma Gamma
t t

X X
≥

=  

admits the Gamma distribution ( , )Gamma ta b  where a, b 
are positive. The density function of the ( , )Gamma a b  law 
is given by  

1
[ 0]( ; , ) exp( )1

( )

a
a

Gamma x
bf x a b x xb

a
−

>= −
Γ
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Normal Inverse Gaussian: Subordinating the Brownian 
motion with an Inverse Gaussian process we obtain a 
Normal Inverse Gaussian process ( , , )NIG α β δ , with 
parameters 0α > ,  ( , )β α α∈ −   and  0δ > , that is  

( ) 2
t

NIG
t t IX I Wβδ δ= +  

where tI  is an IG process with parameters 1a = , 
2 2b δ α β= −  and tW  is a standard Brownian motion. 

The density of ( )NIG
tX  is given by:  

( ; , , )NIGf x tα β δ =  

( )
2 2

2 2 1

2 2

( ( ) )( ) exp ( ) ,
( )

t xt t x
t x

α δα δ δ α β β
π δ

+
= − +

+

K
 (1) 

where ( )xλK  denotes the modified Bessel function of the 
third kind with index λ  (see, among others, Abramowitz  
and Stegun (1968)).  
Variance Gamma: Subordinating the Brownian motion 
with a Gamma process we obtain a Variance-Gamma 
process, ( , , )VG μ σ ν  with parameters  0σ > , 0ν >  and  

Rμ ∈ , that  is  
( ) ,

t

VG
t t GX G Wμ σ= +  

where tG  is a Gamma process with parameters 1/a ν=  
and 1/b ν= . The Variance-Gamma process can be also 
defined as the difference between two independent 
Gamma processes. The density of ( )VG

tX is given by:  

( ; , , / )VGf x t t tμ σ ν =  

( )
1

2 422
2 2

1
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t

μ
ν

σ

ν
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ν
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σν πσ ν

−

+

−

⎛ ⎞= +⎜ ⎟Γ ⎝ ⎠
K ,   (2) 

where  1
2
( )t x

ν −
K  is the modified Bessel function of the 

third kind with index 1
2

t
ν − . 

In portfolio theory, it has been widely used a standard 
Brownian Motion to model the log-return distribution 

{ }( ) ( )

0

BM BM
t t

X X
≥

= . Under this assumption the log-return 

at time t is normal distributed with mean tμ  and standard 

deviation tσ  (i.e., ( )( ) 2,BM
tX N t tμ σ ). In the next 

subsection we compare optimal portfolio strategies 
obtained under NIG and VG processes.  

2.1 A first empirical comparison  

Let us consider the problem to select an optimal portfolio 
composed by N risky assets with log-returns 

1[ , , ]NX X ′=X K  and one risky-free asset with log-return 

fr . Let 1[ , , ]Nw w=w K  be the vector of the weights 
invested in the risky assets and assume that no short sales 
are allowed (i.e., 0iw ≥ ). In the classical mean-variance 
analysis, investors choose a portfolio that is the convex 
combination between market portfolio and riskless one. 
The weights of the market portfolio Mw  are given by the 
solution of the following optimization problem: 

1

( )
max

'
. .

1; 0; 1,...,

f

N
i ii

E r

w w i N
=

−

= ≥ =∑

w

wX
wQw

st ,        (3) 

where Q is the definite positive variance-covariance 
matrix of the log-return vector X. Now, let us suppose the 
investors’ exponential utility function is: 

1( ) 1 expu x a x
a

⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

,            (4) 

where “a” is their risk tolerance parameter. In order to 
value the impact of different distributional hypotheses in 
the portfolio composition, we compute the optimal 
portfolio that maximizes investor’s expected utility when 
the market portfolio follows a particular subordinated 
Levy process. That is, we compute the riskless weight λ  
that maximizes  

( ( (1 ) ))f ME u rλ λ+ − w X ,             (5) 

when the market portfolio Mw X  follows or a Brownian 
Motion (BM), or a Variance-Gamma process (VG) or a 
Normal Inverse Gaussian process (NIG). Observe that the 
analytical value of the expression (5) for the exponential 
utility function can be easily found using the Laplace 
transform of the respective distributions (see, among 
others, Cont and Tankov (2004)). 
In this first empirical comparison, we consider daily 
returns from 04/10/1992 to 01/01/2002 on 10 risky US 
indexes: DJTM United States Automoniles, DJTM United 
States Oil & Gas, DJTM United States Basic Resource, 
Dow Jones Industrials, Dow Jones Utilities, Nasdaq 
Industrials, NYSE Composite, S&P100, S&P500, S&P900. 
We assume as riskless asset the Treasury Bill 3-mounth 
rf=1.61% a.r. on 01/01/2002. Thus, first we determine the 
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market portfolio solving the optimization problem (3) and 
then we estimate the parameters of the market portfolios 
maximizing the likelihood function (MLE) under the three 
distributional hypotheses.  

In Table 1 we report the maximum likelihood estimates 
(MLE) of the market portfolio parameters supposing that it 
follows or a Normal Inverse Gaussian process or a 
Variance-Gamma process, or a Brownian Motion. Since 
we assume the investor’s temporal horizon is three months, 
the distributional parameters are on three months basis. 
Secondly, we maximize the expected utility of the final 
wealth assuming in the utility function (4) three possible 
risk tolerance parameters: 0.1; 0.15; 0.2. 

Table 2 shows the quote invested in the riskless, the 
maximum expected utility, and the ex-post final wealth 
after one year on date 01/01/2003 under the three different 
distributional hypotheses. From this table we observe that 

the NIG and VG processes take much more into account 
the possible losses. As a matter of fact, the quote invested 
in the riskless is always higher than that one computed for 
the Brownian Motion. Moreover even the computed 
maximum expected utility is higher for the NIG and VG 
processes that implicitly underscores the better 
performances of the other two processes. These processes 
are more conservative with respect to the Brownian 
Motion as confirmed by the ex-post final wealth of Table 
2. As a matter of fact, during the 2002, year with very big 
losses on the US market, we observe a higher final wealth 
under the NIG and VG processes. 

3. Portfolio Selection with Multivariate 
Subordinated Lévy Processes  

In this section, we first discuss the extension of optimal 
selection problem to multivariate Lévy processes. Then we 
assess the different distributional approaches and we 
compare their effects with respect to the portfolio selection 
problem.  
The multivariate Lévy processes distributions are obtained 
as a logical extension of univariate ones. So, for example, 
the d-dimensional Multivariate Normal Inverse Gaussian 
(MNIG) process with parameters , 0,δ α >  dR∈β,μ and 

2dR∈Q  valued at time t can be constructed from: 

t t tt I I+ + 1/2X = μ Qβ Q Y , 
where the intrinsic time Inverse Gaussian process tI  is 

distributed as ( )2,IG tδ α −β'Qβ , Y  is a standard d-

dimensional Gaussian ( )dN 0,I  independent of tI  and 
then conditional distribution of vector /t tIX is 

( ),d t tN t I I+μ Qβ Q  (see Barndorff-Nielsen (1977)). Thus 
the d-dimensional vector tX  admits density probability 
function: 

( ) ( )

1
2

/ 1
2

1
2

( ) ( / ) ( )
( )

2
( ) exp ( )

t t t t
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I I d
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where ( ) ( )2 1( ) ( ) ' ( )q t t tδ −= +x x - μ Q x - μ  and 

( )2( ) '( ) 'p t tδ α= + −x β x -μ β Qβ .  

Similarly, we can define the multivariate Variance-
Gamma process. However, generally there exist many 
problems in the maximum likelihood estimation of 
multivariate Lévy process parameters, in particular when 
we assume a large number of assets (see, among others, 
Hanssen and Øigård (2001), Bølviken and Benth (2000)). 

Table 1: MLE parameters of three months 
market portfolio returns assuming or a 
Variance-Gamma process or a Normal 
Inverse Gaussian process, or a Brownian 
Motion. 

 

VG μ =0.0196 σ =0.0637 ν =0.0142

NIG α =107.2398 β =4.7419 δ =0.4426

BM μ =0.0196 σ =0.0646  

Table 2: Quotes invested in the riskless asset, 
maximum expected utility and ex-post final wealth 
under the assumption that the three months market 
portfolio follows or a Normal Inverse Gaussian 
process, or a Brownian Motion, or a Variance-
Gamma process.  

a=0.10 NIG BM VG 
Weight on the 

riskless 
0.565 

 
0.5241 

 
0.5579 

 
Expected 

utility 
0.0997 

 
0.098 

 
0.0997 

 

Final wealth 0.926304 0.917861 0.924838 

a=0.15 NIG BM VG 
Weight on the 

riskless 
0.3475 

 
0.2862 

 
0.3369 

 
Expected 

utility 
0.1494 

 
0.1468 

 
0.1494 

 

Final wealth 0.881405 0.868751 0.879217 

a=0.20 NIG BM VG 
Weight on the 

riskless 
0.1301 

 
0.0483 

 
0.1158 

 
Expected 

utility 
0.1982 

 
0.1948 

 
0.1982 

 

Final wealth 0.836528 0.819642 0.833576 
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For this reason we estimate the parameters of marginal 
distributions separately by the correlation matrix. Doing so 
we assume that every couple of subordinated components 
follows a joint bivariate subordinated process. Suppose 
that in the market the vector of risky assets has log-returns 

(1) ( )[ ,..., ]'N
t t tX X=X  distributed as:  

( )N

tt t ZZ W+ 1/2X = μ Q ,                     (6) 

where 1 2[ , , , ] 'Nμ μ μ=μ K , tZ  is the positive Lévy 

process subordinator, 2
ijσ⎡ ⎤= ⎣ ⎦Q  is a fixed definite positive 

variance-covariance matrix (i.e., 2
ij ii jj ijσ σ σ ρ=  where ijρ  

is the correlation between the conditional i-th component 
of /t tZX  and its conditional j-th component) and ( )N

tW  is 
a N-dimensional standard Brownian motion (i.e., 

( )N

tZ tW Z=1/2 1/2Q Q Y  where Y  is a standard N-

dimensional Gaussian independent of tZ ). Under the 
above distributional hypotheses we approximate the log-
return of the portfolio with the portfolio of log-returns, 
that is the convex combination of the log-returns: 

( ) ( ) ,
t

w
t t t ZX Z W′= = +wX wμ wQw        (7) 

where tW  is a 1-dimensional standard Brownian motion. 
At this point we will assume, as for the univariate case, 
that the subordinator tZ  is modeled either as an Inverse 
Gaussian process 1 (1, )Z bIG  or as a Gamma process 

( )1 1
1 ,Z ν νG .  

NIG Processes. When tZ  follows an Inverse Gaussian 
process  (1, )bIG  , then, the i-th log-return  follows a NIG 
process ( , , )i i iα β δNIG  where the parameters are given 

by: 2 2( / )i i ibα δ β= + , 2/i i iβ μ δ=  and i iiδ σ= . Thus, 
the portfolio (7) follows a ( , , )w w wα β δNIG  process 
whose parameters are:  

( )2 2 , ,
w

b
w w w wδα β β δ′ ′= + = =wμ

wQw wQw . 

Mean, variance, and Fisher-Pearson skewness and kurtosis 
parameters of the portfolio ( )w

tX  are, respectively,  

( )( ) 2 2/w
t w w w wE X tδ β α β= − , 

( ) ( ) 3/ 2( ) 2 2 2w
t w w w wX tα δ α β

−
= −Variance , 

( )
( )( )

( )( )
( )

3( ) ( )
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−

Sk
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2 2
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2 2 2 22( ) ( )
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3 1
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w w
t t

w w w
t

w w
w w w wt t

E X E X
X

tE X E X

α β

δ α α β

− ⎛ ⎞+⎜ ⎟= = +
⎜ ⎟−− ⎝ ⎠

Ku .  

In order to estimate all these parameters, we estimate the 

parameters ( , , )i i iα β δ  for each asset maximizing the log-
likelihood function  

( )1( , , ) log ( ; , , )n
ki i i NIG k i i iL f yα β δ α β δ== ∑ , i=1,…,N, 

where NIGf  is the density of NIG process given by (1), ky  
is the k-th observation of i-th asset, and n is the sample 
size. Given the set of parameters 1{( , , )}N

i i i iα β δ = , we 

compute the values 2 2
i i i ib δ α β= −  and we take its 

empirical mean as estimate of the parameter 1
1

ˆ N
i iNb b== ∑ . 

Given b̂ , we estimate again ( , , )i i iα β δ  for each asset 
maximizing the log-likelihood function ( , , )i i iL α β δ  

subject to 2 2 ˆ
i i i bδ α β− = . Thus, we consider a 

multivariate NIG process where we have not a unique 
value α  for all the components of the vector (in this sense 
we get a generalization of the classic MNIG process). 
Since i iiδ σ=  then we have to estimate the correlation 
matrix of the conditional Gaussian vector /t tZX . Observe 
that the joint density function of the i-th and j-th assets is 
given by  

( )
0

( , ; , , , , ) , ; , ( ;1, ) ,i j i j
ij i i j j ij NIGf y y f y y f u b duβ δ β δ ρ η

∞
= Σ∫ 2N IG  
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Fig. 1. QQ-plots versus NIG and Gaussian approximation of 
Down Jones Composite 65. 
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where fIG  is the density function of the Inverse Gaussian 

distribution with parameters  1a = , b̂  and f
2N  is the joint 

density function of the 2-dimensional Gaussian 
distribution with mean ( )2 2,i i j ju uη β δ β δ=  and covariance 

matrix  
2

2
i i j ij

NIG
i j ij j

u u
u u

δ δ δ ρ
δ δ ρ δ
⎡ ⎤

Σ = ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Therefore, for each couple ( , )i j  of assets we estimate ijρ  
maximizing the log-likelihood function 

( )
1

( ) log ( , ; , , , , )
n

i j
ij ij k k i i j j ij

k

L f y yρ β δ β δ ρ
=

= ∑ . 

Next we estimate all parameters of  the NIG model using 
the daily returns of five indexes (Down Jones Composite 
65 (DJC65), Down Jones Industrials (DJI), Down Jones 
Utilities (DJU), S&P 500 Composite and S&P 100) 
observed during the period 04/10/1992 - 12/31/2005. 

 
The lower part of Table 3 shows the estimate of the 
correlation matrix. The upper part of Table 3 reports the 
estimates of the parameters ( , , )i i iα β δ  and the common 
parameter b. While the last column exhibits the 
Kolomogorov-Smirnov distance sup | ( ) ( ) |n n

x
D F x F x

−∞< <∞
= −NIG .  

From Kolmogorov-Smirnov test we deduce that the NIG 
distributional assumption presents a relevant improvement 
with respect to the normality that is 0.4nD  for all assets. 
This result is confirmed by Figure 1 that displays QQplots 
of Down Jones Composite 65 sample data versus NIG and 
Gaussian distributions. From this analysis we deduce that 
the NIG distribution describes better the sample data than 
the Gaussian one in particular on the tails.  
Variance-Gamma Processes. When tZ  follows a 

Gamma process (i.e., at time t=1 ( )1 1
1 ,Z ν νG ), then the 

log-return of the i-th asset follows a Variance-Gamma 
process with parameters iμ , iiσ  and ν , (i.e., 

( )
1 ( , , )i

i iX μ σ νVG ). Analogously, the portfolio (7) 
follows a Variance-Gamma process with parameters 

wμ = wμ , wσ ′= wQw  and ν . Thus, mean, variance, 
skewness and kurtosis of the portfolio ( )w

tX  are given by:  

( )( )w
t wE X tμ= , 

( )( ) 2 2w
t w wX t tσ νμ= +Variance ,  

( ) ( ) ( )( ) 2 2 2 2 3/ 23 2 / ( )w
t w w w w wX tμ ν σ νμ σ νμ= + +Sk , 

( ) ( )( )( ) 4 2 2 23 1 2 / / ( )w
t w w wX t tν νσ σ νμ= + − +Ku . 

As for the NIG process, in order to estimate all these 
parameters, we estimate the parameters ( , , )i ii iμ σ ν  for 
each asset maximizing the log-likelihood function  

( )1( , , ) log ( ; , , )n
ki ii i VG k i ii iL f yμ σ ν μ σ ν== ∑ ,  i=1,…,N, 

where VGf  is the density of Variance-Gamma process 
given by (2), ky  is the k-th observation of i-th asset, and n 
is the sample dimension. Given the set of estimates 

1ˆ늿{( , , )}N
i i i iμ σ ν =  we take as estimate of ν  its mean 

1
1늿 N

iNν ν= ∑ . Then, for each asset we estimate the 
parameters ˆiμ  and ˆiσ  maximizing the log-likelihood  

( )1 ˆ( , ) log ( ; , , )n
ki i k i iL f yμ σ μ σ ν== ∑ VG . Finally, for each 

couple ( , )i j  of assets, we estimate the correlation 
coefficient ijρ  maximizing the log-likelihood function: 

( )
1

( ) log ( , ; , , , , )
n

i j
ij ij k k i ii j jj ij

k

L f y yρ μ σ μ σ ρ
=

= ∑ , 

where 

Table 4: Maximum Likelihood Estimates on daily basis 
under the VG model. 

  μ σ v Dn   

DJC65 0.000321 0.009261 0.96608 0.0318   

DJI 0.000334 0.009819 0.96608 0.0308   

DJU 0.000192 0.010054 0.96608 0.0401   

S&P500 0.000314 0.009937 0.96608 0.0331   

S&P100 0.00031 0.010399 0.96608 0.032   

  DJC65 DJI DJU S&P500 S&P100

DJC65 1 0.9434 0.606 0.9079 0.8911

DJI 0.9434 1 0.4824 0.9371 0.9374

DJU 0.606 0.4824 1 0.5068 0.4725

S&P500 0.9079 0.9371 0.5068 1 0.9868

S&P100 0.8911 0.9374 0.4725 0.9868 1 

Table 3: Maximum Likelihood Estimates on daily 
basis under the NIG model.  

  α β δ  b  Dn 
DJC65 86.4431 3.61882 0.0077 0.66503 0.0337

DJI 81.8854 3.3581 0.008128 0.66503 0.0325

DJU 80.5076 1.85824 0.008263 0.66503 0.0424

S&P500  81.2785 3.1116 0.008188 0.66503 0.032

S&P100 77.6941 2.77099 0.008565 0.66503 0.0338

  DJC65  DJI  DJU S&P500  &P100

DJC65  1 0.9416 0.6061 0.9077 0.8907

DJI  0.9416 1 0.4858 0.9366 0.9373

DJU  0.6061 0.4858 1 0.5136 0.4804

S&P500 0.9077 0.9366 0.5136 1 0.9864

S&P100  0.8907 0.9373 0.4804 0.9864 1 
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( )
0

( , ; , , , , )

, ; , ( ;1/ ,1/ ) ,

i j
ij i i j j ij

i j
VG

f y y

f y y f u du

μ σ μ σ ρ

θ ν ν
∞

=

= Σ∫ 2N G

 

fG  is the density function of the Gamma distribution with 
parameters  ˆ1/a b ν= =  and f

2N  is the density function of 

the 2-dimensional normal distribution with mean  
( ),i ju uθ μ μ=   and covariance matrix  

2

2
ii ii jj ij

VG
ii jj ij jj

u u
u u

σ σ σ ρ
σ σ ρ σ
⎡ ⎤

Σ = ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Next we estimate all parameters of the VG model using 
the same daily returns previously introduced. The upper 
part of Table 4 exhibits the estimates (on daily basis) of 
the parameters ( , , )i iiμ σ ν . The last column shows the 
Kolmogorov-Smirnov distances, which are quite similar to 
those of the NIG model. The lower part of Table 4 shows 
the estimate of the correlation matrix. Figure 2 displays 
QQplot Variance-Gamma distribution of Down Jones 
Composite 65 sample data that can be compared with 
analogous Gaussian QQplot of Figure 1. Thus, even the 
Variance-Gamma process provides a better distributional 
approximation with respect to the Brownian Motion since 
it takes into account heavier tails. 

3.1 Ex-post comparison among optimal portfolios 
obtained under different Lévy processes  

Consider the problem to select a portfolio among the 
previous five indexes (Down Jones Composite 65, Down 
Jones Industrials, Down Jones Utilities, S&P 500 
Composite and S&P 100) assuming that the investor has a 
temporal horizon equal to one month. Suppose the 
investor decides to invest his money (1000 USD – his 
initial wealth), in the portfolio that maximizes the mean-
Value at Risk ratio (see Favre and Galeano (2002), 
Biglova et al. (2004)): 

( )( )
21

( )
0.01 21( )

w
f

w
f

E X r

X r

−

−VaR
, 

where 0.3884%fr =  is the 1-month log-return of LIBOR 

on 12/31/2005, ( )
21

wX  is the portfolio of monthly log-
returns (i.e., ( )w

tX valued at time 21t =  days), and the 
Value at Risk 0.01VaR of continuous random variable 

( )
21
w

fX r− , is the opposite of the 1% quantile. We assume no 
short sales are allowed, that is 0iw ≥ , 1, ,5i = K , and 

5
1 1i iw= =∑ . Thus, we remark that the problem is well 

posed, since VaR0.01 of every portfolio is positive. In order 
to take into account skewness (generally different from 
zero) and kurtosis we approximate ( )( )

0.01 21
w

fX r−VaR  

with the Iaquinta et al.’s approximation (see Iaquinta et al. 
(2007)). Therefore,  

( ) ( ) ( )( )( ) ( ) ( )
0.01 21 21 21

w w w
f w fX r E X h X r− =− + −VaR Variance ,(8) 

where  
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and 0.99p  is the 99% quantile of the standard normal 
distribution. We add in passing that one could estimate 

0.01VaR  using the Cornish-Fisher expansion (as suggested 
by Favre and Galeano (2002)), in this case wh  is given 
by: 

( ) ( )

( ) ( )( )

2 ( )
0.01 0.01 21

3 ( )
0.01 0.01 21

1 1
6

1 3 3 ,
24

w
w

w

h p p X

p p X

= + − ⋅ +

+ − ⋅ −

Sk

Ku
 

and 0.01p  is the 1% quantile of the standard normal 
distribution. Taking this into account, we solve the 
optimization problem  
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Fig. 2. QQ-plot Variance-Gamma approximation of  
Down Jones Composite 65. 
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( )( )
21

( )
0.01 21

5

1

max
( )

. .

1; 0; 1,...,5

w
f

ww
f

i ii

X r

X r

w w i
=

−

−

= ≥ =∑

E

VaR

st            (9) 

under the three possible distributional assumptions: 
1) Normal Inverse Gaussian ( )

21 ( , , 21 )w
w w wX α β δNIG ; 

2) Variance-Gamma ( )
21 (21 , 21 , / 21)w

w wX vμ σVG ; 
3) Brownian Motion ( ) 2

21 (21 , 21 )w
w wX μ σN , where 

wμ = wμ , wσ ′= wQw . 
As solution of problem (9) we obtain the following 
optimal portfolio weights:  

( ) (0.3265,0.6735,0,0,0)NIG =w ; 

( ) (0.2307,0.7693,0,0,0)VG =w ; 

( ) (0.3189,0.6811,0,0,0)BM =w .

 
The three optimal portfolios are composed by the same 
assets. In particular under BM and NIG distributional 
assumptions the portfolio composition is almost the same. 
While, the VG model presents a significant difference in 
the portfolio composition with respect to the other two 
processes. In order to value the impact of these choices we 
consider an  investor who recalibrates the portfolio every 
month during the year 2006 such that the percentages in 
the portfolio composition remain the same under each 
distributional assumption. 
Table 5 reports the ex-post monthly evolutions of ( )NIGw , 

( )VGw , and ( )BMw  supposing the investor’s initial wealth is 
1000 USD. Observe that there are not significant 
differences among the final wealth obtained with the NIG, 
VG processes and Brownian Motion one. However, both 
alternative processes (NIG, VG) present a better 
performance in different periods of the year, even if 

during the 2006 the market was growing and the asset 
prices haven’t shown big jumps.  

4. A comparison among dynamic portfolio 
strategies 

In this section, we deal the dynamic portfolio selection 
problem among N+1 assets: N are risky assets and the 
(N+1)-th is risk free. As in equation (6) we assume that the 
vector of log-return risky assets follows a Lévy 
subordinated process ( )N

tt t ZZ W+ 1/2X = μ Q . In particular, 
we distinguish between portfolio selection problems with 
unlimited short sales and portfolio selection considering 
some institutional constrains (limited short sales, and 
transaction costs). 

4.1 Optimal portfolio strategies when unlimited short 
sales are allowed  

Suppose an investor has a temporal horizon Tt  and he 
recalibrates its portfolio T times at some intermediate date, 
say 0 1, , Tt t t −= K  (where 0 0t = ). Since Lévy  processes 
have independent and stationary increments the 
distribution of the random vector of log-returns on the 
period 1( , ]j jt t +  (i.e., 

1j jt t+
−X X ) is the same of 

1 1 1

(1) ( )[ ,..., ] '
j j j j j j

N
t t t t t tX X
+ + +− − −=X . Considering that log-returns 

represent a good approximation of returns when 1j jt t+ −  is 

little enough, we assume that ( )10,..., 1
max j jj T

t t+= −
−  is less or 

equal than one month and we use 
1 1, ,: [ ,..., ] '

j j j j jt t t t N tY Y
+

= − =Y X X  to estimate the vector of 

returns on the period 1( , ]j jt t + . Suppose the deterministic 
variable 0, jtr  represents the return on the period 1( , ]j jt t +  

of the risky-free asset, , ji tx  the amount invested at time jt  

in the i-th risky asset, and 0, jtx  the amount invested at 

time jt  in the risky-free asset. Then the investor's wealth 
at time 1kt +  is given by: 

1 1, , , 0,
0 0

W (1 ) (1 )W ,
k k k k k k k k

N N

t i t i t i t t t t t
i i

x x Y r
+ +

= =

= = + = + +∑ ∑ x P (10) 

where 1, ,[ , , ]
k k kt t N tx x=x K , 1, ,[ , , ]

k k kt t N tP P ′=P K  is the 

vector of excess returns  , , 0,k k ki t i t tP Y r= − . Thus, the final 

wealth is given by:  

1

1 2 1

0 0, 0, 1
0 0 1

W W (1 ) (1 )
T k i i k T

T T T

t t t t t t T
k i k i

r r
−

− − −

−
= = = +

= + + + +∏ ∑ ∏x P x P , 

where the initial wealth 00 , 0W N
i ix== ∑  is known. Assume 

that the amounts 1, ,[ , , ]
j j jt t N tx x=x K  are deterministic 

Table 5: Monthly evolutions of W(NIG), 
W(VG) and W(BM).   

  NIG VG BM 
01/01/06 1000 1000 1000 
01/02/06 1022.98 1022.71 1022.95 
01/03/06 1035.14 1034.03 1035.06 
01/04/06 1041.41 1040.97 1041.38 
01/05/06 1058.52 1058.49 1058.52 
01/06/06 1056.93 1055.09 1056.79 
01/07/06 1061.37 1057.33 1061.05 
01/08/06 1040.21 1039.61 1040.16 
01/09/06 1067.3 1068.02 1067.36 
01/10/06 1084.39 1085.74 1084.5 
01/11/06 1121.98 1122.18 1122 
01/12/06 1136.25 1136.73 1136.29 
01/01/07 1153.31 1156.15 1153.54 
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variables, whilst the amount invested in the risky-free 
asset is the random variable 0, j j jt t tx W= − x e , where 

[1, ,1]′=e K . Therefore, if we want to select the optimal 
portfolio strategies that solve the mean-variance problem: 

0 1, ,
min [W ]

. . ,
[W ]

T
t tT

T

t

tE m

−

⎧
⎪⎪
⎨
⎪ =⎪⎩

x xK
Variance

st  

we can use the closed form solutions determined by 
Ortobelli et al. (2004). These solutions for Lévy 
subordinated processes are given by: 

10 0
1 1

1 0

W
' ( )

( ) ' ( )k k k

j j j

t t tT
k t t tj

m B
E

B E E
−

− −
+ =

−
=

∑
x Q P

P Q P
 

0, , 2k T= −K  

1 1 1

10 0
1 1
0

W
' ( ),

( ) ' ( )T T T

k k k

t t tT
t t tk

m B
E

E E− − −

−
− −
=

−
=
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x Q P
P Q P

 

where 
1

0,(1 )
j

T

k t
j k

B r
−

=

= +∏ and the components of the matrix 

,[ ]
k kt ij tq=Q , (k=0,…,T-1), are 

1 1

( ) ( )
, ( , )

k k k k k

i j
ij t t t t tq X X

+ +− −= Cov . 

The optimal wealth invested in the riskless asset at time 
0 0t =  is the deterministic quantity 

00,0 0W tx = − x e , while 

at time jt  it is given by the random variable 

0, W
j j jt t tx = − x e , where W

jt  is formulated in equation 

(10). Observe that the covariance , kij tq  among components 

of the vector ( )

1 1 1

N

j j j j t tj jt t t t ZZ W
+ + −+− − + 1/2X = μ Q  is given by  

1 1

2
, ( ) [ ]

k k k k kij t ij t t i j t tq E Z Zσ μ μ
+ +− −= + Variance , 

where 2
ij ii jj ijσ σ σ ρ=  are the components of matrix 

2
ijσ⎡ ⎤= ⎣ ⎦Q  (see, among others, Cont and Tankov (2004)). 

So, for example, in the case the vector of log-returns tX  
follows a NIG process then: 

1 1 1

1

( ) ( )
,

2 2
2 2

1 13
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k k

i j
ij t t t t t i j ij t t

i j ij i j i j
i j i j t t k k k k

q X X E I

I t t t t
b b

δδ ρ

δδ ρ ββ δ δ
ββ δ δ

+ + +

+

− − −

− + +

= = +
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Instead, if tX  follows a Variance-Gamma process then: 

1 1 1 1

( ) ( )
,

1 1

( , ) ( ) [ ]

( ) ( ).
k k k k k k k k k

i j
ij t t t t t ii jj ij t t i j t t

ii jj ij k k i j k k

q X X E Z Z

t t v t t

σ σ ρ μμ

σ σ ρ μμ
+ + + +− − − −

+ +

= = + =

= − + −

Cov Variance

However, the mean-variance approach does not consider 
the presence of skewness and kurtosis in the asset returns. 
For this reason in the following we will discuss an ex-post 
comparison among portfolio strategies obtained by 
maximizing the mean-VaR ratio when institutional 

restriction are present in the market.  

4.2 Ex-post comparison among optimal portfolio 
strategies with transaction costs and no short sales 

Let us compare dynamic strategies with constant and 
proportional transaction costs of 0.05%K =  when short 
sales are not permitted. Assume an investor has an initial 
wealth of 1000 USD and he decides to invest this money 
in the portfolio that maximizes the mean-VaR ratio 
recalibrating it every month. As for the previous empirical 
analysis we consider five indexes (Down Jones Composite 
65 (DJC65), Down Jones Industrials (DJI), Down Jones 
Utilities (DJU), S&P 500 Composite and S&P 100) and a 
monthly riskless asset with return 0.3884%fr = . Since we 
want to compare the ex-post sample paths of the investor’s 
wealth under different distributional assumptions, then we 
follow the same algorithm proposed by Biglova et al. 
(2004), Ortobelli et al. (2004), Leccadito et al. (2007). 
That is we first consider an initial wealth 0 (1000W =  
USD minus the transaction costs 0.05%) and in the ex-
post analysis we calibrate the portfolio 12 times. Thus, 
once we have chosen a distributional assumption, after k 
periods, the main steps to compute the ex-post final wealth 
in the mean-VaR context are the following: 
Step 1 At the k-th period ( 0,1, ,11k = K ), we determine 
the market portfolio ( )kw  that maximizes the mean-VaR  
ratio, i.e., it is the solution of the following optimization 
problem:  

( )( )
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( )
21

( )
21
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. .( )
max ,
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ww
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w i N

− −
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=
≥ =

w e
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where 
(1)( )

21( )w
fX r−0.01VaR  is given by equation (8), the 

transaction costs are given by:  
( 1) ( 1)

( )
( 1) ( 1)

1 1

(1 )
1

. .( ) (1 )
0.05% 0

k kN
k i i

i k kN
i i i i

w r
K w if k

t c k w r
K if k

− −

− −
= =

⎧ +
− >⎪= +∑⎨

⎪ = =⎩

∑  

and ( 1)k
ir

−  is the observed i-th monthly return valued on 
the period 1[ , ]k kt t− . 
Step 2 We value the ex-post final wealth at the k-th period 
is given by:  

( 1) ( 1)
1

1

W W (1 ) . .( ) .
N

k k
k k i i

i

w r t c k− −
−

=

⎛ ⎞= + −⎜ ⎟
⎝ ⎠
∑  

Step 3 We repeat steps 1 and 2 for each distributional 
hypotheses.  
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The use of the transaction costs in the portfolio 
optimization has implied that there are not transaction 
costs at the times of the calibration. That is, the investor 
chooses his first portfolio (0)w  and the percentage of the 
final wealth invested in each asset is equal to the ex-post 
percentage of the first portfolio during each recalibration. 
In Table 6, we report the weights of the portfolio (0)w  
under the three different distributional assumptions (NIG, 
VG, MB).  

 
The assets that appears in the optimal portfolio 
compositions are the same (Down Jones Composite 65, 
Down Jones Industrials) and we observe a greater 
difference with respect to the previous comparison when 
the transaction costs are not considered. Table 7 exhibits 
the ex-post final wealth sample paths under the three 
distributional assumptions. As for the previous 
comparison we observe a better performance of the VG 
and NIG processes in different periods of the year.  

5. Conclusions 

In this paper, we study the problem to select optimal 
portfolios when the assets follow a subordinated Brownian 

Motion. We discuss the portfolio optimization problem by 
the point of view of investors with exponential utility 
function and investors that maximize the mean-Value at 
Risk ratio. Therefore, we propose two models that take 
into account the heavier behavior of log-return distribution 
tails. The empirical comparison shows a greater 
performance of two alternative subordinated Lévy 
processes.  
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