Universita degli Studi di Trieste
Archivio della ricerca — postprint

ar'T

Evaluating the Four-Way Performance Trade-Off for
Data Stream Classification in Edge Computing

Jessica Fernandes Lopes, Everton Jose Santana
, and Sylvio Barbon Junior

Bruno Bogaz Zarpelao

Abstract—Edge computing (EC) is a promising technology
capable of bridging the gap between Cloud computing services
and the demands of emerging technologies such as the Internet of
Things (IoT). Most EC-based solutions, from wearable devices to
smart cities architectures, benefit from Machine Learning (ML)
methods to perform various tasks, such as classification. In these
cases, ML solutions need to deal efficiently with a huge amount of
data, while balancing predictive performance, memory and time
costs, and energy consumption. The fact that these data usu-
ally come in the form of a continuous and evolving data stream
makes the scenario even more challenging. Many algorithms have
been proposed to cope with data stream classification, e.g., Very
Fast Decision Tree (VFDT) and Strict VFDT (SVFDT). Recently,
Online Local Boosting (OLBoost) has also been introduced to
improve predictive performance without modifying the underly-
ing structure of the decision tree produced by these algorithms.
In this work, we compared the four-way relationship among
time efficiency, energy consumption, predictive performance, and
memory costs, tuning the hyperparameters of VFDT and the
two versions of SVFDT with and without OLBoost. Experiments
over 6 benchmark datasets using an EC device revealed that
VFDT and SVFDT-I were the most energy-friendly algorithms,
with SVFDT-I also significantly reducing memory consumption.
OLBoost, as expected, improved the predictive performance, but
caused a deterioration in memory and energy consumption.

Index Terms—Machine learning, data stream mining, energy
efficiency, Internet of Things, edge computing.

I. INTRODUCTION

HE GROWING adoption of Internet of Things (IoT)
solutions demands methods capable of extracting accu-
rate information from raw sensor data [1], [2] and managing
huge volumes of data [3]. Over the years, different problems
involving data analysis have been tackled successfully with
Machine Learning (ML). For example, performing anomaly

Manuscript received August 30, 2019; revised January 16, 2020; accepted
March 24, 2020. Date of publication March 30, 2020; date of current ver-
sion June 10, 2020. This study was financed in part by the Coordenacdo
de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES)-Finance
Code 001, the National Council for Scientific and Technological Development-
Brazil (CNPq)-Grant of Project 420562/2018-4 and Parand State Agency
Fundac@o Araucdria. The associate editor coordinating the review of this arti-
cle and approving it for publication was R. Pasquini. (Corresponding author:
Everton Jose Santana.)

Jessica Fernandes Lopes, Everton Jose Santana, Bruno Bogaz Zarpeldo,
and Sylvio Barbon Junior, are with the Department of Computer
Science, State University of Londrina, Parand 86057-970, Brazil (e-
mail: jessicafernandes @uel.br; evertonsantana@uel.br; brunozarpelao @uel.br;
barbon @uel.br).

Victor G. Turrisi da Costa is with the Department of Information
Engineering and Computer Science, University of Trento, 38123 Trento, Italy
(e-mail: vg.turrisidacosta@unitn.it).

, Victor G. Turrisi da Costa,

detection for cybersecurity, spam filtering, weather forecast-
ing, medical diagnosis, image classification and segmentation,
and driving autonomous vehicles. However, IoT systems have
some particularities that pose additional challenges towards
ML algorithms application.

Smart grids are a typical example. They make use of a
large number of sensors for monitoring customers’ energy
consumption, electric quantities from power grid devices, and
data from the surrounding environment (e.g., temperature and
humidity) [4]. These data are continuously collected from
multiple points, which are spread across large geographical
areas. Then, ML algorithms might be applied to build intel-
ligent solutions using this data. However, most sensors are
resource-constrained and cannot run ML algorithms, while
sending all this data to a remote dedicated server may cause
latency and bandwidth issues.

To avoid the strain of transmitting all data to a remote
data center, micro servers can be placed at the network edge,
close to the sensors. These micro servers are responsible
for processing the collected data and making decisions when
possible, reducing the dependence on central servers, which
can improve the overall performance of the entire system.
Deploying devices to allow computation at the network edge,
close to the data source, is the core idea of the Edge
Computing (EC) paradigm [5], [6].

Even though EC devices seem to solve the problem of run-
ning ML algorithms over sensor data completely, there are
some challenges yet to overcome. Edge devices are certainly
more robust than IoT sensors, but they still may struggle to
meet the requirements of some ML algorithms since they are
not high-end servers. Alongside EC limitations, sensor data
is also an issue for traditional ML. Firstly, it usually comes
in the form of a continuous and evolving data stream, which
is potentially infinite, meaning that storing data is very diffi-
cult [7]-[9]. Additionally, the evolving nature of data streams
makes ML solutions need to continuously update their learning
models to produce fast and reliable results.

Many ML algorithms have been proposed for data stream
classification [8], [10]-[13]. Among them, the Very Fast
Decision Tree (VFDT) [10] induces a decision tree in an
online fashion. A modification of the VFDT, called Strict
VEDT (SVFDT) [13], was also proposed to control tree growth
while maintaining predictive performance and processing time.
Furthermore, Online Local Boosting (OLBoost) [14] was
introduced to increase the predictive performance of online
decision trees without modifying their resulting decision tree.

https://orcid.org/0000-0002-6014-9857
https://orcid.org/0000-0001-9172-3578
https://orcid.org/0000-0002-4988-0702

Although they were vastly evaluated in multiple datasets [7],
[8], [10]-[15], energy costs were only assessed along with
other performance measurements for VFDT and SVFDT in
our previous work [16]. However, the evaluation of these
algorithms in an EC device was not addressed. Furthermore,
solutions in this scenario need to be even more aware of their
computational costs.

In this work, we consider that ML algorithms for stream
classification may be suitable for EC environments. Therefore,
we evaluate the trade-off among four key performance aspects
of the execution of data stream classification in an EC device,
namely energy consumption, predictive performance, memory
costs, and time costs. The experiments were carried out for
VEDT and SVFDT with and without OLBoost. VFDT acts
as a default baseline for our comparisons, while SVFDT is a
more memory friendly alternative. OLBoost provides a way
to increase predictive performance without seriously compro-
mising energy, memory, and time costs, as ensemble solutions
would. The tests were performed over six binary benchmark
datasets in a Raspberry Pi, which has been frequently pointed
as a platform for EC devices [6], [17]-[19].

This work is an extension of [16], whose main goal was to
analyze the four-way relationship of predictive performance,
memory and time costs and energy consumption of VFDT
and SVFDTs, without OLBoost, in a desktop computer. That
work was an introductory study and its result motivated further
analysis in a platform actually employed in EC applications.
In this sense, we extend the previous work in the following
main aspects:

1) To address the EC paradigm, experiments were per-
formed in a Raspberry Pi, a typical EC device with
limited memory and processing capability;

2) The impact of OLBoost in the VFDT and SVFDTs was
also assessed.

The remainder of this work is organized as follows.
Section II highlights the importance of considering energy,
accuracy, memory and time in the EC context. Section III
describes the data stream mining algorithms used in this work.
In Section IV we present the experimental setup. Results and
Discussions are contained in Section V. Section VI presents
the main conclusions and directions of future work.

II. EC PERFORMANCE TRADE-OFF

When selecting the best algorithm for a particular appli-
cation, different aspects must be considered. For EC, it
is important to consider the adequacy of an algorithm in
the following main aspects: energy consumption, predictive
performance, memory resources and time costs. These aspects
are essential to address the device limitations and the evolving
nature of collected data.

Time costs: Traditional ML algorithms have two separated
time costs: one of inducing the model and another of per-
forming predictions [20]. However, when using data stream
algorithms, both times are combined into a single unit since
these algorithms need to be continuously updated while also
performing predictions when requested [9], [13]. In other
words, using traditional ML algorithms consists of first induc-
ing the algorithm using data collected during some time span

and then performing predictions. On the other hand, both
phases occur in parallel in data stream algorithms. In most
IoT and EC cases, the longer the time to induce the model,
the more accurate it becomes [21]. However, as inducing time
increases, energy consumption can also increase, meaning that
time is an influential factor.

Energy consumption: 10T applications and EC devices, two
common domains for data stream mining, may rely on batter-
ies [6]. This highlights the importance of algorithms with low
power consumption because they can contribute to reducing
the need for replacing, recharging or disposing of those batter-
ies [22], [23]. Also, energy-efficient computing is fundamental
since information and communications technology has been
pointed out as responsible for significant power demand, which
generates carbon and other pollutant emissions during its pro-
duction [24], [25]. Lastly, the greater the energy consumption,
the greater the heat produced, which affects the durability
and reliability of hardware metrics [22] and demands higher
expenses with cooling systems [26].

Predictive performance: Several EC-based applications
depend on acquiring data for online analysis and monitoring.
The adoption of classifiers in this type of system may seek
different objectives such as detecting attacks [27] or identi-
fying faults in the system [28]. Consequently, the required
predictive performance is highly dependent on the appli-
cation’s nature. A very critical system, for example, may
require higher predictive performance, even if this means to
use more computational resources. However, in EC devices,
those resources are limited. For this reason, it is impor-
tant to investigate how predictive performance is affected by
strategies adopted by data stream algorithms to cope with
resource limitations. Furthermore, the volume of data and their
fast-changing behavior have revealed a challenging task [29].

Memory resources: Unlike most data centers and cloud plat-
forms, which rely on dedicated high-end servers, EC setups
may consist of devices like single board computers, routers,
gateways, and access points [17], [18]. Most of these devices are
not primarily designed to run intensive computing tasks, so they
have significantly less memory than typical servers. This issue
emphasizes the need for algorithms that are lightweight and use
limited computational resources. One class of algorithms capa-
ble of dealing with these constraints are data stream algorithms.
Memory management is even more relevant for non-parametric
algorithms because the number of free parameters evolves with
the number of training examples [30]. For other types of algo-
rithms, like linear models, memory costs depend on the number
of features of the problem. Modifications of the VFDT provide
more memory-friendly models due to the capability of online
updates, without the need to store data. Although this leads
to lower predictive performance, the amount of memory used
decreases and the accuracy is still satisfactory [13]. Since com-
putational resources are limited in EC devices, the trade-off of
achieving a slightly lower accuracy at the cost of significantly
saving memory is very beneficial.

III. DATA STREAM CLASSIFICATION

ML algorithms, traditionally, model knowledge from static
and previously stored datasets [13]. However, there is a

growing demand for solutions capable of dealing with huge
volumes of data that come in the form of streams. This
assumes that new data can arrive at any time and storing these
data is impracticable. It is important to highlight that learn-
ing from a data stream means to create and keep the model
updated throughout the stream. Additionally, tackling concept
drifts, i.e., the change of data distribution over time, is also
important [7], [31]. Moreover, in EC scenarios, model updates
must be fast, and the memory available and processing power
are limited, requiring suitable algorithms capable of efficiently
managing processing time and memory space while keeping
competitive accuracy.

Among several data stream classification algorithms, the
original extension of decision trees for dealing with data
streams, VFDT, is one of the most widely used and subject
to modifications [32]. The SVFDT obtained similar accuracy
results to the VFDT for several problems [13] while expending
less computational resources, which meets the requirements of
EC devices. Recently, OLBoost [14] improved the predictive
performance of both algorithms without increasing resource
consumption in the way an ensemble solution would. Next,
the three algorithms are further detailed.

A. Very Fast Decision Tree

Hoeffding Bound (HB) theorem has been the foundation
for many of data stream algorithms, e.g., VFDT [10]. VFDT
is a tree-based ML algorithm which employs HB to perform
splits when growing a tree. Its execution is based on a con-
tinuous variable v, whose values are bounded by the interval
[Umin s Umaz), With a range of values R = vUmagz — Upin., that is
independently observed n times and, according to these obser-
vations, has a mean of ©. Then, the HB theorem states that the
mean of this variable when n — ©o is 7, 500 and bounded
by the interval [U — €, 7 + €] with statistical probability 1 — 4,

where
2 1
€ — ,/w, 1)
2n

VEDT uses the HB theorem to check whether the best split
candidate would remain the best if the tree received addi-
tional instances. It is important to note the split attempt is
based on a heuristic measure G(.), such as Information Gain
(IG) or Gini Index (GI), by computing € and checking if
G(best) — G(second_best) = AG < ¢, where G(best) and
G(second_best) are the G(.) values of the best split candidate
feature and the second best one.

A model is created by VFDT using a single instance at
a time, requiring limited computational memory resources.
Under realistic assumptions, it has the same asymptotic
performance as the induction of a decision tree induced
by a standard batch algorithm [9]. The algorithm maintains
and updates the instances’ class distribution for each leaf to
compute the number of instances of each class. Moreover,
computing numerical estimators are also employed to keep the
relationship between feature values and class distributions.

To increase the predictive performance, lightweight classifi-
cation algorithms are used at the leaves, with Adaptive Naive

Bayes (ANB) being the most widely applied [33]. Also, three
hyperparameters (GP, T and) need to be set to enhance the
performance. GP states the amount of instances between each
split attempt. A high value will result in fewer split attempts
and a smaller tree. On the other hand, a low GP allows a faster
adaptation, resulting in a larger tree. 7 allows splits when a
high amount of instances were observed regardless of HB was
satisfled. When increasing it, fewer instances will be needed
to ignore HB. An extremely high value coupled with a low
GP results in an overfitted and low-performance tree. On the
other way round, very low 7 values may retain tree growth,
resulting in a small and low-performance tree. Finally, ¢ affects
the computation of HB. Considering higher values, € will be
smaller, which has a similar effect as increasing 7, whereas a
small § results in a larger € and produces the same effect as
decreasing T.

Although the GP and 7 hyperparameters influence in
predictive performance, memory and time costs have already
been evaluated in [10], [13], [15], [25], [34], [35], energy
consumption has, to the best of our knowledge, only been
considered for this algorithm in [25] and [16]. A more in-
depth analysis of the relationship of the hyperparameters and
usage of these resources in EC devices is needed.

B. Strict Very Fast Decision Tree

The SVFDT algorithm is a modification of VFDT [13],
which creates smaller decision trees than VFDT with very
similar predictive performance. It implements additional rules
to block tree growth using the following ¢ function:

[True, ifz>X —0o(X)
oz, X) = {False, otherwise @
where X is a set of observed values, X is their mean, o(X)
is their standard deviation, and x is a new observation.

There are two SVFDT algorithm versions: the SVFDT-I
and SVFDT-II, both using three assumptions: i) A leaf node
should only split when there is a minimum uncertainty of class
assumption (e.g., high entropy) associated with the instances,
according to previous and current statistics. ii) A similar
amount of instances should be observed across all leaf nodes.
iii) The feature used for splitting should significantly decrease
uncertainty (e.g., a high IG) according to previous statistics.
The difference between the versions is related to the fact
that SVFDT-II employs additional skipping mechanisms to
speed-up growth when class uncertainty is too high or this
uncertainty is largely reduced.

SVEDT, as evaluated in [13] and [15], reduces memory con-
sumption without compromising predictive performance and
achieves time speed-up. Although the computations added by
SVEDT may be insignificant when considering the mentioned
performance metrics, energy consumption can be affected,
positively or negatively, as shown in [16].

C. Online Local Boosting

OLBoost is an algorithm created to increase predictive
performance, which works alongside online decision trees
(ODTs) [14]. It uses the assumption that instances being

Data Stream

<
<

Instance 1 | Instance 2 | Instance 3 Instance n
l —| Prediction phase
Get next N P | P
instance » Sortto lea
A ¢ 0 Yy
Train leaf 0
statistics t__3/oLBoost

v 7y

Perform VFDT
split attempt

SN
VAR

Perform SVFDT
split attempt

!

No .
Split allowed?

¢Yes

Split leaf

...___....___)

Fig. 1.
phases.

OLBoost coupled with VEDT/SVFDT in the training and prediction

wrongly classified are required to be used more times when
inducing a model, while, on the other hand, instances that are
easily classified can even be ignored during the training phase.
Note that it works using an ANB or a simple majority class
predictor. Figure 1 shows how OLBoost works when coupled
with VFDT and the SVFDTs.

OLBoost is grounded on the presumption that the instances
of an (unbounded) data stream are presented one at a time
to the online learning algorithm. After the ODT algorithm
processes an instance, OLBoost outputs the probabilities vec-
tor of this instance’s class and extracts sampling weights from
a Poisson distribution, similarly to [36]. Thus, the predictor
(NB, ANB, or majority class) used by OLBoost is updated
based on the probability estimated by the leaf of an instance
being from its real class. Subsequently, the instance is used to
update the leaf statistics with a normal weight of 1 and a split
attempt is performed.

IV. MATERIALS AND METHODS

This section presents the datasets employed in this work,
the evaluation metrics used and the experimental setup.

A. Datasets

To compare VFDT and the SVFDTs energetic efficiency,
predictive performance, and memory and time costs, we used

6 binary benchmark datasets for data stream classification.
These datasets cover both real-life and synthetic datasets. Sea
and usenet datasets present, in addition, concept drifts. Table I
summarizes the main aspects of each dataset.

A brief explanation of the datasets follows:

e Agrawal dataset [37], [41]: generates data according to
classification functions using six numeric (salary, com-
mission, age, hvalue, hyears, loan) and three categorical
(elevel, car, zipcode) features. This dataset was generated
using the default settings in the MOA framework [38§]
(function 1 and perturbation fraction of 0.05).

e Airline dataset [38]: each instance of this dataset cor-
responds to a flight from one airport to another. The
instances have 2 class values, which describe if that
flight was delayed or not, given the information of the
scheduled departure.

o Hyperplane dataset (hyper) [38]: this dataset originated
from the rotation in a hyperplane configured to generate
two classes based on 10 numeric features.

o Electricity Pricing dataset (elec) [38]: this dataset
was collected from the Australian New South Wales
Electricity Market, where electricity prices are not fixed.
The prices are affected by the demand and supply of the
market and updated every five minutes. The dataset output
identifies the changes in the price (2 possible classes: up
or down) relative to a moving average of the last 24 hours.
Additionally, this dataset exhibits temporal dependencies
among instances.

o SEA dataset (sea) [39]: all features of this dataset are
numeric between 0 and 10, with only the first two
being relevant. An instance is considered as being from
class O if relevant_featurel + relevant_feature2 > 6. This
threshold 6 changes four times every 15,000 instances
with values 8, 9, 7, and 9.5 resulting in a total
of 60,000 instances. Additionally, the dataset has 10%
of noise.

o Usenet dataset (usenet) [40]: simulation of news filtering
with concept drift related to the change of interest of a
user over time. Each instance has 659 binary features
describing the presence or absence of a respective word
in the piece of text. The two classes indicate if a virtual
user is interested in this kind of news or not. The concept
drift occurs by making this virtual user lose interest in
some types of news and gain in others.

B. Energy Consumption Measurement

In computing systems, energy, i.e., the capacity for produc-
ing work, is delivered as electricity [26]. To address the task
of measuring it, some consumption monitors were developed
without the need for additional hardware metrics [42], [43].
In this work, we adopted PowerAPI, an application pro-
gramming interface (API) that monitors the power usage
of running processes based on information collected from
hardware elements of the operating system [43]. When com-
pared with a power meter, the PowerAPI margin of error
is between 0.5% and 3% [44], motivating choosing it in
this work.

TABLE I
SUMMARY OF THE DATASETS USED IN THE EXPERIMENT

Dataset # instances . # f eatures . # classes % majority
numeric | binary | categorical class
agrawal [37] 1,000,000 6 3 2 0.672
airlines [38] 539,383 3 4 2 0.555
elec [38] 45,312 6 0 1 2 0.575
hyper [38] 250,000 10 0 0 2 0.500
sea [39] 60,000 3 0 0 2 0.627
usenet [40] 5,930 0 658 0 2 0.504
. . TABLE II
Generally, energy consumption (E) is computed as the HYPERPARAMETERS FOR THE BASE LEARNERS USED IN THE
product of power (P) and time (?), EXPERIMENT
E=Pxt. 3) Hyperparameter Setting
GP (500, 750, 1000)
T (0.05, 0.10)
. S 107
Usually, power (.:hanges over t.une, so that the total used Numeric Estimator | Ganssian — 100 bins
energy for performing a task is given by Leaf Predictor ANB

tp
E :/ P(t) x dt. @)
to
where fy means the beggining of the task, and ¢, the end.

Assuming that the power usage is sampled at fixed and
sufficiently small time intervals tg, Equation 4 can be approx-
imated to

N
E = Z P; x tg, (5)
i=1

where N represents the total number of samples.

Specifically for our case, based on the computational costs
(Pcomyp) calculated by PowerAPI software approach, it is pos-
sible to compute the total energy consumption of a process
following:

N
E[J] = Peomp,i[W] x tg[s]. (6)
i=1

Although energy consumption and processing time are
related, measuring energy consumption is still important
because power introduces a non-linearity to this relationship.
For instance, reducing the frequency of a processor for specific
processes can lead to longer executions along with a decrease
in power. This can reduce energy consumption even though
the time increases [45].

Physically, energy-efficiency is the ratio between the work
done and the total energy spent to accomplish this work, but as
expressed in [46], it is a generic term and can be understood as
the ratio between the useful output of a process and the energy
input into a process. In this sense, when comparing the energy-
efficiency of two or more algorithms, the most efficient is the
one that uses the least energy to produce the same amount of
useful output.

C. Evaluation Setup

VEDT, SVFDT-I, SVEDT-1I, and their versions with
OLBoost were chosen as learning algorithms. The conceptual
simplicity and extensive use of trees in streams [47] motivated

the choice of this family of algorithms. We evaluated the algo-
rithms while varying two hyperparameters (GP and 7). These
settings are presented in Table II. Additionally, we used H and
IG as impurity and gain metrics.

For each dataset, the prequential learning method [9] was
performed four times in a row for each algorithm to com-
pute the mean energy consumption, accuracy, processing time
and memory consumption. This learning method consists of
presenting each instance individually to the algorithm, asking
for a classification (which is used to evaluate the model, e.g.,
compute its accuracy) and then using the instance to update
the model. We did not use the results of the first of the four
executions due to its unstable behavior. In the first execution
of each pair classifier-dataset, the needed data was accessed
for the first time after the device was turned on. Afterward,
for the remaining executions, the operating system optimized
the access to this data due to its recurrent use. As a result,
the performance metrics collected for the first execution are
unstable, while the metrics collected for the other executions
are more stable. Along with accuracy, Kappa M [48] was also
used to measure how a classifier performs in comparison with
a majority class predictor.

The algorithms and experimental environment were imple-
mented in Python and Cython and the code is publicly
available.! The experiments were performed on a Raspberry
Pi 2 Model B with a thermal design power (TDP) of 4 W. It
has 900 MHz quad-core ARM Cortex A7 CPU. However, the
code uses only a single processor. Raspberry Pi is a single-
board computer widely used in EC projects, as can be seen
in [6], [17]-[19]. The PowerAPI was configured to capture
the mean power of the intervals, using the procfs module [49]
with a sampling period of 1 ms.

In order to compare multiple algorithms across multiple
datasets, we employed the Friedman’s statistical test with a
significance level (o) of 0.05. After that, we applied post-hoc
test of Nemenyi, which generates a Critical Distance (CD) and

1 https://github.com/vturrisi/pystream

TABLE III
MEAN AND STANDARD DEVIATION VALUES FOR ENERGY CONSUMPTION, ACCURACY, KAPPA M, MEMORY SIZE AND TIME FOR EACH COMBINATION
OF ALGORITHM AND DATASET. THE BOLD VALUES CORRESPOND TO THE BEST MEAN RESULT FOR EACH METRIC IN THE DATASET

Dataset | OLBoost | Algorithm Time (s) Energy (J) Accuracy Kappa M Memory (MB)
SVFDT-I 2028.584 + 51.863 76.790 £ 7.509 0.946 £ 0.008 | 0.834 + 0.026 0.349 £ 0.134
v SVFDT-II 2030.648 + 59.915 76.579 + 7.545 0.948 + 0.003 | 0.841 + 0.008 3.328 + 1.507
| VEDT 2024.426 + 50.394 73.500 + 9.090 0.948 + 0.001 | 0.841 + 0.003 9.519 £ 5.811
agrawa SVEDTI | 1749.274 £ 53.400 | 72.929 8.636 | 0.945 = 0.008 | 0.834 = 0.026 | 0.194 0.073
- SVFDT-II 1744.842 + 54.420 79.409 + 9.209 0.948 + 0.003 | 0.840 + 0.009 1.829 + 0.823
VEDT 1719.297 + 31.572 69.355 + 9.136 0.948 + 0.001 | 0.842 + 0.003 5.280 + 3.203
SVEDT-1 2401.612 + 233.567 77.643 £ 7.894 0.664 + 0.001 0.245 £ 0.003 12.737 £ 2.0230
v SVFDT-II 2032.910 + 502.548 77.693 £ 9.121 0.660 + 0.001 0.237 + 0.003 25.281 + 7.484
airlines VEDT 1609.429 + 200.906 | 78.633 + 10.021 0.660 + 0.004 | 0.237 £0.009 | 56.510 + 27.661
SVEDT-1 2249.651 + 247.720 75.413 £ 6.663 0.655 + 0.001 0.225 + 0.002 6.479 £ 1.029
- SVFDT-II 1873.934 + 511.831 77.513 £ 8.110 0.655 + 0.001 0.225 + 0.003 12.860 + 3.807
VEDT 1438.165 + 186.369 | 72.240 + 8.617 0.656 £ 0.002 | 0.228 + 0.005 | 28.744 + 14.069
SVFDT-T 442.696 + 9.289 10.148 £ 0.375 0.823 £ 0.002 | 0.583 + 0.004 0.299 + 0.042
v SVEDT-II 452.049 + 16.189 9.925 + 0.312 0.825 £ 0.002 | 0.588 + 0.006 0.371 + 0.089
elec VEDT 469.843 + 21.225 9.577 + 0.358 0.832 + 0.007 | 0.605 + 0.017 0.543 + 0.204
SVFDT-T 416.745 + 17.256 8.549 + 0.211 0.795 £ 0.001 0.517 £ 0.002 0.175 + 0.024
- SVEDT-II 419.841 + 12917 8.510 + 0.287 0.797 £ 0.003 | 0.521 + 0.007 0.217 £ 0.053
VEDT 408.030 = 10.307 9.010 £ 0.544 0.797 £ 0.005 | 0.521 £ 0.014 0.319 £ 0.120
SVFDT-T 957.673 + 33.085 59.754 £ 6.575 0.896 + 0.001 | 0.793 = 0.001 0.436 = 0.118
v SVEDT-II 966.582 + 96.822 62.019 + 8.890 0.891 + 0.004 | 0.783 + 0.009 0.885 + 0.335
hyper VFDT 960.109 + 54.292 61.840 + 7.684 0.890 + 0.008 0.779 + 0.018 2.525 + 1.272
SVFDT-T 885.611 + 28.961 59.288 + 6.306 0.889 + 0.001 0.778 = 0.003 0.257 = 0.069
- SVFDT-II 908.279 + 47.456 59.180 + 7.562 0.885 £ 0.003 | 0.769 + 0.006 0.523 + 0.196
VFDT 875.786 + 27.518 62.440 + 6.347 0.886 + 0.005 0.772 £ 0.012 1.486 + 0.749
SVFDT-I 452257 + 12.585 10.199 £ 0.330 0.85T + 0.00T 0.601 + 0.003 0.068 + 0.017
v SVEDT-II 456.848 + 12.176 10.132 + 0.250 0.855 £ 0.002 | 0.612 + 0.007 0.140 £ 0.089
sea VEDT 462.230 + 28.884 9.942 + 0.551 0.860 + 0.003 0.625 + 0.01 0.264 + 0.120
SVFDT-1 420.431 + 27.862 9.010 + 0.386 0.848 + 0.001 0.593 + 0.002 0.048 = 0.012
- SVEDT-II 421.327 + 16.298 8.930 + 0.322 0.849 + 0.001 0.594 + 0.004 0.099 + 0.062
VEDT 403.327 + 15.799 9.148 + 0.720 0.850 £ 0.002 | 0.597 + 0.006 0.185 + 0.084
SVFDT-I 719.332 + 16.093 46.929 + 3.966 0.549 £ 0.007 | 0.091 £ 0.010 2.332 £+ 0.340
v SVEDT-1II 719.017 + 33.423 49.469 + 6.499 0.548 + 0.007 0.089 + 0.014 2.999 + 1.163
usenet VEDT 723.689 + 40.362 45.283 + 3.489 0.550 £ 0.009 | 0.094 +0.019 3.886 + 1.732
) SVFDT-I 643.392 + 26.219 46.092 + 4.947 0.55T £ 0.007 | 0.095 £ 0.015 1.184 + 0.173
- SVFDT-1I 641.478 + 18.623 46.912 + 6.721 0.552 + 0.006 0.097 + 0.013 1.522 + 0.590
VEDT 636.138 + 38.609 46.201 + 6.063 0.554 = 0.006 | 0.100 + 0.013 1.972 £ 0.879

can be illustrated in a diagram. The performance of algorithms
connected by the CD are statistically equal at o [50].

V. RESULTS AND DISCUSSIONS
A. General Results

Table III presents the performance metrics for the datasets
and algorithms. The mean and standard deviation values were
computed based on the variation caused by the 7 and GP
hyperparameters.

From the table, some particular results can be observed for
the different datasets: at the same time that agrawal was the
dataset with the highest accuracy (with mean values varying
from 0.945 to 0.948), it was one of most time costing, and
energy-consuming dataset. For the same dataset, the mean
energy consumption varied from 69.355 to 79.409 J, depend-
ing on the chosen algorithm. It is also noteworthy that the
mean memory varied from 0.194 to 9.519 MB according to
the algorithm, which is a significant difference. However, this
was the only dataset that presented more than 2 best metrics
for the same algorithm.

Airlines is a dataset similar to agrawal in number of fea-
tures, with about half of instances. However, the energy and
time spent were very comparable and this dataset required, in

general, more memory than the previous one. For airlines, the
mean memory varied from 6.479 to 56.510 MB.

The elec dataset presented lower sensitivity to algorithm
selection than the previous datasets, i.e., the variation in
energy, accuracy, memory and time when using different algo-
rithms for elec was not as noticeable as for agrawal and air-
lines. Also, the standard deviations related to this dataset were
one of the lowest among the experimented datasets, meaning
that hyperparameter modification incurred in a modest change
in performance.

The sea dataset registered results comparable to elec, with
small mean and standard deviation. The biggest standard
deviation values were found for the time metric.

The usenet was the only dataset which OLBoost did not
deliver the best accuracy performance for. It also presented
the lowest Kappa M, being very close to 0, meaning that
the performance of the classifier was comparable to a major-
ity baseline (i.e., a classifier that always outputs the majority
class).

The general results of the table are: OLBoost tended to
provide the best accuracy and Kappa M whereas the default
versions of VFDT and SVFDT tended to generate lower costs
in energy, memory and time.

In the following Sections (V-B-E), we will discuss each
performance metric separately. To this end, we constructed

1200.000-
£ 1100.000-
(o]
£
F1000.000-

900.000-

> & N «> <& S
<L Q X L Q X
3 X & 3 X
@ S & = S
& & VQ’
P & O
o o
Algorithms

Fig. 2.
versions with OLBoost.

Boxplots of time of VFDT, SVFDT-I and SVFDT-II, and their

48.000-

46.000-

Energy (J)

44.000-

Fig. 4.
their versions with OLBoost.

CD = 0.63

1 2 3
k + +

SVFDT_I 4TA

SVFDT_II
VFDT

Algorithms

Boxplots of energy usage of VFDT, SVFDT-I and SVFDT-II, and

4 5 6
+ + 1

i
L OLBoostSVFDT_II

OLBoostSVFDT_1
OLBoostVFDT

CD = 0.63

hann

1 2 3 4 6

t + + + 1

L
VEDT OLBoostSVFDT_I

SVEDT_II OLBoostSVFDT_II
SVFDT_I OLBoostVFDT
Fig. 3. Comparison of time performance among VFDT, SVFDT-I and

SVEDT-II, and their versions with OLBoost according to Nemenyi test with
a = 0.05.

four boxplots (one for each metric) using the mean
performance metric obtained by each algorithm across all
datasets while varying the GP and 7 values. Additionally,
Friedman’s statistical test and the post-hoc Nemenyi test were
employed to verify the statistical differences. CD diagrams
were created with these results and ranked in order to show
the better algorithms for that metric in the first positions of
the ranking and the worse algorithms in the last positions.

B. Time Costs

Figure 2 shows the boxplot for time results per algorithm.

According to the reported results, VFDT was less time con-
suming than SVFDTs. This is mostly related to the fact that
SVEDT enforces additional computations each time a leaf
tries to turn into a split node. It is interesting to note that
SVEDT-II presented very high time variations. This indicates
that SVFDT-II may be more suggestible to the used hyperpa-
rameters, varying from being as fast as VFDT to as slower
as SVFDT-1. When adding OLBoost to the ODTs algorithms,
time was greatly increased. It demonstrates that time is directly
impacted by the additional updates employed by the OLBoost
strategy. The high time variations of SVFDT-II were also
found for its version with OLBoost.

The time analysis of the ODT algorithms was reinforced by
the statistical tests, as exposed in Figure 3, which presents the
CD diagram for time.

Considering Figure 3, VFDT has a statistical difference to
the other algorithms, being the fastest. There were no sig-
nificant differences between SVFDTs, the second best in the
ranking. The OLBoost versions were connected among them
by the CD and placed as last in the ranking, showing that
OLBoost statistically implied in more time usage.

Fig. 5. Comparison of energy usage among VFDT, SVFDT-I and SVFDT-II,
and their versions with OLBoost according to Nemenyi test with o = 0.05.

C. Energy Consumption

Figure 4 shows the boxplot for the energy metric. The
results are shown for the six algorithms.

VFDT had the lowest median value for energy consumption.
SVFEDT-I presented a similar performance, but with a narrower
box. Among the algorithms without OLBoost, SVFDT-II is
the one that required more energy. When using OLBoost, the
energy consumption of all algorithms rose: the first quartiles of
VEDT and SVFDT-I with OLBoost were higher than VFDT
and SVFDT-I’s third quartile. SVFDT-II with OLBoost was
the most costly combination in terms of energy among the 6
algorithms in absolute values.

The comparison between Figures 2 and 4 suggests that
SVFDT-I operations without OLBoost used less total power
than SVFDT-II (also without OLBoost) operations. As
Equation 3 shows, if P increases (or is constant) and ¢
increases, E also increases. In Figure 2, the median time for
SVEDT-I increased in relation to SVFDT-II. In contrast, in
Figure 4, the median energy of SVFDT-I decreased in relation
to SVFDT-II. Thus, as time increased and energy decreased,
the total power mandatorily decreased. An analogous analysis
can be made for the algorithms versions with OLBoost.

The statistical tests illustrated in Figure 5 confirm OLBoost
increased the energy consumption. The algorithms without
OLBoost consumed less energy than with OLBoost and
presented no significant difference among them.

D. Accuracy

Figure 6 shows the boxplot for accuracy results of the six
algorithms.

When considering accuracy, VFDT, SVFDT-I, and

SVEDT-II had similar performance, with a median of around
0.78. When using OLBoost, the accuracy of the three
algorithms increased, resulting in around 0.79.

0.800-

0.795-

>
8 0.790- bil
g -
8 0.785- s
< =3
0.780- = 1
0.775- i i i
N N & \ N &
4‘5)/\ ’ . & \AQQ QO/\ ; <<<>/\ > &
- & 5 -
(}% S Y) S
s & N
& & O
o~ o
Algorithms
Fig. 6. Boxplots of accuracy of VFDT, SVFDT-I and SVFDT-II, and their
versions with OLBoost.
CD = 0.63
hMand
1 2 3 4 5 6
F + + + + 1
]
OLBoostSVFDT_I J SVEDT_II
OLBoostVEDT SVEDT_I
OLBoostSVFDT_II VEDT

Fig. 7. Comparison of accuracy performance among VFDT, SVFDT-I and
SVFDT-II, and their versions with OLBoost according to Nemenyi test with
a = 0.05.

~20.000- ‘

)
=3

© 15.000-

N

n

10.000-

S

5 —= Q
3 5000

= —_— =

0.000- !
: N Q < N N N
K7 L7
& &7 B & & &
S S ¢ 2 2
& N\ °
o & W
P oF O
o o
Algorithms

Fig. 8. Boxplots of memory usage of VFDT, SVFDT-I and SVFDT-II, and

their versions with OLBoost.

Although this difference was around only 0.01, Figure 7
shows that OLBoost statistically increased the accuracy
performance, since the first group connects the three algo-
rithms with OLBoost and the second group contains the three
algorithms without OLBoost.

E. Memory Consumption

Figure 8 shows the boxplot of memory results of the six
algorithms.

SVEDT-I was the most memory conservative, with a median
memory usage of less than 2.5 MB. SVFDT-II was slightly
worse, followed by VFDT. It is important to note that both
SVEDTs, for all hyperparameter configurations, consumed
much less memory than any VFDT. Although this difference
(in amount of MBs) may not seem significant at first sight,
it must be considered that these devices have low computa-
tional resources, so any amount of memory saved is beneficial.
OLBoost brought little overhead to these algorithms, espe-
cially for VFDT. However, SVFDTs with OLBoost used less
memory than VFDT without OLBoost. SVFDTs were already

CD = 0.63
AMAanA

1 3 5 6
F + + + + 4

©
w
IS
i

L OLBoostVEDT
OLBoostSVFDT_II
VFDT

SVEDT_I
SVEDT_II
OLBoostSVFDT_I

Fig. 9. Comparison of memory performance among VFDT, SVFDT-I and
SVFDT-II, and their versions with OLBoost according to Nemenyi test with
a = 0.05.

expected to use less memory due to the growth control mech-
anism they are based on. OLBoost works in parallel with
the ODT algorithm without using or modifying any statistic
used by it. In this sense, OLBoost uses additional memory
resources because it needs to store its own statistics to per-
form predictions and updates when needed. However, this is
directly linked to the size of the tree, since the number of
extra classifiers used by OLBoost is equal to the number of
leaves in the tree. So, the impact of adding OLBoost to smaller
decision trees is much lower than to add it to larger trees.

Figure 9 shows the memory consumption CD diagram.
Indeed, SVFDT-1 was the algorithm that required the least
memory. Following it in the ranking, SVFDT-II and SVFDT-I
with OLBoost had no statistical difference at a significance
level of 5%. After that, SVFDT-1I with OLBoost and VFDT
did not present a significant difference. At last, VFDT with
OLBoost version required the most memory, being the worst
case for this metric.

F. Handling the Trade-Off

Considering the EC challenges, the trade-off among the four
performance metrics is very important. For example, an algo-
rithm that has a very high predictive performance might not
be suitable due to its memory costs.

So far, we explored each performance metric individually.
To analyze them concomitantly, we first averaged the results of
all datasets for each combination of algorithm, GP and 7. We
also took the average between the executions. As an outcome,
there were 36 cases that represented the four performance met-
rics according to GP, 7 and algorithm. After that, the data
related to energy, time and memory were normalized by divid-
ing all the cases by the case that assumed the highest value
in that metric. Thus, the maximum value for a certain metric
became 1. The accuracy data were transformed into error by
taking 1—accuracy.

Then, we selected the combinations that resulted in the 2
lowest values for each performance metric (best 5%) and cre-
ated a radar plot to ease the comparison among the metric
under analysis and the three remaining ones (for instance,
when the best values for energy were selected, the three axes of
the radar corresponded to time, error and memory). This was
made to evaluate the interaction among the metrics and how
prioritizing one component influences the others. Figure 10
presents these radar plots.

For time-costs, VFDT exposed the lowest time consumption
with 7 = 0.10 and varying the GP between 750 and 1000.
The corresponding radar plot shows that similar values can be
observed in predictive performance, but energy and memory

0.800-
0.600- error
0.400-

epergy

memory size

+ VFDT (GP=1000, 1=0.10) * VFDT (GP=750, 1=0.10)

a) Time
1.000-
0.800-
time energy
0.600- S vm———— 4
A\
0.400-

memory size

0.700-
0.600-
0.500-
0.400-
0.300-
0.200-

time error

memory size

e VFDT (GP=1000, 1=0.05) e+ VFDT (GP=1000, 1=0.10)

b) Energy

time epergy

0.800-
0.600-
0.400-

error

* OLBoostVFDT (GP=1000, 1=0.05) ¢ OLBoostVFDT (GP=500, 1=0.05) « SVFDT_I| (GP=1000, 1=0.05) ¢ SVFDT_I| (GP=750, 1=0.05)
e OLBoostVFDT (GP=1000, 1=0.10) * OLBoostVFDT (GP=500, 1=0.10)

¢) Error

Fig. 10.
memory (d).

requirements differ for the different values of GP. The polygon
areas in this situation were:

e 0.215 for VFDT (GP = 1000, 7 = 0.10);

e 0.294 for VFEDT (GP = 750, 7 = 0.10).

Thus, from low time cost perspective, the usage of VFDT with
GP=1000 and 7 = 0.10 is suggested.

For energy consumption, two combinations delivered the
lowest results: VFDT with GP = 1000 and 7 = 0.05 and
VEDT with GP = 1000 and 7 = 0.10. Analyzing the comple-
mentary metrics, for time and error, both cases had similar
performance. On the other hand, the memory size when
using 7 = 0.05 was smaller. For each polygon, the areas
corresponded to:

e 0.181 for VFDT (GP = 1000, 7 = 0.10);

e 0.135 for VEDT (GP = 1000, 7 = 0.05).

In this sense, when prioritizing lowest energy consumption,
VEDT with GP = 1000 and 7 = 0.05 would be the most
recommended.

Taking into account error, it was not possible to select only
2 configurations because 4 configurations reached the same
lowest error: VFDT coupled to OLBoost with GP = 1000
and 7 = 0.05 and 7 = 0.10, and VFDT coupled to OLBoost
with GP = 500 and 7 = 0.05 and 7 = 0.10. Looking at the
corresponding radar plot, it is observable that memory size

d) Memory

Interaction of complementary metrics for the best combinations of algorithm, GP and 7 when prioritizing time (a), energy (b), error (c) and

represented the biggest difference among them, influencing in
the areas of the polygons, which were:

e 0.746 for VFDT with OLBoost (GP = 1000, 7 = 0.10);

e 0.561 for VFDT with OLBoost (GP= 1000, 7 = 0.05);

e 0.649 for VFDT with OLBoost (GP = 500, 7 = 0.05);

e 1.109 for VFDT with OLBoost (GP = 500, 7 = 0.10).
Based on the areas, it is also possible to infer that the prioriti-
zation of lower error (i.e., higher accuracy) leads to the choice
of VFDT with OLBooost, using GP = 1000 and 7 = 0.05 as
hyperparameters values.

Next, the combinations that demonstrated the lowest
requirements of memory size were SVFDT-I varying the GP
between 750 and 1000, and maintaining 7 = 0.05. The area
values of the polygons presented a slight difference:

o 0.480 for SVFDT-1 (GP = 750, 7 = 0.05);

o 0.484 for SVFDT-1 (GP = 1000, 7 = 0.05).

Regarding lower memory size preference (which is a funda-
mental specification of hardware selection), the most appropri-
ate choice would be SVFDT-I with GP = 750 and 7 = 0.05.

Summarizing the presented results, for each performance
metric, the best configurations of algorithm and hyperpa-
rameters were observed. When the metrics energy, time, or
predictive performance were prioritized, the complementary
metrics were mostly similar among them for the different best

Agrawal Agrawal

- VFDT i 1000 | [+ VFDT
w0 | SRR T T e SVFDT
--- SVFDT-II —=- SVFDT-II
800
2 300 $
2 2 600
s s
2 200 H
E £ 400
5 5
E 2
100 200
of ~ o #
0.0 02 0.4 06 08 10 0.0 0.2 0.4 0.6 08 10
% of the stream % of the stream
Airlines Airlines
14000 | .. wepT e e VEDT
-+ SVFDT- 20000 | ... SVFDT-I
12000 | ___ syrpTan ——- SVFDT-II LT
10000
g 15000
3 3
£ 8000 2
s S
8 6000 g 10000
£ £
= 4000 =
5000
2000
4 0
0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 0.6 08 10
% of the stream % of the stream
Electricity Electricity
50 | veDT o | VFDT
-+ SVFDTI 120 SVFDT
~=- SVFDT-II ~=- SVFDT-II
40 100
£ £
230 3 80
s s
3 g o
€20 £
3 2 a0
10 20
0 0
0.0 02 04 06 038 1.0 0.0 02 04 06 08 10
% of the stream % of the stream
Hyper Hyper
- VFDT 700 | VFDT
175 | oo SVFDTH e SVFDT
-==- SVFDT-II 600 | -==- SVFDT-Il
150
3 500
L1125 2
2 2
s 100 « 400
@ 7
£ £ 300
5 5
< 5 = 200
25 100
4 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 10
% of the stream % of the stream
Sea Sea
50 | - VFDT
SVFDT-|
--- SVFDT-II —=- SVFDT-II
40
125
8 8 -
$ K -
230 2 100
s k)
3 3 75
E 20 H
5 H
E 2 5
10
25
o 0
0.0 0.2 0.4 06 0.8 10 0.0 02 0.4 06 08 1.0
% of the stream % of the stream
Usenet Usenet
5.0 | .o vEDT prmmmmm—————— | VFOT
s | o sveom { 175 | e SVFDT
——- SVFDT-II H ——- SVFDT-Il
1
40 i 15.0
3 1 4
S35 ! g125
N 1 <
°3.0 [omm———- ! °10.0
H 1 2
E25 H £ s
H i E
2.0 i 5.0
h
15
i 25 7
5 Y A R /
0.0 0.2 0.4 06 08 1.0 0.0 02 0.4 0.6 0.8 10
% of the stream 9% of the stream

a) GP=1000 and 7=0.05 b) GP=500 and 7=0.1

Fig. 11. Tree growth according to the percentage of the stream for GP = 1000 and 7 = 0.05 (a) and GP = 500 and 7 = 0.1 (b). Since OLBoost does not
influence tree growth, they have the same number of nodes as the version without OLBoost.

configurations. Memory, however, when figuring as a comple- predictive performance. As for memory cost, as reinforced by
mentary metric, expressed a high variability. In general, VFDT Figures 8 and 9, SVFDT-I demonstrated to be the most memory

had a distinguished performance for time cost, energy and conservative among the algorithms applied in the experiments.

10

Considering the GP and 7 configurations related to
Figure 10, it is observable that the combination GP = 1000 and
7 = 0.05 appears among the best ones for three performance
components, and results in the smallest area among all, when
prioritizing energy consumption. This configuration combines
the highest experimented GP with the lowest 7, which indi-
cates fewer split attempts. Thus, we further analyzed this
configuration in terms of tree size. To this end, in Figure 11,
we compared the tree growth according to the amount of
processed stream for this configuration (GP = 1000 and
T 0.05), and GP = 500 and 7 0.1, which is the
combination of the lowest experimented GP and highest 7.

In general, the number of tree nodes generated by SVFDT-1
(both with or without OLBoost) was lower than the ones gener-
ated by the other algorithms. VFDT, in its turn, is the algorithm
that predominantly produced larger trees, independently of the
hyperparameter configuration or dataset.

The most noticeable difference in final tree size occurs for
Agrawal dataset: whereas the tree generated by SVFDT-I has
less than 50 nodes (both in a) and b)), SVFDT-II generated
a tree with around 250 nodes (both in a) and b)), and VFDT
continued to grow until the end of the stream, reaching more
than 450 nodes in a) and 1000 nodes in b). SVFDTs stabi-
lized after some instances of this dataset were processed: for
a), SVFDT-I stabilized after around 5% of the stream was pro-
cessed and SVFDT-II stabilized after 50% of the stream; for
b), SVFDT-I also stabilized after around 5% of the stream was
processed, but SVFDT-II grew until 90% of the stream was
processed, even though it did not grow from 10% to around
80% of the stream.

The Airlines dataset resulted in the largest trees among the
6 datasets. With VFDT, the tree had almost 14000 nodes with
configuration a) and more than 20000 nodes with configuration
b). SVEDT-I resulted in smaller trees, with 8000 nodes for a)
and more than 10000 nodes for b). These examples confirm
the impact that hyperparameter and algorithm selection has on
the tree size.

In the Electricity dataset, it is observable that in configura-
tion a), when 20% of the stream is processed, VFDT begins
to produce a larger tree than the others, but when 60% of the
stream is processed, SVFDT-II begins to generate the largest
tree. However, when 80% of the stream is processed, VFDT
returns to produce the largest tree, ending up with around 50
nodes against around 37 nodes for the SVFDTs. In config-
uration b), VFDT is the largest tree all the time after the
initialization period, with a final tree with more than 120
nodes.

Regarding the Hyper dataset, it reinforces the tree growth
control of SVFDTs, especially of SVFDT-1. In fact, the final
trees of VFDT are larger than twice the size of SVFDTs for
both configurations.

The Sea dataset shows a difference between the SVFDTs.
In configuration a), both versions of SVFDT conclude the tree
growth with around 25 nodes. In configuration b), the final
SVEDTs’ trees have different sizes: SVFDT-I has around 25
nodes and SVFDT-II has around 115 nodes.

For the Usenet dataset, all the trees had the same size in
configuration a). The fact that this dataset presented the lowest

11

amount of examples and a high GP is a hypothesis for that. In
configuration b), the trees remain equal until 20% of the stream
is processed. After that, SVFDT-I stabilizes after around 50%
of the stream is processed, but the other trees continue to grow
until the end of the stream.

Summing up, higher GP values coupled with smaller 7
tended to produce smaller trees, and VFDT tended to pro-
duce larger trees than SVFDTs. This ratifies the theory and
stresses the hyperparameter selection importance, as well as
algorithm choice.

VI. CONCLUSION AND FUTURE WORK

In this work, we investigated energy consumption,
predictive performance, memory and time costs of three differ-
ent algorithms for data stream classification and the influence
of a promising boosting strategy called OLBoost. Energy
and memory consumption are specifically important for green
computing and some EC application domains, which rely on
devices with constrained computational resources and batter-
ies. Additionally, considering that fast algorithms with high
predictive performance are also desired for EC, these four met-
rics should be considered and their choice should be balanced.
The experiments were carried out comparing VFEDT, SVFDT-1
and SVFDT-II with the usage of OLBoost in six datasets with
different hyperparameter settings in a Raspberry Pi.

Our results corroborate that the best algorithm depends on
the performance metric prioritization: if energy, VFDT is the
most advantageous; if time, the version of the algorithms
without OLBoost; if accuracy, the use of OLBoost is recom-
mended; if memory, SVFDTs are more propitious, specially
SVEDT-I. In addition, inducing the online trees with OLBoost
demands for resources increase (energy, time and memory) at
the cost of reducing error, in general. Another point to con-
sider when designing ODTs for EC applications, alongside
classification algorithm and performance metrics, is the careful
selection of values for the hyperparameters, since they greatly
impact the tree size.

In this work, we only tested Raspberry Pi as an EC device.
Future works could compare the performance in a scenario
composed of different devices. Another possible continu-
ing work is the evaluation of other families of data stream
classification algorithms. Moreover, although they cannot be
directly compared with the results of this work, non-supervised
approaches could also be evaluated in this type of hardware.

REFERENCES

[1] H. Li, K. Ota, and M. Dong, “Learning IoT in edge: Deep learning for
the Internet of Things with edge computing,” IEEE Netw., vol. 32, no. 1,
pp. 96-101, Jan./Feb. 2018.

G. Ananthanarayanan et al., “Real-time video analytics: The killer app
for edge computing,” Computer, vol. 50, no. 10, pp. 58-67, 2017.

S. Babu, P. V. Mithun, and B. S. Manoj, “A novel framework for
resource discovery and self-configuration in software defined wireless
mesh networks,” IEEE Trans. Netw. Service Manag., vol. 17, no. 1,
pp. 132-146, Mar. 2019.

X. Yu, C. Cecati, T. Dillon, and M. G. Simdes, “The new frontier
of smart grids,” IEEE Ind. Electron. Mag., vol. 5, no. 3, pp. 49-63,
Sep. 2011.

M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30-39, Jan 2017.

[2]
[3]

[4]

[5]

[6]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

I. Sittéon-Candanedo, R. S. Alonso, J. M. Corchado,
S. Rodriguez-Gonzélez, and R. Casado-Vara, “A review of edge
computing reference architectures and a new global edge proposal,”
Future Gener. Comput. Syst., vol. 99, pp. 278-294, Oct. 2019. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0167739X
1930264X

B. Krawczyk, L. Minku, J. Gama, and J. Stefanowski, “Ensemble learn-
ing for data stream analysis: A survey,” Inf. Fusion, vol. 37, pp. 1-86,
Sep. 2017.

H. M. Gomes et al., “Adaptive random forests for evolving data stream
classification,” Mach. Learn., vol. 106, no. 9, pp. 1469-1495, Oct. 2017.
J. Gama, Knowledge Discovery From Data Streams, 1st ed. Boston, MA,
USA: CRC Press, 2010.

P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proc.
KDD, 2000, pp. 71-80.

A. Bifet and R. Gavalda, “Adaptive learning from evolving data
streams,” in Proc. 8th Int. Symp. Intell. Data Anal., 2009, pp. 249-260.
B. Pfahringer, G. Holmes, and R. Kirkby, “New options for hoeffding
trees,” in Proc. 20th Aust. Joint Conf. Adv. Artif. Intell., 2007, pp. 90-99.
V. G. Turrisi da Costa, A. C. P. D. L. E. D. Carvalho, and S. Barbon,
“Strict very fast decision tree: A memory conservative algorithm for
data stream mining,” Pattern Recognit. Lett., vol. 116, pp. 22-28, Dec.
2018.

V. G. T. da Costa, S. M. Mastelini, A. C. P. de Leon Ferreira, and
S. Barbon, “Online local boosting: Improving performance in online
decision trees,” in Proc. IEEE 8th Brazil. Conf. Intell. Syst. (BRACIS),
2019, pp. 132-137.

V. G. T. da Costa, S. M. Mastelini, A. C. D. L. de Carvalho, and
S. Barbon, “Making data stream classification tree-based ensembles
lighter,” in Proc. IEEE 7th Brazil. Conf. Intell. Syst. (BRACIS), 2018,
pp. 480-485.

V. G. T. da Costa, E. J. Santana, J. F. Lopes, and S. Barbon, “Evaluating
the four-way performance trade-off for stream classification,” in Proc.
Int. Conf. Green Pervasive Cloud Comput., 2019, pp. 3—17.

K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, ‘“Potentials,
trends, and prospects in edge technologies: Fog, cloudlet, mobile
edge, and micro data centers,” Comput. Netw., vol. 130, pp. 94-120,
Jan. 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1389128617303778

F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, “Fog com-
puting May help to save energy in cloud computing,” IEEE J. Sel. Areas
Commun., vol. 34, no. 5, pp. 1728-1739, May 2016.

M. Selimi, A. Lertsinsrubtavee, A. Sathiaseelan, L. Cerda-Alabern,
and L. Navarro, “PiCasso: Enabling information-centric multi-tenancy
at the edge of community mesh networks,” Comput. Netw., vol. 164,
Dec. 2019, Art. no. 106897. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1389128618312787

J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for
multi-label classification,” Mach. Learn., vol. 85, no. 3, p. 333, 2011.
G. De Francisci Morales, A. Bifet, L. Khan, J. Gama, and W. Fan, “IoT
big data stream mining,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl.
Disc. Data Min., 2016, pp. 2119-2120.

S. Albers, “Energy-efficient algorithms,” Commun. ACM, vol. 53, no. 5,
pp. 86-96, 2010.

S. Singh, P. K. Sharma, S. Y. Moon, and J. H. Park, “Advanced
lightweight encryption algorithms for IoT devices: Survey, challenges
and solutions,” J. Ambient Intell. Human. Comput., vol. 8, pp. 1-18,
May 2017.

W. Vereecken, W. Van Heddeghem, D. Colle, M. Pickavet, and
P. Demeester, “Overall ICT footprint and green communication tech-
nologies,” in Proc. IEEE 4th Int. Symp. Commun. Control Signal
Process. (ISCCSP), 2010, pp. 1-6.

E. Garcia-Martin, N. Lavesson, and H. Grahn, “Energy efficiency anal-
ysis of the very fast decision tree algorithm,” in Trends in Social
Network Analysis (Lecture Notes in Social Networks), R. Missaoui, T.
Abdessalem, and M. Latapy, Eds. Cham, Switzerland: Springer, 2017,
pp. 229-252.

S. Harizopoulos, M. Shah, J. Meza, and P. Ranganathan, “Energy effi-
ciency: The new holy grail of data management systems research,” 2009.
[Online]. Available: https://arxiv.org/abs/0909.1784

V. H. Bezerra, V. G. T. da Costa, S. B. Junior, R. S. Miani, and
B. B. Zarpeldo, “IoTDS: A one-class classification approach to detect
botnets in Internet of Things devices,” Sensors, vol. 19, no. 14, p. 3188,
2019.

R. Chen, J. Guo, D.-C. Wang, J. J. Tsai, H. Al-Hamadi, and 1. You,
“Trust-based service management for mobile cloud IoT systems,” IEEE
Trans. Netw. Service Manag., vol. 16, no. 1, pp. 246-263, Mar. 2019.

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

O. Ibidunmoye, A.-R. Rezaie, and E. Elmroth, “Adaptive anomaly detec-
tion in performance metric streams,” IEEE Trans. Netw. Service Manag.,
vol. 15, no. 1, pp. 217-231, Mar. 2017.

J. Gama, R. Sebastido, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Mach. Learn., vol. 90, no. 3, pp. 317-346, 2013.
G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen, and F. Petitjean,
“Characterizing concept drift,” Data Min. Knowl. Disc., vol. 30, no. 4,
pp. 964-994, 2016.

T. R. Hoens, R. Polikar, and N. V. Chawla, “Learning from streaming
data with concept drift and imbalance: An overview,” Progr. Artif. Intell.,
vol. 1, no. 1, pp. 89-101, 2012.

J. a. Gama, R. Rocha, and P. Medas, “Accurate decision trees for mining
high-speed data streams,” in Proc. 9th ACM SIGKDD Int. Conf. Knowl.
Disc. Data Min. (KDD), 2003, pp. 523-528.

G. Holmes, K. Richard, and B. Pfahringer, “Tie-breaking in hoeffding
trees,” in Proc. ECML/PKDD, 2005, pp. 107-116.

H. Yang and S. Fong, “Incremental optimization mechanism for con-
structing a decision tree in data stream mining,” Math. Problems
Eng., vol. 2013, Jan. 2013, Art. no. 580397. [Online]. Available:
https://doi.org/10.1155/2013/580397

N. C. Oza, “Online bagging and boosting,” in Proc. IEEE Int. Conf.
Syst. Man Cybern., vol. 3, Oct. 2005, pp. 2340-2345.

R. Agrawal, A. Swami, and T. Imielinski, “Database mining: A
performance perspective,” IEEE Trans. Knowl. Data Eng., vol. 5, no. 6,
pp. 914-925, Dec. 1993.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive
online analysis,” J. Mach. Learn. Res., vol. 11, no. 52, pp. 1601-1604,
2010.

W. N. Street and Y. Kim, “A streaming ensemble algorithm (SEA) for
large-scale classification,” in Proc. 7th ACM SIGKDD Int. Conf. Knowl.
Disc. Data Min. (KDD), vol. 4, pp. 377-382, 2001.

1. Katakis, G. Tsoumakas, and I. Vlahavas, “Tracking recurring contexts
using ensemble classifiers: An application to email filtering,” Knowl. Inf.
Syst., vol. 22, no. 3, pp. 371-391, 2010.

L. Pietruczuk, L. Rutkowski, M. Jaworski, and P. Duda, “How to adjust
an ensemble size in stream data mining?” Inf. Sci., vol. 381, pp. 4654,
Mar. 2017.

PowerTop. Accessed: Jan. 1, 2019. [Online]. Available: https://01.org/
powertop

A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, “A pre-
liminary study of the impact of software engineering on GreenIT,” in
Proc. Ist IEEE Int. Workshop Green Sustain. Softw. (GREENS), 2012,
pp. 21-27.

A. Noureddine, R. Rouvoy, and L. Seinturier, “A review of energy mea-
surement approaches,” ACM SIGOPS Oper. Syst. Rev., vol. 47, no. 3,
pp. 4249, 2013.

E. Garcia Martin, “Energy efficiency in machine learning: A position
paper,” in Proc. 30th Annu. Workshop Swedish Artif. Intell. Soc. (SAIS),
vol. 137, 2017, pp. 68-72.

M. G. Patterson, “What is energy efficiency? Concepts, indicators and
methodological issues,” Energy Policy, vol. 24, no. 5, pp. 377-390,
1996.

J. P. Barddal and F. Enembreck, “Learning regularized hoeffding trees
from data streams,” in Proc. 34th ACM/SIGAPP Symp. Appl. Comput.,
2019, pp. 574-581.

A. Bifet, G. de Francisci Morales, J. Read, G. Holmes, and B. Pfahringer,
“Efficient online evaluation of big data stream classifiers,” in Proc. 21st
ACM SIGKDD Int. Conf. Knowl. Disc. Data Min. (KDD), 2015,
pp. 59-68.

E. Mouw. (2001). Linux Kernel Proofs Guide. [Online]. Available: http://
lib.hpu.edu.vn/handle/123456789/21423

J. DemSar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.

Jessica Fernandes Lopes received the B.Sc. degree
in electrical engineering from the Federal University
of Technology—Parand (UTFPR), Brazil, in 2015,
researching in machine learning applied at manufac-
turing system, and computer engineering, and the
Master of Business Administration degree dealing
with big data and machine learning to assist in mak-
ing a decision in 2017. She is currently pursuing
the M.Sc. degree in computer science with the State
University of Londrina (UEL), Brazil, research-
ing computer vision and pattern Recognition. Her

research interests include computer vision, machine learning, and pattern
recognition.

12

Everton Jose Santana received the B.Sc. degree
in electrical engineering from the State University
of Londrina (UEL), Brazil, in 2019, where he is
currently pursuing the M.Sc. degree in computer
science. From 2015 to 2016, he was an exchange
student with the Hanze University of Applied
Sciences, The Netherlands, where he followed
minors in biomedical and sensor system engineer-
ing. His main research topics are machine learning,
instrumentation/biomedical engineering, and applied
mathematics.

Victor G. Turrisi da Costa received the M.Sc.
and B.Sc. degree in computer science from the
State University of Londrina (UEL), Brazil, in 2019
and 2017, respectively. He is currently pursuing the
Ph.D. degree in computer vision with the University
of Trento, Italy. During his masters, he worked on
machine learning algorithms applied to data streams
and network security. His current research lies at
the intersection of machine learning and computer
vision and its applications.

13

Bruno Bogaz Zarpelao received the B.Sc. degree
in computer science from the State University
of Londrina (UEL), Brazil, and the Ph.D. degree
in electrical engineering from the University of
Campinas, Brazil. In 2012, he joined UEL, where
he is currently an Assistant Professor with the
Computer Science Department. From March 2018
to February 2019, he was a Visiting Postdoctoral
Researcher with City, University of London. His
research interests include security analytics, intru-
sion detection, and Internet of Things.

Sylvio Barbon Junior received the B.Sc. degree
in computer science in 2005, the M.Sc. degree in
computational physics from University of Sdo Paulo
in 2007, and the M.Sc. degree in computational
engineering and Ph.D. degree from IFSC/USP in
2008 and 2011, respectively. In 2017, he was a
Visiting Researcher with the University of Modena
and Reggio Emilia, Italy, working on multispectral
analysis and machine learning. In 2017, he was a
Visiting Researcher with the Universita Degli Studi
Di Milano, Italy, focused on data stream and process
mining. He is currently a Professor of postgraduate and graduate programs
and a Leader of the research group that studies machine learning with the
Computer Science Department, State University of Londrina (UEL), Brazil.
His research interests include digital signal processing, pattern recognition,
and machine learning.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

