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Abstract. To understand the long-run behavior of Markov population 
models, the computation of the stationary distribution is often a cru- cial 
part. We propose a truncation-based approximation that employs a 
state-space lumping scheme, aggregating states in a grid structure. The 
resulting approximate stationary distribution is used to iteratively refine 
relevant and truncate irrelevant parts of the state-space. This way, the 
algorithm learns a well-justified finite-state projection tailored to the sta- 
tionary behavior. We demonstrate the method’s applicability to a wide 
range of non-linear problems with complex stationary behaviors. 

 

Keywords: Long-run behavior  · State-space aggregation · Lumping · 

Truncation. 
 
 

1 Introduction 
 

In many areas of science, stochastic models of interacting populations can de- 
scribe systems in which the discrete population sizes evolve stochastically in 
continuous time. Such problems naturally occur in a wide range of areas such 
as chemistry [16], systems biology [45,42], epidemiology [35] as well as queuing 
systems [9] and finance [37]. 

Interactions between agents, commonly referred to as reactions, happen at ex- 
ponentially distributed random times. Their rate depends on the current system 
state, i.e. the population sizes. This results in a continuous-time Markov chain 
semantics [4]. An important part of the analysis of such models concerns their 
long-run behavior. Given an ergodic underlying Markov chain, the chain’s sta- 
tionary distribution characterizes this behavior. For some special model classes, 
such as zero-deficiency networks [3], analytical solutions for the stationary dis- 
tribution are known. However, most models require numerical approaches, of- 
ten based on some form of approximation to guarantee tractability. Those ap- 
proaches can be based on stochastic simulation [16] (which for steady-state anal- 
ysis tends to be slow and inaccurate) or moment-bounds via mathematical pro- 
gramming [23]. Here, we draw on numerical approaches based on state-space 
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truncation, which represent a viable option to approximate stationary distri- 
butions [24]. Truncation-based approaches have the benefit of describing the 
complete dynamics within a finite subset of the typically very large or infinite 
state-space. As such, they enable the approximation of complex distributions that 
are not well-described by low-order moments. 

The main step in the computation of such an approximation is the identifica- 
tion of a suitable truncation, i.e. a subset of the state-space encompassing most 
of the stationary probability mass. Existing methods typically rely on Foster- 
Lyapunov drift conditions to define such subsets [12]. While these truncations 
come with bounds on the contained stationary probability mass, they typically are 
far larger than  necessary.  The  truncation  is  usually  strongly  constrained by the 
form of the chosen Lyapunov function [17,12]. Optimizing over possible functions 
to identify efficient truncations is technically challenging and, to our knowledge, 
has not been demonstrated for general reaction networks [34]. 

In this work, we address the identification of suitable truncations by using 
an aggregation-refinement scheme. Initially, a Lyapunov analysis yields a set 
containing at least 1 ϵ of the stationary probability mass. On this subset of the 
state-space, we apply an aggregation scheme that groups together states in 
hypercube macro-states. Throughout each of these macro-states, we assume a 
uniform distribution among its constituent micro-states. This allows us to roughly 
analyze large portions of the state-space with exponentially fewer vari- ables. We 
then iteratively truncate and refine the approximation based on the stationary 
distribution of this aggregated Markov chain. We keep only the most relevant 
macro-states and continue this scheme until the macro-states contain a single 
original state. In this way, we arrive at an effective truncation to compute an 
approximation of the stationary distribution. 

We investigate the approximation results on case studies with known station- 
ary distributions and complex models with intricate stationary distributions. We 
evaluate the truncation quality by assessing the stationary probability mass cap- 
tured. To this end, we use analytical solutions and bounds given by a Lyapunov 
analysis. Further, we explore the control of the truncation size through the trun- 
cation parameter. Finally, we demonstrate the method on the p53 oscillator 
model exhibiting a complex stationary distribution. 

The rest of the paper is organized as follows: Section 2 discusses related work, 
Section 3 introduces background material, Section 4 is devoted to the description 
of our method, Section 5 presents an experimental validation, and finally Section 
6 contains a final discussion. 

 
 

2 Related Work 

 
For some specific models, analytical solutions for the  stationary  distribution have 
been found [29,26]. For the class of zero-deficiency networks, the stationary 
distribution is known to have a Poisson product form [2]. Monomolecular reaction 
networks can be solved explicitly, as well [21]. 



Abstraction-Guided Truncations for Stationary Distributions of MPMs 3 
 

 

The analysis of countably infinite-sized state-spaces is often handled by pre- 
defined truncations [27]. Sophisticated state-space truncations for the (uncon- 
ditioned) forward analysis have been developed that give lower bounds. They 
typically provide a trade-off between computational load and tightness of the 
bound [36,28,5,20,33]. Such methods cannot be directly applied to the estimation 
of stationary distributions because the approximation usually introduces a sink- 
state. 

 

Truncations for stationary distributions often involve re-direction schemes 
for transitions leaving and entering the subset. A comprehensive survey of such 
state-space truncation methods can be found in [25]. A popular method of iden- 
tifying truncations is the construction of a suitable Lyapunov function. Beyond 
their use for establishing ergodicity [30,17,12], these functions can be used to 
obtain truncations, guaranteed to contain a certain amount of stationary prob- 
ability mass [12]. Using Lyapunov functions for the construction of truncations 
often leads to very conservative sets [34]. Different approaches have been em- 
ployed to find truncations: In [18] SSA estimates are used to set up an increasing 
family of truncations. 

 

Apart from approaches based on state-space truncations, moment-based ap- 
proaches have been particularly popular recently [15,13,23,38]. Such approaches 
are based on the fact that particular matrices of distributional moments such 
as mean and variance are positive semi-definite. Along with linear constraints 
stemming from the Kolmogorov equations [7], a semi-definite program can be 
formulated and solved using existing tools. While this method is suited to com- 
pute bounds on both moments and subsets of the state-space, its application is 
limited, due to numerical issues inherent in the formulation [13]. 

 

An approach where quantities are only described in terms of their magnitude 
has been proposed in [11]. This allows for an efficient qualitative analysis of both 
dynamic and transient behavior. 

 

An aggregation scheme similar to the one used here has been previously 
proposed in [6] to analyze the bridging problem on Markovian population mod- 
els. This is the problem of analyzing process dynamics under both initial and 
terminal constraints. 

 

Aggregation-based numerical methods for computing the stationary distribu- 
tion of discrete or continuous-time Markov chains have been studied in previous 
work. Popular approaches rely on an alternation of aggregation and disaggre- 
gation of the state-space [41,39]. In the case of stiff chains, such aggregations 
are typically based on a separation of time-scales [10]. However, these methods 
have been developed for finite chains with arbitrary structure and are motivated 
by numerical issues of standard methods such as the power method or Jacobi 
iteration [41]. They do not consider a truncation of irrelevant states, while here 
our aggregation approach is used to determine the most relevant states under 
stationary conditions in large or infinite chains with population structure. 
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3 Preliminaries 

3.1 Markovian Population Models 

A Markovian population model (MPM) describes the stochastic interactions 
among agents of distinct types in a well-stirred system. This assumes that all 
agents are equally distributed in space, which allows us to keep track only of the 

overall copy number of agents for each type. Therefore the state-space is S ⊆ NnS 

where nS denotes the number of agent types or populations. Interactions between 
agents are expressed as reactions. These reactions have associated gains and 
losses of agents, given by non-negative integer vectors v− and v+ for reaction j, 

j j 

respectively. The overall change by a reaction is given by the vector vj = v+−v−. 
A reaction between agents of types S1, . . . , SnS   is specified in the following form: 

nS 

vj
−

AS 
A=1 

 
αj (x) 

A − −→ 

nS 
+ 
jA 

A=1 

 
A . (1) 

The propensity function αj gives the rate of the exponentially distributed firing 
time of the reaction as a function of the current system state x . In population 
models, mass-action propensities are most common. In this case the firing rate 
is given by the product of the number of reactant combinations in x and a rate 
constant  cj , i.e. 

αj(x) := cj 
YnS      

x
  

. (2) 

 

A=1 
vj

−
A 

In this case, we give the rate constant in (1) instead of the function αj. For 

a given set of nR reactions, we define a stochastic process Xt t≥0 describing the 
evolution of the population sizes over time t. Due to the assumption of 
exponentially distributed firing times1, X is a continuous-time Markov chain 

(CTMC) on S with infinitesimal generator matrix Q, where the entries of Q are 

Q = 

(Σ
j:x+vj =y  αj(x) ,    if x y,  (3) 

x,y nR 
j=1 αj(x) , otherwise. 

The probability distribution over time is given by an initial value problem. Given 
an initial state x0, the distribution2 

π(xi, t) = Pr(Xt = xi | X0 = x0), t ≥ 0 (4) 

evolves according to the Kolmogorov forward equation 

d 
π(t) = π(t)Q, (5) 

dt 
1 Note that in addition mild regularity assumptions are necessary for the existence of 

a unique CTMC X, such as non-explosiveness [4]. These assumptions are typically 
valid for realistic reaction networks. 

2 In the sequel, we assume an enumeration of all states in S. We simply write xi for the 
state with index i and drop this notation for entries of a state x. 

A 
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where π(t) is an arbitrary vectorization (π(x1, t), π(x2, t), . . . , π(x|S|, t)) of the 
states. 

 

Example. Consider a birth-death process as a simple example. This model is used 
to describe a wide variety of phenomena and often constitutes a sub-module of 
larger models. For example, it represents an M/M/1 queue with service rates 
being linearly dependent on the queue length. Note that even for this simple 
model, the state-space is countably infinite. 

Model 1 (Birth-Death Process). The model consists of exponentially dis- 
tributed arrivals and service times proportional to queue length. It can be ex- 
pressed using two mass-action reactions: 

∅ 
µ γ 

−→ S and S −→ ∅ . 

The initial condition X0 = 0 holds with probability one. 

 
3.2 Stationary Distribution 

Assuming ergodicity of the underlying chain, a stationary distribution π∞ is an 
invariant distribution, namely a fixed point of the Kolmogorov forward equation 

(5). Let π∞ be the vector description of a stationary distribution. It then satisfies 

0 = π∞Q   and   1 =      π∞(x) (6) 
x∈S 

as a fixed point of the Kolmogorov equation (5). Stationary distributions are 
connected to the long-run behavior of an MPM [12], as the system’s distribu- tion 
will converge to the (unique) stationary distribution. The connection of the 
stationary distribution to the long-run behavior becomes clear when considering 

the ergodic theorem. For some A ⊆ S, 
 

lim 1 
∫ T  

1A(Xt) dt = 
Σ 

π∞(x) . (7) 

T →∞ T   0 
x∈A 

Thus, the mean occupation time for set A over infinite trajectories is the sta- 
tionary measure for A. Eq. (7) shows that we can assess long-run behavior using 
the stationary distribution and vice-versa. 

 

Example. Returning to the example of Model 1 it is obvious that the state-space is 
irreducible. Further, we can easily show, that the stationary distribution is 
Poissonian with rate µ/γ: 

π∞(x) = 
(µ/γ)x exp(  µ/γ) 

. 
x! 

For simplicity, we assume  throughout  that  the  state-space is  composed of a 
single communicating class. Checking ergodicity given a countably infinite number 
of states is achieved by providing a suitable Foster-Lyapunov function [31]. Some 
automated techniques have been proposed for this task [12,17,34]. 
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3.3 Truncation-Based  Approximation  of  π∞ 

In many relevant cases, the state-space is huge or infinite and therefore the 
stationary solution cannot be computed directly. To make such a computation 
possible we have to restrict ourselves to a finite manageable subset of the state- 
space and assume the majority of the probability mass is concentrated within that 
finite subset. The main problem is to deal with the transitions leading to and from 
the truncated set (cf. Figure 1). In forward analysis, the outgoing transitions are 
simply redirected into a sink-state. This way, a forward analysis provides lower 
bounds since mass leaving the truncation does not re-enter. This approach, 
however, is unsuitable for the computation of stationary distributions because 
mass would accumulate in the sink-state leading to a distribution assigning all 
mass to it. Therefore, transitions leaving the truncation need to be redirected back 
into the truncation. 

The process’ dynamics outside the truncation are defined by the stochastic 
complement [40]. If its behavior was known, one could redirect outgoing to in- 
coming transitions optimally and preserve the correct stationary distribution. 
However, this reentry distribution is typically unknown in most relevant cases. 
Many different reentry distributions have been used, such as redirecting to some 
internal state or states with incoming transition from outside the truncation. 
Reference [24] provides a comprehensive review of such methods. 

The most natural choice is to pick a reentry distribution that redirects mass 
to states with incoming transitions from truncated states (cf. Figure 1 (center)). 

Using varying redirections, we can compute bounds on the stationary proba- 
bility conditioned on a truncation [40, (Thm. 14)]. To do this, one has to compute 
the stationary distribution for every possible way of connecting all outgoing to a 
single incoming transition. Naturally, such an algorithm is rather expensive since 
one has to solve a linear system for each combination. Therefore this method of 
computing bounds is costly on very large truncations, often given by Lyapunov 
functions. 

When computing an approximation instead of bounds, we employ a uni- 
form redirection scheme: Outgoing transitions are split uniformly among incom- 
ing transitions. Due to the threshold-based truncation scheme, we are likely to 
end up with a somewhat uniform distribution over in-boundary states (see Sec- 
tion 4.3). 

The identification of good truncations remains a major task in such ap- 
proximations. Using approaches such as Lyapunov functions (Section 3.4) [12] 
or moment-bounds [24] can provide a good initial estimate, but typically the 
resulting truncations are far larger than necessary. This leads to dramatically 
increased computational costs, especially when bounding methods mentioned 
above are performed. Until a system for a larger truncation is solved, the precise 
location of most of the probability mass is often unknown. Instead of solving the 
full system for such a large space, we employ an aggregation scheme to cover 
large areas of the state-space with exponentially fewer variables. 

Error bounds have been derived for increasing truncation sets in the case of 
linear Lyapunov functions [18]. However, until now it has not been shown that 
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Fig. 1. (left) A countably infinite state-space. (center) Outgoing transitions are re- 
directed (according to the reentry distribution) to states that have incoming transi- 
tions from outside the truncation. (right) A comparison of the area perscribed by a 
Lyapunov analysis using Geobound and threshold 0.1 and the minimal area containing 
0.9 stationary probability mass. The model is a parallel birth death process (Model 2). 

 

 
these bounds are applicable in practice [32]. Alternatively, one can monitor the 
product of the probability-ouflow rate and the maximum L1-norm, which bounds 
the approximation error up to a constant M > 0, assuming a linear Lyapunov 
function exists [18]. 

 

3.4    Lyapunov Bounds 

It is well-known that for a CTMC X, ergodicity can be proven by a Lyapunov 
function g : R+ [30,12]. Given the g, we define its drift d as its average 
infinitesimal change, which is obtained applying the generator Q to g. 

 

nR 

d(x) = αj(x)(g(x + vj) − g(x)) (8) 
j=1 

 

Usually, such a function g grows in all directions on the positive orthant, while 
its drift d(x) decreases in all directions. More formally, g is characterized by 

having finite level sets {x ∈ S | g(x) < l} for all l > 0. At the same time, 

ϵA 
Cєl   = {x ∈ S |  

c 
d(x) > ϵA − 1} (9) 

should  be  finite,  where  ∞ > c ≥ supx∈S d(x).  In  this  case,  Cєl    contains  at  least 
1 − ϵA of stationary probability mass for any ϵA ∈ (0, 1) [40, Thm. 8]. Given that 
Cєl    is finite, the chain is ergodic and 

x

Σ

∈Cеl 

π(x) > 1 − ϵA (10) 

 

bounding the stationary probability mass contained within Cєl . 

                  

 

B
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In many cases, simple choices of g such as the L1- or L2- norm are suffi- 
cient. However, the sets resulting from such functions are often very conserva- 
tive. Consider Figure 1 (right) as an example, where the Lyapunov truncation 
with ϵA = 0.1 for two parallel birth death processes (Model 2) is compared to 
the smallest set containing 0.9 of stationary probability. Clearly, the area given 
by the Lyapunov function is magnitudes larger than necessary to capture prob- 
ability mass consistent with ϵA. 

We employ this approach to both identify initial truncations and estimate 
errors in the evaluation. Specifically, we employ the tool Geobound3 with L2- norm 
as function g implementing techniques presented in [12]. 

 

4 Method 
 

In this work, we propose a method to identify a truncation that optimizes the 
trade-off between the size of the considered state-space and the approximation 
error due to the finite state-space projection. To this end, we start with a very 
coarse-grained model abstraction that we refine iteratively. The coarse-grained 
model is based on an grid-shaped aggregation (i.e., lumping) scheme that identi- 
fies a set of macro-states. These macro-states can be used to compute an interim 
model solution that guides the refinement in the next step. We perform refine- 
ments until the approximation arrives at the resolution of the original model (i.e., 
each macro-state has only one constituent) such that the aggregation introduces 
no approximation error. 

We explain the construction of macro-states in Section 4.1 and their initializa- 
tion in Section 4.2. We present the iterative refinement algorithm in Section 4.3. 

 

4.1 State-Space Aggregation 
 

A macro-state is a collection of micro-states (or simply states) treated as one state 
in the aggregated model, which can be seen as an abstraction of the orig- inal 
model. The aggregation scheme defines a partitioning of the state-space. We 
choose a scheme based on a grid structure. That is, each macro-state is a 
hypercube in ZnS . 

Hence, each macro-state x̄i(l(i), u(i)) (denoted by x̄i  for notational ease) can 
be identified using two vectors l(i) and u(i). The vector l(i) gives the corner closest to 
the origin, while u(i) gives the corner farthest from the origin. Formally, 

x̄i = x̄i(l(i), u(i)) = {x ∈ NnS    | l(i) ≤ x ≤ u(i)}, (11) 

where ’≤’ denotes element-wise comparison. 
In order to solve the aggregated model, we need to define transition rates 

between macro-states. Therefore, we assume that, given that the system is in 
a  particular  macro-state,  all  constituent  states  are  equally  likely  (uniformity 

3 https://mosi.uni-saarland.de/tools/geobound 

https://mosi.uni-saarland.de/tools/geobound
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/ x̄i  ,    otherwise 

 

assumption). This assumption is the reason why the aggregated model provides 
only a coarse-grained approximation. 

The uniformity assumption is a modeling choice yielding significant advan- 
tages. Firstly, it eases the computation of the rates between macro-states and, 
therefore, makes a fast solution of the aggregated model possible. Secondly, even 
though it induces an approximation error, it provides suitable guidance as uni- 
formity assumption spreads out the probability mass conservatively. Hence, it 
becomes less likely that regions of interest are disregard. Lastly, the uniformity 
assumption is theoretically well-founded, as it stems from the maximum entropy 
principle: In the absence of concrete knowledge about the probability distribution 
inside a macro-state, we assume the distribution with the highest uncertainty, i.e., 
the uniform distribution. 

The grid structure makes the computation of transition rates between macro- 
states particularly convenient and computationally simple. Mass-action reaction 
rates can be given in a closed-form, due to the Faulhaber formulae [22] and more 
complicated rate functions such as Hill-functions can often be handled as well 
by taking appropriate integrals [6]. 

Suppose,  we  are  interested  in  the  transition  rate  from  macro-state  x̄i  to 
macro-state x̄k  according to reaction j. Using the uniformity assumption, this is 
simply  the  mean  rate  of  the  states  in  x̄i  that  go  to x̄k  using  j.  However,  only  a 
small subset of constituents in x̄i are actually relevant for this transition. Hence, 
we  identify  the  subset  of  states  of  x̄i  that  lie  at  the  border  to  x̄k  and  in  such 
a  way  that  applying  reaction  j  shifts  them  to  a  state  in  x̄k .  Then,  we  sum  up 
the corresponding rates of these states. Lastly, we normalize according to the 
number of states inside of x̄i. 

It is easy to see that the relevant set of border states is itself an interval- 
defined  macro-state  x̄ 

i−→k 
.  To  compute  this  macro-state  we  can  simply  shift  x̄i 

by vj , take the intersection with x̄k  and project this set back. Formally, 

x̄
i−→

j    
k  

= ((x̄i + vj) ∩ x̄k) − vj , (12) 

where the additions are applied element-wise to all states making up the macro- 
states. For ease of notation, we also define a general exit state 

x̄   j 
i−→ 

= ((x̄i + vj) \ x̄i) − vj . (13) 

This state captures all micro-states inside x̄i that can leave the state via reaction 
j. 

This uniformity assumption gives rise to the following Q-matrix of the ag- 
gregated model: 

 

nR 

¯ j=1 

 

ᾱj 
 

x̄ i−→k 

  
/ |x̄i| , if x̄i 

 

x̄k 

Qx̄i,x̄k  = 

− R | | 
 

 

(14) 

ᾱj(x̄) = αj(x). (15) 
x∈x̄ 

where 
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Fig. 2. The state-space refinement algorithm on a  birth-death  process.  From  left  to right 
the state size is halved and states with low probability are removed from the 
truncation. The final truncation is a typical truncation with states of size 1 and the 
initial states are of size 24. 

 

is the sum of all rates belonging to reaction j  in x̄.. 
Under the assumption of polynomial rates, as is the case for mass-action 

systems, we can compute the sum of rates over this transition set efficiently using 
Faulhaber’s formula. As an example consider the following mass-action reaction 

2X  →−c    ∅ .  For  macro-state  x̄  =  {0, . . . , n} we  can  compute  the  corresponding 
lumped transition rate 

c Σ c Σ 
 

 
  

c 
   

2n3 + 3n2 + n 
 

 

  

n2 + n 
 

 
 

 

 

eliminating the explicit summation in the lumped propensity function. 

 
4.2 Initial  Aggregation 

The initial aggregated space ˆ(0) should encompass all regions of the state-space 
that could contain significant mass because states outside this initial area will 
not be refined. In principle, multiple approaches could be used to identify such a 
region. One possibility is the computation of moment bounds for the stationary 
distribution [15,13]. Based on these bounds on expectations and covariances, an 
initial truncation could be fixed. The approach we use here is to identify such a 
region by a Lyapunov analysis [12]. This way, we obtain a polynomial describing 

a semi-algebraic subset of the entire state-space containing 1 − ϵA of the mass, where 
ϵA > 0 can be fixed arbitrarily. These sets usually are far larger than a 
minimal set containing 1   ϵA  of stationary probability mass would be. As an initial 
aggregation, we build an aggregation on a subset [0..n]nS containing 
the set prescribed by the Lyapunov analysis. 

 
4.3 Iterative Refinement Algorithm 

The refinement algorithm (Alg. 1) starts with a set of large macro-states that 
are iteratively refined, based on approximate stationary distributions. We start by 

constructing square macro-states of size 2m in each dimension for some m ∈ 

2 
i=1 

2 2 6 2 

X
 

n 

ᾱ(x̄) = 
i=1 

(i2 − i) = 

− 
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Algorithm 1: Lumping to approximate the stationary distribution 

input  : Initial partitioning S(0), truncation threshold g 
output:  approximate  stationary  distribution  π̂∞ 

1 for i = 1, . . . , m do 
2 π̂(i)  ← solve  approximate  stationary  distribution  on  S(i); 

3 R ← choose smallest R′ ⊆ S(i)  such that 
Σ

 x̄∈R' π̂(i)(x̄) ≥ 1 − g; 

4 S(i+1) ← 
S 

 

x̄∈R 
split(x̄); 

5 update Q-matrix; 
(m) 

   6   return  π̂∞  ;  

 
 

N such that they form a large-scale grid  (0). Hence, each initial macro-state has 
a volume of (2m)nS . This choice of grid size is convenient because we can halve 
states in each dimension. Moreover, this choice ensures that all states have an 
equal volume and we end up with unit-sized macro-states, equivalent to a 
truncation of the original non-lumped state-space. 

An iteration of the state-space refinement starts by computing the stationary 

distribution, using the lumped Q̂-matrix. Based on a threshold parameter ϵ > 0 
states are either removed or split (line 4), depending on the mass assigned to 
them  by  the  approximate  stationary  probabilities  π̂(i).  Thus,  each  macro-state 

is either split into 2nS 

∞ 

new states or removed entirely. The result forms the 

next lumped state-space    (i+1). The Q̂-matrix is updated (line 5) using  (14) to 
calculate the transition rates of the next aggregated truncation (i+1). Entries of 
truncated states are removed from the updated transition matrix. Transitions 
leading to them are re-directed according to the re-entry matrix (see Section 3.3). 
After m iterations (we started with states of side lengths 2m) we have a standard 
finite state projection scheme on the original model tailored to computing an 
approximation of the stationary distribution. 

This way, the refinement algorithm focuses only on those parts of the state- 
space contributing most to the stationary distribution. For instance, in Fig. 2 the 
stationary probability mass mostly concentrates around #S = 200. Therefore, 
states that are further away from this area can be dropped in further refinement. 
This filtering (line 3 in Algorithm 1) ensures that states contributing significantly 

to π̂(i) will be kept and refined in the next iteration. The selection of states is done 
by sorting states in descending order according to their approximate probability 
mass. This ensures the construction of the smallest possible subset chosen for 
refinement according to the approximation. Then states are collected until their 

overall approximate mass is above 1 − ϵ. 
An interesting feature of the aggregation scheme is that the distribution tends 

to spread out more. This is due to the assumption of a uniform distribution inside 
macro-states. To gain an intuition, consider a macro-state that encompasses a 
peak of the stationary distribution. If we re-distribute the  actual  probability mass 
inside this macro-state uniformly, a higher probability is assigned to states at the 
macro-state’s border. When plugging such macro-states together, this 
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increased mass away from the peak will increase the mass assigned to adjacent 
macro-states. This effect is illustrated by the example of a birth-death process 
in Figure 2. Due to this effect, an iterative refinement typically keeps an over- 
approximation in terms of state-space area. This is a desirable feature since 
relevant regions are less likely to be pruned due to lumping approximations. 

 
5 Results 

 
A prototype was implemented in Rust 1.50 and Python 3.8. The linear systems 
were solved either using Numpy [19] for up to 5000 states, or the sparse lin- 
ear solver as available through Scipy [43], or the iterative biconjugate gradient 

stabilized algorithm [44] (up to 10,000 iterations and absolute tolerance 10−16). 
The examples that we consider in the sequel are typical benchmarks for the 

analysis of MPMs. For most of them, appropriate Lyapunov functions have been 
determined using Geobound [40]. However, the corresponding Lyapunov sets 

containing at least 1 − ϵA of the stationary probability mass are very large for 
typical choices of ϵA (e.g. ϵA ∈ {0.1, 0.05, 0.001}). Even for extremely large ϵA, say 
ϵA = 0.8, the remaining state-space may still be huge (e.g, 15,198 states). 

 
5.1 Parallel Birth-Death Process 

We first examine the algorithm on the simple example of two parallel, uncoupled 
birth-death processes. 

Model 2 (Parallel Birth-Death  Process).  Two  uncoupled  parallel  birth- death 
processes result in a simple stationary distribution that is given by a product of two 
Poisson distributions. 

 

∅  
ρ δ ρ δ 

−→ A A −→ ∅ ∅ −→ B B −→ ∅ 

As a parameterization we choose ρ = 100 and δ = 1. 

For this model, the stationary distribution is known to be the product of two 
Poisson distributions with rate ρ/δ. 

According to the Lyapunov analysis with a 1e-4 bound, we fix the initial 
truncation to a 70 70 grid of macro-states with size 27 in each dimension. This 
implies 8 iterations of the algorithm to arrive at a truncation with the original 
granularity. In Figure 3, we illustrate the truncations  of  different  iterations. Over 
the iterations, the covered area decreases, while the aggregation granularity 
increases. The final truncation distribution approximation is also depicted and 
covers 1 1.27e-2 of the true stationary distribution (cf. Table 1). 

For this case study, we also compute state-wise bounds on the probabilities 
conditioned on the truncation as discussed in Section 3.3. In Figure 6 (right), we 
present the difference between upper and lower bound for ϵ = 0.1. We observe 
intervals that are narrowest in the truncation’s interior near the distribution’s 
mode. The largest intervals or the largest absolute uncertainty is present in the 
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Fig. 3. Results for Model 2 with truncation threshold g = 0.1. (left) Truncations of 
different iterations are layered on top of each other. At higher iterations, truncations 
cover less area but increase in detail, due to the refinement of macro-states. The fi- nal 
approximation is indicated by its approximate probabilities. (right) The difference 
between the upper and lower bounds on the probability conditioned on the truncation. 

 
 

boundary states. This indicates, that the specific reentry distribution has little 
effect on the main approximate stationary mass. More detailed results on the 
intervals’ magnitudes are given in Table 1. 

 
5.2 Exclusive Switch 

The exclusive switch [8] has three different modes of operation, depending on the 
DNA state, i.e. on whether a protein of type one or two is bound to the DNA. 

Model 3 (Exclusive Switch). The exclusive switch model consists of a pro- 
moter region that can express both proteins P1 and P2. Both can bind to the 
region, suppressing the expression of the other protein. For certain parameteri- 
zations, this leads to a bi-modal or even tri-modal behavior. 

D 
ρ1 ρ2 λ λ 

−→ D + P1 D −→ D + P2 P1 −→ ∅ P2 −→ ∅ 
β γ1 ρ1 D + P 

1 −→ D.P1 D.P1 −→ D + P1 D.P1 −→ D.P1 + P1 
β γ2 ρ2 D + P 

2 −→ D.P2 D.P2 −→ D + P2 D.P2 −→ D.P2 + P2 

We choose parameter values ρ1 = 0.7, ρ2 = 0.6, λ = 0.02, β = 0.005, γ1 = 0.06, 
and γ2 = 0.05. 

Since the exclusive switch models mutually exclusive binding of proteins to a 
single genetic locus, we know a priori that there are exactly three distinct oper- 
ating modes. In particular are D, D.P1, and D.P2  mutually exclusive such that XD(t) 

+ XD.P1 (t) + XD.P2 (t) = 1, ∀t ≥ 0. This model characteristic often leads 
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to bi-modal stationary distributions, where one or the other protein is more 
abundant depending on the genetic state. 

Accordingly, we adjust the initial truncation: The state-space for the DNA 
states is not lumped. Instead we “stack” lumped approximations of the P1-P2 
plane upon each other. Such special treatment of DNA states is common for 
such models [28]. Using Lyapunov analysis for threshold 0.001, we fix an initial 
state-space of 63 63 macro-states with size 27. Detailed results for different 
parameters ϵ are presented in Table 3. We compute error bounds using a worst- 
case analysis based on reference solutions provided by Geobound with ϵA = 0.01. 
We observe a strong decrease in both upper bounds on the total absolute and 
maximal absolute error in the final iteration. Interestingly, the errors between 
different thresholds are very close in earlier iterations. This is mainly due to the 
usage of absolute errors which causes probabilities close to the mode dominate. 

Using Geobound we observe that our final truncation captures the stationary 
mass very well (cf. Table 1). We use the Geobound’s lower bounds with ϵA = 
1e 2 and find that the uncovered mass by the aggregation-based truncation 
is magnitudes lower than ϵ or close to it (for ϵ = 0.1). While they capture the 
mass well, they are much smaller than the Geobound truncation (ϵA = 0.1) with 
16,780 states, regardless of the threshold parameter ϵ. 

In Figure 4 (left), we show the effect of the threshold parameter ϵ on the 
size of the final truncation. We observe a roughly linear increase in size with an 
exponential decrease of ϵ. 
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Fig. 4. (left) The sizes of the final truncation vs. the threshold parameter g. (right) 
The approximate stationary distribution of the exclusive switch (Model 3) obtained 
with g = 1e-4. 

 
 
 
 

5.3 p53 Oscillator 
 

We now consider a model of the interactions of the tumor suppressor p53 [14]. 
The system describes the negative feedback loop between p53 and the oncogene 
Mdm2. Species pMdm2 models a precursor to Mdm2. This model is particularly 
interesting due to its complex three-dimensional oscillatory behavior. The model 
is ergodic with a unique stationary distribution [17]. 
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× × 

i=0 

xp53 + k7 1    otherwise 

 
 

Model 
threshold parameter g 

 
 
 
 
 
 

 

Table 1. Results for Model 2 and Model 3: The characteristics of the lower-upper bound 
intervals on the conditional probability and the (upper bound on) mass not contained 
in the truncation are given. 

 
 

Model 4 (p53 Oscillator). 
 

∅ −k→1      p53 p53 −k→2      ∅ p53 −k→4      p53 + pMdm2 

p53  
α4(·) k5 k6 

— −→ ∅ pMdm2 −→ Mdm2 Mdm2 −→ ∅ 

The non-polynomial degradation reaction rate 
 

α (x) = k x 
    xp53  . 

4 3  Mdm2 xp53 + k7
 

 

The parameterization based on [1] is k1 = 90, k2 = 0.002, k3 = 1.7, k4 = 1.1, 
k5 = 0.93, k6 = 0.96, and k7 = 0.01. 

With the exception of propensity function α4, we can compute the transition rates  
ᾱi  using  the  Faulhaber  formulae,  as  discussed  in  Section  4.1.  We  consider α4 
separately, because it is non-polynomial and therefore, we have to make an 
approximation. The fraction occurring in the non-linear propensity function α4 can 
roughly be characterized as an activation function: Due to the low value of 
parameter k7 = 0.01 we can approximate 

    xp53   
≈ 

(
0    if xp53 = 0 

 

We use this approximation at the coarser levels of aggregation to efficiently 
compute the approximate transition rate ᾱ4. At the fines granularity we switch 
back to exact propensity function α4.4 

Due to the exponential increase stemming from the three-dimensional nature 
of this model, we only evaluated with parameter ϵ = 0.1. According to a Lya- punov 
analysis (Section B), the area covered by an 6 6 6 macro-states with size 220, covers 
0.9 of stationary mass. A truncation of this same area would consist 
4  We note, that 

Σn     i/(i+k7) can be solved analytically. However, the approximation 

presented above is much simpler to compute. 

 1e-1 1e-2 1e-3 1e-4 

 
2 

total width 
max. width 

1.2336 
3.4752e-03 

3.0938e-02 
9.2954e-05 

5.3916e-04 
4.0400e-07 

8.1249e-06 
4.6521e-09 

 outside mass 1.2708e-02 1.0568e-04 1.0500e-06 1.0617e-08 

 
3 

total width 
max. width 

5.5171 
1.5898e-01 

1.5559 
3.3089e-03 

2.8946e-02 
3.4733e-05 

3.7161e-04 
3.8412e-07 

 outside mass ≤ 1.5274e-01 1.2973e-03 2.0249e-05 2.7280e-07 
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of 226,492,416 states instead of the 216 macro-states. The model has a striking 
oscillatory behavior (cf. Fig. 5 (top right)) that is reflected in its stationary distri- 
bution. This feature is well-captured in the approximate distribution, where the 
oscillatory behavior leads to a complex stationary distribution (cf. Fig. 5 (bot- 
tom right)). This distribution leads to a non-trivial truncation (357,488 states) 
which is tailored to the main stationary mass (Figure 5 (left)). 
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Fig. 5. (left) The final truncation at original granularity derived for the p53 oscillator. 
(top right) A sample trajectory illustrating the oscillatory long-run behavior. (bottom 
right) The approximate marginal distributions of the stationary distribution based on 
the truncation derived with g = 0.1. 

 
 
 

6 Conclusion 

State-of-the-art methods for numerically calculating the stationary distribution 
of Markov Population Models rely on coarse truncations of irrelevant parts of 
large or infinite discrete state-spaces. These truncations are either obtained from 
the stationary statistical moments of the process or from Lyapunov theory. They 
are limited in shape because these methods do not take into account the detailed 
steady-state flow within the truncated state-space but only consider the average 
drift or stationary moments. 

Here, we propose a method to find a tight truncation that is not limited in 
its shape and iteratively optimizes the set based on numerically cheap solutions 
of abstract intermediate models. It captures the main portion of  probability mass 
even in the case of complex behaviors efficiently. In particular, the method 
represents another option, where Lyapunov analysis leads to forbiddingly large 
truncations. 
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A Detailed Results 
 
 
 

iteration i 

g 1 2 3 4 5 6 7 8 

(i) 
| 4,900 28 52 112 232 472 960 1,932 

1e-1 tot. error 1.91 1.84 1.73 1.55 1.29 9.35e-1 4.88e-1    3.54e-2 
max. error 3.15e-3 3.13e-3 3.08e-3 2.98e-3 2.77e-3 2.38e-3 1.57e-3    6.04e-5 

(i) 
| 4,900 52 104 208 464 988    2,008 4,052 

1e-2 tot. error 1.91 1.84 1.73 1.56 1.30 9.46e-1 5.01e-1    6.22e-4 
max. error 3.15e-3 3.13e-3 3.08e-3 2.98e-3 2.78e-3 2.39e-3 1.59e-3    8.33e-7 

(i) 
| 4,900 84 152 300 652    1,440     2,996 6,068 

1e-3 tot. error 1.91 1.83 1.73 1.56 1.30 9.46e-1 5.01e-1    9.83e-6 
max. error 3.15e-3 3.13e-3 3.08e-3 2.98e-3 2.78e-3 2.39e-3 1.59e-3    1.14e-8 

(i) 
| 4,900 116 212 400 848    1,872     3,960 8,060 

1e-4 tot. error 1.91 1.83 1.73 1.56 1.30 9.46e-1 5.01e-1    9.83e-6 
max. error 3.15e-3 3.13e-3 3.08e-3 2.98e-3 2.78e-3 2.39e-3 1.59e-3 1.83e-10 

Table 2. Detailed results for Model 2. The errors are computed wrt. the reference 
Poissonian product. The total absolute error and the maximum absolute errors are 
given. 
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Fig. 6. The error over the truncation wrt. the analytical solution 
 
 
 

 
B Lyapunov Analysis of the p53 Oscillator 

 
We now derive Lyapunov-sets for the p53 oscillator case study (Model 4). Let 
the Lyapunov function 

 

g(x) = 120xp53 + 0.2xpMdm2 + 0.1xMdm2 . (16) 
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0.2ϵA 
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iteration i 

g 1 2 3 4 5 6 7 8 

(i) 
| 11907 20 32 60 140 340 840 2116 

1e-1 tot. error ≤ 1.86e0   1.85e0   1.45e0   1.18e0 9.31e-1 6.41e-1 4.67e-1 4.89e-1 

max. error ≤ 1.63e-3 1.63e-3 1.55e-3 1.40e-3 1.22e-3 9.36e-4 8.40e-4 1.40e-3 
(i) 

|S   | 11907 48 112 148 300 720 1892 5156 
1e-2 tot. error ≤ 1.86e0   1.84e0   1.44e0   1.21e0 9.56e-1 6.65e-1 3.41e-1 3.31e-2 

max. error ≤ 1.63e-3 1.62e-3 1.53e-3 1.39e-3 1.20e-3 9.59e-4 5.86e-4 5.37e-5 
(i) 

|S   | 11907 84 192 244 488 1084 2692 7152 
1e-3 tot. error ≤ 1.86e0   1.83e0   1.46e0   1.22e0 9.63e-1 6.67e-1 3.37e-1 8.01e-4 

max. error ≤ 1.63e-3 2.95e-2 1.54e-3 1.39e-3 1.20e-3 9.51e-4 5.79e-4 1.09e-6 
(i) 

|S   | 11907 124 324 352 672 1436 3408 8864 
1e-4 tot. error ≤ 1.86e0   1.83e0   1.46e0   1.22e0 9.63e-1 6.67e-1 3.37e-1 1.12e-5 

max. error ≤ 1.63e-3 3.19e-2 1.54e-3 1.39e-3 1.20e-3 9.51e-4 5.79e-4 1.28e-8 
 

Table 3. Detailed results for Model 3. Upper bounds on the total absolute error and the 
maximum absolute error are given. The worst-case errors are computed wrt. the 

reference Geobound solution with gÆ = 1e − 2. 

 

 

Then the drift 

d(x) = − 
k3xMdm2xp53  

− 0.1k x 

 

 
+ 120k 

xp53 + k7 
6   Mdm2 1 

— 120k2xp53 + 0.2k4xp53 − 0.1k5xpMdm2 

= 
204xMdm2xp53 0.096x 

xp53 + 0.01 Mdm2 — 0.02x p53 

— 0.0093xpMdm2 + 10800 . (17) 

Clearly, c = supx∈S d(x) = 10800. In particular, the supremum c is at the origin 
since all non-constant terms are negative. The slowest rate of decrease for (17) is 
xp53 with xMdm2 = xpMdm2 = 0. We are content with a superset of a Lyapunov 
set (9) for some threshold ϵA. Therefore taking (9), we can solve the inequality 

 
 
 

for xp53 and 

 
ϵA 

(c 0.02x 
c 

 
 

p53 ) > ϵA − 1 

 

 
Therefore 

c 
 

 

0.02ϵA 
< xp53 . (18) 

π x ∈ S |
   c    

< ǁxǁ

     

> 1 − ϵ 

 
. (19) A 
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