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Abstract: Traffic systems, where human and autonomous drivers interact, are a very relevant instance
of complex systems and produce behaviors that can be regarded as trajectories over time. Their
monitoring can be achieved by means of carefully stated properties describing the expected behavior.
Such properties can be expressed using Signal Temporal Logic (STL), a specification language for
expressing temporal properties in a formal and human-readable way. However, manually authoring
these properties is a hard task, since it requires mastering the language and knowing the system to
be monitored. Moreover, in practical cases, the expected behavior is not known, but it has instead
to be inferred from a set of trajectories obtained by observing the system. Often, those trajectories
come devoid of human-assigned labels that can be used as an indication of compliance with expected
behavior. As an alternative to manual authoring, automatic mining of STL specifications from
unlabeled trajectories would enable the monitoring of autonomous agents without sacrificing human-
readability. In this work, we propose a grammar-based evolutionary computation approach for
mining the structure and the parameters of an STL specification from a set of unlabeled trajectories.
We experimentally assess our approach on a real-world road traffic dataset consisting of thousands
of vehicle trajectories. We show that our approach is effective at mining STL specifications that
model the system at hand and are interpretable for humans. To the best of our knowledge, this is the
first such study on a set of unlabeled real-world road traffic data. Being able to mine interpretable
specifications from this kind of data may improve traffic safety, because mined specifications may be
helpful for monitoring traffic and planning safety promotion strategies.

Keywords: context-free grammar genetic programming; grammatical evolution; traffic monitoring;

formal methods

1. Introduction

Autonomous cars are a well-known example of a safety-critical Cyber-Physical System
(CPS), meaning that a failure could result in loss of life or in catastrophic consequences for
the environment. One of the main challenges for autonomous driving in a real environment
consists in ensuring such safety [1]. When many autonomous and human drivers interact
in the same environment, achieving safety is even more challenging, due to several factors
such as the unpredictability of agents” behavior and scalability.

The explosion of Artificial Intelligence (AI) and Machine Learning permitted the
design of very powerful and efficient CPSs. However, it also increased the complexity
and opacity of such systems. In real-world systems, where safety plays a crucial role,
such opacity and the consequent loss of explainability can be serious issues. Indeed,
explainability in Al is itself a prominent goal [2].

In recent years, the formal methods community helped to tackle this problem [3].
Formal methods allow us to describe safe requirements in a formal and rigorous way
and to check in an automatic way when such requirements are satisfied. When dealing
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with data describing how values vary over time, a possibility is to use temporal logic
languages. Temporal logic is a logic that comes with specific temporal operators to describe
the temporal evolution of a system. In particular, we consider the Signal Temporal Logic
(STL), a logic very suitable to specify properties over real-world trajectories. For example,
given two trajectories that describe the velocity of a car and its distance to the closest car
over time, with STL, we can formally specify simple properties such as “travel no faster
than 30 kmh~!”, as well as more complex properties such as “do not exceed 30kmh~1 if,
in the last minute, the closest other car has been closer than 30 m”. Provided that an STL
specification is available, the monitoring of a CPS can be done efficiently using suitable
algorithms that can check when the trajectory satisfies the property [4], possibly exploiting
distributed processing paradigms [5].

In principle, STL specifications can be designed by the human operator, who should
both know the domain, i.e., the involved properties and the expected behavior, and master
STL syntax and semantics. In practice, however, designing the right specification that fits
the observable system is very hard, because many attributes (and hence many trajectories)
should be considered at the same time. A possible solution is to learn the formal specifi-
cation in an automatic way: given a sufficiently representative set of system trajectories
describing the system behavior, some inference technique can be used to synthesize the
specification that fits the data. While some approaches for specification inference from data
exist (see Section 2 for an overview), the vast majority of them require the user to either (1)
specify the structure of the STL specification, while actually inferring only its numerical
parameters, or (2) provide both positive and negative example trajectories that are repre-
sentative of expected and unexpected behaviors. In practical settings, these requirements
often become limitations and hamper the applicability of inference techniques.

In this paper, we present a methodology to learn STL specifications from real-world
datasets of unlabeled trajectories, i.e., from trajectories for which no human-assigned labels
are required that tell if the observations are related to an expected or undesired behavior
of the system. Our methodology is based on grammar-based evolutionary optimization,
namely Context-Free Grammar Genetic Programming (CFGGP) [6]. We chose this kind
of optimization because it is perfectly suited for searching in the space of strings of a
language specified by means of grammar: in fact, the STL language can be specified with
a grammar (see Section 3). While designing our methodology, we were driven by two
goals: generating STL specifications that (1) fit the data and (2) are human-readable. For
achieving the first goal, we designed a fitness function, i.e., a measure of the quality of
the candidate specification, that measures the degree of (dis)satisfaction of the trajectories
with respect to the specification, to be minimized: intuitively, all the trajectories (which, we
remark, are unlabeled) should barely satisfy or dissatisfy the specification. For achieving
the second goal, we structurally limited the complexity of the learned specification, by
imposing special constraints within the grammar.

We assess experimentally our methodology on a real-world traffic dataset of 5678 unique
vehicles tracked over 19,679 frames with information about velocity and position. After
extracting the informative attributes from the dataset, we show how the method can learn
STL specifications in an automatic and efficient way. The learned specifications provide
relevant information concerning the dataset and are indeed human-interpretable.

The rest of this paper is structured as follows. In the next section, we survey the most
significant previous research that is relevant to our study. In Section 3, we briefly introduce
the background about STL. In Section 4, we formally define the problem that we aim to
solve. In Section 5, we describe our proposed solution, which we experimentally evaluate
in Section 6. Finally, we draw the conclusion and we sketch possible future lines of research
in Section 7.

2. Related Work

There exist several approaches devoted to learning temporal logic specifications,
particularly for STL. We partition here them into two categories: template-based and
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template-free. While those in the former category rely on a user-provided template formula
and focus on estimating parameters for it, the latter also try to learn the formula structure.
We fall in the template-free domain.

Template-based methods cast the STL specification mining problem as an optimization
problem in terms of the satisfaction degree p of an STL formula (see Section 3). Succinctly,
we define p as a (real-valued) degree of satisfaction of an STL formula with respect to
a trajectory. Bartocci et al. [7] adopted an active learning approach, dependent on a
probability distribution over p, to query the next point in the parameters space to be
evaluated. Bortolussi and Silvetti [8] extended the work cited previously with a statistical
approach that emulates the expected value of this probability distribution using Gaussian
Process Regression [9]; optimization of the emulation was then performed via the GP-UCB
algorithm [10]. In general, these approaches are labeled as Parametric Signal Temporal
Logic (PSTL) [11,12].

Although interesting on its own, the applicability of PSTL is sometimes limited, since
specifying templates can be hard to start with. As such, template-free methods also attempt
to build an optimal structure for the formula. The vast majority of the works in this regard
start from a dataset of labeled trajectories, partitioned into positive and negative examples,
and try to learn an STL classifier for the data. As an example, Nenzi et al. [13] proposed
ROGE (RObustness GEnetic algorithm), a bi-level optimization procedure, which optimized
the structure by a genetic algorithm and the parameters using Bayesian Optimization. To
the best of our knowledge, it is the only attempt at using an evolutionary algorithm for
solving the template-free problem. Others mined STL structure by exploring a directed
acyclic graph [14], using a decision-tree oriented approach [15], or employing enumerative
solvers [16].

The achievements of the aforementioned approaches have been remarkable, but
none of them addressed the problem of mining STL specifications from unlabeled data.
Considering real-world scenarios, it is often the case that we labeled data that are not
available, because labeling is costly. Still, those data do bring some information that
could be, in principle, condensed in the form of an STL specification. Some special cases
of the unlabeled data case have been considered: M. Vazquez-Chanlatte et al. [17] and
Mohammadinejad et al. [16] addressed unsupervised clustering of time-series data using
PSTL, i.e., they learned just the parameters of template formulas.

To the best of our knowledge, the only work learning both structure and parameters
of a formula from unlabeled data is [18], where the authors proposed a heuristic for
sequentially building more complex formulas. This seems a very interesting approach,
but its applicability to large datasets is unclear: the experimental evaluation of the cited
paper is based on a single trajectory and the results concerning the learning of the structure
of the formula are not clear. Unfortunately, the code is not available and this hampers
reproducibility and comparisons.

A different approach for designing automatic rules for road traffic has been proposed
by Medvet et al. [19]. Similar to this study, the authors relied on grammar-based genetic
programming and did not use labeled data. Differently from here, they did not use STL as
the syntax for the rules and they optimized rules with the goal of maximizing the efficiency
and safety of (simulated) road traffic rather than for describing real data of road traffic.

3. Background: Signal Temporal Logic

Signal Temporal Logic (STL) is a formal language to specify behaviors of dynamical
systems through logic formulas. Let X be a set of trajectories x : T — RP for every x € X,
with T C Ry a time domain. We say that each trajectory is a p-dimensional signal of
real-valued variables, and we denote by x;(t) the projection on the i-th coordinate of
x = (xl, e, xp) at time t € T. We now introduce the syntax of STL, the set of rules used for
constructing specifications in this language.
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Definition 1 (STL syntax). We define the syntax of an STL formula ¢ using the following gram-
mar:

¢ = T ul=¢| o1 Ap2| 1Sy, 1,192 | Oy )9 | Hiry 1) 9

where T is the Boolean constant true; [ty,t2], with ty,t, € T, is a time interval such that t1 < ty; u
is an atomic proposition of the form y(t) ~ c, with y : RP — R projecting the p-dimensional signal
onto a single variable, ~ € {<, >} and ¢ € R™ being a threshold (practically inequality over the
variable of the signal); — and A are the usual Boolean connectives; Sy, 1,1 is the Since temporal
modality; Oy, 1,1 is the Once temporal modality; and Hy, ,, is the Historically temporal modality.

The semantics of an STL formula ¢ allows us to tell if and to which degree a trajectory
x satisfies the formula ¢ at time t. We now define two kinds of semantics: with the Boolean
semantics, the satisfaction assumes Boolean values (does satisfies, does not satisfy); with
the quantitative semantics, the satisfaction assumes real-valued values [20,21].

Definition 2 (STL Boolean Semantics). For the Boolean semantics, we write (x,t) = ¢ if ¢
holds for trajectory x at time t. If ¢ is an atomic proposition y, then (x,t) |= ¢ if and only if  is
true. The semantics of ~¢ and @1 A @y is trivial and the semantics of Since is defined as follows:

(x,8) = 1S 02 & I <t () E @2 AV € [t (xt") | 1),

with t' € [t, ta]. In other words, we say that 1Sy, 1,2 is satisfied at time t if ¢y occurs at some
point in [t1,ty] and @1 holds continuously since then. The other temporal operators are defined
based on Since: Once as Oy, 4,19 = TSy, 1,19 and Historically as Hyy, 1,19 = =O, 1,179

Definition 3 (STL Quantitative Semantics). The quantitative satisfaction function p returns
a value p(¢@,x,t) € RU {—oo, +oo} quantifying the robustness degree of the formula ¢ by the
trajectory x at time t. It is defined recursively as follows:

(T, x,t) = +o0
o(p,x,t) =y(x(t)) where y =y(x(t)) >0
= —p(p 1)

min(p (%x t),p(@2, %))
sup (min(p(q)z,x,t’)r inf p(g1,x,t' )))

Velt—ty t—t) et 1

p(p1 A @2, x,t

t)
)
p(=¢,x,t)
)
P(Gﬂls[tl t] (PZr X, )

Similar to the Boolean semantics, the Once and Historically temporal operators are defined
based on Since.

The sign of p(¢, x, t) provides the link with the standard Boolean semantics. It holds
that p(¢@, x,t) > 0if and only if x |= ¢, while p(¢, x,t) < 0if and only if x = ¢. The case
p(,x,t) = 0, instead, is a borderline case, and the truth of ¢ cannot be assessed from the
robustness degree alone.

In practical settings, systems are monitored for a given, finite amount of time, and, as
a result, trajectories have a limited time span. We define as |x| the length of a trajectory,
i.e., its number of samples. For the sake of this study, monitoring an STL formula ¢ over a
trajectory x is constrained to [0, |x| — 1] C T, a subset of the time domain.

When talking about temporal formulas, the necessary length concept is of impor-
tance [20]. The necessary length of a formula ¢ (let it be || ¢||) is defined recursively as:

lull =0
=l = llell
91 A @2l = max(||@1], [[p21])
191}t 1, P2/l = max({[g1 ], | p2]]) + t2
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Intuitively, the necessary length is the shortest trajectory length such that (x,t) = ¢
is well-defined. For example, the formula @15y 992 cannot be evaluated on trajectories
shorter than 10 (assuming that ||¢;|| > 10 and ||¢2|| > 10), since this would imply looking
at a future that is not part of the trajectory.

4. Problem Statement

We consider systems described by real-valued attributes and a set of trajectories
that describe the way these attributes vary over time. We aim to mine specifications
that (1) describe such trajectories (2) in a way that the specifications are readable and
interpretable for a human.

Formally, let X = {x1,...,x,} be a set of trajectories gathered from a system described
by attributes A = {ay, 4y, ..., a4 }. Let ® be the space of all possible STL formulas defined
over A. We aim at finding a ¢* € ® that is both human-readable and describes X. More
specifically, ¢* should be tight with respect to X, i.e., the robustness value |p(¢*, x;, )| should
be as much as possible close to zero for all x; € X and ¢. From another point of view, small
perturbations on tight formulas ¢* should result in an overall increase in robustness for some
trajectories of X; i.e., some trajectories could be described by a tighter formula ¢’ # ¢*.

Tightness is of fundamental importance when no labels are provided; in fact, the
satisfaction of a robustness metric can be trivially maximized by “pushing” the parameters
towards the boundaries of the parameter space, resulting in rules that are of no relevance.
For example, if 2 < 0 is satisfied by all trajectories, then 2 < 1000 will be satisfied as well
and have a much greater degree of robustness.

Concerning human-interpretability, a formal, widely accepted definition for STL
formulas does not exist. Indeed, the lack of such a definition holds for many other kinds
of Machine Learning modules. Moreover, it is acknowledged that human-interpretability
is not, itself, universal: different subjects might perceive the same model as differently
interpretable [22]. In this work, we circumvent the problem of defining interpretability with
a practical approach: we force our method to search in a subset of ® containing structurally
simple formulas, where both the overall size of the formula and the maximum degree of
nesting of temporal operators are limited. The rationale of the latter constraint is in the
fact that the interpretability of symbolic models is affected differently by different kinds of
components [23].

We remark that our problem is more complex than the mere specification mining of a
template formula where the structure of the formula is already fixed (see Section 2), which
searches only in the parameter space of the formula. In the easier case, the user has to
provide a template formula ¢, and the problem is a numerical optimization problem; i.e.,
the solution has to be found in R, where m is the number of numerical parameters in ¢. In
our case, no burden is on the user, but the system is required to search in ® rather than R™.
In Section 5, we detail the methodology we employed to address this problem statement.

5. Methodology

Since the STL syntax can be defined by means of context-free grammar (CFG), we
rely on CFGGP [6], a grammar-based version of GP [24]. In CFGGP, candidate solutions
are represented as derivation trees of a grammar G = (N, T,so,R), where N is the set
of non-terminal symbols, T is the set of terminal symbols (with TN N = @), sp € N is
the starting symbol, and R is the set of derivation rules. Each derivation rule describes
how a non-terminal symbol may be replaced by a sequence of symbols, either terminal
or non-terminal. A derivation tree is a tree where nodes are symbols of the grammar: leaf
nodes are terminal symbols, and non-leaf nodes are non-terminal symbols. The children of
each node match one of the derivation rules for the corresponding non-terminal symbol.
The string of the language defined by the grammar corresponding to a given derivation
tree is the sequence of the leaves of the tree. Note that a derivation tree is not an abstract
syntax tree: the former is in general deeper than the latter, for the same formula. Figure 1
shows an example of a derivation tree for the CFG of Figure 2.
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(formula)
<forn‘1ula1 )
(temp,)
( formmulaz )
(atom) (logic,)
<atm mulaz )
a‘l ‘< <atc;m>

/\
(attr) (comp) r
[ [
an >

Figure 1. A derivation tree of the grammar of Figure 2 for the formula (a1 < 7)Sy, 1, = (a2 > 7).

We use an improved version of CFGGP that promotes diversity in the population. The
lack of diversity in the population may result in premature convergence towards a local
optimum [25], in particular when the search space is discrete, as in CFGGP [26]. In this
work, we promote diversity by simply enforcing the re-application of the genetic operator
whenever a generated individual is already part of the population.

5.1. Evolutionary Algorithm

Given a CFG G and a fitness function f : L(G) — R, CFGGP works as shown in
Algorithm 1. After the initialization of the population P, CFGGP repeats rgen times the
following three steps.

1. It builds the offspring population P, with |P’| = npep, by iteratively selecting one
(mutation, with 1 — pxover probability) or two (crossover, with pyover probability)
parents chosen with tournament selection of size 7o, and then applying the genetic
operator. If the resulting solution ¢, is already part of the offspring P’ or parent
population P, a new solution is generated, and the process is repeated for a maximum
number of 1,45 attempts; otherwise s. is added to P’ and its fitness f(¢) is computed.

2. It merges the parent and offspring populations P’ and P.

3. Itshrinks the resulting new population P, until its size is 71p0p, by iteratively removing
the worst solution.

The initial population is built with the ramped half-and-half method [27]. Let a range
{dmin, - - -, dmax } for the depth of the derivation trees be given and let Npop be the number
of trees to be generated. For each d in the range, we build k random approximately full
derivation trees (i.e., where each leaf node is at depth d) and k random trees with the
deepest leaf at depth d, with k = W. We write “approximately” because it is not
possible, in general, to build a derivation tree of a grammar G where each leaf is exactly at
depth d. This procedure ensures that the size, and hence, the complexity of the generated
formulas is evenly distributed in a predefined range.

The genetic operators are defined over the space of derivation trees of the grammar G.
We used the standard CFGGP mutation and crossover. The former “replaces” a random
subtree of the derivation tree with a randomly generated subtree that is appropriate ac-
cording to G. The crossover “replaces” a random subtree of one parent with an appropriate
random subtree of the other parent. In both cases, it is ensured that the resulting derivation
tree is at most dmax deep.
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Algorithm 1: The EA for the optimization.

function evolve():
P < initialize(G, npop)
foreachi € {1,...,1ngen} do
P+ @
while |P'| < Npop do
i+ 0
repeat
if ~ U(0,1) < pxover then
(@p1, fp1) < select(P)
(qu,2/fp,2) + select(P)
Pc crossover((ppﬂ, (pp/z;g)
Ise
(¢p, fp) < select(P)
@c < mutate(sy; G)
end
i—i+1
until (¢ € PUP') A (i < nays)
P+ P'U{(@c, f(pc)}
end
P+« PUP
while [P| > npqp do
| P+« P\ {worst(P)}
end
end
return best(P)
end

(]

5.2. Fitness Function
To achieve the goals of Section 4, we use as fitness function:

4

1
flo) = mxg\p(qv,x,tf)

which computes the average absolute quantitative robustness of an individual ¢ over the
dataset X'. Minimizing this quantity is consistent with the notion of achieving a tight
evaluation with respect to the trajectories in X'. Tightness is of importance when no labels
are provided; in fact, the satisfaction of a robustness metric can be trivially maximized
by “pushing” the parameters towards the boundaries of the parameter space, resulting in
rules that are of no relevance. As a matter of example, if 2 < 0 is satisfied by all trajectories,
then a < 1000 will be satisfied as well and have a much greater degree of robustness. By
minimizing the sum of the absolute values, f achieves a tight evaluation as it rewards
individuals ¢ having robustness values as close as possible to zero. Finally, we divide by
the total number of trajectories so that, for normalized data, f € [0, 1], with 0 corresponding
to a formula that perfectly fits all of trajectories, and 1 corresponding to a formula that does
not satisfy all of the trajectories in the worst possible way.

5.3. Grammar for STL Formula Structures

We need to define a grammar G for the language of STL formulas. G must be cus-
tomizable for the considered problem, i.e., for its attributes A, and must allow generating
formulas along with appropriate values as numerical parameters.

In order to favor the building of human-readable formulas, we build the grammar to
explicitly limit the depth of nesting of temporal operators. We remark that the overall size
of STL formulas is limited by the value of dmax used by CFGGP (in the operators and in the
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initialization of the population). However, we believe that posing a further limit on the
composition of the temporal operators may make the STL formulas more readable, and
not only just smaller. Our belief is corroborated by the findings of [23] for mathematical
expressions: some operators, such as log and sin, make the expressions less interpretable
than others, e.g., + and +.

Figure 2 shows the grammar for STL formula structures with limited nesting of the
temporal operators. The figure adopts the common Backus-Naur form: the non-terminal
symbols are enclosed in angle brackets, whereas the terminal symbols are shown as literals
= A ra,a,...,<,>,0,...,9); for each non-terminal, derivation rules are separated by
|; the starting symbol is the topmost non-terminal, i.e., sy = (formula). The terminals a5, a3,

., derived from the non-terminal (attr), represent the attributes of the problem at hand: in
this way, the grammar is tailored to a specific problem. For brevity, we express some of the
non-terminals using a parameter i that represents the maximum nesting. The only derivation
rule that increases i is the one for (temp;), which represents (partial) formulas with temporal
operators. The limit to nesting is enforced by the parametric definition of the derivation rule
of (formula;), that does not expand to (temp;) if i > imax. In this study, we set the maximum
nesting to imax = 3. This means that CFGGP operates on a grammar G that is the realization
of the grammar of Figure 2 with imax = 3 and a given set of attributes A.

(formula) ::= (formula;)
(formulay) = (atom) | (logic;) | (temp,) ifi < imax
' (atom) | (logic;) otherwise
(logic;) ::= —(formula;) | (formula;) A (formula;)
(temp;) == (formula;)S(interval) (formula, 1) |

H(interval) (formula; ;1) | O(interval) (formula; 1)

(interval) ::= [(num), (num)]
(atom) ::= (attr) (comp) (num)
(attr) m=aq [az | ... [ap
(comp) == < | >
(num) = (digit) (digit)
(digit) ==0]1|2|3|4|5]|6]7]8]9

Figure 2. The CFG for describing STL formula structures. Non-terminal symbols are enclosed in angle
brackets: the topmost non-terminal symbol, (formula), is the starting symbol sg of the grammar. The
derivation rules for the symbols (formula;), (logic;), (temp;) are parametric on i, which represents
the nesting level. The derivation rule for (attr) is the one that makes the grammar tailored to a given
system with attributes A = {ay,a2,..., a4/}

When mapping a derivation tree into the corresponding STL formula, we apply the
following adjustments concerning numerical parameters. To map a non-terminal interval
symbol (interval) into the corresponding time interval, we map the first (num) into the
corresponding integer in {0, ...,99} and set it to be the start of the interval. We then map
the second (num) into the corresponding integer in {0,...,99} and add it to the start to
obtain the end of the interval. As such, we avoid any issue arising from intervals having
a start greater or equal to the end. Moreover, we remark that, since there can be at most
two nested temporal operators, the maximum necessary length of the formula will be 198,
corresponding to the necessary length of a formula with two nested temporal operators
with intervals [0,99]. When mapping a non-terminal (atom), we divide the product of
its (num) (the numeric constant in the atomic proposition) by 100. As a result, numeric
constants lie in [0, 1], and, for normalized data, we can express all possible thresholds.
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6. Experimental Evaluation

Considering the goals described in Section 4, we aim at answering the following
research questions:

RQ1  Can we mine specifications that describe the input unlabeled trajectories?
RQ2  Are the mined specifications readable and interpretable for a human?

We consider to formula describe the dataset well if it tightly fits the pool of trajectories.
To this end, we verify whether the fitness f of the learned formula is as close as possible to
0.0. We say that a formula is readable and interpretable for a human if it is parsimonious; to
this end, we verify whether the size of a formula (number of nodes of the derivation tree),
||, is reasonable. Moreover, we also verify whether a formula is easily understandable by
a human by manually inspecting and reporting it.

To answer the research questions according to these definitions, we ran an experi-
mental campaign on real-world data of road traffic. We performed 10 evolutionary runs
with different random seeds. We used the same parameter values for all the runs and set
Npop = 500, n1gen = 50, Mtour = 5, Pxover = 0.8, Mtatts = 100, dmin = 1, and dmax = 12.

We executed the experiments on an HPC cluster with nodes equipped with 2 x 18 cores
based on 2.30 GHz Intel Xeon E5-2697 v4 (Broadwell) and with 128 GB RAM. Fitness evalu-
ations were parallelized across cores; evolutionary runs were parallelized across nodes. We
implemented the software for the experiments in the Java programming language and made it
publicly available at https:/ / github.com/pigozzif /STLRulesEvolutionaryInferenceNoClass (ac-
cessed on 1 November 2021). The project employs the monitoring tool MoonLight
(https:/ / github.com/MoonLightSuite/MoonLight, accessed on 1 November 2021) [28] and the
evolutionary framework JGEA (https://github.com/ericmedvet/jgea, accessed on 1
November 2021).

6.1. Data

The dataset used in this study [29] consists of the trajectories of all the vehicles crossing
the eastbound I-80 Freeway in Emeryville, California (USA). Measurements date back to 13
April 2005 and were taken on a tract of approximately 1640 ft, comprising six lanes and an
on-ramp. The full dataset is partitioned into three 15 min sequences: 4:00 p.m. to 4:15 p.m.,
5:00 p.m. to 5:15 p.m., and 5:15 pm to 5:30 p.m. Intuitively, they correspond to different
traffic patterns, from the build-up of congestion to the peak period.

The dataset contains a total of 5678 unique vehicles tracked over 19,679 frames. For
each vehicle and each frame, it contains the position of the vehicle (lateral and longitudinal
offsets with respect to a reference position), its velocity, its size (width and length), and a
lane identifier. All these attributes have been extracted by the creators of the dataset by
means of image processing and computer vision techniques: we refer the reader to [29] for
more details. Figure 3 provides a graphical representation of the information contained in
a frame of the dataset.

Figure 3. Sample frame reproducing the traffic of the dataset [29]. Each colored box represents a car.
Dotted lines are lane separators, while solid lines are guardrails. The two segments projecting out
from the first level of the road are the boundaries of the on-ramp. The second level of road is the
continuation of the top one, while the red shaded rectangle is the range for the trajectory endpoints.


https://github.com/pigozzif/STLRulesEvolutionaryInferenceNoClass
https://github.com/MoonLightSuite/MoonLight
https://github.com/ericmedvet/jgea
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6.2. Data Processing

The aim of the data processing step is to extract useful attributes. Chiefly, we want
attributes that (1) are more meaningful to the other road settings than the one considered in
this study and (2) effectively describe the phenomenon at hand, i.e., capture measurements
that are relevant for monitoring road traffic. The first point discards attributes such lane
identifier and position with respect to the reference point since they would be of no interest
for roads with a different topology and number of lanes. At the same time, we want
attributes that are relative to the vehicle and not to the setting. For example, positions and
coordinates should be relative, not absolute. As a result, formulas are more readable as
they employ attributes that are immediately comprehensible. In the following, we detail
how we extracted additional attributes from the ones reported in the original dataset.

A set of very relevant attributes is the set of distances from the nearest neighbors of
each vehicle. Intuitively, such a set of attributes is relevant for drivers and allows formulas
to clearly and synthetically be expressed such as “ keep a safety distance of at least 10 m
from the closest front vehicle”. To formalize this, we partition the space surrounding each
vehicle as shown in Figure 4, and we find the closest vehicle in each of the eight regions.
We thus consider eight new attributes, namely E, SE, S, SW, W, NW, N, and NE.

NW N NE

=
]
“Teight
esl

SW S SE

Figure 4. A car and its eight neighboring regions. Regions are labeled using cardinal directions.
Boundaries can be swiftly computed starting from the x, y positions of the front-left corner of the car,
using car width and car height (provided in the dataset).

To efficiently compute them, we used a kd-tree [30], a spatial data structure. Given a
query point and a set of k-dimensional points, it allows for logarithmic-time (in the number
of points) look-up of nearest neighbors, improving over the quadratic time (in the number
of points) of a brute-force search. For us, points are cars and are bi-dimensional (lateral
and longitudinal offsets with respect to the reference position). Given that construction
and update take both linear time (in the number of points) for a kd tree, we built a separate
tree for every frame instead of updating all cars’ positions.

Finally, after having found the nearest neighbors for every car and for every frame,
we trimmed neighbors that might not be sensed in a real-world setting. In particular, we
set to —oo the distances above 485 ft. Moreover, we limit the neighbor search to the current
and adjacent lanes of a vehicle, as we assume that drivers do not care about vehicles in
far lanes.

To summarize, we built a dataset with velocity (vel) and eight distances (E, SE, S, SW, W,
NW, N, NE) as attributes, which together form the set of attributes A mentioned in Section 4.
On the other hand, width and height were discarded.
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We do not consider trajectories being longer than ts = 205, since that could result in
specifications requiring agents (both human and automated) to consider an unpractically
long behavior history. To accomplish this, we partitioned the trajectories as follows. Let
|x| be the number of samples for trajectory x. For each trajectory x € X, we split it into a
new set of trajectories by sliding a window of size n over it, with 7 overlapping, obtaining
approximately @ new trajectories. The resulting pool of trajectories shares the same length
n, which must be chosen to reflect a sensible interval of monitoring for an autonomous
agent. Thus, we set n = 200, corresponding to 20s for this dataset. We remark that, by
fixing n = 200, all the new trajectories will have a maximum size (number of samples) of
200; given that, with our grammar, the maximum necessary length of the formula is 198
(see Section 5.3), no issue regarding the necessary length of formulas arises.

Finally, as a consequence of our grammar shown in Figure 2, and to avoid favoring
attributes with shorter ranges, we normalize attributes to [0, 1] by subtracting the minimum
and dividing by the range.

6.3. Results
6.3.1. ROQ1: Solutions that are Effective

We ran an experimental campaign with the aforementioned parameters. To evalu-
ate whether our approach is effective, we (1) verify whether it evolved tight formulas,
and (2) compare the fitness f of the best individuals with that of randomly initialized
formulas. For the former, Figure 5 plots the histogram for the distribution of p(¢, x, t) for
the best individuals ¢ found in each run (i.e., the individual having the lowest fitness
f at the last generation) and for all the car trajectories x. For the latter, Figure 6 reports
median =+ standard deviation fitness f over the course of evolution for the best individuals
found in each run. Table 1 summarizes (with median =+ standard deviation) the results in
terms of fitness f and |¢| for the best individual found in each run, as well as evolution
time (in seconds).

-10*

Number of trajectories
T T T T T T T T T T T T T T
O Y A R N

S Y s IO e O s I O s B s MO ____D

T T T T T
~1.0-09-0.8-0.7—0.6—05-0.4—03-02-0.1 0.0 0.1 02 03
p(e, x,t)

Figure 5. Distribution of the robustness p(¢, x, ), computed for all the I-80 trajectories x, for the best
individual ¢ found in each run.

From Figure 5, two observations can be made. First, robustness values cluster around
0.0. Second, robustness values cluster symmetrically. Table 1 corroborates these observa-
tions. Recall from Section 4 that our goal is to mine formulas that are tight since tightness
is of fundamental importance when no labels are provided. Formulas are tight when
robustness values are as close to zero as possible, in particular |p(¢, x;, t f) | <€, Vi, withe
a small quantity, which depends on the system at hand. In other words, formulas must
fit the pool of trajectories at hand and in such a way that small perturbations make the
robustness value greater than € on some trajectory. By looking at Figure 5, we remark that
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the mined formulas are indeed tight. Let a value € be fixed. The best individuals produce
robustness values that fit into a segment centered in 0.0 and of length 2¢; that is, they lie in
[—€, +€]. Choose an adequate value for ¢, e.g., € = 0.25. From Figure 5, we notice that the
vast majority of values lie in [—0.25, 0.25]. Recalling our definition of tightness of a formula
from Section 4, these results confirm that the best individuals indeed are tight formulas.

0.15 T T T T T T
g | N
5-1072 | ]
L T S N A M ]

0 10 20 30 40 50
Generation i

Figure 6. Median =+ standard deviation (across the 10 evolutionary runs) over the evolution.

Table 1. Fitness f, solution (derivation tree) size |¢| for the best individuals found in each run, and
evolution time in seconds. Reported as median + standard deviation.

f lo| Time [s]
0.063 = 0.009 525 + 6.5 3876.6 + 426.4

As a further confirmation that our methodology actually learns tight formulas, we also
show that learned formulas are significantly better than random formulas. As can be seen
from Figure 6, fitness f progresses over the course of evolution and settles into a (local)
optimum. Considering that the initial population is composed entirely of randomly initialized
formulas (see Section 5.1), this observation points to the fact that, in terms of fitness f (and,
thus, of tightness), the best individuals are clearly better than random formulas.

To comment, our methodology succeeds in mining specifications that are effective and
tight with respect to the pool of trajectories.

6.3.2. RQ2: Specifications that are Readable and Interpretable for a Human

As far as readability is concerned, we found the mined specifications to be readable
and interpretable by a human. To provide deeper insights, Figure 7 plots the histogram
for the frequency distribution of the operators (see Section 5.3) and the attributes (see
Section 6.2) in our grammar.

By manually inspecting the best individuals and visualizing the aggregate frequencies
with Figure 7, we found that all the attributes are present, with a slight overabundance of
E and W that are, respectively, the distance from the front neighbor and the distance from
the rear neighbor. Moreover, evolution prefers the A and — operators over the temporal
operators (of which there is approximately one per formula). This finding is in line with our
expectations since temporal operators are likely to be the least interpretable for a human
(as confirmed for mathematical expressions in [23]).
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Figure 7. Number of occurrences of operators and attributes for the best individual of each evolu-
tionary run.

In the following, we transcribe some instances of best individuals. For ease of under-
standing, the numeric constants that appear in the formulas below have been denormalized by
multiplying by the attribute range and summing the attribute minimum value. For example,

(Of15,78)32.85 < SE < 182.38) A (—((SE < 133.13) A (SW > 177.77)))

dictates a reasonable distance from the southeast neighbor (i.e., between 32.85 ft and
182.38 ft) at least once in the [15,78] past temporal window; at the same time, such a
distance must not be lower than 133.13 ft and the distance from the southwest neighbor
higher than 177.77 ft at the same time, showing that distances from neighbors must be, in
general, balanced. Similarly, this other example:

(Op1,87)SE > 41.23) A (—((E < 158.36) A (N > 42.48)))

dictates to stay farther than 41.23 ft from the southeast neighbor, while staying not closer
than 42.48 ft to the north one and not farther than 158.36 ft from the east one. An example
with Historically is:

(=(W < 129.48)) A (Hpyy 8N < 71.41) A (SE < 88.87)

which tells it to stay farther than 129.48 ft from the west neighbor, while keeping closer
than 88.87 ft from the southeast neighbor and continuously over [41, 81] closer than 71.41 ft
from the northern neighbor. An example without temporal operators is:

(S < 69.59) A (E > 25.12) A (—(NW < 104.98)) A (vel < 37.93)

which tells it to drive slower than 37.93 ft/s while keeping not too far away from the
southern neighbor and reasonably far from the east and northwest neighbors. Finally,

(35.03 < NW < 136.51) A (SE > 82.69) A (—(SW < 286.96))

compactly dictates to stay at a distance that is neither too far away nor too close to the
northwest, southeast, and southwest neighbors.

From the examples above, we draw one very important conclusion. Recalling
Section 6.1 and Figure 3, the dataset used here was collected on a very trafficked highway.
The mined specifications follow a common pattern of the ruling:
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(1) to poise the distances from the neighbors, and
(ii) to drive neither too fast nor too slow.

The former point is crucial, as keeping too far from one neighbor implies coming very
close to the neighbors on the opposite side.

To summarize, the mined specifications closely mimic what a car stuck in dense traffic
would do and point to the effectiveness of our approach. We believe the reason for such
readability to be the parsimony of the mined STL formulas. Intuitively, parsimony is
directly linked to interpretability. In fact, as reported in Table 1, median solution size |¢| is
52.5, which is a reasonable size for an STL formula.

7. Conclusions and Future Work

We have considered the case of monitoring and describing the behavior of traffic
systems by means of Signal Temporal Logic (STL) formulas. Authoring these formulas is
a hard task due to the necessity of knowing the system at hand and mastering language
syntax. Automatically learning STL formulas would allow for the real-time monitoring of
traffic systems with the result of improving safety and providing an explanation for the
behaviors of autonomous agents. We endeavor to do so with the goal of learning formulas
that describe the system at hand and are interpretable for a human.

We proposed a methodology to learn STL formulas for real-world traffic trajectories;
the trajectories are unlabeled, in the sense that there are no human-assigned labels discrim-
inating between positive and negative behaviors. Since the STL language can be specified
by means of grammar, we use a grammar-based evolutionary optimization algorithm to
evolve STL formulas. We evaluate formulas against a fitness function that rewards those
that tightly fit the pool of trajectories at hand.

With an experimental campaign, we showed that our approach (1) learns formulas
that tightly fit the pool of trajectories and (2) appears interpretable to a human due to its
parsimony. We believe that, by applying our approach for inferring formulas describing
road traffic in different conditions (e.g., different countries), one could systematically
compare alternatives using formulas instead of raw data.

In the future, we will extend our approach to supervised binary classification sce-
narios, i.e., scenarios in which trajectories come accompanied by human-assigned labels
discriminating between positive and negative behaviors. We will also consider anomaly
detection, in which only a subset of the positive trajectories is labeled and we want an STL
classifier to correctly detect negative trajectories.
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