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Abstract. This study deals with the estimation of the position of a mo-
bile object using ceiling landmarks images acquired by a low resolution
camera placed on a mobile object. The mobile object is moving in an
indoor environment where light is given by electric lamps with circular
holders. The images of the circular holders are projected on the image
plane of the camera and are processed by means of computer vision al-
gorithms. The pixels of the images of the light holders on the ceiling are
mapped to the pixels of the images of the light holders on the image plane
of the camera by means of a two dimensional dynamic programming al-
gorithm (2D-DPA). The projection distortions are thus compensated and
this reduces the estimation errors. The algorithm described in this paper
estimates the distance from the camera lens to the center of the land-
marks using only ceiling vision. Localization can be easily obtain from
such distance estimations. The projections are geometrically described
and the distance estimation is based on the pixels mapping information
obtained by 2D-DPA.

Keywords: localization · ceiling landmarks · mobile object · two dimen-
sional dynamic programming.

1 Introduction

Self-localization of mobile objects is a fundamental requirement for autonomy.
Mobile objects can be for example a mobile service robot, a motorized wheelchair,
a mobile cart for transporting tasks or similar. Self-localization represents as well
a necessary feature to develop systems able to perform autonomous movements
such as navigation tasks. Self-localization is based upon reliable information com-
ing from sensor devices situated on the mobile objects. There are many sensors
available for that purpose. The early devices for positioning are rotary encoders.
If the encoders are connected to wheels or legs movement actuators, relative
movements of the mobile object during its path [1] can be measured. Then, mo-
bile object positioning can be obtained with dead-reckoning approaches. Dead
reckoning [1] is still widely used for mobile robot positioning estimation. It is also
true that dead-reckoning is quite unreliable for long navigation tasks, because of
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accumulated error problems. Other popular sensor devices for self-localization
are laser or sonar based range finder devices and inertial measurement devices. In
outside scenarios the most popular approaches are based on Global Positioning
System (GPS). Due to the importance of self-localization, many other solutions
for indoor environment have been proposed so far with different cost and ac-
curacy characteristics. For example the Ultra Wide Band radio signal indoor
localization systems [2], or the Bluetooth-based angle of arrival radio devices
[3], or a combination of them. However these systems have serious limitations in
cost and reliability, respectively. Another important type of sensors which may
be used for cost effective self-localization are the CCD cameras, which require
computer vision algorithms for localization such as for example visual odom-
etry, [20]. Mobile objects vision self-localization is currently an open research
field [5] and an increasing number of new methods are continuously proposed.
As a matter of fact we have to consider that self-localization of mobile objects
requires centimeter-level accuracy and Computer Vision is one of the most cost-
effective techniques able to reach that accuracies. Consequently, some surveys
of Computer Vision based self-localization techniques appeared recently in the
literature, [6].

Many papers on vision-based mobile robot self-localization appeared recently
in the literature. For example Avgeris et al describe in [15] a self-localization al-
gorithm for mobile robots that uses cylindrical lankmarks resting on the floor
and a single pivotal camera with an horizontal angle of view of 30-degree. Each
cylindric landmark has a different color in order to be easily detected by the
robot. However, frontal vision could be occluded by objects or people. Such in-
terferences can be avoided by placing the landmarks on the ceiling, so that the
camera is tilted toward the ceiling. Ceiling vision has been used by many authors
to perform mobile robot localization. One of the early proposals is described in
[17] and is based upon a digital mark pattern and a CCD camera. The camera is
tilted, so the horizontal distance from the ceiling mark pattern is obtained mea-
suring the ratio between the length and the width of the pattern picture. Kim
and Park, [7], acquire ceiling images in a small area with a fisheye lens camera.
Ceiling outlines are detected by means of adaptive binarization and segmen-
tation. Robot pose is obtained after identification of the ceiling region and the
determination of the center and the momentum of the region. Lan et al. describe
in [8] a mobile robot positioning algorithm based on artificial passive landmarks
placed on the ceiling and infrared sensors. The landmarks are made of reflective
film 2D structures containing dots assigned to unique ID’s. The infrared sensors
consist of an infrared camera and an infrared LED array. A similar approach is
described in [9] where artificial passive reflective landmarks are placed on the
ceiling and an infrared camera plus an infrared LED source are used to capture
the reflection the IR light on the landmark for estimating the robot pose. Wang
et al. describe in [18] a vision control system which capture ceiling RGB images
with a camera placed on the robot, convert the image to HSV color space and
use V channel images to reduce the effect of illumination lamps. The common
objects and the straight lines on the ceiling are detected by template matching
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and used to estimate the robot orientation. Other Computer Vision based ap-
proaches are based on the Free Space Density concept. For example A. Ribacki et
al. use an upward facing camera to extract the ceiling boundaries for estimating
the ceiling space density from the current image [11]. Other authors, for example
[12, 13] use the ceiling depth images for robot localization. In these approaches
self-localization is obtained from Principal Component Analysis of ceiling depth
images. Ceiling vision is used by many other authors to perform self-localization
of mobile robots.

In this paper we describes a novel Computer Vision algorithm for estimat-
ing the distance from the camera lens to the center of ceiling landmarks with
circular shape using a monocular low cost webcam. From the distance, mobile
object localization approaches can be easily developed and a simple example is
provided in this paper. The images of the ceiling landmarks are projected on
the image plane of the camera. The projection is analytical described, but the
projections distortions, which may arise especially when low cost devices are
used, may affect the results. To take into account the projection distortions in
order to obtain a better precision of the results, we use an approximation of the
two-dimensional dynamic programming (2D-DPA) algorithm [4] which finds a
sub-optimal mapping between the image pixels of the ceiling landmarks and the
image plane pixels of the projected landmarks. Since optimum 2D-DPA is NP-
complete, in fact, many approximations have been developed. For example, the
2D-DPA technique described by Levin and Pieraccini in [22] has an exponential
complexity in the image size, while Uchida and Sakoe describe in [21] a Dy-
namic Planar Warping technique with a complexity equal to O(N39N ). Lei and
Govindaraju propose in [23] a Dynamic Planar Warping approximation with a
complexity of O(N6). However each approximation has some limitation in terms
of continuity of the mapping. In this paper we use a approximation of the opti-
mum 2D-DPA with a complexity of O(N4) [19] which is implemented on a GPU
to obtain real-time performance. When the landmark is far from the camera
or if the environments has low lighting conditions, an high quantization noise
may arise in acquired images. However the algorithm we describe in this paper
is particularly robust against noise due expecially to the use of two-dimension
DPA.

This paper is organized as follows: Section 2 the localization problem is de-
scribed, and in Section 3 the projection distortion is geometrically described,
while in Section 4 the two-dimensional Dynamic Programming approximation is
described. In Section 5 the proposed agorithm is sketched and in Section 6 the
computer vision algorithms for the detection of landmarks on the image plane
are reported. Section 7 sketches a possible global lcalization approach of the
mobile object. Finally, in Section 8 we report some experimental comparison of
the proposed algorithm with state of the art algorithm. Section 9 concludes the
paper with concluding remarks and a suggestion of future works.
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2 Problem Description

We show in Figure 1 a mobile object in an indoor environment. The movable
object is equipped with a camera set tilted towards the ceiling at an angle ϕ.
We call h the distance between the camera and the ceiling. Moreover in Figure
2 the horizontal and vertical angles of view of the camera, called θx, and θy
respectively, are highlighted. The direction towards which the camera is oriented

ceiling camera 

floor

h = camera lens

ceiling distance
to h

landmark

landmark in the

ceiling

image plane

direction

� = camera tilt angle

Fig. 1. A mobile object with a camera on it, tilted toward the ceiling.

Fig. 2. The horizontal and vertical angles of view of the camera.

is shown with the ’Camera Direction’ arrow. The ceiling landmark is shown in
Figure 1 with a segment with a greater thickness and the image plane of the
camera is shown with a segment orthogonal to the camera direction. The ceiling
landmark is projected to the landmark on the image plane. The visual landmarks
positioned on the ceiling used in this approach are the lighting holders shown as
that shown in Figure 3. We choose landmarks with isotropic shapes on the plane
because in this way the distortion components due to image rotation can be
eliminated. The simpler isotropic shape is the circle. As shown in Figure 3, the
lines of pixels on the image plane are all parallel to the reference abscissa on the
ceiling plane regardless of the angle of the camera with respect to the landmark.
It is important to remark that each landmark must be distinguishable from
the others and its coordinate in the global reference system must be known.
A schematic representation of a mobile object and some landmarks with the
orthonormal reference system centered on the camera lens is shown in Figure 4.
The reference abscissa changes dynamically in relation to the direction of the
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Fig. 3. An example of the circular lamp holder used in this paper
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Fig. 4. Schematic representation of orthonormal reference system, landmarks and im-
age plane.
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focal axis. The reference abscissa, in fact, is always normal to the focal axis and
at the same time it is parallel to the horizon.

The landmarks must be distinguishable from each other. There are many
possible solutions for making the landmarks distinct. A simple possibility is
to paint each holder with a different color. More recently, the characteristic
frequency of fluorescent lights has been used, for instance in [16]. In this paper
we used the simplest solution, namely we painted adjacent lamp holders with
different colors. For this reason the landmarks in Figure 4 are represented with
different colors, where for simplicity the three circular landmarks positioned on
the ceiling are colored in red, blue and green. Figure 4 shows that the landmarks
which fall within the visual field of the camera are projected onto the image
plane of the camera. Of course we know in advance the physical position of
each landmark in the global reference system. On the other hand the landmark
colours can be detected using well known computer vision techniques.

3 Projective transformations

The projective transformation is the linear transformation of coordinates re-
ported in (1).

p′ = Tp (1)

where p represents a generic point in space expressed in homogeneous coordi-
nates, relative to the orthonormal reference system S described by the quadruple
(O, î, ĵ, k̂). The projected point p′ is expressed in coordinates relative to the ref-

erence system S′ described by the quadruple (O′, î′, ĵ′, k̂′), where î′ = î, ĵ′ has

the direction of the segment MQ and k̂′ has the direction of the normal to the
segment MQ.

Since p is expressed with the three components (xp, yp, zp) and p′ has the
three components (xp′ , yp′ , zp′), eq. (1) can be also written as followsxp′

yp′

zp′

 = T

xp
yp
zp

 (2)

Such a transformation maintains the properties of collinearity, that is, the points
which in S belong to a line, are aligned in a line also in S’. However, projective
transformation may not be defined for every point of S, in the sense that some
points could be mapped in S’ at infinity.

Let us view Figure 4 from the left side, that is the y − z plane of the or-
thonormal reference system which has its origin coinciding with the center of
the camera lens. This plane is highlighted in Figure 5, where the ceiling is at
z = h, and the field of view of the camera is shown with points M and E. Let us
assume that a landmark falls within the vertical angle of view. Then, the center
of the landmark is the point C. On the other hand, if we view Figure 4 from the
front side, that is the x − z plane, we obtain the system shown in Figure 6. Of
course the camera image plane, which is the plane normal to the focal axis in



Title Suppressed Due to Excessive Length 7

Figure 4, is shown with the segment M − Q in Figure 5 and segment G − I in
Figure 6.

Suppose we fix a point P on the ceiling. If the point falls within the field of
view of the camera it is shown as P in Figure 5. Let (px, py, pz), with pz = h, be
the coordinates of P . The point P is projected to the image plane of the camera to
the point P ′, which has coordinates (xp′ , yp′ , zp′). Also the center of the landmark
in Figure 5 is projected to the point C ′ and the segment M − E is projected
to the segment M −Q in the image plane. In this model, the focal distance of
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Fig. 5. Plane y − z in orthonormal reference system

ceiling

Fig. 6. Plane x− z in orthonormal reference system

the device or other characteristic parameters are not taken into account. It is in
fact a purely ideal model, which has the only purpose of deriving the relations
that define the projective transformation from the orthonormal system whose
origin coincides with the center of the camera lens to the image plane system.
The latter is chosen independently of the characteristics of the camera. With
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reference to the Figures 5 and 6, we introduce the following geometric variables
characteristic of the problem.

–

Φ = ϕ+
θy
2
− π

2
(3)

– The distance a from the origin ro the barycenter of the landmark projected
on the image plane:

a = OC ′ =
h

sin(ϕ)
− h(tan(ϕ) +

1

tan(ϕ)
) cos(ϕ) (4)

– The abscissa of the point P’ on the image plane:

b

2
= MC ′ = C ′Q = h(tan(ϕ) +

1

tan(ϕ)
sin(ϕ)) (5)

Equations (4) and (5) are developed in Appendix A. Moreover, we define the
following two variables:

G = −h (tanΦ tanϕ+ 1) (6)

and
F = h (tanϕ− h tanΦ) (7)

We remark that the following considerations are based on three coordinate sys-
tems, namely an orthonormal reference system centered on the camera lens,
shown in Figure 4, an orthonormal reference system on the image plane and a
system on the ceiling plane which is simply translated by h with respect to that
centered on the camera lens. In general, points on the systems centered on the
camera lens and on the ceiling are denoted with a capital letter, such as P, while
that on the image plane of the camera are denoted with a capital letter plus an
apex such as P’. In this case, P’ is the P point projected on the image plane. If
we look at the landmark seen from the orthonormal reference system centered
on the camera lens, its barycenter is located at (xc, yc). A generic point on the
ceiling has coordinate (x, y) and the same point projected on the image plane is
(x′, y′). The coordinates of a generic point on the landmark is given relative to
its barycenter: (x = xc + xr) and (y = yc + yr). According to Figures 6 and 5
the offsets xr, yr are projected to the image plane in x′, y′.

Assume now we have an optimum mapping between images. In other words,
assume that, having two images A and B, A = {a(i, j)|i, j = 1, ..., N} and
B = {b(u, v)|u, v = 1, ...,M}, we can estimate the mapping function

F (i, j) =

[
u
v

]
=

[
x(i, j)
y(i, j)

]
(8)

which maps each pixel (i, j) of one image to the pixel (u, v) of the other image
such that the difference between the two images is minimized, as shown in (9).

min
∑∑

‖a(i, i)− b(u, v)‖ (9)
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where u = x(i, j) and v = y(i, j). Such mapping is performed through a two
dimensional Dynamic Programming operation [21]. 2D-DPA is the base of image
matching algorithms called Elastic Image Matching. Unfortunately, the Elastic
Image Matching operation is NP-complete [26]. For this reason we devise an
approximation which reduces the 2D-DPA operation complexity to O(N4), as
described below.

The barycenter of the landmarks, (xc, yc), are estimated using the following
Proposition.

Proposition 1. By measuring the abscissa and hordinate (x′, y′) of a generic
point on the landmark projected on the image plane we can estimate the coordi-
nate (xc, yc) of the ceiling landmark using the following equations:

xc =
h cos(ϕ− γy)(x′ − g)

a sin(γy)
+ g − xr (10)

yc =
aG+ ayr tan(ϕ)− (y′ − b

2 )(yr + F )

y′ − b
2 − a tan(ϕ)

(11)

Proof. In Appendix B we give a sketch of the derivations

A different estimation of the coordinates of the landmark barycenter is ob-
tained for all the points P inside the landmarks. A sequence of barycenter co-
ordinates xc, yc are thus obtained, of which we compute the expected value.
The algorithm is thus sequentially divided into two parts: estimation of E(xc)
and E(yc) by measuring the dimension y′ and x′ of the distorted image on the
image plane.

The distance from the camera lens and the landmark in the ceiling reference
system is thus the following:

d =
√
E(xc)2 + E(yc)2) (12)

with reference to Figures 6 and 5, where C = (xc, yc, zc) is the barycenter
of the landmark in the reference system (O, i, j, k). We obtain he sub-optimal
correspondence, pixel by pixel, between a reference image and a distorted image
by means of approximated two dimensional dynamic programming, . Our algo-
rithm therefore uses the deformation of the image to derive the distance of the
landmark, i.e. it is intended to determine how the perspective has distorted the
image.

The coordinates of the barycenter of the ceiling landmarks are obtained using
the coordinate x′ measured on the image plane and xr using the mapping func-
tion, and in terms of y′ and yr. Clearly (xr, yr) and (x′, y′) are both known
because they are derived from the coordinates of the pixels in the pattern and
in the test images respectively. What associates the two pixels is the mapping
relationship described in (8) obtained by 2D-DPA.

The characteristic that differentiates the algorithms present in the literature
from the one developed in this paper is the statistical character of the obtained
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estimate. The algorithm based on dynamic programming is able to calculate
a position estimate for each single pair of associated pixels from the mapping.
The advantage is that a large number of points are used, which contribute to the
calculation of the average distance value. This makes the estimate more truthful,
especially when the landmark is very distant, which results in a smaller image
and a greater quantization error.

4 2D Dynamic Programming Based Image Mapping
Technique (2D-DPA)

For the sake of coherence with what we write below, we repeat now the mapping
considerations summarized above about images A and B using instead images
X and Y . Given the two images, X = {x(i, j)} and Y = {y(u, v)}, the
mapping of one image to the other is represented by the operation

D(X,Y ) = min

N∑
i=1

N∑
j=1

‖x(i, j)− y(u, v)‖

where u = x(i, j), v = y(i, j) is the mapping function between the pixels
of X and Y . The quantity D(X,Y ) gives a distance between the image X and
the optimally deformed Y , the optimal warping function x(i, j), y(i, j) gives
an interpretation of the image X according to the generation model Y.

Given the i−th row of the X image and the j−th row of the Y images,
namely Yj = (yj,1, yj,2, . . . , yj,N), Xi = (xi,1, xi,2, . . . , xi,N) respectively,
the distance between the two rows is obtained by applying a 1D-DPA [24] for
finding a warping among the two rows as described in (13). Here the map M ′

is, say, over (n,m) coordinates, so that M ′l = ((il, nl), (jl,ml)).

d(Xi, Yj) =
min
M ′

∑M ′

l=1 d(M
′
l )

M ′
=

min
M ′

∑M ′

l=1 ‖xil,nl − yjl,ml‖

2N
(13)

Finally, the distance between the two images is obtained by (14). In this case
the map M ′ is between all the rows of X and Y. As before, |M ′| is the length
of the path.

D(X,Y ) =

min
M ′

∑
k d(M

′
k)

|M ′|
=

=

min
M ′

∑
k d(Xik , Y jk)

|M ′|
=

min
M ′

∑
k

min
M′

∑|M′|
l=1 d(M ′

l )

2N

2N
=

=

min
M ′
{
∑
kmin
M ′

∑|M ′|
l=1 ‖xi,nl − yj,ml‖}

4N2
(14)
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Let us assume that the images are of equal size, that is N ×N pixels. Then
the length of the optimum path between the two images is equal to 2N . The
local distances in each point of this path is obtained with other 1D-DPA with
paths of length 2N . The total length is the sum of 2N along the 2N long path,
giving 4N2 at the denominator. The complexity of the described operation is
O(N2N2) = O(N4 where N is the image dimension.

5 Proposed Algorithm

The algorithm described in this paper is summarized in the following Algorithm.
The inputs of the algorithm are the two gray-scale images imgA and imgB
which are the landmark on the image plane and on the ceiling respectively. We
perform the 2D-DPA algorithm on these two images to obtain the mapping
function as result. the mapping function is represented with a linked list where
each node is the map related to the two pixels. The function get() give as result
the value of the pixel on the image indicated as input and is used to get the
values of the two pixels linked by the map on the two landmark images. To
decide if the pixel is a landmark pixel or not, we consider their gray levels. The
landmarks have a lower values with respect to the environment and thus if the
pixel values is less then a thereshold, the pixel is a landmark pixel.

Input:imgA, imgB

Output: distance

img=Detect(imgA); . get the landmark in the image plane
id=identify(img); . identify the landmark
head=2D-DPA(imgA, imgB);
ptr=head; . head is the list of mapping function
repeat

pixA = get(imgA, ptr); . pixel of imgA

pixB = get(imgB, ptr); . pixel of imgB

if (pixA ≤ L)&&(pixB ≤ L) then . the pixels are in the landmark
Compute xc, yc with (10) and (11)
sumy+ = yc;
sumx+ = xc;
counter++;

ptr = ptr → next;
until ptr == NULL
yc = ysum/counter;
xc = xsum/counter;

distance =
√

x2
c + y2

c ;
return distance
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6 Computer vision approaches for extraction of landmark
images

We briefly summarize in this Section the computer vision operations we did on
the image acquired from the ceiling. The problem is to detect from the image
plane the isotropic images which represent the landmark. Another operation,
which is not reported here, is the identification of the landmark. The simplest
way is to draw the landmarks with different colors, since the computer vision
operations to identify the colors are very simple. There are however many other
ways which can be used for the identification, tipically based on some type of code
drawn inside the landmark. Of course the computer vision operations are slightly
more complex than using different colors. More importantly, the computer vision
operations to decode drawn codes could need greater camera resolution.

We report in Figure 7 the Computer Vision algorithms we applied on the
original image for extraction of isotropic images. The algorithms are described

Fig. 7. Block diagram of the Computer Vision algorithms.

as follows:

– The acquired image is first transformed in grayscale, and then its edges are
obtained via the Canny’s operator, obtaining the Edge image.

– From the Edge image, its contours are extracted, obtaining the Contour1
image.

– The Contour1 image is processed via morphological analysis. More precisely
the opening operation with circular structuring element, is applied to Con-
tour1 image in order to eliminate the little Side Dishes. The edges are then
extracted again with the Canny operator, and then the contours are ex-
tracted again, finally obtaining the Contour2 image.

– Ellipse fitting is applied to Contours2 image. Based on the position and size
of the found ellipses, square portions are cut out from original image. Most
likely, the landmarks are contained in one of the extracted portions.

The results are shown in Figure 8. These results refer to the input image
shown in Figure 3.

7 Localization

The localization of the mobile object is an issue we leave open as starting from
distance estimation several possible solution can be developed. However, just
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Fig. 8. Processed results, with reference to Figure 3

to point out a possible simple idea based on trilateration, we report Figure
9. This figure shows a global reference system which is related to the indoor

environment reference system

cam
era reference system

angle of view

Fig. 9. Sketch of a possible localization by trilateration

environment is shown. Another reference system which is rotated and translated
with respect to the first one. The origin of second reference system is centered on
the camera lens of the mobile object. Note that the x−y planes shown in Figure
9 correspond to the ceiling plane. The mobile object identify the landmarks
and knows in advance their location coordinate in the global reference system.
Our algorithm estimates the distance from the mobile object and the detected
landmarks. Therefore, we can think to draw a circle with center on the landmark
and radius equal to the estimated distance. If at least three different landmarks
are detected, the mobile object can be localized in global reference system.

8 Experimental Results

The experiments has been made using an Intel I7 CPU with 8cores running at
3.07GHz and a memory of 24GB. Then, the two dimensional DPA algorithm
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has been written in the CUDA framework and executed on a NVidia Kepler
TM GK110 device. A low cost 640×480 webcam is used for image acquisition.
In Figure 10 we report the average error of the estimation distance from the
camera lens and the barycenter of the landmarks. As a general consideration

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Camera - Landmark Distance [m]

0%

5%

10%

15%

E
rr

or
Average error

proposed, tilt = /3

Avgeris, tilt = /3
Ogawa, tilt= /2

Fig. 10. Average errors of the estimated distance

regarding these results, if the camera tilt-angle is high (i.e. if the inclination of the
optical axis is close to the perpendicular to the ceiling) the error is quite small,
but the field of view turns out to be very limited. To take advantage of wider
fields of view, higher tilt-angles must be used. In this case, however, the error is
higher. Furthermore, if the light in the environment become worse, the average
error increases. Our algorithm, however, is quite robust against noise. The curve
drawn in Figure 10 with solid line is obtained by the algorithm described in this
paper. The curve in the middle is related to the approach developed in 2019 by
Avgeris et al. and described in [15]. Finally, the higher curve is related to the
work proposed by Ogawa et al. in [17]. Despite being quite old we include this
result because its setting is very similar to this paper (the camera is directed
towards the ceiling with a tilt angle equal to 30 degrees). The errors are in any
cases well above that obtained by all the other algorithms.

9 Final Remarks and future work

In this paper we present an algorithm to measure the distance of a mobile object
to the lightings lamps used as ceiling landmarks in indoor environment. The
algorithm has many attractive features, mainly the accuracy, which is better than
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many other visual-based algorithms. Also, the distance measurements algorithm
is robust against noise. Quantization noise can be high in low lighting condition
of the environment and if the distance from landmarks and camera is high. The
negative outcome of the algorithm is the high complexity of 2D-DPA which, even
if polynomial, can lead to high computational times. In [19], however, we show
how the 2D-DPA when implemented on a NVidia Kepler TM GK110 device
leads to computation time less then 100 ms, for image size of 100× 100 pixels.

This paper naturally opens to the development of localization algorithms
based on our distance estimation algorithm. The global localization is in fact
under development. Another open important issue is the landmark placement.
Finally, the estimation of the orientation of the mobile object is another funda-
mental problem not addressed in this paper. The use of the characteristic fre-
quencies of fluorescent lamp is an interesting method to identify the landmarks.
Future works will be focused on these open points.

Appendix A

Referring to Figure 5, we derive below the geometric variables reported in Section
4.

Consider first eq. (4). a = OC′ = OC − C′C. From the right triangle
4OCCy we have OC = h

sin(ϕ)
. Moreover, from 4MC′C we have C′C =

MC cosϕ = (WC −WM) cosϕ = ( h
tanϕ

+ h tanΦ) cosϕ. Therefore

a =
h

sin(ϕ)
− h

(
1

tanϕ
+ tanΦ

)
cosϕ

.
Considering eq.(5), we have b

2
= MC sinϕ = h

(
1

tanϕ
+ tanΦ

)
sinϕ.

Appendix B

We now report a sketch of the derivation of the two propositions reported in
Section 4.

Let us start with (7). Regarding Figure ??, the angle formed by segmentsOR

andOP is equal to (Φ−γy), so tan (Φ− γy) = RP

OR
= [y tanϕ−h(tanΦ tanϕ+1)] cosϕ

h(tanϕ+y−h tanΦ) cosϕ
.

In addition to simplifying the cosϕ, we use the definition of F and G reported
above.

G = −h (tanΦ tanϕ+ 1)

and
F = h (tanϕ− h tanΦ)

. Then we have: tan (Φ− γy) = y tanϕ+G
y+F

. We conclude that y′ = b
2
+

ay tanϕ+G
y+F

By setting y = yr + yc we obtain the landmark coordinate yc
reported in (11).
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Going now back to (7), let us consider Figure ??. For lack of space we only
state that, according to considerations very similar to that just described, we
can conclude that

x′ = g +
a sin γy(x− g)
h cosϕ− γy

(15)

where g = GD = DI = a tan θx
2

. As we did previously, we substitute x =
xr + xc in 15 and thus we can obtain xc, described in (10).
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