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Abstract: - Archaeological mosaicing is one of the challenges of the computer vision community and it
can be faced in a 2D or 3D approach. This contribution regards a methodology to do a mosaic of an
underwater bi-dimensional scene. A number of problems arise from the acquisition of images by a remote
operated vehicle. Radial distortion, poor luminosity, cloud water, presence of artefacts are part of the
issues that can occur; for instance, the radial distortion has been corrected to improve the quality of the
input images. Keypoints detection (through SIFT transform), Singular Value Decomposition, Random
Samples Consensus are some of the techniques applied in our method.
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1 Inroduction
Mosaicing is the process of merging overlapping
photos into a single view, usually by assuming
planar textures. We are interested in the under-
water exploration of sites with wrecks together
with their shipments. This task is useful to verify
the condition of the area and to roughly estimate
the relative positions of the findings, in order to
better prepare following recovery campaigns. A
further advantage is represented by the fact that
the data can be analyzed offline in different labo-
ratories, museums and schools by using low cost
personal computers.

A Remotely Operated Vehicle (Comex Pro Su-
per Achille 2000) has been equipped with two high
sensitivity black and white cameras (Hitachi KP).
It must be pointed out that actually the results
presented here have been obtained by taking into
account just one of these cameras.

In underwater environments, due to poor vis-
ibility conditions, a lot of small areas need to be
close up photographed. Though each image over-
laps the successive one, it is very hard to combine
by hand all these photos to get a huge mosaic
that consists of the whole site; in our case the site
measures 11×4 meters.

It is possible to formulate this task as a global
minimization problem, which needs to compute
the homographies that map every photo onto the
mosaic image. Each new frame is related to the
previous one to find corresponding points. Sur-
veys about the state of the art techniques on this
research field can be found in [1, 2].

We have developed an unsupervised technique

that compose the frames coming from the cam-
era via a process that can be sketched as: image
normalization (described in Section 2), extraction
and matching of features (Section 3), computa-
tion of the homography and warping of consecu-
tive images (Section 4). Conclusions are reported
in Section 5.

2 Correction of radial distortion
Usually cameras introduce a significant amount of
distortion which can be of great impact on large
mosaics. This aberration depends on the differ-
ence in refractive index between water and air,
on the particular lenses and it is more evident
faraway the center of the image. Our model as-
sumes tangential distortion as irrelevant with re-
spect to radial distortion which is approximated
to the first order coefficient:

{
x′ = x + kx(x2 + y2) + O(x2, y2)
y′ = y + ky(x2 + y2) + O(x2, y2)

where the center lies on the origin of the system,
(x′, y′) indicate the coordinates in the corrected
image and k represents the amount of radial dis-
tortion [3].

Figure 1: Example of radial distortion correction.
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The algorithms already present in literature to
correct geometric distortions can be divided into
two main classes.

In the first case, the internal parameters (e.g.
focal distance, pixel ratio, image center, scale fac-
tor, radial and tangential aberration) and the ex-
ternal parameters (i.e. roto-translation matrix)
of the acquisition tool are extracted thought the
correspondences of a set of known points in the
three-dimensional space [4, 5]. The drawback of
this method relies on the intrinsic dependence of
these parameters [6].

In the second case, a “pin-hole” camera
model is assumed to compute these parameters
so to mantain the aspect of straight lines. We
have slightly modified the error function used by
the recursive algorithm presented in [7]. That
method avoids the problems typical of analyti-
cal approaches (e.g. Gauss-Newton, Levenberg-
Marquardt) which require the definition of a dif-
ferentiable error function. In particular, itera-
tive methods seem to return more accurate re-
sults than those obtained by a least square ap-
proach (e.g. Moore-Penrose), as indicated in Fig-
ure 2. Moreover, our implementation is unsuper-
vised because it does not require a manual selec-
tion of the edges already extracted by a Canny
operator.
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Figure 2: The least squares approximate the re-
gression line, dashed (left). On the contrary, suc-
cessive steps tend to the real line, bolded (right).

This edge detector is applied on a real pattern
to locate the lines for verifying the response of the
algorithm (see Figure 3). The measure of the er-
ror introduced during each step is computed as
the mean of the squared differences between the
horizontal (vertical) position of the points of the
lines in the pattern and the horizontal (vertical)
position of the corresponding points computed by
linear regression. The final choice of the horizon-
tal or vertical direction depends on the slope of
the least squares fitting regression line that im-
plies the smallest error value.

Figure 3: Vertical pattern (left), its edges (center)
and corrected version (right). The use of both the
vertical and horizontal patterns returns a better
value of k.

It can be proved that the error function is con-
vex and that it can be expressed in terms of the
parameter k. The algorithm divides the range
of k into at least 3 intervals and centers the new
range on the position of k that gave the minimum
error during the previous iteration. This proce-
dure ends and returns the last value of k when
the width of the newly computed range is smaller
than a fixed threshold. Figure 4 shows that a few
iterations were sufficient to reach a radial distor-
tion error almost equal to 0.

2.5×1014

Figure 4: Error versus the width of range of k.

3 Keypoints detection and
matching

Due to the lack of luminosity at a depth of just a
few meters, it is necessary to observe the seabed
in the downwards direction, putting the cam-
era close to the bottom. This introduces severe
prospective errors when the frames of the video
have to be composed. In order to properly super-
impose the images, a set of anchorage points must
be detected on each of them. A successive mod-
ule will single out all common keypoints between
pairs of consecutive frames and will calculate the
coefficients of the function, called homography, to
modify the images so as to reduce the effects of
prospective.
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The “scale-space” model, based on the compu-
tation of a set of Difference of Gaussian maps, to
locate promising keypoints, has been introduced
in [8, 9, 10]. This algorithm performs edge de-
tection by blurring the input image I through a
couple of Gaussian filters centered in the origin
and with predefined standard deviations σ1 =

√
2

and σ2 = 2:
Li = Gi ⊗ I,

where

Gi(x, y) =
e
−x2+y2

2σ2
i

2πσ2
i

.

Each convolution eliminates structures with
different sizes, which correspond to different fre-
quencies in the scale-space. A difference between
these Gaussian maps puts in evidence the zero
crossing zones which focus at higher frequencies
that are usually due to edges and pointlike noise
(pixels that have some variation in their surround-
ing neighborhood):

DG = L1 − L2.

In order to locate the maximum and minimum
values of the resulting map, each pixel is com-
pared to its three-dimensional neighbors (8 pixels
in DG and 9 pixels in each scale Li). The com-
putational cost of this control is reasonably low
because most candidates are eliminated soon af-
ter a few comparisons. Moreover, this technique
is scale invariant and very fast due to the separa-
bility of the variables in the convolution kernels.

The algorithm described in [11, 12] has been
used to search for local features, invariant to
noise, scale and luminosity (named SIFT). The
DG image is further processed to remove false
keypoints, that are usually due to noise within
very low contrast zones. The positions of the re-
maining candidates are selected by:

x̂ = −∂2D−1

∂x2

∂D

∂x
,

where D represents the first two terms of the Tay-
lor series expansion of DG:

D(x) = DG(x) +
∂DGT (x)

∂x
x +

xT

2
∂2DG(x)

∂x2
x.

A digital signature for each keypoint is needed
in order to align two overlapping frames. It has

been proved that a vector of descriptors contain-
ing 128 quantized values of orientation coming
from both L1 and L2 contains enough information
to properly identify a given keypoint. In particu-
lar, the contribution of the luminosity gradient of
the pixels weighted within a Gaussian window,
centered in the keypoint, is accumulated in 16
sub-samples (see Figure 5). The 8 possible di-
rections of the resulting quantized vector are nor-
malized so to let the signature be invariant in case
of uniform change of luminosity.

Figure 5: The weighted gradients within a Gaus-
sian window (left) are sub-sampled to obtain a
vector of quantized values (right) that identify
each keypoint, represented as a circle.

This method is also the underlying idea of op-
tical flow, applied to roughly predict the move-
ments of the camera and to better estimate the
parameters of the homography function. Assum-
ing that the ROV does not turn, but scans the
wreck in a straight line, we can use the norm of
the optical flow vector to dynamically fine tune
the step between consecutive images of the movie,
that is how many frames must be skipped because
they are too similar to each other. It is notewor-
thy that the optical flow can be processed on the
fly, while looking for the keypoints.

4 Mosaicing
To increase the robustness of the matching an
outlier rejection module is also required. The
RANdom SAmple Consensus (RANSAC) is a
probabilistic model to estimate, through a ran-
dom greedy strategy, the parameters that de-
scribe the homography when passing from frame
to frame [13]. The signature vi1 of each keypoint
ki1 , located on the first frame F1, is compared, in
turn, against all signatures vi2 of ki2 on the sec-
ond frame F2. In order to couple these keypoints,
the alignment of their signatures, expressed as the
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arc cosine of the angle between vi1 and vi2 , must
be minimized:

arg min
i2

cos−1〈vi1 , vi2〉.

Of course, the set of matched keypoints, together
with the correctness of the global result, depend
on the random choice of the initial i1; it has been
experimentally proved that the signatures have
enough measurements to reach a high specificity.
Figure 6 shows an example of matched keypoints.

Figure 6: An example of matched keypoints (rep-
resented by crosses) in two consecutive frames.

A generic projective model has been preferred
to take into account not only occlusions in the
scenes, but also pitch, yaw and roll movements of
the ROV. Therefore, at least 8 parameters are
needed to correctly normalize the images, and
thus 4 random couples of keypoints are selected
to apply the Direct Linear Transform with Sin-
gular Value Decomposition [14] to calculate the
homography between F1 and F2. The RANSAC

module repeats at least 10 times the whole match-
ing process and, when no more than 1% of the
keypoints are considered as outliers (i.e. key-
points that imply a movement in gross disagree-
ment with the overall motion), returns the ho-
mography that minimizes the re-projection error.

The warping of the whole landscape is done by
mapping the homography to the mosaic, already
obtained, against the new frame. This blend-
ing procedure returns a bigger and bigger image
which distributes and reduces the effect of point-
like noise on the overlapped images. An example
of mosaic is presented in the following Figure 7.

Underwater images are often acquired when
natural light is scarcely sufficient, thus the
“brightness constancy constraint” is not valid
anymore. The ROV, while moving, illuminates
the scene in a non-uniform way, producing shad-
ows and a bright spot in the center of the image
with darker areas surrounding it. A high sensi-
tivity camera avoids the use of artificial lights,
reduces many of these lighting artifacts and lets
simplify the blending module, which requires a
simple averaging on the border of the images.

5 Conclusions and remarks
Unsupervised mosaicing of an underwater scene
is a very hard task and during the last years
a number of methodologies have been reported.
They can be divided in side-scan sonars tech-
niques, forward-looking sonars methods, acous-
tic cameras acquisition, multibeam echo-sounders
data management and cameras with high sensi-
tivity to low levels of luminosity. In this last case,
the greater the distance of the subject is, the more
degraded the visibility becomes [15].

This paper faces with the mosaicing of seabed
landscapes and, in particular, of archaeological
sites. Although our vehicle is equipped with addi-
tional sensors, only the video information coming
from a digital camera has been used to realize the
mosaic.

Degradations caused by polarization has been
recently reduced by means of a polarizer at differ-
ent orientations, but its application to deep-water
inspections is still subject for further research [16].
We have preferred to study naturally illuminated
photos because of the significant artifacts intro-
duced by the lights of the ROV.

Underwater currents make the vehicle contin-
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uously correct its position and mosaicing can be
effectively used to keep track of the camera with
respect to the environment.

Quadranocular video acquisition [17] has been
already used to automate the ROV trajectory [18]
and we believe that the use of the information
coming from the second camera onboard our ve-
hicle should improve the precision of the concate-
nation of motion estimates.

Moreover, if the path of the ROV describes a
loop, the images already processed could be re-
aligned to obtain a better valuation for the set
of local homographies [19]. We expect that such
a cycle of topology refinements will enhance the

correctness of wider mosaics.
We are going to include in our method the im-

provements above described, but preliminary re-
sults are already satisfactory, particularly because
they do not refer to almost superficial findings and
the system is completely unsupervised.
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Figure 7: This mosaic has been assembled with 53 out of 925 frames (37 seconds of real video at 25 fps).
Each frame has 592×470 pixels and the final result has 2457×698 pixels. These findings are located at
a depth of about 70 meters.
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