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a b s t r a c t

Recently described biochemical and structural aspects of fucose-binding lectins from the European eel
(Anguilla anguilla) and striped bass (Morone saxatilis) led to the identification of a novel lectin family
(‘‘F-type’’ lectins) characterized by a unique sequence motif and a characteristic structural fold. The
F-type fold is shared not only with other members of this lectin family, but also with apparently
unrelated proteins ranging from prokaryotes to vertebrates. Here we describe the purification,
biochemical and molecular properties, and the opsonic activity of an F-type lectin (DlFBL) isolated from
sea bass (Dicentrarchus labrax) serum. DlFBL exhibits two tandemly arranged carbohydrate-recognition
domains that display the F-type sequence motif. In situ hybridization and immunohistochemical analysis
revealed that DlFBL is specifically expressed and localized in hepatocytes and intestinal cells. Exposure of
formalin-killed Escherichia coli to DlFBL enhanced their phagocytosis by D. labrax peritoneal macro-
phages relative to the unexposed controls, suggesting that DlFBL may function as an opsonin in plasma
and intestinal mucus.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Lectins are multivalent proteins that recognize and bind
carbohydrate moieties through specific domains (CRDs) [1] and
participate in various biological processes [2–5], including innate
and adaptive immune responses [6,7]. Because most lectins may
display CRDs in combination with other domains, they not only
recognize carbohydrates on the surface of potential pathogens, but
also mediate several effector functions including agglutination,
immobilization, and opsonization of microbial pathogens, and
complement pathway and phagocyte activation [8]. Based on the
presence of conserved amino acid sequence motifs in their CRDs,
structural fold, and calcium requirements, animal lectins have been
classified into several families, such as C-, P-, I-, and L-type lectins,
galectins, pentraxins, and others [6,9]. Recently, a novel lectin
family (F-type; fucose-binding) characterized by a unique CRD
sequence motif and structural fold has been identified both in
prokaryotes and eukaryotes, including invertebrates and verte-
brates [10–12]. The F-type CRD can be associated with pentraxin,
C-type lectin, or ‘‘sushi’’ domains yielding complex chimaeric
proteins [9].
: þ39 091 6230144.

All rights reserved.
C-type, lectins, galectins, and rhamnose-binding lectins have
been isolated from serum, skin mucus, and eggs from several fish
species [13–16], and described as opsonic [6,17], or endowed with
capacity to enhance respiratory burst and bactericidal activity of
phagocytic cells [8,18–22].

F-type lectins have been identified and characterized in the
serum from Anguilla japonica [13], Anguilla anguilla [12], Morone
saxatilis [11], and Sparus aurata [23]. Although F-type lectins have
been proposed to mediate role(s) as molecular recognition factors in
innate immunity, the experimental evidence is fragmentary and the
detailed mechanisms of their activity have not been elucidated [9].
Prior to the identification of the F-lectin family, a 34 kDa fucose-
binding Ca2þ-independent serum lectin had been purified from the
sea bass (Dicentrarchus labrax) and named DlFBL [24]. More recently,
and based on partial N-terminal amino acid sequence, DlFBL and
a similar lectin (SauFBP) from the gilt head sea bream (Sparus aurata)
were both identified as members of the F-type lectin family [23].

In this study we analyzed in further detail the molecular prop-
erties and phylogenetic relationships of DlFBL. The lectin subunit
contains two tandemly arrayed, distinct CRDs that exhibit the
sequence motif typical of the F-type lectins. In situ hybridization
and immunohistochemical analysis revealed that DlFBL is
expressed and localizes in hepatocytes and intestinal mucocyte
globet cells. Further, in an in vitro assay with peritoneal
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macrophages, DlFBL displayed opsonic activity for formalin-killed
Escherichia coli, suggesting that it may function in recognition and
opsonization of potential microbial pathogens in the blood stream
and intestinal mucus.

2. Material and methods

2.1. Chemicals, molecular biology reagents and bacterial strains

Unless otherwise specified, chemicals and molecular biology
reagents were from Sigma-Aldrich (USA). The E. coli (ATCC 25922)
strain was from Chrysope Technologies (LA).

2.2. Animals, collection of blood and tissue samples, and
preparation of tissue extracts

Sea bass (D. labrax) (n¼ 50; approximately 250 g each) were
provided by the Ittica Trappeto fish-farm (Trappeto, Palermo, Italy).
Animals were anaesthetized in seawater containing 0.02% 3-ami-
nobenzoic acid ethyl ester (MS-222 Sigma), and bled by heart
puncture. The blood was allowed to clot at room temperature for
1 h, the serum separated by centrifugation at 800�g (10 min, 4 �C),
aliquoted, and stored at �20 �C until use.

Liver and intestine were excised from freshly killed fish and
immediately frozen by immersion in liquid nitrogen. Frozen
samples were ground into powder under liquid nitrogen, sus-
pended in TBS (50 mM Tris–HCl, 0.15 M NaCl, pH 7.4), centrifuged at
15,000�g and the supernatant stored at �80 �C.

2.3. Purification of sea bass serum F-type lectin (DlFBL)

The DlFBL was isolated by an optimized two-step chromatog-
raphy procedure. The first step consisted of a Sepharose CL6B
affinity cromathography column eluted with 0.2 M galactose, as
previously reported [24]. As monitored by absorbance at 280 nm,
the elution profile yielded two peaks, of which the second dis-
played the highest hemagglutinating activity (titre: 256–512). In
the second separation step, DlFBL was purified by loading the
pooled active fractions from the second peak on a fucose–agarose
affinity chromatography following the method reported by Honda
et al. [13]. Briefly, the fractions of the Sepharose CL6B peak 2 (20 ml;
about 1–2 mg ml�1 protein content) were pooled, dialyzed against
TBS, centrifuged at 10,000�g for 30 min, and passed through a 5 ml
L-fucose–agarose column (Pierce). The column was washed with
1.0 M NaCl, followed by TBS (10 volumes) at a 0.2 ml/min flow rate.
The elution of DlFBL was carried out with 20 ml of 50 mM L-fucose
in TBS at the same flow rate, monitored by absorbance at 280 nm,
and with 2 ml fractions collected. These were tested for hemag-
glutinating activity towards rabbit erythrocytes, and those that
exhibited the highest activity were pooled and analyzed by
electrophoresis

2.4. Hemagglutination assay

Rabbit and sheep erythrocytes (RBC; supplied by Istituto Zoo-
profilattico della Sicilia) were washed three times with PBS,
centrifuged at 500�g for 10 min at 4 �C and suspended at 1% in TBS
containing 0.1% (w/v) pig gelatin. A volume (25 ml) of sea bass
serum (1:10) or 25 ml of the purified DlFBL preparation (250 mg/ml)
dialyzed in TBS were serially (2-fold) diluted with TBS–gelatin in
96-well round-bottom microtitre plates (Nunc, Denmark), and
mixed with an equal volume of RBC suspension. The hemaggluti-
nating titre (HT) was measured after 1 h incubation at 37 �C, and
expressed as the reciprocal of the highest dilution showing clear
agglutination.
2.5. Protein content estimation

Protein content was estimated according to the method of
Bradford [25], using bovine serum albumin (BSA) as a standard.

2.6. Polyacrylamide gel electrophoresis

SDS-PAGE (10%) was carried out following the method of
Laemmli [26], under reducing conditions (5% mercaptoethanol). To
evaluate the molecular size, gels were calibrated with low range
standard proteins (Bio-Rad, Richmond, CA). Proteins were stained
with Coomassie brillant Blue R-250.

2.7. Preparation of anti-DlFBL antisera

As previously described [24], bands identified in the SDS-PAGE
gels as the purified DlFBL were excised and pooled, suspended in
distilled water, and passed repeatedly through a syringe. Anti-
DlFBL antibodies were raised in rabbits by Medprobe (Norway),
with a coarse suspension of the gel pool containing DlFBL (50 mg) as
the antigen. To control for antibody specificity, the antiserum was
absorbed with the purified lectin. Briefly, 500 ml of anti-DlFBL
antiserum were mixed with 100 ml of the affinity chromatography
Fraction II (50 mg protein content), incubated overnight at 4 �C, and
centrifuged at 27.000�g for 1 h at 4 �C. Specificity of the anti-DlFBL
antibodies was validated by comparing the activity of the diluted
(5:1 in PBS: Na2HPO4 1 M, NaH2PO4 1 M, NaCl 1,5 M, pH 7.4) anti-
serum with the adsorbed one.

2.8. Western blot analysis

SDS-PAGE gels were soaked in transfer buffer (20 mM Tris,
192 mM glycine, 10% methanol, pH 8.8) for 10 min and proteins
transferred for 75 min at 0.8 mA/cm2 to nitrocellulose sheet in
a semi dry blotting bath (Bio-Rad, USA). The filter was soaked in
blocking buffer (PBS containing 3% BSA and1% Tween 20) for 1.5 h.
After washing with PBS-T the nitrocellulose sheet was incubated
with anti-DlFBL antiserum (1:800 in PBS) for 1 h, then washed 4
times with blocking buffer, and incubated for 1 h with alkaline
phosphatase-conjugated anti-rabbit sheep IgG (Sigma; 1:15,000 in
blocking buffer). After washing with PBS (4 times for 15 min), the
filter was treated with 3 ml of 5-bromo-4-chloro-3-indolyl phos-
phate/nitro blue tetrazolium (BCIP/NBT) liquid substrate system.

2.9. Isolation of total RNA from liver, PCR amplification, and cDNA
cloning

Total RNA was isolated from liver by using an RNAqueousTM-
Midi kit purification system (Ambion), and reverse-transcribed
with the Ready to Go T-primed first-strand kit using random
primers (Amersham-Pharmacia Biotech). Amplification was per-
formed by using 1 mM of the following degenerate primers,
designed on the basis of sequences: P1.DFBP1.F
(50-dCAAAGCTTTAYAACTAYAARAACGTNGC-30); P2. DFBP3.R (50-
dTCGAATTCGTNACGATRTANGGCTC-30). PCR amplification was
carried out in a MJ Research DNA PTC-100 thermal cycler as
follows: after a denaturating step at 94 �C for 3 min, the primers
were annealed at 37 �C for 30 s, then 35 amplification cycles (94 �C
for 30 s, 50 �C for 30 s, and 72 �C for 1 min) and a final elongation at
72 �C for 10 min were carried out. A single band of 136 bp in size
was visible in agarose-gel electrophoresis (not shown). This
product was ligated into the pCR 4-TOPO (TA cloning Kit, Invi-
trogen) according to the manufacturer’s instructions. Plasmid DNA
was isolated from recombinant bacterial clones using NucleoSpin
extraction kit (Macherey-Nagel Sarl, Hoerdt, France), and
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sequenced at CRIBI (Univ of Padova-Italy) as a service. The cDNA
sequences were completed by 50- and 30 RACE using the Marathon
RACE kit (Clontech), with the internal specific primers described
above.

2.10. Expression analysis of DlFBL in several tissues

To determine whether the F-lectin was expressed in kidney,
spleen, ovary, gills, intestine and heart tissues, total RNA was
isolated by using a RNAqueous�-Midi Kit purification system
(Ambion) and reverse-transcribed by the Cloned AMV First-Strand
cDNA Synthesis Kit (Invitrogen). The following primers were
designed by using the liver cDNA sequence: upper primer, 50d
-TCTGTGAAGTGGAGGTTTAT-30; lower primer, 50d-AGGGTCAGG
TACTCTTCTTT-30. PCR amplification was carried out as follows:
94 �C 1 min, 52 �C 1 min, 72 �C 1 min for 30 cycles. A single band of
390 bp was visible in agarose-gel electrophoresis. The amplicon
was purified and sequenced at CRIBI (Biotechnology Center of the
University of Padua, Italy, http://bmr.cribi.unipd.it, ABI PRISM-DNA
sequencer, Applied Biosystems). A similarity search was performed
using the FASTA program (http://www.ebi.ac.uk/Tools/fasta/). The
signal peptide has been determined by signalP algorihtm http://
www.cbs.dtu.dk/services/SignalP/. Proteins from the above
mentioned tissues were prepared by adding liquid nitrogen to the
dissected organs in a mortar, the frozen tissues ground to a fine
powder with a pestle for 10–15 sec, and 1 ml of RIPA buffer
(25 mM PBS –Tween 20 buffer pH 7.6, 150 mM NaCl, 1% NP-40, 1%
sodium deoxycholate, 0.1% SDS) was added. The sample was
centrifuged at 27,000� g for 30 min at 4 �C, the resulting pellet
was removed, and the supernatant used as crude extract or frozen
at �80 �C.

2.11. Phylogenetic analysis

The deduced amino acid sequences were submitted to multiple
alignments using the Clustal W v. 1.81 program [27]. Alignment of
protein sequences was done using CLUSTAL X v.1.83 [28] (ftp://ftp-
igbmc.u-strasbg.fr/pub/) and similarity shaded with GeneDoc
v.2.6.002 (www.psc.edu/biomed/genedoc/) and Bioedit version
5.0.9. A phylogenetic tree was constructed by the Neighbour-
Joining method (NJ), considering 1000 bootstrap hits.

Calculations of theoretical protein characteristics from the
deduced peptide sequence were performed with ProtParam (www.
expasy.ch). The putative tertiary structure of each CRD from DlFBL
was modeled using the crystallographic structure of the A. anguilla
F-type lectin as a template [12]. The polypeptide sequence of each
CRD was aligned to the A. anguilla F-type lectin template structure
(Protein Data Bank accession code 1K12) using Cn3D 4.1 produced
by NCBI.

2.12. In situ hybridization

In situ hybridization was performed on tissue sections (7 mm)
according to Alonso et al. [29]. Antisense (AS) and sense (S) probes
were synthesized based on the DlFBL cDNA clone. Digoxigenin-
labeling was performed using the digoxigenin-UTP in vitro tran-
scription kit (Roche Diagnostics, Meylan, France) according to the
manufacturer’s instructions. The sections were washed twice in
PBS-T (1 M Na2HPO4, 1 M NaH2PO4, 1.5 M NaCl, pH 7.4 0.1% Tween
20), permeabilized with 1 ml ml�1 proteinase K (Sigma-Aldrich) in
PBS-T, and the reaction blocked by 2 mg ml�1 glycine in PBS-T. After
washing with PBS-T, the sections were post-fixed for 30 min with
4% formaldehyde in PBS-T, treated with hybridization solution (50%
formamide, 50 mg ml�1 heparin, 500 yeast tRNA, 0.1% Tween 20 and
5x sodium chloride/sodium citrate solution (SSC): 0,15 M NaCl/
0.05 M sodium citrate, pH 7) at 42 �C for 1 h, followed by 15% AS
probe in hybridization solution at 42 �C overnight. After washing
with PBS-T at 42 �C (10 min) and then with 0.3% SSC 20x containing
1% Tween 20, the sections were incubated for 30 min at 20 �C with
2% horse serum in PBS-T, and then treated for 1 h at 20 �C with anti-
digoxigenin-Fab-Ab (Roche Diagnostics, Meylan, France) diluted
1:100 in the horse serum–PBS-T solution. Finally, the sections were
washed twice in PBS-T and incubated with BCIP/NBT for 2 h in the
dark. Controls consisted of tissue sections processed similarly,
using the corresponding sense RNA (1 mg ml�1). Three individual
fishes were examined for both experimental and control sections.

2.13. Immunohistochemical and immunocytochemical methods

Liver and intestine samples (approximately 300 mg) were fixed
in Bouin’s for 24 h, rinsed in ethanol 75% and embedded in paraffin.
Serial sections (5 mm) were treated for 30 min with PBS containing
0.2% Triton X-100 and 0.1% Tween 20 (PBS-T). To prevent non-
specific antibody binding, the sections were incubated with 3% BSA
in PBS for 1.5 h at room temperature. After two washings in PBS-T,
the sections were incubated overnight with anti-DlFBL antibodies
(1:800 in PBS-T containing 0,1% BSA), and, after washing, the
sections incubated for 1.5 h at room temperature with sheep anti-
rabbit IgG alkaline phosphatase conjugate as the secondary anti-
body (1:15,000 in PBS-T 0,1% BSA). After washing in PBS-T the
sections were treated with the substrate mixture (3 ml of 5-bromo-
4-chloro-3-indolyl phosphate/nitro blue tetrazolium, BCIP/NBT)
and the reaction blocked in distilled water. To validate the antibody
specificity, the following controls were performed: (1) The anti-
DlFBL antiserum was replaced with pre-immune rabbit serum; (2)
the primary (anti-DlFBL) antibodies were replaced with PBS; 3.
anti-DlFBL antiserum was replaced with the absorbed anti-DlFBL
antiserum.

Histological sections were stained with Mallory stain (0.5% of
aniline blue; 2% orange G; 2% oxalic acid in distilled water) for
30 min [30], or with Gomori trichromic stain [Chromotrope 2R
(0.6 g), Fast green FCF (0.3 g), phosphotungstic acid (0.8 g), glacial
acetic acid (1 ml), 100 ml DW] for 30 min [31].

2.14. Bacterial suspensions

Bacteria were grown to log phase in tryptic soy broth (TSB)
containing 3% NaCl at 25 �C, with continuous shaking (120 rpm) in
a Gallenkamp incubator. Cell numbers were estimated by absor-
bance at 600 nm. The relationship between absorbance and cell
number had previously been determined by plate count, and
cultures were diluted to a final 10% bacterial stock suspension.
Bacteria were fixed by adding formaldehyde to the bacterial stock
suspension to a 2% final concentration, and the mixture shaken
(120 rpm) overnight at 21 �C. After centrifugation at 6000�g for
15 min (4 �C), the formalin-killed bacteria were washed three times
with sterile PBS, suspended in PBS containing 0.1% (w/v) gelatin to
obtain 1 �109 cells ml�1, and stored at 4 �C until use.

For the phagocytosis assay, the formalin-killed bacteria were
washed three times with sterile PBS, suspended 1�109 ml�1 in
carbonate buffer (0.1 M Na2CO3, 0.1 M NaHCO3, pH 9.5) containing
0.1 mg ml�1 FITC and incubated 30 min at 37 �C with gentle
shaking. FITC-treated formalin-killed bacteria were washed three
times in NaCl 0.9% and twice in PBS containing 2 mM CaCl2, and
suspended (1�108 ml�1) in PBS-Ca.

2.15. Collection of peritoneal macrophages

Peritoneal cavity cells (PCC) were harvested by injecting 10 ml L-
15 medium [L-15 medium (Leibovitz) without L-glutamine, liquid,
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sterile-filtered, cell culture tested; Sigma] containing 100 units ml�1

penicillin/streptomycin and 10 units ml�1 heparin into the perito-
neal cavity. The body cavity was massaged for 10 min, and the
medium containing the peritoneal cells was withdrawn with
a sterile syringe and centrifuged at 500�g for 10 min. The cell
suspension was adjusted to 1�107 cells ml�1 in L-15 medium, and
cell viability was evaluated by the trypan blue exclusion test.
2.16. Phagocytosis assay

FITC-treated formalin-killed bacteria (1�108 ml�1) were mixed
in a microtube with purified F-lectin (5, 10, 25 mg ml�1) in PBS Ca2þ,
Fig. 1. The complete cDNA and deduced protein sequence of DlFBL. The cleaved signal peptid
the N-terminal peptide is underlined with a single line. The in-frame stop codon is marke
highlighted in grey (Accession number EU877448).
incubated at 18 �C for 60 min, and washed twice with the same
buffer. In the controls the purified lectin was replaced with PBS
Ca2þ. The opsonized bacteria (100 ml) were incubated with an equal
volume of PCCs (1�107 ml�1) for 30 min at 18 �C. Fluorescence of
the non-phagocytosed bacteria, was quenched by adding trypan
blue (2 mg ml�1) in 0.02 M citrate buffer pH 4.4, containing 0.15 M
NaCl and 2 mg ml�1 crystal violet in PBS [32]. The phagocytosed
fluorescent bacteria were observed under a UV light microscope
equipped with Nomarsky differential interference contrast optic
(Diaplan, Leica, Wetzlar, Germany). The phagocytic rate (PR) was
determined as the percent of cells showing internalized bacteria,
and the phagocytic index (PI) as the average of ingested bacteria
relative to the total phagocyte number.
e is indicated by lowercase amino acids and is negatively enumerated. The sequence of
d with an asterisk. The polyadenylation motif is double underlined. The two CRD are
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3. Results

3.1. DlFBL cDNAs cloning and sequence analysis

By using degenerate P1, P2 primers designed on the basis of M.
saxatilis sequences a 136 bp long amplicon was obtained. To
elucidate the sequence of the entire transcript 30 and 50 RACE-PCR
using the specific primers P3 and P4 designed from the initial
136 bp amplicon was carried out. The 1142 bp cDNA product pre-
sented the complete cDNA sequence with an open reading frame
encoding 312 amino acids (Fig. 1). Nucleotide sequence analysis
showed that a 77-nucleotide 50-UTR preceded the putative trans-
lation start site, and a 93-nucleotide 30-UTR spanned from the stop
codon up to the polyadenylation site resulting in a 1128-nucleotide
transcript excluding the poly(A) tail. The deduced protein sequence
(Fig. 1) was 293 residues long. The cleavage site of the 18-residue
signal sequence at the N-terminal was predicted by the SignalP
algorithm to reside between Ala18 and Tyr19. Therefore, the calcu-
lated molecular mass of the DlFBL is 34.4 kDa (ProtParam; www.
expasy.ch), with a theoretical isoelectric point of 5.84.

A comparative sequence analysis (Fig. 2) revealed the presence
of two CRDs spanning from Asn5 to Gly143 (N-CRD) and from
Asn153 to Gly287 (C-CRD) connected by a nine amino acid linker
peptide.

3.2. Phylogenetic analysis and CRD comparison

BLAST analysis revealed that the DlFBL deduced amino acid
sequence presents close homologies with vertebrate F-lectins
depending on their CRD organization. In the phylogenetic tree
(Fig. 2), DlFBL clustered with the other binary (two CRDs) teleost
FBPs. A second cluster includes F-lectins from Anguilla species and
Tetraodon nigroviridis, which are characterized by a single CRD,
whereas F-lectins containing more than two CRDs form a third
cluster. Finally, a cluster of heterogeneous proteins, containing
Fig. 2. Phylogenetic analysis of F-type lectins: Multiple alignment of full ORFs. The phylogr
corrected for multiple substitutions and gap positions were excluded. Bootstrap values are
significant sequence similarity to F-type CRDs from bacteria,
insects, sea urchin, and Xenopus was identified.

Detailed phylogenetic analysis of the CRD in binary fish F-lectins
(Fig. 3) showed highly conserved sequences in their N-CRDs or
C-CRDs, being the N-CRDs closer to the Anguilla CRD cluster.
Conserved Cys form two disulphide bounds (Cys42-Cys139 and
Cys97-Cys113), whereas an additional bond (Cys74-Cys75) is present
in the A. anguilla F-type lectin. Conserved amino acids involved in
sugar binding (His44, Arg70, Arg77) were present in both N-CRDs
and C-CRDs (Fig. 4).

3.3. SDS-PAGE analysis of the DlFBL purified fractions

Fig. 5 shows a typical fucose–agarose affinity chromatography
purification profile of 20 ml of pooled fractions from Sepharose
chromatography (peak 2, 3–5 mg ml�1 protein; 256–512 HA). The
purified agglutinating fraction (peak 2, 30–32 fractions pooled)
contained 131�44 mg DlFBL ml�1 (n¼ 4) with a 512–1024 HT. The
specific activity (HT� volume/protein content: 11,035 for the DlFBL
pool; 1076 for Sepharose CL6B active fraction; 64 for whole serum)
of the DlFBL pool was 160 to 180-fold higher than that of whole
serum, and SDS-PAGE under reducing conditions revealed a single
34 kDa component (DlFBL, Fig. 6, lane 1). The fractions (6–12) from
peak 1 collected before the column was eluted with L-fucose,
showed no hemagglutinating activity. SDS-PAGE under reducing
conditions of peak 2 from the first Sepharose chromatography step
revealed an intense 34 kDa band and a minor 70 kDa component.
Both protein bands were eluted from the gel. The N-terminal
sequence of the 70 kDa (APAEKVK) protein was 100% identical to
the putative N-terminal sequence of transferrin from the teleost
Acanthopagrus schlegelii.

When the active fractions from the first and second separation
steps were analyzed by SDS-PAGE under non-reducing conditions, the
mobility of the 34 kDa band increased to an equivalent mass of 30 kDa
(Fig. 6, lane 2), suggesting the presence of disulfide bonds in DlFBL.
am was created from neighbour-joining analysis using Clustal_X v1.83. Distances were
percentages from 1000 iterations. Scale bar measures substitutions per site.
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3.4. Immunoblotting of serum and tissue homogenate supernatants

Western blot analysis (Fig. 6) of the isolated fraction showed that
anti-DlFBL antibodies reacted equally well with both the 34 kDa
band (Fig. 6, lane 3) observed under reducing conditions, and the
30 kDa band found under non-reducing conditions (Fig. 6, lane 4).

The 34 kDa DlFBL was identified in protein extract from liver,
intestine, head kidney, spleen, ovary, gill and heart. However,
differences in the band density indicated that the protein was
mainly contained in the liver and intestine, whereas a thin band
was visible in the head kidney, spleen, ovary, gill, and heart prep-
arations (Fig. 7b). The specificity of the anti-DlFBL antiserum was
validated by testing the pre-immune rabbit serum and the anti-
serum absorbed with purified DlFBL. No bands were observed with
either antisera (Fig. 6, lanes 7 and 8, respectively). In addition, no
bands were observed in the control where the primary (anti-DlFBL)
antibody was omitted.

3.5. Immunohistochemical analysis

Anti-DlFBL antibodies identified DlFBL epitopes in liver paren-
chymal cells (Fig. 8a), and intestinal mucocyte globet cells (Fig. 8d
arrows) interposed between the absorbent cells of the intestinal
columnar epithelium. The specificity of the antibody binding was
confirmed by replacing the primary antibody with pre-immune
rabbit serum or omitting the primary antibody (Fig. 8 b, e), and by
treating sections with the absorbed antiserum (Not shown). In
either control no stained cells were observed (Fig. 8 b, e). No
antibody binding was observed in head kidney, spleen, heart, gill
and ovary histological sections.



Fig. 4. Conservation of the functionally relevant amino acid residues of DlFBL within the F-type lectin family. A; Residues that interact with the calcium ion through their side chain
oxygen are highlighted in blue. Half-cysteines are highlighted in red below the alignment indicates disulfide bridge partners. Sugar-binding residues are highlighted in yellow.
Organism abbreviations: Msa, Morone saxatilis (striped bass); AAJ, Anguilla japonica (Japanese eel); Xenpen, Xenopus tropicalis (diploid clawed frog); Alignment was produced with
Clustal_X v.1.81 (39) and illustrated with GeneDoc v.2.6.002 (81). Invariant residues are shaded black; conserved residues, as defined by the Blosum62 similarity matrix, in �80 of
sequences are shaded grey with white lettering; conservatively substituted residues in� 60% of sequences are shaded grey with black lettering. Consensus is indicated on bottom
row by lowercase letters for the most frequent residue and numerals indicating Blosum62 matrix similarity groups (i.e. 6:LIVM). B; Homology modelling and exon-domain
relationship. The N and C-CRD of DlFBL were modelled on to the AAA structure. The homology are shown in red, the differences are highlighted in magenta and indicated by arrows.
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3.6. DlFBL mRNA expression and in situ hybridization

RT-PCR analyses by using a specific primer pair identified the
presence of DlFBL transcripts in several organs and tissues. Both
liver and intestine expressed a 390 bp mRNA (Fig. 7a). A lower level
of the transcript was expressed in the head kidney, spleen, ovary,
whereas it was absent in gills and heart. The 390 bp bands purified
from these organs, revealed a sequence identical to 34 kDa N-
terminal sequence was in accordance with the amino acid sequence
deduced from the DlFBL cDNA (data not shown).

In situ hybridization experiments were limited to liver and
intestine, where the transcript was abundantly expressed (Fig. 9).
The antisense riboprobe was found in the nucleus of liver paren-
chymal cells (Fig. 9a), intestinal columnar ephitelium cells and
mucocyte globet cells in the intestine (Fig. 9c). No signal was
observed when the sense probe was used (Fig. 9b, d).
Fig. 5. Affinity chromatography of D. labrax pooled active fractions from a Sepharose
CL6B on a fucose–agarose column absorbance at 280 nm (,); Hemagglutinating
activity (A).
3.7. Effect of DlFBL on phagocytic activity of peritoneal
macrophages

The phagocytic activity of peritoneal macrophages increased
significantly after bacteria were opsonized with the isolated DlFBL
(16.9� 6.9%; 300 cells were counted in three distinct assays)
(Fig. 10a), while the phagocytic index values were doubled (from
1.8� 0.9 up to 3.5� 2.1 p< 0.005). The opsonic effect of DlFBL was
carbohydrate-specific as shown by opsonization-inhibition exper-
iments. Galactose or glucose added in the phagocytosis mixture
(25 mM final concentration) did not affect the opsonic effect of
DlFBL, whereas the presence of 25 mM fucose reduced the phago-
cytosis activity (7.7�1.8% phagocytes) to levels similar to those for
the non-opsonized bacteria of the control (Fig. 10a).

The opsonizing effect of DlFBL showed a dose-response profile,
with increasing phagocytic activity levels when bacteria were pre-
treated with 5 (p< 0.001) and 10 mg ml�1 (p< 0.01) DlFBL, and
showing a moderate decrease relative to the latter at 25 mg ml�1

(p< 0.001) DlFBL (Fig. 10b). Internalization of the FITC-labelled
bacteria by the peritoneal macrophages could be visualized by
fluorescence microscopy (Fig. 10c, d).

4. Discussion

Lectins play important roles in the immune response of inver-
tebrates and vertebrates either by recognizing exposed glycans of
potential pathogens or by their immunoregulatory roles through
the binding to carbohydrates on the surfaces of immunocompetent
cells [2–4,33,34]. Despite the relatively weak binding affinities of
the CRD for the carbohydrate ligands, high avidity is achieved
through the cooperative binding interactions of the multiple CRDs
displayed that result from (a) the bouquet- or cruciform-shaped
oligomerization of the peptide subunits, (b) the presence of tan-
demly arrayed CRDs along the peptide subunits, or (c) both subunit
oligomerization and tandemly arrayed CRDs, such as in the recently
identified F-type lectin family. This lectin family, that received its



Fig. 6. SDS-PAGE and immunoblot of D. labrax purified lectins. SDS-PAGE analysis of DlFBL (2.5 mg) in the presence (lane 1) or absence (lane 2) of reducing agent (NR)
(2-mercaptoethanol) on a gel of 12.5% T stained with Coomassie Blue R-250. Immunoblotting of D. labrax serum subject to SDS-PAGE under reducing conditions and immunoblotted
with anti-D. labrax F-lectin antibodies. Lane 3, serum in the presence of reducing agent; Lane 4, serum in the absence of reducing agent; lane 5, pre-immune rabbit serum; lane 6,
antiserum absorbed with DlFBL fraction .
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name for the nominal specificity for fucose of the first members
identified, is characterized by the highest multiplicity of tandemly
arrayed CRDs observed in any lectin peptide subunit described so
far [11].

In a previous report [24], we characterized a 34 kDa fucose-
binding lectin from D. labrax serum (DlFBL) isolated through
Sepharose CL6B affinity chromatography. In a subsequent study
[23] we established that DlFBL and SauFBL, a lectin from the gilt
head sea bream (S. aurata) of similar binding properties, were both
members of the F-type lectin family as concluded from N-terminal
amino acid sequence comparison. In the present study we further
purified the 34 kDa lectin by a two-step chromatography procedure
in which the pooled active fractions from a Sepharose CL6B column
were loaded onto a L-fucose–agarose column. The second chro-
matography step enabled the separation of the 34 kDa protein from
a 70 kDa component that co-eluted in the Sepaharose 6B CL sepa-
ration step [24]. In the present paper we show that the 70 kDa
N-terminal sequence is identical to fish transferrin N-terminal
amino acids (1–7 amino acids; Accession number: AY365052.1).

The complete DlFBL cDNA sequence revealed that this lectin,
like the M. saxatilis F-lectins, possesses two tandemly arrayed CRDs.
Odom and Vasta [11] isolated from serum and liver of the striped
bass (M. saxatilis) two fucose-binding lectins of 30 and 32 kDa
(MsaFBP32 and MsaFBP32II), each carrying two tandem CRDs that
exhibit the F-type carbohydrate-recognition motif and the typical
F-type structural fold established for the A. anguilla F-type lectin
[12]. There are relevant biochemical and structural similarities
between DlFBL and the two binary tandem CRD F-type lectins
isolated from striped bass [11].

The DlFBL cDNA sequence consists of an open reading frame
encoding 312 amino acid residues including 18-residue signal
sequence at the N-terminal. The deduced size of 34 kDa for the
mature protein is in agreement with subunit size of the lectin
previously isolated from the serum through Sepharose CL6B column
affinity chromatography [24]. The deduced amino acid sequence
differed at the first position from the previously reported [24].
N-terminal sequence of the isolated 34 kDa lectin. With respect tothat,
a protein sequencing mistake at the first residue could be occurred.

Comparative sequence analysis revealed that DlFBL is a binary
tandem domain F-type lectin with the N- and C-CRDs connected by
Fig. 7. Tissue distribution of D. labrax DlFBL. a) RT-PCR analyses of DlFBL cDNA; b) Immu
immunoblotted with anti-DlFBL antibodies. H.K.¼Head Kidney; Int.¼ intestine.
a nine amino acid peptide linker. BLAST analysis disclosed sequence
homologies with vertebrate F-lectin CRDs. In the phylogenetic tree,
DlFBL is included in a cluster of teleost binary F-type lectins, clearly
distinguishable from those F-lectins with a single CRD or contain-
ing more than two CRDs. Both N-CRD and C-CRD showed highly
conserved sequences characterized by Cys residues located at
sequence positions consistent with the formation of two intrachain
disulphide bonds. The presence of intrachain disulphide bonds was
supported by the different electrophoretic mobilities of DlFBL
under reducing (34 kDa) and non-reducing conditions (30 kDa).
Binary CRD F-type lectins are present in several teleost species, and
are most likely the result of gene duplications that took place
independently in various perciform lineages [11]. In contrast with
the single CRD F-lectins from eels, which may represent the
ancestral state of this lectin family within the rayfinned fish, the
binary homologues may have diversified in the teleosts through
gene duplications and speciation events, such as the four-tandem
CRD F-lectins that are unique to the salmoniformes [11]. Although
no studies were carried out so far concerning the potential oligo-
merization of the DlFBL 34 kDa peptide subunits, the formation of
trimers, such as demonstrated in the A. anguilla F-lectin [12] or as
proposed for the M. saxatilis lectins cannot be ruled out.

To examine the tissue localization of DlFBL, antibodies against
the protein were raised, and their specificity validated by complete
absorption of the antiserum activity with the purified DlFBL.
Western blot analysis of crude serum and tissue extracts (liver,
intestine, head kidney, spleen, ovary, gill, and heart), assayed with
the specific antibodies only identified a 34 kDa band corresponding
to the expected mobility of DlFBL. Differences in band intensities
suggest that the lectin is mainly expressed in liver tissue, and to
a lesser extent in intestine and head kidney, being very scarce in the
gill, heart, spleen and ovary. These results are in accordance with
the RT-PCR experiments, which revealed the highest transcript
levels in liver, followed in decreasing order by intestine, head
kidney, spleen, ovary, and transcripts absent in gill and heart. The
liver appears to be the main site of DlFBL expression, and, consis-
tently with observations on other F-lectins (11,13), it can also be
expressed at lower levels in intestine, head kidney, spleen and
ovary. To identify the liver and intestine cells which express DlFBL,
in situ hybridization and immunohistochemistry analyses were
noblotting of tissues extracts analyzed by SDS-PAGE under reducing conditions and



Fig. 8. Immunohistochemical localization of DlFBL in liver and gut of Dicentrarchus labrax Adjacent sections in the liver and gut were immunostained with DlFBL antibody (b, c, e
and f) and Mallory stain (a and b) as described in Section 2. Immunopositive cells were mainly observed among liver hepatocytes (arrows in c) and in mucocyte globet cells in the
gut sections. No immunoreactivity was observed with DlFBL antibody preabsorbed with DlFBL (b and e). Bars: a–f, 20 mm; c, f spots 10 mm.

Fig. 9. Location of DlFBL mRNA in liver and gut. In situ hybridization with single-strand type DlFBL DIG_riboprobe: (a) liver with antisense DlFBL DIG_riboprobe; (b) control: liver
with sense DlFBL DIG_riboprobe; (c) intestine with antisense DlFBL DIG_riboprobe; (d) control: intestine with sense DlFBL DIG_riboprobe; (a and b): bar 5 mm; (c and d): 10 mm.
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Fig. 10. Specificity and dose-response effect of the opsonic activity of DlFBL. Opsonic effect of DlFBL on sea bass peritoneal cavity leucocyte phagocytosis against E. coli (ATCC 25922)
(a); effect of different doses of DlFBL on phagocytosis (b). Values are given as means� (N. 7 per group). Asterisk (*) denotes significant difference from control (0 mg ml�1) at
p < 0:05. Lec: Bacteria were opsonized with 10 mg ml�1 of DlFBL; bacteria Fuc: the bacteria were treated with 25 mM fucose; F/L: Bacteria were opsonized with 10 mg ml�1 of DlFBL
in the presence of 25 mM fucose. Peritoneal cavity phagocyte (arrows) after FITC stained and opsonized bacteria; c; under light microscope; d under fluorescence microscope. IB:
ingested bacteria; FB: Free bacteria. bar 20 mm.
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carried out. In agreement with the expression of fucose-binding
lectins from A. anguilla [13], M. saxatilis and Oncorhynchus mykiss
F-lectin [11,22], DlFBL transcripts were located in the nucleus of
liver parenchymal cells and intestinal mucocytes of the columnar
epithelium, whereas immunohistochemical analysis revealed that
the DlFBL protein was located in the cytoplasm. Preliminary
immunoblot results (work in progress) indicated that the DlFBL
expression may be enhanced by challenging fish with intraperito-
neal injection of bacteria (Vibrio alginolyticus).

The F-type lectin family received its name from the preferred
binding to L-fucose of most of the members characterized so far
[11,12]. The monosaccharide L-fucose is present as a non-reducing
terminal sugar of a large variety of pro- and eukaryotic glycans [35]. It
has been recently proposed that free L-fucose can be released into the
human intestinal lumen through the hydrolytic activity of members
of the indigenous microbial flora, as well as potential microbial
pathogens, [36]. It is noteworthy that the presence of free L-fucose
upregulated gene expression and secretion of their encoded proteins
that are involved in both the innate and adaptive immune responses
in which an active role of a fucose-binding lectin cannot be excluded
[36]. In this regard, L-fucose-specific opsonizing capacity of DlFBL for
bacteria targeted for phagocytosis by peritoneal macrophages
suggests that this F-lectin may mediate immune defence responses
both in the intestinal mucus and the blood stream.
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