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ABSTRACT 
 

Dams are a major contributor to the decline and current low abundance of Atlantic salmon 
in the United States. We conducted a population viability analysis to assess the effects of dams on 
Atlantic salmon, focusing on hydroelectric dams and the population in the Penobscot River 
watershed in Maine. We simulated the life cycle of Atlantic salmon, tracking the number and origin 
of salmon through their various life stages, especially during the smolt and adult stages when 
salmon directly interact with dams. This modeling approach was previously used to assess 
potential management actions during Federal Energy Regulatory Committee licensing activities at 
5 hydroelectric dams on the Penobscot River in 2012 and to address questions about recovering 
the population. We have updated the model to reflect changes in the watershed and to include 
recent data. We estimated adult abundance and distribution to evaluate the effects of survival at 
dams. In addition to dam-related scenarios, we ran scenarios to look at how hatchery 
supplementation, including changes in the number of smolts stocked and stocking location, and 
increased survival in the egg-to-smolt and marine life stages affected the population. Finally, we 
ran a series of scenarios focused on the Mattaceunk Project, which includes Weldon Dam and is 
being considered for relicensing in 2019. In these scenarios, we estimated adult abundance and 
distribution and smolt survival and mortality. Modeled results projected the number of adults in 
the Penobscot River watershed and the proportion of adults located in the upper areas of the 
watershed to generally increase as survival at dams increased or dams were removed. Abundance 
declined to zero when smolts were not stocked, and survival was low during the egg-to-smolt and 
marine life stages. However, adult abundance increased even without hatchery supplementation 
when survival increased during egg-to-smolt and marine life stages. The number and location of 
adults varied greatly with changes in stocking location and survival during the egg-to-smolt and 
marine life stages. Changes in survival at Weldon Dam did not affect the number and location of 
adults when survival was low during egg-to-smolt and marine life stages and when most smolts 
were stocked low in the watershed. However, adult abundance, including above Weldon Dam, did 
increase with increases in survival at Weldon Dam when survival was higher during the egg-to-
smolt and marine life stages and smolt stocking numbers and locations were altered. The survival 
of smolts above Weldon Dam also increased as dam-related mortality decreased. Our findings 
indicate that Atlantic salmon abundance can increase as survival at dams increases, but hatchery 
supplementation will be necessary to sustain the population when survival is low in egg-to-smolt 
and marine life stages. Increases in survival during both of these life stages will likely be necessary 
to attain a self-sustaining population, especially if hatchery supplementation is reduced or 
discontinued. 

 
1. INTRODUCTION 

 
In North America, Atlantic salmon (Salmo salar) were historically found in rivers from 

northeastern Labrador to the Housatonic River in Connecticut (Kocik and Friedland 2002) and 
supported sustenance, commercial, and recreational fisheries (Day 2006; Goode 2006). However, 
abundance has declined and populations, especially those in the southern range of the species, are 
at or near historical lows (Moring 2005; Saunders et al. 2006). Today the only remaining Atlantic 
salmon populations in the United States are found in Maine. The largest of these populations is 
located in the Penobscot River (Figure 1.1), which on average accounted for 74% of US returns 
from 2007 to 2016 (USASAC 2018). Atlantic salmon in the Penobscot River are part of the Gulf 
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of Maine Distinct Population Segment (GOM DPS) and are listed as endangered under the US 
Endangered Species Act (USOFR 2009b). 

Multiple factors have contributed to the decline, including decreased marine survival, 
predation, habitat degradation, overfishing, bycatch, aquaculture, pollution, climate change, and 
installation of dams (NRC 2004; Moring 2005; Fay et al. 2006; Limburg and Waldman 2009). Of 
these factors, marine survival and dams are considered the 2 biggest threats to Atlantic salmon in 
the GOM DPS (NRC 2004; Fay et al. 2006) and are the primary drivers of abundance (USOFR 
2009b). Mortality in the marine environment cannot be reliably influenced by human intervention 
in the short term (i.e., 1–2 generations), with the exception of limiting marine exploitation, but 
several anthropogenic sources of freshwater mortality can be addressed in the short to medium 
term (NRC 2004). As such, management actions have focused on increasing freshwater survival 
of Atlantic salmon (Windsor et al. 2012), including attempts to limit mortality from dams. 

Dams affect Atlantic salmon through various direct and indirect mechanisms. Dams kill 
and injure fish migrating upstream and downstream (USOFR 2009b). They also prevent or impede 
fish passage and degrade the productive capacity of habitats upstream by inundating formerly free-
flowing rivers, reducing water quality, and altering fish communities (Ruggles 1980; NRC 2004; 
USOFR 2009b; Pess et al. 2014). 

Mortality from dams can be divided into direct and indirect categories as well. Direct 
mortality results from injury during passage through turbines, over fishways, or through fish 
bypasses that leads to death during dam passage or immediately thereafter (Cada 2001; Amaral et 
al. 2012). Indirect mortality can occur because of a wider range of mechanisms and over a longer 
period of time. For example, increased predation risk in modified habitats; increased health risk 
from sublethal injuries; and the additive effects of stress, injury, and delay associated with passing 
1 or more dams can lead to indirect mortality (Cada 2001; Budy et al. 2002; Amaral et al. 2012; 
Stich et al. 2015c). Indirect effects may be realized in freshwater (i.e., indirect cumulative 
mortality) or long after passage (i.e., indirect latent mortality occurring in the estuary or ocean, 
also known as delayed mortality and delayed hydrosystem mortality; Budy et al. 2002; Schaller 
and Petrosky 2007; Haeseker et al. 2012). Direct and indirect mortality are both detrimental to 
salmon productivity (Nieland et al. 2015; Stevens et al. 2019). 

The effects of dams can be mitigated in many ways, but a structured analysis should be 
completed before a management action is chosen. A structured analysis can support the 
development of management goals and actions, prioritize restoration objectives, and give realistic 
and quantitative expectations of outcomes (Palmer et al. 2005; Kemp and O’Hanley 2010; Nunn 
and Cowx 2012). Population models are an example of structured analysis, and these models are 
important tools for evaluating management strategies and risks (Morris and Doak 2002; McGowan 
and Ryan 2009; McGowan and Ryan 2010). Population viability analysis (PVA) is a way to 
quantitatively assess the viability of a species, especially a threatened or endangered species, and 
to explore the effects of management actions on those species (Beissinger and McCullough 2002). 

We developed a PVA called the Dam Impact Analysis (DIA) model to simulate the effects 
of various sources of mortality, especially mortality caused by dams, on the endangered population 
of Atlantic salmon in the Penobscot River watershed. We simulated the interactions of Atlantic 
salmon with Federal Energy Regulatory Commission (FERC)-licensed hydroelectric dams (Figure 
1.1). We used a life-history modeling approach to estimate abundance and distribution of Atlantic 
salmon within the watershed and at different life stages, including the smolt and adult stages when 
salmon interact with dams. 
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The DIA model was first used in FERC licensing activities at 5 hydroelectric dams in the 
Penobscot River in 2012 (NMFS 2012). We have updated inputs from that model version (Nieland 
et al. 2013, 2015) to reflect changes in the watershed and to incorporate recent data. We are now 
using the model for the relicensing of the Mattaceunk Project, which includes Weldon Dam, on 
the Penobscot River in 2019. The objective of this document is to describe the current version of 
the model and present results for model scenarios that included changes in dam survival, hatchery 
supplementation, and survival during marine and early life stages. In several of the scenarios with 
changes in dam survival, we focused on evaluating how changes in survival at Weldon Dam 
affected productivity of the Penobscot River Atlantic salmon population. 

 
2. MODEL OVERVIEW 
 

The Penobscot River watershed includes much of the east central portion of Maine and 
drains approximately 22,000 km2 (Figure 1.1). Many diadromous species, including Atlantic 
salmon, are found in the watershed, but hundreds of barriers (e.g., dams and culverts) block or 
impede the migrations of these species (Trinko Lake et al. 2012). When building the DIA model, 
we only included FERC-licensed hydroelectric dams within Atlantic salmon occupied critical 
habitat (USOFR 2009a). We used those hydroelectric dams to divide the watershed into sections 
called production units (PUs). We estimated Atlantic salmon abundance and distribution as they 
migrated from spawning and rearing habitat, through the PUs and the northwestern Atlantic Ocean, 
and then back. 

We divided the Atlantic salmon life cycle into 5 discrete stages: female spawners, eggs, 
smolts, post-smolts, and female returns (Figure 2.1). We used a simple age distribution for the 
smolt and adult life stages based on known characteristics of this population. Smolts were modeled 
as age-2 fish exclusively because the majority (80%) of naturally reared Maine Atlantic salmon 
emigrate as age-2 fish (relatively small proportions are age-1 and age-3; NRC 2004; USASAC 
2018). Adults were modeled as 2 sea-winter (2SW) females exclusively because more than 98% 
of females return to the Penobscot River after 2 winters at sea (Justin Stevens, Integrated Statistics 
under contract to the National Marine Fisheries Service (NMFS), personal communication) and 
because egg deposition is a primary limiting factor for this population (Chaput et al. 2005; Fay 
2006; USASAC 2018). Kelts (i.e., potential repeat spawners) were not included in the model 
because of limited quantitative information for model inputs and the limited number of kelts in the 
present-day Penobscot population (USASAC 2018). 

One life cycle for Atlantic salmon occurred over 5 years in the model. In year 1, 2SW 
females (both wild-origin and hatchery-origin) were seeded into PUs. The number of females was 
multiplied by the number of eggs produced per female to estimate the number of eggs in that same 
year. Eggs were considered wild fish regardless of parentage because all eggs were spawned in the 
river rather than in a hatchery. The number of eggs was multiplied by the egg-to-smolt survival 
rate to estimate the number of smolts in year 4. The number of wild smolts in each PU was limited 
by the amount of rearing habitat. Therefore, if the number of wild smolts in a PU exceeded the 
amount of habitat available to support them, a smolt production cap was applied, reducing the 
number of wild smolts to the maximum allowed for that PU to ensure that estimates of smolt 
abundance remained biologically reasonable. Hatchery supplementation also occurred at the smolt 
stage. Multiple life stages of Atlantic salmon are stocked in the Penobscot River, but we focused 
on smolt stocking. A smolt production cap was not applied to hatchery smolts because we assumed 
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these smolts began downstream migration soon after being stocked and, therefore, habitat was not 
considered to be a limiting factor (Aprahamian et al. 2003). 

Wild and hatchery smolts migrated from their initial PU through subsequent downstream 
PUs, over dams, and to Verona Island in year 4. Wild and hatchery smolts experienced the same 
natural and dam-related mortality during this migration. Smolts migrating through a PU 
experienced natural mortality first and then dam-related mortality just before exiting the PU and 
entering another. To account for natural mortality, the number of smolts in a PU was multiplied 
by a distance-specific, in-river, survival rate. Then 3 types of dam-related mortality were applied 
to smolts: impoundment, direct, and indirect cumulative mortality. Impoundment mortality 
occurred immediately upstream of a dam, and the number of smolts that survived in-river mortality 
was multiplied by the impoundment survival rate. This mortality was applied at Weldon Dam only. 
Direct and indirect cumulative mortality were accounted for by using dam-specific smolt survival 
estimates. The number of smolts remaining after impoundment mortality was multiplied by these 
smolt survival estimates. Smolts were subjected to in-river and dam-related mortality in their initial 
PU and through subsequent downstream PUs until they reached the southern end of Verona Island. 

During downstream migration, smolts can migrate through 1 of 2 pathways in the lower 
river: the Stillwater branch (to the west of Indian Island) or the mainstem of the Penobscot River 
(to the east of Indian Island). The number of smolts upstream of the Stillwater/mainstem split was 
multiplied by the proportion of smolts that chose the Stillwater path. Those smolts experienced in-
river and dam-related mortality specific to the Stillwater branch. Smolts that did not use the 
Stillwater branch migrated down the mainstem and experienced in-river and dam-related mortality 
specific to that part of the river. Smolts that survived migration through these 2 paths were summed 
at the confluence of the Stillwater branch and mainstem and continued migration to Verona Island. 

The number of smolts that successfully migrated to the southern end of Verona Island was 
considered the number of post-smolts entering the marine environment. Another type of dam-
related mortality, indirect latent mortality, occurred during the post-smolt life stage, which was 
also in year 4. The amount of indirect latent mortality that post-smolts experienced was based on 
the number of dams encountered during downstream migration. Therefore, post-smolts originating 
from different areas of the watershed may have experienced different amounts of indirect latent 
mortality. For post-smolts that originated in each PU, the indirect latent mortality rate was 
multiplied by the number of dams that were passed to reach the marine environment, subtracted 
from 1, and then multiplied by the number of post-smolts that had reached the southern end of 
Verona Island. 

A discount could be applied to hatchery smolts in the post-smolt phase. Although wild and 
hatchery smolts were treated the same during downstream migration, hatchery smolts typically 
experience lower survival than wild smolts. So, a hatchery discount factor was developed to adjust 
the number of hatchery smolts to wild equivalents before they entered the marine environment. 
The number of hatchery smolts would be divided by the hatchery discount to give the wild-
equivalent number of post-smolts. This discount was not used because origin-specific marine 
survival rates were available, and, therefore, the lower survival rate of hatchery smolts was 
accounted for. 

The remaining post-smolts were both male and female, but the number of female post-
smolts was needed to estimate the number of adult female returns. We assumed an equal male-to-
female ratio at the post-smolt life stage. Consequently, the number of post-smolts was halved to 
convert the number to female post-smolts. 
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Female post-smolts entered into the marine environment in year 4 and returned to the 
Penobscot River as 2SW females in year 6. To estimate the number of 2SW female returns, the 
number of female post-smolts was multiplied by the origin-specific marine survival rates, as noted 
above. 

We assumed a 100% homing rate to the Penobscot River, so all surviving 2SW females 
returned to the watershed. Homing within the river to a specific PU, however, is likely less than 
100%. In-river straying of 2SW females was incorporated by assigning a target PU based on 
estimated straying rates. The number of 2SW females from a natal PU was multiplied by the 
proportion estimated to stray to each target PU. This process was repeated for each natal PU. The 
number of 2SW females in a target PU equaled the sum of all 2SW females assigned from all natal 
PUs. Straying rates were not differentiated based on whether the fish were wild-origin or hatchery-
origin. 

As 2SW females attempted to migrate upstream from Verona Island in year 6, most fish 
had to pass at least 1 dam to reach their target PU. Therefore, where appropriate, the number of 
2SW females below a dam was multiplied by the dam-specific upstream passage efficiency rate. 
The 2SW females that passed the dam continued their upstream migration, whereas those that were 
unable to pass the dam died, returned to the ocean without spawning, or strayed and spawned in a 
downstream PU. These 3 outcomes were known as “upstream dam passage inefficiency.” The 
number of 2SW females that did not pass the dam was multiplied by the corresponding proportion 
for each type of upstream dam passage inefficiency. Of the 2SW females that strayed because of 
unsuccessful upstream passage, that number was multiplied by the proportion assigned to stray to 
each downstream PU. In-river morality was not applied during upstream migration because we 
assumed freshwater mortality in free-flowing stretches of river would be low for adult Atlantic 
salmon. 

For 2SW females that successfully migrated past Milford Dam, 150 of those fish, 
regardless of origin, were removed for hatchery broodstock collection. The 2SW females were 
removed from the population proportional to their relative abundance. The 2SW females that did 
not die, return to the ocean, or become part of the hatchery broodstock spawned and produced eggs 
in year 6, which was the first year of the next life cycle. Life cycles continued for a total of 75 
years, or 15 generations. 

Numbers, locations, and origin of fish were tracked at each life stage. The initial number 
of adults used to seed the model in generation 1 was based on estimated adult escapement, and 
adults were assigned to an initial location based on smolt stocking locations and straying rates by 
using a multinomial distribution. Numbers of fish were rounded rather than binomially assigned 
in all subsequent abundance calculations. Rounding the abundance maintained whole numbers of 
fish but minimized computation time. Monte Carlo simulations were used to incorporate stochastic 
variation in the life processes (Goodman 2002). Year-specific and iteration-specific random draws 
were made from model input distributions. The length of 1 iteration was 75 years, and 10,000 
iterations were run for each model scenario unless otherwise noted. The model was built in 
Microsoft® Excel® with the @RISK® add-on. 

We estimated smolt survival and mortality and adult abundance and distribution within the 
watershed and compared these metrics across different modeling scenarios to evaluate changes in 
the productivity of the population. The model was not meant to predict absolute abundance but 
was intended to project relative change in abundance and distribution under different scenarios. 
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3. MODEL INPUTS 
 

Many of the model inputs differ from the model version used in the relicensing of 5 
hydroelectric dams in the Penobscot River in 2012 (NMFS 2012; Nieland et al. 2013, 2015). We 
have updated inputs to reflect changes in the watershed and to include recent data and best 
available information. The following descriptions represent the baseline conditions for each input, 
but the inputs can be adjusted for different model scenarios. 

 

3.1 Production Units 
Using FERC-licensed hydroelectric dams, we divided the watershed into PUs (Figure 1.1). 

In each PU, the upstream boundary was either the headwaters of a tributary or a dam, and the 
downstream boundary was a dam, except at the mouth of the river (PU 14), where the boundary 
was the southern end of Verona Island, or the marine environment (Table 3.1.1). This spatial 
scheme helped isolate the locations where salmon and dams interacted in the model. 

Nieland et al. (2013, 2015) modeled 15 FERC-licensed hydroelectric dams. Through the 
Penobscot River Restoration Project (PRRP; Day 2006), 2 of those dams were removed (Great 
Works Dam in 2012 and Veazie Dam in 2013), and another was decommissioned and a bypass 
was built (Howland Dam in 2016; Figure 1.1). We combined the 2 PUs that were delineated by 
Great Works and Veazie dams with the lowest PU in the watershed because the removal of those 
dams made 1, continuous river segment (PU 14). We did not change the PUs delineated by 
Howland Dam because the dam structure still exists and is assumed to affect downstream 
migration. 

Estimated stream lengths were also important characteristics of the PUs (Table 3.1.1). The 
longest segment length was the longest straight-path distance that a fish could migrate in a PU, 
and the partial segment length was the distance that a smolt would migrate when traversing from 
1 PU to another (e.g., a smolt leaving PU 2 would migrate from Weldon Dam to West Enfield 
Dam in PU 3; Figure 1.1). Therefore, a PU with 1 or more partial segment lengths indicated that 
smolts could enter the PU from multiple locations. Longest and partial segment lengths were 
updated from the last model version to correct minor errors in the distance calculations. We also 
added hatchery segment length, which was the distance that stocked smolts would migrate in the 
PU where they were stocked. The hatchery segment length was estimated by using stocking 
location or the mean of stocking locations. Several PUs had not been stocked previously, and we 
used expert opinion to estimate the likely stocking location in those PUs (Justin Stevens, Integrated 
Statistics under contract to NMFS, personal communication).  

Habitat units were also used to describe each PU (Table 3.1.2). The total number of Atlantic 
salmon habitat units (in 100 m2) in each PU was calculated by using a model that estimated 
spawning and rearing habitat (Wright et al. 2008). The number of accessible habitat units 
demonstrated the amount of habitat that Atlantic salmon could access because of conditions at 
hydroelectric dams. 

Atlantic salmon are unable to access the habitat in several areas of the Penobscot River. 
For example, the West Branch of the Penobscot River (PU 1; Figure 1.1) contains 26.6% of high 
value (and historically accessible) habitat in the watershed (Table 3.1.2; Wright et al. 2008), but 
no salmon are able to access this area of the river because of a lack of adult passage at Medway 
Dam. This dam marks the lower boundary of the West Branch and has no formal upstream or 
downstream passage facilities for Atlantic salmon. Although we included the West Branch in the 
model, this PU did not contribute to the Atlantic salmon population because of the lack of passage 
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at Medway Dam. The West Branch has the potential to contribute significantly to future recovery 
efforts if Atlantic salmon are able to migrate into and out of this area. 

 
3.2 Seeding the Model 

We seeded the model with adults in generation 1. In previous versions of the model, the 
number of seeded 2SW females was based on the number of adults returning to the Penobscot 
River, but some of those returns were removed for use as broodstock and did not spawn in the 
river. Using estimated escapement instead of the number of adult returns would more accurately 
represent the contemporary Penobscot River population by accounting for the number of adults 
removed for broodstock purposes. Therefore, in the current version of the model, we based the 
number of seeded 2SW females on estimated escapement to more accurately reflect reality. 
Previously, all 2SW females were seeded into the model as wild-origin fish. However, in the 
current model version, we seeded both wild- and hatchery-origin 2SW females based on the 
proportions of naturally reared and hatchery-origin 2SW female returns. The seeding locations 
were previously based on the amount of Atlantic salmon habitat available in each PU, but many 
salmon are not able to reach habitat higher in the watershed because of migration barriers, such as 
dams. In the current version of the model, we used smolt stocking locations and adult straying 
rates to estimate where smolts would return as adults and seeded 2SW females into those locations. 

The number of 2SW females seeded in generation 1 was based on Penobscot River 
escapement, but actual escapement into the river is not easily tallied because of the complex 
management of broodstock transported to and from Craig Brook National Fish Hatchery. To 
estimate escapement for the past 10 years, we first estimated the number of 2SW returns by using 
adult return data from the fishway trap above Veazie Dam (2008–2013) and the fish lift at Milford 
Dam (2014–2017; MDMR 2018). The Maine Department of Marine Resources (MDMR) 
estimated sea age by using scale samples collected from a subset of returning adults each year. 
Scales were collected from each fish taken for broodstock and all fish on sample days, which 
encompassed roughly 30% of the days the trap was scheduled for operation each year. (The trap 
at Veazie Dam operated May 1–October 30, and the fish lift at Milford Dam operates April 15–
November 15.) Fish sampled for length but not age in each year were assigned an age by using an 
annual age-length key constructed from fish that were sampled for both length and age. Generally, 
the lengths of 1 sea-winter and 2SW fish overlap very little, so all of the fish in a length class were 
usually assigned to 1 age class. The sex of each fish was assigned at the trap or fish lift based on 
external morphological characteristics. For fish that were taken to the hatchery, sex was confirmed 
based on gametes observed during spawning, and, when necessary, corrections were made to the 
data. However, the number of corrections was not tracked, so we assumed sex determination 
accuracy was consistent for both broodstock and released fish. From these data, we calculated the 
mean of the total number of 2SW female returns from 2008 to 2017 and then subtracted 150, which 
was the target number of 2SW females removed from the Penobscot River each year to support 
the smolt stocking program (Fay et al. 2006). The mean total number of 2SW female returns was 
487, and so we seeded the model with 337 2SW females. 

We also designated the seeded 2SW females as wild-origin or hatchery-origin fish. The 
MDMR assigned origin by inspecting fish for fin clips at the fishway trap or fish lift or by 
analyzing scale samples from the subset of returning adults (MDMR 2018; MDMR fishway trap 
database, 2018 version). Any fish without a fin clip or with natural growth patterns on the scale 
(i.e., multiple freshwater annuli) was assigned as naturally reared, whereas any fish with a fin clip 
or hatchery growth patterns on the scale was assigned as a hatchery-origin fish. Fish that were not 
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subsampled were assigned as naturally reared or hatchery-origin based on the annual proportions 
of each origin as calculated by using the scale samples. We calculated the proportions of naturally 
reared and hatchery-origin 2SW females from 2008 to 2017. The proportions were then multiplied 
by the number of 2SW females seeded in the model to estimate the number of naturally reared and 
hatchery-origin fish in generation 1. These estimates were rounded to maintain whole numbers of 
fish. Of the 337 2SW females seeded in the model, 31 were wild-origin and 306 were hatchery-
origin fish. 

We seeded the 2SW females into PUs based on smolt stocking locations and adult straying 
rates. Because the majority of returning 2SW females from 2008 to 2017 were hatchery-origin 
fish, we used a submodel to track where 1 generation of hatchery smolts would be estimated to 
return as 2SW females and used those locations to seed adults in the model in generation 1. We 
seeded 545,000 smolts only (i.e., no adults) into PUs based on the mean of the number of stocked 
smolts and their stocking locations from 2008 to 2017 (Table 3.2.1; USASAC 2018). We tracked 
the numbers and locations of smolts through the submodel as they migrated downstream to the 
ocean and then back upstream 2 years later as adults. A portion of returning 2SW females strayed 
from the PUs where they were stocked (Table 3.2.2), resulting in adults occupying PUs where they 
were not seeded. We ran 10,000 iterations and used the median number of 2SW females in each 
PU in generation 2 to calculate the proportion of adults in each PU. Adults were randomly assigned 
to PUs according to a multinomial distribution based on the proportion of adults in each PU (Table 
3.1.2). No adults were seeded in PUs 1, 7, 8, and 11 because of the lack of upstream dam passage 
at the downstream boundaries. 
 

3.3 Eggs per Female 
Atlantic salmon spawn at multiple ages, with older females typically producing more eggs 

(Baum 1997). We used fecundity data from Penobscot River female returns to estimate the number 
of eggs that would be produced by a 2SW female. In the model, we applied the fecundity rate to 
2SW female returns in each PU to estimate the number of eggs produced in the same year. 

Each year, Atlantic salmon returning to the Penobscot River are collected for hatchery 
broodstock purposes and spawned at Craig Brook National Fish Hatchery. Fecundity is estimated 
annually, and we used the 1997–2010 estimates to create a distribution for the number of eggs 
produced per 2SW female (Denise Buckley, US Fish and Wildlife Service [USFWS], personal 
communication). The data were primarily (greater than 98%) from 2SW females, but a small 
number of older females were also spawned each year. We fit a distribution to the mean annual 
number of eggs per female by using a combination of characteristics of the data and goodness of 
fit tests in @RISK®. The data were best described by a normal distribution with mean 𝜇𝜇 = 8,304 
and standard deviation 𝜎𝜎 = 821 defined on the interval (4,000, 12,000) (Figure 3.3.1). We did not 
have a minimum or maximum for the distribution in previous model versions, but we felt these 
bounds would help keep the number of eggs produced per 2SW female in a realistic range. Year-
specific and iteration-specific values were drawn from this distribution for the baseline fecundity 
values. 

 
3.4 Egg-to-Smolt Survival 

Atlantic salmon reside in rivers from the time they are eggs until they migrate to the ocean 
as smolts. This period includes the egg, fry, parr, and smolt life stages. We did not simulate Atlantic 
salmon abundance in all of these life stages but instead estimated an egg-to-smolt survival rate. 
We applied this survival rate to the number of eggs in a year to estimate the number of smolts that 
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would survive 3 years later (i.e., age-2 smolts) and be available to initiate downstream migration 
to the ocean. 

We updated the egg-to-smolt survival distribution provided by Legault (2004) with 
contemporary studies (Aprahamian et al. 2004; Millard 2005). Survival rates for egg to fry, fry to 
parr0+, parr0+ to parr1+, and parr1+ to smolt life stages were obtained from the literature and 
combined by using a process that would account for uncertainty in each study (Legault 2004). In 
order to combine the survival rates for a particular life stage, the rates were standardized to the 
same time interval. The standardized mean, minimum, and maximum values were used to generate 
a triangular distribution for each study. The distributions were added together to form a new 
distribution of the probability of survival for that life stage. This probability distribution function 
was converted to a cumulative distribution function, and the 10th and 90th percentiles were used as 
the limits of a uniform distribution. The uniform distribution was used to describe the uncertainty 
in survival for each life stage. 

Combining the survival rates across these life stages produced a possible range of 0.10–
5.88% for the egg-to-smolt survival rate (Table 3.4.1). The egg to fry, fry to parr0+, parr0+ to 
parr1+, and parr1+ to smolt distributions were each sampled 10,000 times, and the life stage 
survival values from each iteration were multiplied together to calculate an egg-to-smolt survival 
rate. The sum of random values from the egg to fry, fry to parr0+, parr0+ to parr1+, and parr1+ to 
smolt distributions was approximately normal by the central limit theorem, and egg-to-smolt 
survival could be expressed as the sum of the natural logs of each survival rate (Hilborn and 
Walters 1992; Legault 2004). Therefore, egg-to-smolt survival approximated a lognormal 
distribution. The distribution was described by 𝜇𝜇 = 1.31% defined on the interval (0.10%, 5.88%) 
with a 90% confidence interval between 0.5 and 2.4%. We previously used these parameters to 
estimate the egg-to-smolt survival distribution. In the current model version, we fit a lognormal 
distribution with these parameters. Egg-to-smolt survival was best described by a lognormal 
distribution with 𝜇𝜇 = 0.0133 and 𝜎𝜎 = 0.0086 defined on the interval (0, 0.23) (Figure 3.4.1). Year-
specific and iteration-specific values were drawn from this distribution for the baseline egg-to-
smolt survival values. 
 

3.5 Smolt Production Cap 
The number of smolts that are able to survive in an area is in large part related to how much 

habitat is available. We limited the number of wild smolts in each PU with a smolt production cap, 
which was the maximum number of smolts allowed per habitat unit (in 100 m2). 
 Meister (1962) estimated that the Penobscot River could produce 3 smolts per 100 m2. 
Previous versions of the model used a smolt production cap of 10 smolts per 100 m2, which may 
be too high. A literature review was conducted to look at the numbers of Atlantic salmon smolts 
produced in various rivers (Table 3.5.1). We did not consider rivers in Europe to be comparable to 
the Penobscot River because of the large geographic expanse between the eastern and western 
Atlantic and differences in freshwater habitat types. Therefore, we removed data from European 
rivers. We also removed data from 3 North American rivers because Atlantic salmon in these rivers 
exhibit different life history traits than Atlantic salmon in Maine. The remaining rivers were 
located in the northeastern United States and Nova Scotia, and a maximum of 4.10 smolts per 100 
m2 were observed (Meister 1962; Orciari et al. 1994; McMenemy 1995; Whalen et al. 2000; 
Bowlby et al. 2013). We increased the smolt production cap to 6 smolts per 100 m2 to allow for 
the possibility that high quality habitat might produce more smolts than the observed maximum 
(Table 3.1.2). This cap was similar to the average maximum production (5 smolts per 100 m2) for 



11 
 

age 2+ smolts estimated by Symons (1979) and prevented biologically unrealistic outputs from 
being produced via stochastic sampling. 

 
3.6 Stocking 

Hatchery-origin fry, parr, and smolts are stocked annually into the Penobscot River. These 
fish supplement wild production and therefore play an important role in the recovery of the Atlantic 
salmon in the Penobscot Bay Salmon Habitat Recovery Unit (SHRU). We included hatchery 
supplementation in the model to convey this importance. We did not include stocking from all 3 
life stages but focused on smolts because approximately 90% of adult returns to the Penobscot 
River originated from smolt stocking (USASAC 2018). 

We simulated stocking 545,000 smolts annually to mimic the mean number and 
distribution of smolts stocked in the Penobscot River watershed from 2008 to 2017 (Table 3.2.1; 
USASAC 2018). Stocking location and the distance stocked smolts would have to migrate 
downstream through each PU were estimated based on the historical stocking sites and expert 
opinion (Table 3.1.1; Justin Stevens, Integrated Statistics under contract to NMFS, personal 
communication). We used expert opinion to estimate the stocking location in PUs that had not 
been stocked previously because we wanted to have the ability to run model scenarios with 
stocking in any PU. The smolt stocking number, distribution, and migration distances were all 
updated from previous model versions (Nieland et al. 2013, 2015). Hatchery smolts migrated with 
their wild conspecifics. The smolt production cap was not applied to hatchery smolts because we 
assumed these smolts began their downstream migration soon after being stocked, and so habitat 
was not considered to be a limiting factor. 

Smolt stocking could be turned on or off on an annual basis in the model. When smolt 
stocking was turned on, 545,000 smolts were stocked and 2SW females were removed for use as 
broodstock (Section 3.17). Smolts were stocked annually regardless of the number of 2SW females 
removed for broodstock because we assumed shortages in broodstock would be covered by backup 
sources. When smolt stocking was turned off, no smolts were stocked and no 2SW females were 
collected for use as broodstock. 

 
3.7 In-river Mortality 

Smolts experience natural mortality as they migrate downstream. In the model, we referred 
to this type of mortality as in-river mortality and applied it based on the distance that a smolt 
migrated. In-river mortality occurred in free-flowing stretches of the river, and therefore, dam-
related mortality during downstream migration was separate. In-river mortality can be an important 
source of mortality for smolts, especially those migrating long distances (Stevens et al. 2019). 

We developed an in-river mortality distribution from telemetry data collected in undammed 
sections of the Penobscot River from 2005 to 2006 and 2009 to 2010 (Stich et al. 2015a). We 
reexamined the methods that we used to develop the distribution (Nieland et al. 2013, 2015) 
because a recent estimate of the mean in-river mortality in the Penobscot River (0.005 per km; 
Stich et al. 2015a) was an order of magnitude greater than the mean of the in-river mortality 
distribution that we used previously (0.000203 per km; Nieland et al. 2015). 

Wild-origin and hatchery-origin smolts were tagged and released at various locations 
throughout the Penobscot River watershed (Holbrook et al. 2011). Mortality estimates between 
successive telemetry receivers/arrays for each year-specific and origin-specific release group were 
standardized to compare mortality among river segments of different lengths. While reviewing our 
methods, we discovered that mortality per km was calculated differently for the 2005–2006 data 
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than for the 2009–2010 data. This error was corrected, and the mean mortality rate per km for both 
data sets was estimated as the survival in a segment to the power of the inverse length subtracted 
from 1. Only fish that survived to the first receiver/array were included to eliminate potential bias 
associated with tagging-related mortality. Mortality estimates from successive telemetry 
receiver/array pairs that spanned a hydroelectric facility were excluded because dam-related 
mortality was estimated separately. Sixty-four estimates of mortality per km were available, but 
11 were removed from the analysis because of concerns that they were biased by effects from 
tagging-release, small river segment length (< 1 km), or 2 dams flanking the river segment. The 
remaining mortality-per-km estimates ranged from 0 to 0.0293 per km, and the data were used to 
create a cumulative frequency distribution with 𝜇𝜇 = 0.00329 and 𝜎𝜎 = 0.00459 defined on the 
interval (0, 0.02928) (Figures 3.7.1 and 3.7.2). The 2 largest mortality-per-km values were 
unintentionally excluded from the previous cumulative frequency distribution (Nieland et al. 2013, 
2015) but were included in this version. An in-river mortality-per-km value was randomly drawn 
from this distribution for each PU, year, and iteration. 

The mean of our new distribution is comparable to that of Stich et al. (2015a). Our mean 
is likely different because we used telemetry data from 2005 to 2006 and 2009 to 2010, whereas 
Stich et al. (2015a) used telemetry data from 2005 to 2006, 2009 to 2010, and 2011 to 2014. We 
also excluded 11 mortality-per-km estimates from river segments that we considered biased, but 
Stich et al. (2015a) included estimates from all free-flowing segments. 

We used our in-river mortality-per-km distribution to estimate the number of wild and 
hatchery smolts that survived downstream migration through each PU. The starting location of 
wild smolts in their natal PUs was unknown. Therefore, we assumed these fish migrated half of 
the longest straight-path distance in each PU (Table 3.1.1). The number of wild smolts that 
survived migration through their natal PU equaled in-river mortality per km to the power of half 
of the longest straight-path distance subtracted from 1. Historical stocking data and expert opinion 
were used to estimate the starting location of stocked smolts (Table 3.1.1; Justin Stevens, 
Integrated Statistics under contract to NMFS, personal communication). The number of stocked 
smolts that survived migration through their initial PU equaled in-river mortality per km to the 
power of stocking distance subtracted from 1.  

In subsequent PUs, we assumed smolts swam directly from dam to dam (or from the dam 
to Verona Island in the case of PU 14) when traversing from 1 PU to the next (Table 3.1.1). 
Survival of smolts through these PUs equaled in-river mortality per km to the power of the distance 
subtracted from 1. 
 

3.8 Impoundment Mortality 
Before smolts attempt to pass a dam, they must migrate through the impoundment. The 

impoundment is the area immediately upstream of a dam and typically has more lacustrine than 
riverine habitat because of the water that is being stored by the dam. Impoundments can be areas 
of high mortality for smolts, mainly because of increased mortality from fish and bird predators 
(Jepsen et al. 1998; Okland et al. 2016). We added impoundment mortality in this model version, 
and smolts would be subjected to this mortality after in-river mortality but before dam-related 
mortality. At this time, we have only included impoundment mortality at Weldon Dam in the 
model. 

We used estimates of survival per km through the Weldon impoundment (Stich et al. 
2015a, online supplementary material, Table S3; 
https://www.nrcresearchpress.com/doi/suppl/10.1139/cjfas-2014-0573/suppl_file/cjfas-2014-
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0573suppl.docx) and the mean in-river survival-per-km estimate (0.995 per km; Stich et al. 
2015a) to estimate mortality through the impoundment. We used these survival estimates to 
compare survival through the Weldon impoundment to survival through a free-flowing stretch of 
the river of the same length. The Weldon impoundment was composed of 3 river segments 
delineated by the location of the acoustic telemetry receivers. Survival over the 3 segments was 
estimated as the product of each segment-specific survival rate per km to the power of the 
associated segment-specific length. The in-river survival estimate was the mean in-river survival-
per-km estimate to the power of the summed length of the 3 Weldon impoundment segments. 
We calculated the mean annual differences between Weldon impoundment and in-river survival 
from 2012 to 2014 and found survival through the Weldon impoundment was 0.072 less than 
survival through a free-flowing segment of the same length. Therefore, we set Weldon 
impoundment mortality at 0.072. We estimated the number of smolts that survived through the 
Weldon impoundment as the product of the number of smolts in PU 2 after in-river mortality and 
the impoundment mortality subtracted from 1. 

 
3.9 Downstream Dam Survival Rates 

Hydroelectric dams affect Atlantic salmon through various mechanisms with a wide range 
of effects. They reduce habitat productivity by inundating formerly free-flowing rivers, reducing 
water quality, and altering fish communities; prevent and impede fish passage; and injure and kill 
fish (Ruggles 1980; NRC 2004; USOFR 2009b; Pess et al. 2014). 

Mortality from dams can be divided into 2 categories: direct and indirect. Direct mortality 
results from injury during passage through turbines, over fishways, or through fish bypasses that 
leads to death during dam passage or immediately thereafter (Cada 2001; Amaral et al. 2012). 
Indirect mortality occurs through several mechanisms, such as increased predation risk in modified 
habitats and increased health risk from sublethal injuries (Cada 2001; Amaral et al. 2012). We 
classify these indirect effects as indirect cumulative mortality, and they occur in freshwater. 
Another type of indirect mortality (i.e., indirect latent mortality) exists but occurs in the estuary or 
ocean (Section 3.10). 

 
3.9.1 Desktop Survival Analysis and Downstream Flow Correlation 

Because of the range of effects and multiple types of mortality that hydroelectric dams can 
have on Atlantic salmon, we wanted site-specific estimates of smolt survival for the dams included 
in the model. To account for direct and indirect cumulative mortality, smolt survival rates for May 
were estimated based on river flow and how operations at the dams were predicted to change with 
flow (Figure 3.9.1.1; Amaral et al. 2012; Nieland et al. 2013). Data from each dam (e.g., turbine 
type, revolutions per minute, head, and presence of fishways), fish characteristics, and 
hydrological records were used to estimate the smolt survival rates. Survival was estimated for 
May because the majority of smolt migration occurs in that month. Smolt survival rates at low 
flow were a function of dam configuration and operation (e.g., whether fish passed over spillways, 
through bypasses, or through turbines and when individual turbines came online; Amaral et al. 
2012) and, therefore, did not always increase with flow (Figure 3.9.1.1). 

Generally, survival of smolts migrating past hydroelectric dams is positively correlated 
with river flow. Flow within the Penobscot River watershed is highly correlated among sections 
of the watershed as well (correlation coefficient 𝜇𝜇 = 0.901 for mean April–June flow rates in the 
Penobscot River watershed from 1935 to 2009; Nieland et al. 2013; 
http://waterdata.usgs.gov/nwis). For example, if 1 dam on the Penobscot River is experiencing 



14 
 

high flows, and consequentially high smolt survival, all dams are likely experiencing similar high 
flows and high smolt survival. To mimic the correlation of flow within the Penobscot watershed 
and determine subsequent smolt survival, we selected independent year-specific and dam-specific 
uniform random variables defined on the interval (-0.1695, 0.1695) (Nieland et al. 2013). Then we 
added a year-specific uniform random variable common to all dams defined on the interval (0, 1) 
to each year-specific and dam-specific random variable to determine the cumulative flow 
probabilities and approximate the same level of correlation as the Penobscot River flow time-series 
data. We used the same cumulative flow probability for dams located less than 15 km apart because 
no difference in flow is expected given the short distance between these dams. The cumulative 
flow probabilities were used to find the corresponding smolt survival rates for each dam, year, and 
iteration (Figure 3.9.1.1). 

We did not follow the process above for smolt survival at several dams but instead set 
survival at a specific value for all years and iterations. We set smolt survival at Medway Dam at 
zero because this dam lacks downstream passage. At Upper Dover Dam, no turbine entrainment 
occurs and no downstream bypass is available, so baseline smolt survival was set at 0.9215 (i.e., 
the product of 0.97 spillway survival and 0.95 indirect cumulative survival). In contrast to previous 
model versions, we set baseline smolt survival at Great Works, Veazie, Howland, West Enfield, 
Milford, Stillwater, and Orono dams to reflect conditions after the PRRP and a species protection 
plan (SPP) were put in place. Through the PRRP, Great Works and Veazie Dam were removed. 
We “removed” these dams in the model by setting their downstream survival rates as 1 in all model 
scenarios. Howland Dam was also decommissioned as part of the PRRP, and a nature-like bypass 
was built around the dam. We did not “remove” Howland Dam from the model because the dam 
structure still exists, and we assumed the structure could affect downstream migration. However, 
because of fish passage improvements at Howland Dam, recent smolt survival was estimated as 1 
(Joseph Zydlewski, US Geological Survey (USGS)/University of Maine, personal 
communication). Although the bypass seems to be passing fish effectively, the survival estimate 
was based on 1 year of data (2016), and natural mortality that occurs in the bypass has not been 
accounted for. However, given the short distance in the bypass, any mortality is likely negligible, 
and we consider our results to be robust. Therefore, we set the baseline smolt survival for this dam 
at 1. Future studies will further inform the estimate of downstream survival at Howland Dam. In 
2012, a SPP was put in place for Atlantic salmon during the FERC-relicensing process for 5 dams 
on the Penobscot River (NMFS 2012). The SPP called for 0.96 smolt survival at West Enfield, 
Milford, Stillwater, and Orono dams, and NMFS expected this rate to be achieved at each dam 
(NMFS 2012). Multiple downstream passage studies conducted at each dam suggested most dams 
achieved this survival goal under an intentional spill program (Brookfield 2017). Therefore, we 
set baseline smolt survival at 0.96 for these 4 dams. 

Whether the smolt survival rate was drawn from a distribution or was a constant rate, we 
estimated smolt survival the same way. The number of smolts immediately before a dam (i.e., the 
number after in-river mortality or Weldon impoundment mortality) was multiplied by the smolt 
survival rate to estimate the number of smolts that survived migration passed the dam. 

 
3.9.2  Downstream Path Choice 

One of the features of the Penobscot River is a 17-km long side channel located in the 
lower river, called the Stillwater branch (Figure 1.1). Smolts that originated upriver of the 
Stillwater branch can migrate downstream via this branch or the mainstem of the river and likely 
experience different survival through the 2 routes because of local environs and differences in the 
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number, configuration, and operation of hydroelectric dams. Therefore, the proportion of smolts 
that use the Stillwater branch was estimated from telemetry studies in the Penobscot River from 
2005 to 2006 and 2009 to 2010 (Stich et al. 2014). Stich et al. (2014) contains additional years of 
data. However, we did not change this input from the previous model version. A triangular 
distribution defined on the interval (0.044, 0.259) with the most likely value = 0.259 was fit to the 
data (Figure 3.9.2.1). Stillwater branch use is also positively related to river flow (Holbrook 2007; 
Holbrook et al. 2011). Because of this relationship, we correlated Stillwater branch use with river 
flow in the same manner as the smolt survival estimates. The cumulative flow probabilities were 
used to find the corresponding Stillwater use rate for each year and iteration. The number of smolts 
migrating through the Stillwater branch was the product of the Stillwater use rate and the number 
of smolts in PU 9 that would migrate downstream. The remaining smolts migrated through the 
mainstem. 
 

3.10 Indirect Latent Mortality 
As smolts complete the freshwater portion of their migration and begin their marine 

migration, they transition to the post-smolt stage. We considered the estimated number of smolts 
that successfully migrated through PU 14 to be the number of post-smolts entering the marine 
environment. 

Post-smolts are affected by an additional type of indirect mortality: indirect latent 
mortality. This mortality, also known as delayed mortality and delayed hydrosystem mortality, 
occurs in the early marine phase of Atlantic salmon life history and is due to the effects of stress 
and injury associated with passing 1 or more dams (Budy et al. 2002; Schaller and Petrosky 2007; 
Haeseker et al. 2012). These effects may extend beyond the estuary, but at this time, we do not 
have data to inform this theory. 

We updated our indirect latent mortality rate to 0.06 per dam passed to align with a recent 
Penobscot River-specific estimate (Stich et al. 2015c). The indirect latent mortality rate was 
applied based on the number of dams that fish passed. The product of the indirect latent mortality 
rate and the number of dams passed was subtracted from 1. The resulting survival rate was 
multiplied by the number of post-smolts that had passed that number of dams. This process was 
repeated for the different number of dams that fish passed to estimate the number of post-smolts 
that survived indirect latent mortality. 

 
3.11 Hatchery Discount 

Wild-origin and hatchery-origin smolts experience the same types of mortality, but 
hatchery-origin smolts typically experience lower survival. Because of this difference in survival, 
we developed a discount factor to adjust the number of hatchery-origin smolts to wild equivalents 
before they entered the ocean. Survival rates from the smolt to adult life stage were estimated to 
be 1.18–8.20 times greater for wild fish than for hatchery fish (Jonsson et al. 1991, 2003; Crozier 
and Kennedy 1993; Jonsson and Fleming 1993; Jutila et al. 2003; Kallio-Nyberg et al. 2004, 2011; 
Saloniemi et al. 2004; Jokikokko et al. 2006; Peyronnet et al. 2008). We fit estimates from these 
studies to a log-logistic distribution, with 𝛾𝛾 = 1, 𝛽𝛽 = 1.4271, 𝛼𝛼 = 1.9922, and maximum = 12 
(Figure 3.11.1). The mean from this distribution was 3.25, which suggested that approximately 3 
hatchery-origin fish were equivalent to 1 wild-origin fish. The proportion of hatchery-origin post-
smolts at Verona Island (after the indirect latent mortality rate was applied) was divided by the 
year-specific and iteration-specific hatchery discount to estimate the number of wild-equivalent 
post-smolts. 
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Hatchery-origin fish also likely have a lower marine survival rate than wild-origin fish, and 
so we fit separate marine survival distributions for fish from the 2 origins. The distribution for 
hatchery-origin fish was developed by using smolt data from the Penobscot River because the 
majority of those smolts were hatchery-origin fish. So, the marine survival distribution for hatchery 
fish included their lower survival rate, and these fish would be penalized twice if we used both the 
hatchery discount and the marine survival distribution for hatchery-origin fish. Therefore, as in the 
previous model version, the hatchery discount was set to 1 (i.e., no hatchery discount) for all model 
runs. 
 

3.12 Sex-ratio Discount 
Female post-smolts were needed to estimate the number of adult female returns. To convert 

the total number of post-smolts to females only, we halved the remaining number of post-smolts, 
assuming an equal male-to female ratio in this life stage. We did not have new data to update this 
model input, and so the sex ratio was not changed from the previous model version. 
 

3.13 Marine Survival 
US Atlantic salmon spend their marine phase in the Labrador Sea, and 2SW fish are 

assumed to migrate to the coast of Greenland to feed during their second summer at sea before 
returning to natal rivers to spawn (Renkawitz et al. 2015). We applied a marine survival rate to the 
number of female post-smolts to estimate the number of 2SW female returns that would 
successfully migrate to Greenland and back to the Penobscot River 2 years later. We previously 
used 1 marine survival distribution for all fish. However, we estimated different marine survival 
distributions for hatchery-origin and wild-origin fish in this model version because they likely 
survive at different rates. The 2SW females that survive the marine phase then initiate upstream 
migration to natal spawning grounds. 
 
3.13.1 Hatchery Marine Survival 

Marine survival for hatchery-origin fish was estimated by using data from the Penobscot 
River. Penobscot River adult return rates are available for hatchery smolts from 1969 to the present 
and can be used as a proxy for marine survival. However, these return rates include in-river and 
dam-related mortalities, which we already accounted for in the model. We built a submodel to 
remove in-river and dam-related mortalities to estimate a more accurate marine survival 
distribution. 

In the submodel, we first estimated the number of smolts at the mouth of the Penobscot 
River. We multiplied the total annual number of smolts stocked (USASAC 2018) by the proportion 
of smolts that survived to the river mouth to adjust for in-river and dam-related mortalities. Smolt 
survival to the river mouth was estimated by using smolt survival data from telemetry studies in 
the Penobscot River from 2005 to 2006 and 2009–2010 (Stich et al. 2015a, 2015c). Stich et al. 
(2015a, 2015c) contain additional years of data from those that we used. We fit the survival 
estimates to a beta distribution with 𝜇𝜇 = 0.6921 and 𝜎𝜎 = 0.1738 defined on the interval (0, 1). Year-
specific values were sampled from this distribution to estimate the number of smolts that would 
survive from stocking to the Penobscot River mouth. 

We then calculated year-specific marine survival rates for 2SW adults by dividing the 
estimated annual number of 2SW returns (MDMR fishway trap database, 2018 version) by the 
estimated number of stocked smolts at the mouth of the Penobscot River. We used estimates of 
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the total numbers of adults and smolts rather than estimates for females only because we assumed 
2SW return rates would not differ between sexes. We ran 10,000 iterations, where the number of 
smolts that would survive from stocking to the river mouth was a stochastic process (as described 
above). We capped the maximum marine survival rate at 25% and fit a lognormal distribution to 
the 1991–2017 marine survival estimates. Because of the abrupt decline in marine survival in the 
early 1990s (Chaput et al. 2005) and continued low adult return rates, we considered marine 
survival estimates from this recent time-series to be a better representation of future marine 
survival rates than estimates from the whole time-series. The lognormal distribution was defined 
on the interval (0, 0.25) with 𝜇𝜇 = 0.0021 and 𝜎𝜎 = 0.0015 (Figure 3.13.1.1). Year-specific and 
iteration-specific values were sampled from this distribution for the marine survival rate for 
hatchery-origin fish.  
 
3.13.2 Wild Marine Survival 

Marine survival for wild-origin fish was estimated by using data from the Narraguagus 
River, a small coastal Gulf of Maine river located approximately 105 km northeast of Penobscot 
Bay. Narraguagus River adult return rates are available from 1997 to the present (USASAC 2018), 
and these rates were once again used as a surrogate for marine survival. Although the Narraguagus 
River is stocked, data from smolt monitoring and the adult trap can be used to estimate the return 
rate of naturally reared adults, which we used as a proxy for wild adults. The number of smolts 
was estimated near the mouth of the river, and so adult return rates did not include in-river 
mortality. No FERC-licensed hydroelectric dams are located on the Narraguagus River, and 
therefore, we assumed dam-related mortality was minimal. 

We fit a lognormal distribution to the 1999–2014 marine survival estimates for 2SW adults. 
We capped the maximum marine survival rate at 25%. The lognormal distribution was defined on 
the interval (0, 0.25) with 𝜇𝜇 = 0.0080 and 𝜎𝜎 = 0.0057 (Figure 3.13.1.1). Year-specific and iteration-
specific values were sampled from this distribution for the marine survival rate for wild-origin 
fish. 
 
3.14 Straying 

Maine Atlantic salmon return to their natal river to spawn with high fidelity (98–99%; 
Baum 1997), and so we assumed 100% of the surviving 2SW females homed to the Penobscot 
River. Less is known about within-river migration, but this behavior could be driven by many 
factors, including habitat (Kocik and Ferreri 1998), the presence of conspecifics, and 
environmental cues (Fleming 1996). Still, homing to a specific river reach is likely less than 100%. 
Field studies conducted within the Penobscot River watershed (Power and McCleave 1980; 
Shepard 1995; Gorsky 2005; Gorsky et al. 2009; Holbrook et al. 2009; MDMR fishway trap 
database, 2011 version), recommendations by a panel of experts (NMFS 2012), and local 
knowledge (Justin Stevens, Integrated Statistics under contract to NMFS, personal 
communication) were used to develop a set of rules about homing and straying within the 
Penobscot River watershed. 
 

• Homing rates to headwater areas (i.e., PUs 1–8, 13, and 15) would be 90%. 
• Homing rates to the mainstem (i.e., PUs 9, 11, and 14) would be 70%. 
• Of the proportion of fish that strayed, 90% would go upstream and 10% would go 

downstream. 
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• Upstream straying would be assigned equally to adjacent PUs. 
• Downstream straying would be assigned to the downstream PU. 

 
We made several exceptions to the rules based on unique attributes of PUs.  
 

• PUs 1 and 2 are in the upper drainage, and straying fish would likely stop in multiple lower 
PUs (i.e., all straying fish were not confined to straying into the immediate downstream 
PU). 

• Some fish from PUs 4, 5, and 6 would likely stray into PUs 7 and 8 (i.e., lateral straying). 
• Similar to PUs 1 and 2, straying fish from PUs 7 and 8 would likely stop in multiple lower 

PUs (i.e., all straying fish were not confined to straying into the immediate downstream 
PU). 

• PUs 9 and 11 contain lower quality spawning habitat compared to adjacent PUs. Therefore, 
a higher rate of straying into adjacent PUs containing higher quality spawning habitat was 
assumed (i.e., lateral straying). 

• PU 13 is a self-contained drainage in the lower river, and all straying was assumed to be 
upstream because of a lack of suitable habitat downstream. 

• PU 14 is mostly mainstem habitat with only a small amount of suitable habitat in 
tributaries. All straying was assumed to be upstream because of a lack of suitable habitat 
downstream. 

• PU 15 is a self-contained drainage in the lower river. Straying was assumed to be primarily 
downstream, with a small amount of straying upstream. 

 
These rules were developed into homing and straying rates for each PU, and 2SW females 

were assigned to a PU based on these rates (Table 3.2.2). 
Straying rates for PU 14 needed to be updated from the previous model version because 

this PU now encompasses the area from Milford Dam to the southern end of Verona Island. 
Straying rates from other PUs to PU 14 were calculated as the sum of straying rates from Milford 
Dam to the southern end of Verona Island (Table 3.2.2). Straying rates from PU 14 to all other 
PUs were calculated as the habitat area weighted mean straying rates among the river reaches 
between Milford Dam to the old site of Great Works Dam, the old site of Great Works Dam to the 
old site of Veazie Dam, and the old site of Veazie Dam to the southern end of Verona Island. These 
weighted means were normalized to sum to 1 among all PUs (other than 14). The normalized 
weighted means were multiplied by 0.3, which was the proportion of 2SW females that strayed 
from PU 14. 
 

3.15 Upstream Dam Passage Rates 
3.15.1 Upstream Passage Efficiency 

During their upstream migration, most returning adults must pass at least 1 dam to access 
spawning grounds. We generated upstream passage efficiency estimates for each dam. Great 
Works and Veazie dams were removed as part of the PRRP, and so the inputs at these dams were 
updated from the previous model version. We set the upstream passage rate at both dams to 1 for 
all model scenarios to simulate removal of the dams. We set baseline upstream passage to zero at 
Medway, Milo, Sebec, and Orono because these dams do not have any upstream passage facilities, 
meaning adults were not able to migrate into PUs 1, 7, 8, or 11, respectively. Subsequently, no 
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smolts originated in these PUs, and no 2SW females would home to them. However, adults were 
allowed to attempt to stray to these PUs, although their attempts would be unsuccessful because 
of the lack of passage at the facilities at the lower boundary of the PU. These adults would then 
die, return to the ocean without spawning, or stray and spawn in a downstream PU (Section 3.16). 
Upstream passage efficiency rates were also updated for Howland, West Enfield, Milford, and 
Weldon dams. The baseline upstream passage at Howland Dam was set to 0.95, which is the best 
available estimate based on telemetry studies at this dam and its bypass (also part of the PRRP; 
Joseph Zydlewski, USGS/University of Maine, personal communication). The estimate of 0.95 is 
an uncertain value as it was based on a relatively small sample size from 1 year of data (2016). 
Revising this estimate of upstream passage at Howland Dam is a topic of continued research. The 
SPP called for upstream passage rates of 0.95 at West Enfield and Milford dams. Telemetry studies 
conducted at these 2 dams suggested that both were achieving the upstream passage efficiency 
goal of 0.95, although the majority of adults at Milford Dam took longer than the passage standard 
of 48 hours (Brookfield 2017). However, we still set baseline upstream passage at 0.95 for both 
dams because we assumed action would be taken in the near future to reduce adult delay at Milford. 
Upstream passage was studied at Weldon Dam in the 1980s, and the passage rate was estimated 
as 0.90 (NMFS 2013). Therefore, we set the baseline upstream passage at Weldon Dam to 0.90. 
Dam-specific upstream passage estimates were not available for the 5 remaining dams (i.e., Upper 
Dover, Browns Mill, Lowell Tannery, Stillwater, and Frankfort), so we adopted generalized 
estimates used in previous modeling efforts (USFWS 1988). We developed a uniform distribution 
defined on the interval (0.8875, 0.9525) and sampled year-specific and iteration-specific values 
from the distribution for each of the 5 remaining dams. 

Only dam-related mortality was applied to migrating adults because we assumed 
freshwater mortality in free-flowing stretches of river to be low. Therefore, no in-river mortality 
was applied to adults. 
 
3.15.2 Upstream Path Choice 

The Stillwater branch and mainstem of the Penobscot River also offer 2 different routes for 
adults to migrate upstream. However, Orono Dam, which is the downstream endpoint of PU 11 
and the Stillwater branch, has no upstream fish passage facilities. Therefore, all adults that 
attempted to migrate upstream of the confluence of the Stillwater branch and the mainstem were 
forced to migrate through the mainstem. We set upstream path choice for the mainstem to 1 for all 
model scenarios, which was the same as in previous model versions. 
 

3.16 Upstream Dam Passage Inefficiency 
Upstream fishways rarely pass 100% of migratory fish, including Atlantic salmon. Very 

few data are available concerning the fate of adult Atlantic salmon that are unsuccessful in locating 
or negotiating upstream fishways at dams. In the model, we assumed that adults that were unable 
to pass a dam would die, return to the ocean without spawning, or stray and spawn in a downstream 
PU (Table 3.16.1). These probabilities were determined by an expert panel (NMFS 2012) and were 
updated to incorporate changes in the configurations of dams and PUs. The number of 2SW 
females that did not pass a dam was multiplied by the probability for these 3 outcomes. Adults that 
died or returned to the ocean without spawning were removed from the population. For adults that 
strayed and spawned in a downstream PU, the number of strays was multiplied by the probability 
for each destination PU, and the fish were redistributed to the appropriate PUs. 
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3.17 Broodstock Collection 
Returning adults are collected from the fish lift at Milford Dam for potential use as 

broodstock. To simulate the annual collection of broodstock, we removed 150 2SW females from 
the system. This number reflects the minimum amount of adults needed to meet smolt production 
goals (Fay et al. 2006). In previous model versions, broodstock were collected after they passed 
Veazie Dam. However, because of the removal of Veazie Dam, we updated the collection location 
to occur after broodstock passed Milford Dam. Adult returns to PUs 13 and 14 were unaffected 
because those 2 PUs are below Milford Dam. The number of fish removed from other PUs was 
based on the relative fraction of fish available in each PU. We only removed 2SW females in years 
when stocking was turned on. If 150 or fewer 2SW females were present above Milford Dam, all 
of the fish were removed for use as broodstock. A total of 545,000 smolts were stocked annually 
regardless of the number of 2SW females removed for broodstock because we assumed shortages 
in broodstock would be covered through backup sources. If stocking was turned off, no smolts 
were stocked, no 2SW females were collected for broodstock, and all 2SW females that 
successfully migrated above Milford Dam proceeded upriver. 
 

3.18 Model Scenarios 
3.18.1 Base Model Runs 

We ran 4 model scenarios to evaluate the effects of dams and hatchery supplementation on 
the population of Atlantic salmon. Model inputs related to survival at dams (i.e., impoundment 
mortality at Weldon Dam only, downstream dam survival rates, and upstream dam passage rates) 
and hatchery supplementation (i.e., stocking and broodstock collection) were varied in these 
scenarios (Table 3.18.1.1), but all other inputs were set to baseline conditions. In the first scenario 
(Dams On Hatch On), all inputs were set to baseline conditions, including survival at dams and 
hatchery supplementation. Baseline downstream dam survival rates and upstream dam passage 
rates mirrored the Existing scenario conditions in Table 3.18.1.2. In the second scenario (Dams 
On Hatch Off), dam survival rates were also set to baseline conditions, but no smolts were stocked 
and no adult females were removed for use as broodstock. The third scenario (No Dams Hatch On) 
simulated removing all dams in the watershed, except Medway Dam, where survival rates were 
set at zero. Downstream and upstream dam survival rates were set at 1 at all other dams, and 
impoundment mortality was set at zero at Weldon Dam. Hatchery supplementation was set to 
baseline conditions. In the fourth scenario (No Dams Hatch Off), impoundment mortality was set 
at zero at Weldon Dam, downstream and upstream dam survival rates were set at 1 at all dams 
except Medway Dam, no smolts were stocked, and no adult females were removed for use as 
broodstock. These scenarios were run for 75 years, or 15 generations. 
 
3.18.2 Whole System Model Runs 

We ran model scenarios to explore the effects of changes in survival at dams and stocking, 
including stocking location, across the whole Penobscot River watershed. We were also interested 
in comparing the effects of baseline verses increased egg-to-smolt and marine survival rates, so 
we ran scenarios that combined changes in egg-to-smolt survival, marine survival, dam survival, 
and stocking. 
  



21 
 

3.18.2.1 Whole System Dam Analysis 
We ran model scenarios to evaluate how adult abundance changed with varying dam, egg-

to-smolt, and marine survival rates when hatchery supplementation was not used to support the 
population. Three model scenarios (low, medium, and high) were run with different levels of dam 
survival (Tables 3.18.2.1.1 and 3.18.2.1.2). We set these levels as 0.80, 0.90, and 1 for downstream 
survival and 0.90, 0.95, and 1 for upstream survival. We used the lowest median survival rates 
from dams in the model for the low level, a survival rate of 1 for the high level, and the mean of 
the low and high levels for the medium level. For each of the 3 scenarios, most dams were set at 
the same deterministic rate. Sebec, Milo, and Orono dams were set at this rate as well to simulate 
hypothetical upstream passage at these dams. Only Howland and Medway dams were not set at 
the same survival rates as the other dams. Given the decommissioned status and nature-like 
fishway bypassing Howland Dam, downstream and upstream survival rates were set at 1. Both 
survival rates were set at zero for Medway Dam because of the lack of fish passage at this dam 
and others in the West Branch of the Penobscot River. 

We also ran model scenarios with a range of egg-to-smolt and marine survival rates. These 
2 survival rates were varied independently and were increased by a factor of 1–3, which was 
selected randomly from a uniform distribution defined on the interval (1, 3). For both egg-to-smolt 
and marine survival, the distribution was increased by multiplying a randomly selected factor from 
the uniform distribution and 𝜇𝜇 from the baseline distribution, and the product was used as 𝜇𝜇 in the 
egg-to-smolt or marine survival distribution. 

The model scenarios did not include hatchery supplementation. Therefore, no smolts were 
stocked, and no adults were collected for broodstock. We ran 40,000 iterations for each scenario, 
and each iteration was 75 years. 
 
3.18.2.2 Whole System Stocking Location Analysis 

We ran model scenarios to estimate the effects of different stocking locations on the 
Atlantic salmon population. Smolts were stocked only in PU 14, immediately below Milford Dam 
(Below Milford); by using the baseline stocking strategy (Baseline); or only in PU 2, upstream of 
Weldon Dam (Above Weldon; Table 3.18.2.2.1). We ran 6 scenarios: 3 with these stocking 
locations and baseline egg-to-smolt and marine survival rates, and another 3 with these stocking 
locations and increased egg-to-smolt and marine survival rates. Egg-to-smolt and marine survival 
were increased by a factor of 2.2 and 1.8, respectively. These increases in egg-to-smolt and marine 
survival rates were the same as those used in the Weldon Model Runs Phase 3 Recovery Analysis 
(Section 3.18.3.2). These scenarios were run for 75 years, or 15 generations. 
 
3.18.3 Weldon Model Runs 

We ran model scenarios designed to provide information for the FERC relicensing of the 
Mattaceunk Project. These scenarios included model inputs that reflect baseline conditions in egg-
to-smolt and marine survival rates (while highlighting survival and recovery potential; Survival 
and Phase 2 Recovery Analyses) as well as increased egg-to-smolt and marine survival rates that 
would help facilitate the recovery of Atlantic salmon in the Penobscot River watershed (Phase 3 
Recovery Analysis). Dam survival rates, especially those at Weldon Dam, were also varied to 
reflect possible management scenarios. 
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3.18.3.1 Survival and Phase 2 Recovery Analyses 
The Survival and Phase 2 Recovery Analyses were designed to reflect contemporary 

conditions for Atlantic salmon in the Penobscot River watershed. Therefore, model inputs for this 
analysis included baseline egg-to-smolt and marine survival rates, baseline stocking numbers and 
locations, and removal of 2SW females for use as broodstock (Table 3.18.3.1.1). We ran 5 model 
scenarios to evaluate the effects of varying dam survival rates, especially at Weldon Dam (Table 
3.18.1.2). The model scenarios reflect existing conditions at Weldon Dam (Existing); proposed 
conditions at Weldon Dam with impoundment mortality present (Proposed w/ Impound); proposed 
conditions at Weldon Dam without impoundment mortality (Proposed); Weldon Dam removed 
(Weldon Removed); and all hydroelectric dams in the watershed removed, except those in the 
West Branch (No Dams). Iterations for these scenarios were run for 40 years, or 8 generations, to 
replicate a likely term-length of a new license for the Mattaceunk Project that is expected to be 
issued by FERC in 2019. 

 
3.18.3.2 Phase 3 Recovery Analysis 

The Phase 3 Recovery Analysis focused on estimating the effects of dams on a recovering 
population of Atlantic salmon in the Penobscot River watershed. Scientists and managers are 
striving for the delisting of this population (i.e., recovery and removal from endangered status 
under the Endangered Species Act), which would include increasing the abundance, distribution, 
and productivity of wild Atlantic salmon and transitioning from dependence on hatchery 
supplementation to wild smolt production. Delisting criteria for Atlantic salmon in the GOM DPS 
include, but are not limited to, escapement of 2,000 wild adults annually in each SHRU (Penobscot 
Bay is 1 of 3 SHRUs that compose the GOM DPS), at least 30,000 units of habitat in each SHRU 
that are accessible and suitable for spawning and rearing, and a population growth rate greater than 
1 in each SHRU for the 10-year period preceding delisting (USFWS and NMFS 2018). We set a 
goal of reaching 2,000 wild adult returns in the Penobscot Bay SHRU for this analysis. To reach 
this goal, we altered model inputs related to hatchery supplementation and increased egg-to-smolt 
and marine survival rates (Table 3.18.3.2.1). 

We changed the number and location of smolts stocked and the number of broodstock 
collected to reflect a plausible future management scenario under recovery conditions. We 
expected managers would monitor abundance for several years or a few generations after the initial 
detection of increased abundance to confirm that the increase was not a 1-year or 1-cohort event. 
We waited 3 generations to ensure that abundance was increasing, and then began changing smolt 
stocking numbers and locations and the number of broodstock collected. Baseline smolt stocking 
numbers and locations were used in generations 1–3, reduced numbers of smolts were stocked in 
altered stocking locations in generations 4–7, and no smolts were stocked in generations 8–15 
(Figures 3.18.3.2.1 and 3.18.3.2.2). Starting in generation 4, the number of smolts stocked was 
reduced by 20% of the original number stocked. We continued this 20% reduction in every 
generation until no smolts were stocked in generation 8. Smolt stocking locations were also 
changed to areas of higher quality spawning and rearing habitat that were underutilized in the 
current (i.e., baseline) stocking strategy. Removal of 2SW females for use as broodstock occurred 
only in generations 1–7 because no broodstock were needed when smolt stocking ceased (Figure 
3.18.3.2.3). These changes in model inputs reflected possible changes in management actions as 
the management strategy transitioned from attempting to recover the Atlantic salmon population 
to sustaining a recovered population. 
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To estimate the increase in egg-to-smolt and marine survival rates needed to reach 2,000 
wild adults, we ran a base case scenario with variable increases in egg-to-smolt and marine survival 
rates and the previously mentioned changes in the number and locations of smolts stocked and the 
number of 2SW females removed for use as broodstock (Table 3.18.3.2.1). Egg-to-smolt and 
marine survival were varied independently and were increased by a factor of 1–3. The factor was 
selected randomly from a uniform distribution defined on the interval (1, 3). For both egg-to smolt 
and marine survival, the distribution was increased by multiplying a randomly selected factor from 
the uniform distribution and 𝜇𝜇 from the baseline distribution. The product was used as 𝜇𝜇 in the 
egg-to-smolt or marine survival distribution. Because the baseline egg-to-smolt and marine 
survival rates were not equal, the same proportional changes to those rates do not imply the same 
absolute effect on the population (Nieland et al. 2015). Many combinations of egg-to-smolt and 
marine multipliers could result in 2,000 wild adults. We selected a combination where the 
multipliers were approximately the same because we lacked information to determine if increases 
to either survival rate would be more likely. We ran 100,000 iterations, selecting random draws 
from the uniform distributions. We reviewed the results for combinations of multipliers that were 
approximately equal and would result in the median wild adult abundance estimate that was closest 
to and greater than 2,000. We narrowed down the uniform distributions and again ran 100,000 
iterations, selecting random draws from a uniform distribution defined on the interval (1.7, 2.2). 
From this set of iterations, we selected the combination of multipliers that were approximately 
equal and resulted in the median number of wild adults closest to and greater than 2,000. The 
resulting multipliers for the increased egg-to-smolt and marine survival rates were 2.2 and 1.8, 
respectively. 

We used the increased egg-to-smolt and marine survival rates starting in generation 1 and 
again ran 5 model scenarios to evaluate the effects of varying dam survival rates, especially at 
Weldon Dam (Table 3.18.3.2.1). The model scenarios were the same 5 that were run for the 
Survival and Phase 2 Recovery Analyses but were run for 75 years, or 15 generations. Seventy-
five years was selected to be consistent with the projected timeframe needed to recover Atlantic 
salmon in the GOM DPS (USFWS and NMFS 2018). 
 
3.18.3.3 Smolt Mortality Analysis 

We ran model scenarios to investigate smolt mortality from 3 difference sources (in-river, 
impoundment, and dam mortality) to estimate a common currency of smolts killed at or upstream 
of Weldon Dam by the various mortality sources. To focus on the mortality that occurred in PU 2 
and at Weldon Dam, we stocked 1,000 smolts into PU 2 and tracked their mortality and survival 
through only PU 2 and Weldon Dam for part of a single generation. Therefore, these scenarios 
used only a small part of the model and focused on a very specific portion of the Atlantic salmon 
life cycle. We ran the same 5 scenarios as in the Survival and Phase 2 Recovery Analyses, which 
included changes in impoundment mortality and survival at Weldon Dam (Table 3.18.3.3.1). 
 

3.19 Performance Metrics 
We reported performance metrics for adult abundance and distribution, as well as smolt 

survival and mortality. All performance metrics were calculated across all iterations. 
We examined adult abundance in the Base, Whole System, and Weldon model runs. In the 

model, adults were 2SW females only. However, we converted 2SW female abundance to total 
adult abundance for the performance metrics because we wanted estimates of adult abundance to 
include all ages and sexes. We estimated the ratio of total adult returns (including all ages and 



24 
 

sexes) to 2SW female returns annually from 2008 to 2017 (MDMR 2018; MDMR fishway trap 
database, 2018 version). We then calculated the mean of the ratios (𝜇𝜇 = 2.45) and used the mean 
as the conversion factor. Total adult abundance was estimated as the product of 2SW female 
abundance and the conversion factor. The mean; median; and 5th, 25th, 75th, and 95th percentiles 
were calculated across all PUs. We also estimated total adult abundance for only PU 2 and the 
probability of zero adults in PU 2. Total adult abundance in PU 2 was estimated as the product of 
2SW female abundance in PU 2 and the conversion factor. The probability of zero adults in PU 2 
was estimated as the proportion of the 10,000 iterations in which the number of 2SW females in 
PU 2 equaled zero. 

We explored the adult distribution in the Base, Whole System, and Weldon model runs as 
well. Distribution of adults was separated into 3 areas of the Penobscot River watershed: the upper 
Penobscot (i.e., above West Enfield Dam, PUs 1–3), the Piscataquis (i.e., the Piscataquis River 
watershed, PUs 4–8), and the lower Penobscot (i.e., below West Enfield Dam, PUs 9, 11, and 13–
15; Figure 3.19.1). We assessed distribution by estimating the median proportion of adults in each 
of the 3 areas of the watershed. Adults in these 3 areas were specified further as wild-origin or 
hatchery-origin. 

We reported smolt survival and mortality in the Weldon model runs. We calculated the 
median numbers and proportions of the 1,000 smolts stocked in PU 2 that survived or were killed 
by in-river, impoundment, and dam mortality in PU 2 and at Weldon Dam. The numbers of smolts 
killed by these 3 types of mortality were estimated as described above (Sections 3.7–3.9). 
 

4. RESULTS 
 

4.1 Base Model Runs 
Median adult abundance in the Penobscot River watershed was highest in the scenario with 

no dams and hatchery supplementation turned on, was lower in the scenario with dams and 
hatchery supplementation on, and decreased to zero in scenarios without hatchery supplementation 
(Figures 4.1.1 and 4.1.2). The decrease in adult abundance from generation 1 to generation 2 was 
a product of the number and location of adults seeded in generation 1 and low survival under 
baseline conditions (Figure 4.1.1). In the scenarios without hatchery supplementation, adult 
abundance continued to decrease after generation 2 and equaled zero by generation 5. In the 
scenarios with hatchery supplementation, the 90% probability interval was wider in the No Dams 
scenario than in the Dams On scenario in generation 15 (Figure 4.1.2). 

When adult abundance in the watershed was greater than zero, the greatest proportion of 
adults in generation 15 was located in the lower Penobscot area, but the distribution of adults to 
the Piscataquis and upper Penobscot areas increased with decreasing numbers of dams (Figure 
4.1.3). In scenarios with hatchery supplementation, the majority of adults were distributed in the 
lower Penobscot area, but the proportion of adults in this area decreased when no dams were in 
the watershed (0.88 in the Dams On Hatch On scenario and 0.81 in the No Dams Hatch On 
scenario). Small proportions of adults were located in the Piscataquis and upper Penobscot areas, 
and the proportions of adults in these areas increased slightly when no dams were in the watershed 
(Piscataquis: 0.09 in the Dams On Hatch On scenario and 0.14 in the No Dams Hatch On scenario; 
upper Penobscot: 0.03 in the Dams On Hatch On scenario and 0.05 in the No Dams Hatch On 
scenario). Adult abundance equaled zero in scenarios without hatchery supplementation. 

The median proportions of wild-origin adults in generation 15 were similar in each area 
when the number of dams was decreased (Figure 4.1.3). In scenarios with hatchery 
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supplementation, the proportion of wild-origin adults ranged from 0.19 to 0.20 in the lower 
Penobscot, from 0.18 to 0.20 in the Piscataquis, and from 0.22 to 0.25 in the upper Penobscot. In 
scenarios without hatchery supplementation, adult abundance of wild-origin (and hatchery-origin) 
fish equaled zero regardless of the number of dams. 

 
4.2 Whole System Model Runs  
4.2.1 Whole System Dam Analysis 

Adult abundance increased as marine and egg-to-smolt multipliers and dam survival 
increased (Figure 4.2.1.1). In all 3 scenarios, adult abundance was lowest when the egg-to-smolt 
and marine survival multipliers equaled 1 (i.e., equaled the baseline survival rate). A combination 
of increased egg-to-smolt and marine survival was needed to have more than 1,000 adults. Adult 
abundance increased as these 2 survival rates increased and was greatest when the multipliers both 
equaled 3. Adult abundance increased further when dam survival rates increased. No hatchery 
supplementation occurred in these scenarios, so all adults were wild-origin fish. 
 

4.2.2 Whole System Stocking Location Analysis 
Median adult abundance in the Penobscot River watershed was highest when smolts were 

stocked lower in the watershed (either all below Milford Dam or using the baseline stocking 
locations) and was lowest when all smolts were stocked higher in the watershed (above Weldon 
Dam; Figures 4.2.2.1 and 4.2.2.2). In the scenarios with baseline egg-to-smolt and marine survival 
rates, adult abundance increased when all smolts were stocked below Milford Dam but decreased 
when smolts were stocked by using the baseline stocking locations or above Weldon Dam (Figure 
4.2.2.1). Adult abundance was lowest when all smolts were stocked above Weldon Dam. The 90% 
confidence interval was widest when all smolts were stocked below Milford Dam and was 
narrowest when all smolts were stocked above Weldon Dam (Figure 4.2.2.2). Adult abundance 
increased in all 3 scenarios with increased egg-to-smolt and marine survival rates, but abundance 
increased more when all smolts were stocked below Milford Dam or in baseline stocking locations 
than when all smolts were stocked above Weldon Dam (Figures 4.2.2.1). Adult abundance and the 
90% probability interval were similar in the Milford and Baseline scenarios. The 90% probability 
interval was narrowest when all smolts were stocked above Weldon Dam (Figure 4.2.2.2). 

Median adult abundance in PU 2 was lower when all smolts were stocked below Milford 
Dam or using the baseline stocking locations than when all smolts were stocked above Weldon 
Dam (Figure 4.2.2.3). Adult abundance in PU 2 equaled 12 in generation 1 in all scenarios because 
those adults were seeded into the PU. In the scenarios with baseline egg-to-smolt and marine 
survival rates, adult abundance in PU 2 decreased to zero in generation 2 when all smolts were 
stocked below Milford Dam or in baseline stocking locations (Figure 4.2.2.3). When all smolts 
were stocked above Weldon Dam, adult abundance in PU 2 increased in generation 2, decreased 
from generation 2–5, and was similar in generations 5–15. Adult abundance in PU 2 increased in 
all 3 scenarios with increased egg-to-smolt and marine survival rates (Figure 4.2.2.3). Abundance 
was highest when all smolts were stocked above Weldon Dam and was similar when all smolts 
were stocked below Milford Dam or in baseline stocking locations. 

The probability of having zero adults in PU 2 was highest when all smolts were stocked 
below Milford Dam and was lower when smolts were stocked in baseline stocking locations or 
above Weldon Dam (Figure 4.2.2.4). In the scenarios with baseline egg-to-smolt and marine 
survival rates, the probability was close to zero in generation 1 in all scenarios because of the adult 



26 
 

seeding strategy, then increased in generation 2, and was similar in generations 3–8 as the model 
stabilized (Figure 4.2.2.4). By generation 15, the probability of having zero adults in PU 2 was 
highest when all smolts were stocked below Milford Dam and was lowest when all smolts were 
stocked above Weldon Dam. In the scenarios with increased egg-to-smolt and marine survival 
rates, the probability was close to zero in generation 1 in all scenarios because of the adult seeding 
strategy, then increased in generation 2, decreased for several generations, and was similar for at 
least the last half of the time series as the model stabilized (Figure 4.2.2.4). By generation 15, the 
probability of having zero adults in PU 2 was near zero in all scenarios. 

The median proportion of adults in generation 15 was greatest in the lower Penobscot area 
in every scenario, but the distribution of adults to the Piscataquis and upper Penobscot areas 
increased when smolts were stocked in PUs above Milford Dam (Figure 4.2.2.5). In the 3 scenarios 
with baseline egg-to-smolt and marine survival rates, adults were only distributed in areas where 
smolts were stocked or in the lower Penobscot area (Figure 4.2.2.5). Adults were located only in 
the lower Penobscot area (1) when all smolts were stocked below Milford Dam. When all smolts 
were stocked above Weldon Dam, adults were located in the upper Penobscot (0.27) and lower 
Penobscot (0.73) areas but not in the Piscataquis area. When smolts were stocked in all 3 areas, as 
in the baseline stocking strategy, adults were located in all 3 areas (lower Penobscot: 0.88, 
Piscataquis: 0.09, upper Penobscot: 0.03). In the scenarios with increased egg-to-smolt and marine 
survival rates, adults were distributed to all 3 areas regardless of the stocking strategy (Figure 
4.2.2.5). The greatest proportion of adults was located in the lower Penobscot area in all 3 scenarios 
but decreased as more smolts were stocked above Milford Dam (0.80 in the Milford scenario, 0.70 
in the baseline scenario, and 0.50 in the Weldon scenario). The proportion of adults in the 
Piscataquis area was the greatest in the baseline scenario when smolts were stocked in the 
Piscataquis area (0.22), decreased when all smolts were stocked below Milford Dam (0.14), and 
was the least when all smolts were stocked above Weldon Dam (0.11). The proportion of adults in 
the upper Penobscot area was the greatest when all smolts were stocked in this area above Weldon 
Dam (0.38), decreased when smolts were stocked using the baseline stocking locations (0.08), and 
was the least when all smolts were stocked below Milford Dam (0.06). 

The median proportion of wild-origin adults in generation 15 depended on stocking 
location and egg-to-smolt and marine survival rates (Figure 4.2.2.5). In the scenarios with baseline 
egg-to-smolt and marine survival rates, the proportion of wild-origin adults was the same in the 
lower Penobscot area in all 3 scenarios (0.20; Figure 4.2.2.5). Adults were present in all 3 areas 
only in the scenario with baseline stocking locations, and the proportion of wild-origin adults was 
similar among the areas (ranged from 0.19 to 0.25). The proportion of wild-origin adults in the 
upper Penobscot area was highest in the scenario with all smolts stocked above Weldon Dam 
(0.39). In the scenarios with increased egg-to-smolt and marine survival rates, the proportion of 
wild-origin adults was lowest in the areas where the majority of smolts were stocked (Figure 
4.2.2.5). When all smolts were stocked below Milford Dam, the lower Penobscot had the lowest 
proportion of wild-origin adults of the 3 areas (0.62 in the lower Penobscot, 0.86 in the Piscataquis, 
and 0.83 in the upper Penobscot). The majority of smolts were stocked in the lower Penobscot in 
baseline stocking scenario, and that area had the lowest proportion of wild-origin adults (0.71 in 
the lower Penobscot, 0.78 in the Piscataquis, and 0.80 in the upper Penobscot). When all smolts 
were stocked above Weldon Dam, the lowest proportion of wild-origin adults was in the upper 
Penobscot area (0.96 in the lower Penobscot, 0.92 in the Piscataquis, and 0.43 in the upper 
Penobscot). 
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4.3 Weldon Model Runs 
4.3.1 Survival and Phase 2 Recovery Analyses 

Median adult abundance in the Penobscot River watershed was highest in the scenario with 
no dams and was similar in all other scenarios, which included changes in survival at Weldon Dam 
and in the impoundment (Figure 4.3.1.1). Adult abundance decreased from generation 1 to 
generation 2. This drop in abundance was a product of the number and location of adults seeded 
in generation 1 and low survival under baseline conditions. 

Median adult abundance in PU 2 decreased to zero in all scenarios (Figure 4.3.1.2). 
Changes in survival at Weldon Dam, in the impoundment, and at all dams in the watershed did not 
affect the number of adults in PU 2. In generation 1, adult abundance in PU 2 equaled 12 in all 
scenarios because those adults were seeded into the PU. Adult abundance decreased to zero in 
generation 2. 

The probability of having zero adults in PU 2 was lowest in the scenario with no dams but 
was similar in all other scenarios (Figure 4.3.1.3). The probability equaled zero in generation 1 in 
all scenarios because of the adult seeding strategy, then increased in generation 2, and was similar 
in generations 3–8 as the model stabilized (0.53–0.54 in the No Dams scenario and 0.66–0.67 in 
the other 4 scenarios). 

The greatest proportion of adults in generation 8 was located in the lower Penobscot area 
in all scenarios, but the distribution of adults to the Piscataquis and upper Penobscot areas 
increased when no dams were in the watershed (Figure 4.3.1.4). The distribution of adults was the 
same in the scenarios with existing conditions and with changes in survival in the impoundment 
and at Weldon Dam (0.88 in the lower Penobscot, 0.09 in the Piscataquis, and 0.03 in the upper 
Penobscot). In the scenario with no dams, the proportion of adults decreased in the lower 
Penobscot (0.81) and increased in the Piscataquis (0.14) and upper Penobscot (0.05) areas. 

The median proportion of wild-origin adults in generation 8 was similar for each area 
across all scenarios (Figure 4.3.1.4). The proportion of wild-origin adults ranged from 0.19 to 0.20 
in the lower Penobscot, from 0.18 to 0.20 in the Piscataquis, and from 0.22 to 0.25 in the upper 
Penobscot. 
 

4.3.2 Phase 3 Recovery Analysis 
Median adult abundance in the Penobscot River watershed was highest in the scenario with 

no dams and was similar in all other scenarios, which included changes in survival at Weldon Dam 
and in the impoundment (Figure 4.3.2.1). In scenarios with existing conditions and changes in 
survival in the impoundment and at Weldon Dam, adult abundance increased from generations 1 
to 4 while baseline stocking conditions were used and then decreased as the number of smolts 
stocked was reduced and stocking locations were altered. Abundance was similar among these 4 
scenarios. In the scenario with no dams, adult abundance increased from generations 1 to 6, which 
included the period of baseline stocking conditions as well as 2 generations of reduced smolt 
stocking and altered stocking locations. Adult abundance decreased from generations 6 to 15 in 
this scenario. 

Median adult abundance in PU 2 increased as survival in the impoundment and at Weldon 
Dam increased and was highest in the scenario with no dams (Figure 4.3.2.2). Adult abundance in 
PU 2 remained low while baseline stocking conditions were in place, increased as smolts were 
stocked higher in the watershed (including in PU 2), and then decreased as the number of smolts 
stocked decreased to zero. 
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The probability of having zero adults in PU 2 decreased as survival in the impoundment 
and at Weldon Dam increased and was lowest in the scenario with no dams (Figure 4.3.2.3). The 
probability increased from generation 1 to 2 because of the adult seeding strategy used in 
generation 1, and then decreased and remained near zero because of the smolt stocking higher in 
the watershed (including in PU 2). After smolt stocking was ceased, the probability of having zero 
adults in PU 2 increased in all scenarios but was lowest in the scenario with no dams. In generation 
15, the probability of having zero adults in PU 2 was less than 0.01 in the No Dams scenario and 
ranged from 0.07 to 0.11 in the other 4 scenarios. 

The greatest proportion of adults in generation 15 was located in the lower Penobscot area 
in all scenarios, but the distribution of adults to the Piscataquis and upper Penobscot areas 
increased when no dams were in the watershed (Figure 4.3.2.4). The distribution of adults was 
similar in the scenarios with existing conditions and with changes in survival in the impoundment 
and at Weldon Dam (equaled 0.73 in the lower Penobscot, ranged from 0.18 to 0.19 in the 
Piscataquis, and ranged from 0.08 to 0.09 in the upper Penobscot). In the scenario with no dams, 
adults were distributed more evenly (0.48 in the lower Penobscot, 0.36 in the Piscataquis, and 0.15 
in the upper Penobscot). 

The median proportion of wild adults in generation 15 was 1 for all areas in all scenarios 
(Figure 4.3.2.4). No smolts were stocked from generation 9 on, so all of the fish in the watershed 
were wild-origin. 

 
4.3.3 Smolt Mortality Analysis 

The majority of the 1,000 smolts stocked into PU 2 survived in all scenarios, but more 
smolts survived as impoundment mortality and mortality at Weldon Dam decreased (Figure 
4.3.3.1). The greatest number of smolts was killed in the scenario with existing conditions, with 
Weldon Dam killing more smolts than the other 2 types of mortality combined (24 smolts killed 
by in-river mortality, 70 smolts killed by impoundment mortality, and 181 smolts killed by dam 
mortality). Dam mortality was reduced in the 2 scenarios with proposed conditions at Weldon Dam 
(ranged from 36 to 39 smolts killed). Impoundment mortality remained the same in the Proposed 
with Impoundment scenario. In the scenarios with Weldon Dam removed and all dams removed, 
in-river mortality was the only mortality on smolts. In these 5 scenarios, in-river mortality was 
only tracked through PU 2 and did not change. Therefore, the number of smolts killed by this type 
of mortality was the same in all scenarios. Results for the proportions of smolts that survived and 
were killed followed the same patterns. 
 

5. DISCUSSION 
 

Adult Atlantic salmon abundance generally increased as the survival at hydroelectric dams 
increased or dams were removed. Our results are consistent with previous studies of the effects of 
dams on Atlantic salmon in the Penobscot River (Nieland et al. 2013, 2015) where greater 
connectivity throughout the watershed led to increases in abundance. Dams not only cause direct 
and indirect mortality on migratory fishes, including Atlantic salmon, but they can also have 
numerous ecological effects on rivers that negatively affect native resident and migratory fishes 
(Limburg and Waldman 2009). These effects are compounded when multiple dams are present in 
the river (Ward and Stanford 1983), greatly increasing the negative consequences on ecological 
and migratory processes. 
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Our results show that hatchery supplementation is necessary to keep the population from 
going extinct during times of low (i.e., baseline) survival. This conclusion is in line with a recent 
analysis of hatchery supplementation in the Penobscot River (Nieland et al. 2015), as well as a 
PVA of 8 other rivers in the GOM DPS (Legault 2005). However, if increased levels of survival 
in early freshwater (i.e., egg-to-smolt) and subsequent marine life stages can be attained, our results 
demonstrate that long-term hatchery supplementation may not be necessary to sustain the 
population. Increases in both of these survival rates will likely be needed to achieve increased 
numbers of Atlantic salmon in the Penobscot River watershed before hatchery supplementation 
should be reduced and eventually ceased. However, there is some urgency to reduce the 
population’s dependence on this management tool because the artificial selection effects of long-
term hatchery supplementation are likely a risk to the population as well (NRC 2004). 

Increases in both marine and early-life-stage survival rates will be important for recovery 
of Atlantic salmon in the Penobscot River. Survival in the marine environment is 1 of the biggest 
threats to Atlantic salmon in the GOM DPS (NRC 2004; Fay et al. 2006). Salmon populations 
have been shown to go through periods of increased and decreased productivity, as cycles in 
marine survival have been documented in Pacific salmon (Johnson 1988; Beamish and Bouillon 
1993; Francis and Hare 1994; Wells et al. 2006) and suggested in Atlantic salmon (Beaugrand and 
Reid 2003; Friedland et al. 2003). The current low productivity period for US Atlantic salmon 
populations (USASAC 2018) could be the low point in a cycle, which would mean that an increase 
in marine survival could be plausible. Increases in marine survival may lead to larger increases in 
adult abundance in the Penobscot River than increases in egg-to-smolt survival would (Nieland et 
al. 2015), and so evaluating these survival rates separately can be beneficial and may lead to 
targeted management actions. Michel (2019) found that although outmigration (freshwater and 
estuarine) survival for Sacramento River Chinook salmon (Oncorhynchus tshawytscha) ranged 
from 2.6% to 17% and marine survival ranged from 4.2% to 22.8%, most year-to-year variability 
in survival from the smolt-to-adult life stage was explained by outmigration survival. Options 
currently exist for improving survival in freshwater in the short term (NRC 2004), and scientists 
and managers are continually working to increase freshwater productivity and survival with the 
goal of increasing the number of smolts that reach the estuary. Furthermore, decreasing sources of 
mortality in the river and estuary may also buffer the effects of mortality in the ocean (Stich et al. 
2015c), which is important as management options to reduce marine mortality in the short term 
appear limited (NRC 2004). Regardless, our results confirm that a combination of increased 
survival in early life stages and in the marine environment will likely be necessary to attain a 
sustainable population of Atlantic salmon in the Penobscot River. 

Marine survival rates for wild and hatchery fish were quite different in the model, and this 
difference highlights limitations of hatchery supplementation. For example, every effort is made 
to preserve genetic diversity within existing GOM Atlantic salmon stocks, but those processes do 
not equate to natural selection on critical life history traits. The effects of artificial selection, 
although associated with reduced marine survival, are unavoidable while the population is 
dependent on hatchery supplementation. A much higher proportion of the population will likely 
need to become wild in order to provide long-term resilience when confronted with changing ocean 
conditions.  

Stocking location also has substantial effects on abundance. Adult Atlantic salmon 
abundance was lower when smolts were stocked above Weldon Dam than when smolts were 
stocked lower in the watershed, even when survival rates for early life stages and the marine phase 
were increased. Smolts stocked higher in the watershed migrated longer distances and encountered 
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more dams than smolts stocked lower in the watershed, meaning lower in-river and dam-related 
survival for smolts stocked above Weldon Dam. Although watershed-level adult abundance was 
higher when smolts were stocked lower in the watershed, few adults occupied the upper watershed 
because of the combination of little or no stocking in that area and dam mortality. 

We performed analyses to support managers in their evaluation of the Mattaceunk Project 
for the FERC-relicensing process. To isolate the individual effects of Weldon Dam, we ran model 
scenarios with varying conditions at the dam and evaluated the survival and recovery potential of 
the Penobscot River Atlantic salmon population. Adult abundance at the watershed level was not 
affected by increased survival at Weldon Dam or its impoundment when early-life-stage and 
marine survival rates were low. Current stocking locations have been set to minimize the negative 
effects of dams, such as Weldon Dam, and therefore, no smolts are stocked high in the watershed. 
From 2008 to 2017, an average of 48% of smolts were stocked below all dams in the watershed, 
and less than 5% of smolts were stocked into the upper Penobscot drainage (as defined in Figure 
3.19.1; USASAC 2018). From 2014 to 2017, 100% of smolts were stocked below all dams in the 
watershed. Few or no fish are located in the upper watershed because of these management 
decisions, and so few fish are affected by changes at Weldon Dam. However, in scenarios where 
the population was recovering under increased survival rates and the stocking strategy had been 
modified, our results showed further increased abundance when survival at Weldon Dam and its 
impoundment increased. Atlantic salmon were located above Weldon Dam in these scenarios, and 
so increased survival at the dam and impoundment did benefit the population. 

As presently constructed, the model does not account for potential differences in habitat 
quality across subwatersheds. Higher quality habitat would likely produce more smolts than lower 
quality habitat, and the upper watershed contains higher quality habitat than does the lower 
watershed (NMFS 2009). Therefore, the upper watershed (i.e., PU 2) may produce more smolts 
than does the lower watershed, which could counter-balance the lower in-river and dam-related 
survival experienced by smolts coming from the upper watershed. To allow Atlantic salmon to 
reach higher quality habitat, survival would need to be increased at dams from the lower to the 
upper watershed. Increased survival at dams in the upper watershed, such as Weldon Dam, would 
be essential for getting fish to areas of higher quality habitat. Still, the potential benefits of 
increased habitat quality are not quantifiable at this time, as the information needed to ascribe 
higher potential smolt production in a given subwatershed is currently lacking. This type of 
information is routinely used in watershed prioritization exercises for Pacific salmon in the 
northwest United States (Beechie et al. 2008; Hendrix et al. 2014), including in evaluating the 
consequences of effects of climate change in Pacific salmon recovery efforts (Mantua et al. 2010), 
and would be beneficial for managers working toward Atlantic salmon restoration. 

Given the potential importance of habitat quality on Atlantic salmon populations, future 
efforts should be made to quantify the biological response of Atlantic salmon to different habitat 
qualities and evaluate the effects of changing habitat conditions on Atlantic salmon productivity 
given a changing climate. These analyses should be conducted for the entire range of US Atlantic 
salmon populations and cover freshwater and marine habitats from headwaters to Greenland. 
Coupling information about current habitat conditions with Atlantic salmon habitat needs and 
preferences will allow researchers to identify areas where salmon would survive and thrive and to 
quantify the effects of productivity in a changing climate. These results will allow for a data-driven 
assessment of the future productivity of US Atlantic salmon and will allow managers to develop 
realistic recovery goals while prioritizing restoration efforts in areas with the greatest potential 
future productivity. 
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When considering habitat where Atlantic salmon could be most productive, areas that are 
currently inaccessible to Atlantic salmon should not be dismissed. For example, the West Branch 
of the Penobscot River represents a significant portion of the high quality habitat in the watershed, 
but Atlantic salmon are not able to access this branch because of the multiple impassable dams in 
their migration path. Therefore, we do not know how much the West Branch could contribute to 
the productivity of the population. This habitat could be critical for salmon in the Penobscot River. 
Although our current model structure accurately represents contemporary dynamics, all 
hydroelectric dams in the West Branch would need to be modeled to evaluate the effects of dams 
in the entire Penobscot River watershed. A modeling exercise including dams in the West Branch 
could be done in the future. 

We developed the model and updated inputs with the best available information from a 
combination of field studies, expert opinion, and local knowledge. However, advancements to the 
model should be made where possible. We suggest further research related to egg-to-smolt 
survival, indirect latent mortality, impoundment mortality, delay at dams, and adult straying 
patterns. Egg-to-smolt survival estimates in the model were obtained from the literature. Several 
of these studies were conducted in New England, including 3 in Maine, and so we assumed that 
our distribution of egg-to-smolt survival included survival rates that salmon would experience in 
the Penobscot River. We would prefer to have survival estimates from within the Penobscot River 
to verify our distribution. A Penobscot River-specific estimate of indirect latent mortality was 
available (Stich et al. 2015c) and was used to estimate this type of mortality in post-smolts. Stich 
et al. (2015c) accounted for indirect latent mortality in the estuary. However, this mortality likely 
extends to post-smolts in the ocean as well. An estimate of the portion of post-smolt marine 
mortality that is caused by indirect latent mortality would be useful for differentiating dam-related 
mortality from mortality caused by marine environment-related factors. Impoundment mortality 
was another source of dam-related mortality included in the model. This mortality was only 
modeled at Weldon Dam but should be expanded to the other dams in the watershed to more 
accurately reflect the amount of mortality on Atlantic salmon. Dams can also cause significant 
migration delays for smolts (Stich et al. 2015b) and adults (Gorsky et al. 2009; Holbrook et al. 
2009). In smolts, these delays can cause increased predation risk (Poe et al. 1991; Blackwell and 
Juanes 1998) and mismatch of physiological traits with timing of ocean entry (Stich et al. 2015c). 
In adults, these delays may result in fallback to the estuary without spawning (Holbrook et al. 
2009) and reductions in survival and energetic reserves used for spawning (Dauble and Mueller 
1993; Gowans et al. 2003). Future research quantifying the effects of these delays, especially on 
adults, would be beneficial. Adult straying patterns also affect the distribution of Atlantic salmon 
in the Penobscot River watershed. Although we used the best available information for adult 
straying rates and locations, these rates were mostly based on expert opinions and local knowledge. 
Directed studies of adult straying rates within the watershed would be beneficial for predicting the 
migration paths of adults and identifying obstructions. Knowing the eventual distribution of 
spawning adults could also be useful for restoration efforts. The model should be updated as new 
data become available. 
 

6. CONCLUSIONS 
 

The DIA model is a useful tool to understand the dynamics of an Atlantic salmon 
population in a dammed watershed. We used the best available data and information to build this 
stochastic model and simulated the effects of changes in dam survival rates, egg-to-smolt and 
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marine survival rates, and hatchery supplementation on Atlantic salmon abundance and 
distribution in the Penobscot watershed. The model and results can be used to evaluate and support 
informed management decisions and set realistic expectations of outcomes. 

The Penobscot River population of Atlantic salmon is currently stable at a low abundance 
level but is heavily dependent on hatchery supplementation to avoid extinction. Low survival rates 
in early life stages and in the ocean are contributing to low abundance, as are hydroelectric dams, 
which are prevalent in the watershed. Given the number of dams in the Penobscot watershed and 
an increased understanding of the negative effects of dams on Atlantic salmon productivity through 
altered ecological functions, the approach to managing the population has changed. For example, 
stocking locations have been moved to lower in the watershed to maximize adult return rates. 
Although more salmon are returning to the river, focusing the population in the lower watershed 
also means Atlantic salmon, including potential spawners, are occupying lower quality habitat, 
which could minimize their production. Another consequence of focusing the population in the 
lower watershed is that increasing survival rates at dams, especially those in the upper watershed 
(e.g., Weldon Dam), have little effect on salmon abundance and distribution. We may be missing 
important population recovery opportunities by concentrating Atlantic salmon in lower quality 
habitat. As highlighted by the difference between marine survival rates of wild- and hatchery-
origin fish, artificial selection effects of long-term hatchery supplementation may negatively affect 
recovery as well. 

In order for Atlantic salmon in the Penobscot River to recover, increases in marine, early-
life-stage, and dam survival rates will be necessary, along with reduced dependency on hatchery 
supplementation. Increasing marine and early-life-stage survival will likely require minimizing a 
range of natural and anthropogenic effects. Identifying and addressing the range of possible effects 
will require additional study. Increased survival at dams from the lower to the upper watershed 
will also be needed so that if marine and early-life-stage survival rates do increase, returning 
salmon can access habitat throughout the watershed. Survival rates at lower watershed dams will 
need to be increased to allow salmon access to upper watershed dams and higher quality habitat. 
Survival rates at upper watershed dams will need to be increased to allow salmon to access the 
highest quality habitat. Hatchery supplementation will need to be reduced as well if the population 
begins to increase. The decrease in hatchery-origin fish and increase in wild-origin fish will allow 
natural selection processes to resume. Using tools such as this model, scientists and managers can 
work together to better understand and characterize threats to Atlantic salmon in the Penobscot 
River and develop more efficient management and restoration strategies. 
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9. TABLES 
 
Table 3.1.1. Descriptions of production unit (PU) boundaries with corresponding metrics of longest segment length, partial segment 
length, and hatchery segment length (in km). Longest segment length is the longest straight-path distance that a fish could migrate in 
each PU. One or more partial segment lengths indicate that smolts could enter a PU from multiple locations, and the lengths represent 
the migration distance from various starting locations. Hatchery segment length is the distance that stocked smolts would migrate in 
their initial PU. 
 

PU Upstream boundaries Downstream boundaries 

Longest 
segment 
length 

Partial 
segment 
length 

Hatchery 
segment 
length 

1 West Branch Penobscot headwaters Medway Dam 309 NA 19 
2 East Branch Penobscot headwaters, Medway Dam Weldon Dam 139 11 12 
3 Mattawamkeag River headwaters, Weldon Dam West Enfield Dam 208 48 41 
4 Pleasant River headwaters, Milo Dam, Browns Mill Dam Howland Dam 125 42, 65 45 
5 Dunham Brook headwaters, Upper Dover Dam Browns Mill Dam 10 1 1 
6 Piscataquis River headwaters Upper Dover Dam 78 NA 8 
7 Sebec Dam Milo Dam 12 NA 12 
8 Sebec River headwaters Sebec Dam 59 NA 21 
9 Lowell Tannery Dam, Howland Dam, West Enfield Dam Stillwater Dam, Milford Dam 61 56, 44 35 

11 Stillwater Dam Orono Dam 4 NA 4 
13 Marsh Stream headwaters Frankfort Dam 54 NA 4 
14 Kenduskeag Stream headwaters, Frankfort Dam, Orono Dam, Milford Dam Southern end of Verona Island 121 18, 54, 62 61 
15 Passadumkeag River headwaters Lowell Tannery Dam 49 NA 6 
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Table 3.1.2. Total number of habitat units and accessible habitat units (in 100 m2) to Atlantic salmon 
(Salmo salar), the proportion of adults seeded, and the smolt production cap (i.e., the maximum 
number of wild-origin smolts) in each production unit (PU). Habitat in PUs 1, 7, 8, and 11 is 
inaccessible to Atlantic salmon because of the current conditions at Medway, Milo, Sebec, and 
Orono dams. Therefore, the baseline habitat units and smolt production cap values were set as zero 
for these PUs. Figure 1.1 identifies the PU locations. 
 

PU 
Total 
habitat units 

Accessible 
habitat units 

Proportion 
of adults 

Smolt 
production cap 

1 84,287 0 0 505,722 
2 44,250 44,250 0.0153 265,503 
3 56,450 56,450 0.0586 338,697 
4 42,849 42,849 0.1353 257,091 
5 284 284 0 1,703 
6 21,782 21,782 0.0084 130,692 
7 1,733 0 0 10,400 
8 13,922 0 0 83,532 
9 17,860 17,860 0.1925 107,160 

11 940 0 0 5,642 
13 4,801 4,801 0.0070 28,808 
14 23,656 23,656 0.5621 141,935 
15 3,601 3,601 0.0209 21,606 
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Table 3.2.1. Mean proportion and number of hatchery-reared smolts stocked into each production 
unit (PU) from 2008 to 2017. 

PU 
Proportion 
stocked 

Number 
stocked 

1 0 0 
2 0 0 
3 0.0486 26,490 
4 0.1851 100,869 
5 0 0 
6 0.0188 10,258 
7 0 0 
8 0 0 
9 0.2616 142,561 

11 0 0 
13 0 0 
14 0.4859 264,822 
15 0 0 

Total 1 545,000 
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Table 3.2.2. Adult homing and straying rates by production unit (PU). The natal PU identifies where a fish was reared, and the final 
destination PU identifies where a fish attempted to migrate as a prespawning adult. Homing rates are bolded and listed in the diagonal 
row. A zero indicates no straying from the natal PU into the final destination PU. 
 

  Final destination PU                     
Natal PU 1 2 3 4 5 6 7 8 9 11 13 14 15 
1 0.900 0.080 0.009 0.005 0 0 0 0 0.005 0 0 0 0.001 
2 0.070 0.900 0.009 0.010 0 0 0 0 0.010 0 0 0 0.001 
3 0 0.010 0.900 0.050 0.010 0.010 0 0 0.010 0 0 0 0.010 
4 0 0 0.010 0.900 0.001 0.049 0.020 0.020 0 0 0 0 0 
5 0 0 0 0.010 0.900 0.080 0.004 0.004 0.002 0 0 0 0 
6 0 0 0 0.080 0.010 0.900 0.005 0.005 0 0 0 0 0 
7 0 0 0 0.020 0 0 0.900 0.080 0 0 0 0 0 
8 0 0 0 0.020 0 0 0.080 0.900 0 0 0 0 0 
9 0 0.010 0.040 0.080 0 0 0 0 0.700 0.010 0 0.060 0.100 
11 0.010 0.020 0.040 0.020 0 0 0 0 0.100 0.700 0.020 0.080 0.010 
13 0 0 0.040 0.020 0 0 0 0 0.030 0 0.900 0.010 0 
14 0 0 0.041 0.074 0 0 0 0 0.163 0.018 0.004 0.700 0 
15 0 0.010 0.010 0 0 0 0 0 0.060 0.010 0 0.010 0.900 
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Table 3.4.1. Summary of the life stage survival percentage rates used to develop the egg-to-smolt 
survival distribution. 
 

Life Stage  Survival     
Begin End  Minimum Maximum Mean 
Egg Fry  15 35 25.0 
Fry Parr 0+  31 60 45.5 
Parr 0+ Parr 1+  13 56 34.5 
Parr 1+ Smolt  17 50 33.5 
Egg Smolt  0.10 5.88 1.31 
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Table 3.5.1. Smolt production values per habitat unit (in 100 m2) from the literature. Highlighted entries were used in setting the smolt 
production cap. 
 

Author Region River 
Years 
of data Mean Minimum Maximum 

Meister 1962 Maine Cove Brook   3    3.59      
Elson 1975 New Brunswick Pollett  19   0.24    6.57  
Egglishaw and Shackley 1977 Scotland Shelligan Burn   1.00    6.00  
Gee et al. 1978 Wales Wye   2    2.00  0.50    4.30  
Garnas and Hvidsten 1985 Norway Orkla   1    4.10    
Gibson et al. 1987 Newfoundland Highlands    0.60    5.30  
Shackley and Donaghy 1992 Scotland five rivers   1   1.97    7.02  
Kennedy and Crozier 1993 Northern Ireland Bush 16   3.00    8.90  
Orciari et al. 1994 Connecticut Sandy Brook   7    1.00    4.10  
McMenemy 1995 Vermont West   8    4.00      
Matthews et al. 1997 Ireland Burrishoole    0.13    
Cunjak and Therrien 1998 New Brunswick Catamaran   7   0.44    2.06  
Jonsson et al. 1998a Norway Imsa 19   3.97  27.51  
Jonsson et al. 1998b Norway Imsa 22  13.40  0.30  31.00  
Whalen et al. 2000 Vermont Utley   3    0.76  0.55    0.96  
Whalen et al. 2000 Vermont Rock   3    1.18  0.78    1.58  
Whalen et al. 2000 Vermont Wardsboro   3    1.13  0.51    1.74  
Bagliniere et al. 2002 France La Roche Brook    5.20   20.10  
Bagliniere et al. 2005 France Oir 18    2.10  0.17    5.70  
Bowlby et al. 2013 Nova Scotia LaHave 15    0.20    0.98  
Bowlby et al. 2013 Nova Scotia St. Mary's   5    0.43    1.48  
Hvidsten et al. 2015 Norway Orkla 27    6.20  3.40  10.80  
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Table 3.16.1. The fate of adult spawners that do not successfully migrate above each hydroelectric dam. Unsuccessful fish died, returned 
to the ocean without spawning, or remained downstream and spawned in a different production unit (PU). Fish that remained downstream 
were redirected to a downstream PU according to the proportions under the destination PU. A zero in the destination PU indicates no fish 
were redirected to that PU. The dashes in the rows for Great Works and Veazie dams indicate that Atlantic salmon (Salmo salar) do not 
encounter upstream passage inefficiency because these dams have been removed. 
 

        Destination PU                   

Dam failed  
to pass 

Proportion 
dying 

Proportion 
returning  
to sea 

Proportion 
remaining 
downstream 1 2 3 4 5 6 7 8 9 11 13 14 15 

Medway 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
Weldon 0.01 0 0.99 0 0 1 0 0 0 0 0 0 0 0 0 0 
West Enfield 0.02 0 0.98 0 0 0 0.6 0 0 0 0 0.4 0 0 0 0 
Upper Dover 0.02 0 0.98 0 0 0 1 0 0 0 0 0 0 0 0 0 
Browns Mill 0.02 0 0.98 0 0 0 1 0 0 0 0 0 0 0 0 0 
Sebec 0 0 1 0 0 0 0.1 0 0 0.9 0 0 0 0 0 0 
Milo 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 
Howland 0.02 0 0.98 0 0 0.4 0 0 0 0 0 0.6 0 0 0 0 
Lowell Tannery 0.01 0 0.99 0 0 0.01 0.01 0 0 0 0 0.98 0 0 0 0 
Milford 0.03 0.15 0.82 0 0 0 0 0 0 0 0 0 0 0.1 0.9 0 
Stillwater 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 
Great Works - - - - - - - - - - - - - - - - 
Orono 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 
Veazie - - - - - - - - - - - - - - - - 
Frankfort 0.02 0.1 0.88 0 0 0 0 0 0 0 0 0 0 0 1 0 
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Table 3.18.1.1. Model inputs for 4 model scenarios in the Base Model Runs evaluating the effects of 
dams and hatchery supplementation. Dams were either set at baseline survival rates (Dams On) or 
100% survival (No Dams). Hatchery supplementation was either set to the baseline stocking 
strategy (Hatch On) or no stocking occurred (Hatch Off). 
 

Input 
Dams On 
Hatch On 

Dams On 
Hatch Off 

No Dams 
Hatch On 

No Dams 
Hatch Off 

Adult seeding Baseline Baseline Baseline Baseline 
Eggs per female Baseline Baseline Baseline Baseline 
Egg-to-smolt survival Baseline Baseline Baseline Baseline 
Smolt production cap Baseline Baseline Baseline Baseline 
Stocking Baseline None Baseline None 
In-river mortality Baseline Baseline Baseline Baseline 
Impoundment mortality Baseline Baseline 0 0 
Downstream dam survival rates Baseline Baseline 1 at all dams 1 at all dams 
Indirect latent mortality Baseline Baseline Baseline Baseline 
Hatchery discount Baseline Baseline Baseline Baseline 
Sex-ratio discount Baseline Baseline Baseline Baseline 
Marine survival Baseline Baseline Baseline Baseline 
Straying Baseline Baseline Baseline Baseline 
Upstream dam passage rates Baseline Baseline 1 at all dams 1 at all dams 
Upstream dam passage inefficiency Baseline Baseline Baseline Baseline 
Broodstock collection Baseline None Baseline None 
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Table 3.18.1.2. Median survival or passage rates (downstream, upstream) for hydroelectric dams on 
the Penobscot River in 5 model scenarios with changes in dam conditions for the Weldon Model 
Runs. 
 

Dam Existing 
Proposed w/ 
Impound Proposed 

Weldon 
Removed No Dams 

Medway (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) 
Weldon (0.80, 0.90) (0.96, 0.95) (0.96, 0.95) (1, 1) (1, 1) 
West Enfield (0.96, 0.95) (0.96, 0.95) (0.96, 0.95) (0.96, 0.95) (1, 1) 
Upper Dover (0.92, 0.92) (0.92, 0.92) (0.92, 0.92) (0.92, 0.92) (1, 1) 
Browns Mill (0.85, 0.92) (0.85, 0.92) (0.85, 0.92) (0.85, 0.92) (1, 1) 
Sebec (0.87, 0) (0.87, 0) (0.87, 0) (0.87, 0) (1, 1) 
Milo (0.88, 0) (0.88, 0) (0.88, 0) (0.88, 0) (1, 1) 
Howland (1, 0.95) (1, 0.95) (1, 0.95) (1, 0.95) (1, 1) 
Lowell Tannery (0.87, 0.92) (0.87, 0.92) (0.87, 0.92) (0.87, 0.92) (1, 1) 
Milford (0.96, 0.95) (0.96, 0.95) (0.96, 0.95) (0.96, 0.95) (1, 1) 
Stillwater (0.96, 0.92) (0.96, 0.92) (0.96, 0.92) (0.96, 0.92) (1, 1) 
Great Works (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) 
Orono (0.96, 0) (0.96, 0) (0.96, 0) (0.96, 0) (1, 1) 
Veazie (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) 
Frankfort (0.94, 0.92) (0.94, 0.92) (0.94, 0.92) (0.94, 0.92) (1, 1) 
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Table 3.18.2.1.1. Model inputs for 3 model scenarios in the Whole System Dam Analysis evaluating 
the effects of dam, egg-to-smolt, and marine survival rates and no hatchery supplementation. The 
model scenarios reflect low, medium, and high levels of downstream and upstream survival at dams 
in the model. 
 

Input Low Medium High 
Adult seeding Baseline Baseline Baseline 
Eggs per female Baseline Baseline Baseline 
Egg-to-smolt survival Range Range Range 
Smolt production cap Baseline Baseline Baseline 
Stocking None None None 
In-river mortality Baseline Baseline Baseline 
Impoundment mortality Baseline Baseline Baseline 
Downstream dam survival rates 0.80 0.90 1 
Indirect latent mortality Baseline Baseline Baseline 
Hatchery discount Baseline Baseline Baseline 
Sex-ratio discount Baseline Baseline Baseline 
Marine survival Range Range Range 
Straying Baseline Baseline Baseline 
Upstream dam passage rates 0.90 0.95 1 
Upstream dam passage inefficiency Baseline Baseline Baseline 
Broodstock collection None None None 
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Table 3.18.2.1.2. Survival or passage rates (downstream, upstream) for hydroelectric dams on the 
Penobscot River in 3 model scenarios for the Whole System Dam Analysis. The model scenarios 
reflect low, medium, and high levels of downstream and upstream survival at all dams in the model 
(including Milo, Sebec, and Orono), with 2 exceptions. Downstream and upstream survival were set 
at 1 for Howland Dam because of the Penobscot River Restoration Project, and both survivals were 
set at zero for Medway Dam because of the lack of fish passage at this dam and others in the West 
Branch of the Penobscot River. 
 

Dam Low Medium High 
Medway (0, 0) (0, 0) (0, 0) 
Weldon (0.80, 0.90) (0.90, 0.95) (1, 1) 
West Enfield (0.80, 0.90) (0.90, 0.95) (1, 1) 
Upper Dover (0.80, 0.90) (0.90, 0.95) (1, 1) 
Browns Mill (0.80, 0.90) (0.90, 0.95) (1, 1) 
Sebec (0.80, 0.90) (0.90, 0.95) (1, 1) 
Milo (0.80, 0.90) (0.90, 0.95) (1, 1) 
Howland (1, 1) (1, 1) (1, 1) 
Lowell Tannery (0.80, 0.90) (0.90, 0.95) (1, 1) 
Milford (0.80, 0.90) (0.90, 0.95) (1, 1) 
Stillwater (0.80, 0.90) (0.90, 0.95) (1, 1) 
Great Works (1, 1) (1, 1) (1, 1) 
Orono (0.80, 0.90) (0.90, 0.95) (1, 1) 
Veazie (1, 1) (1, 1) (1, 1) 
Frankfort (0.80, 0.90) (0.90, 0.95) (1, 1) 
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Table 3.18.2.2.1. Model inputs for 6 scenarios in the Whole System Stocking Location Analysis estimating the effects of stocking location 
and increased egg-to-smolt and marine survival rates. Smolts were stocked only in production unit (PU) 14, immediately below Milford 
Dam; with the baseline stocking strategy; or only in PU 2, upstream of Weldon Dam. Scenarios were run with these 3 stocking locations 
and baseline egg-to-smolt and marine survival rates as well as increased egg-to-smolt and marine survival rates. 
 

  Baseline survival  Increased survival 
Input Below Milford Baseline Above Weldon  Below Milford Baseline Above Weldon 
Adult seeding Baseline Baseline Baseline  Baseline Baseline Baseline 
Eggs per female Baseline Baseline Baseline  Baseline Baseline Baseline 
Egg-to-smolt survival Baseline Baseline Baseline  Increased Increased Increased 
Smolt production cap Baseline Baseline Baseline  Baseline Baseline Baseline 
Hatchery stocking All below Milford Baseline All above Weldon  All below Milford Baseline All above Weldon 
In-river mortality Baseline Baseline Baseline  Baseline Baseline Baseline 
Impoundment mortality Baseline Baseline Baseline  Baseline Baseline Baseline 
Downstream dam passage survival Baseline Baseline Baseline  Baseline Baseline Baseline 
Indirect latent mortality Baseline Baseline Baseline  Baseline Baseline Baseline 
Hatchery discount Baseline Baseline Baseline  Baseline Baseline Baseline 
Marine survival Baseline Baseline Baseline  Increased Increased Increased 
Straying Baseline Baseline Baseline  Baseline Baseline Baseline 
Upstream dam passage survival Baseline Baseline Baseline  Baseline Baseline Baseline 
Upstream dam passage inefficiency Baseline Baseline Baseline  Baseline Baseline Baseline 
Broodstock collection Baseline Baseline Baseline  Baseline Baseline Baseline 
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Table 3.18.3.1.1 Model inputs for 5 scenarios evaluating the effects of varying dam survival, especially at Weldon Dam, for the Survival 
and Phase 2 Recovery Analyses. The model scenarios reflect existing conditions at Weldon Dam (Existing); proposed conditions at 
Weldon Dam with impoundment mortality present (Proposed w/ Impound); proposed conditions at Weldon Dam without impoundment 
mortality (Proposed); the removal of Weldon Dam (Weldon Removed); and the removal of all hydroelectric dams in the watershed, except 
those in the West Branch (No Dams). 
 

Input Existing 
Proposed w/ 
Impound Proposed 

Weldon 
Removed No Dams 

Adult seeding Baseline Baseline Baseline Baseline Baseline 
Eggs per female Baseline Baseline Baseline Baseline Baseline 
Egg-to-smolt survival Baseline Baseline Baseline Baseline Baseline 
Smolt production cap Baseline Baseline Baseline Baseline Baseline 
Stocking Baseline Baseline Baseline Baseline Baseline 
In-river mortality Baseline Baseline Baseline Baseline Baseline 
Impoundment mortality Baseline Baseline 0% 0% 0% 
Downstream dam survival rates Baseline 96% at Weldon 96% at Weldon 100% at Weldon 100% at all dams 
Indirect latent mortality Baseline Baseline Baseline Baseline Baseline 
Hatchery discount Baseline Baseline Baseline Baseline Baseline 
Sex-ratio discount Baseline Baseline Baseline Baseline Baseline 
Marine survival Baseline Baseline Baseline Baseline Baseline 
Straying Baseline Baseline Baseline Baseline Baseline 
Upstream dam passage rates Baseline 95% at Weldon 95% at Weldon 100% at Weldon 100% at all dams 
Upstream dam passage inefficiency Baseline Baseline Baseline Baseline Baseline 
Broodstock collection Baseline Baseline Baseline Baseline Baseline 
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Table 3.18.3.2.1. Model inputs for a base case scenario to estimate increased egg-to-smolt and marine survival rates and 5 scenarios 
evaluating the effects of varying dam survival, especially at Weldon Dam, for the Phase 3 Recovery Analysis. The 5 model scenarios with 
varying dam survival reflect existing conditions at Weldon Dam (Existing); proposed conditions at Weldon Dam with impoundment 
mortality present (Proposed w/ Impound); proposed conditions at Weldon Dam without impoundment mortality (Proposed); the removal 
of Weldon Dam (Weldon Removed); and the removal of all hydroelectric dams in the watershed, except those in the West Branch (No 
Dams). 
 

Input Base Case Existing 
Proposed w/ 
Impound Proposed 

Weldon  
Removed No Dams 

Adult seeding Baseline Baseline Baseline Baseline Baseline Baseline 

Eggs per female Baseline Baseline Baseline Baseline Baseline Baseline 

Egg-to-smolt survival Range Increased Increased Increased Increased Increased 

Smolt production cap Baseline Baseline Baseline Baseline Baseline Baseline 

Stocking Changed over time Changed over time Changed over time Changed over time Changed over time Changed over time 

In-river mortality Baseline Baseline Baseline Baseline Baseline Baseline 

Impoundment mortality Baseline Baseline Baseline 0% 0% 0% 

Downstream dam survival rates Baseline Baseline 96% at Weldon 96% at Weldon 100% at Weldon 100% at all dams 

Indirect latent mortality Baseline Baseline Baseline Baseline Baseline Baseline 

Hatchery discount Baseline Baseline Baseline Baseline Baseline Baseline 

Sex-ratio discount Baseline Baseline Baseline Baseline Baseline Baseline 

Marine survival Range Increased Increased Increased Increased Increased 

Straying Baseline Baseline Baseline Baseline Baseline Baseline 

Upstream dam passage rates Baseline Baseline 95% at Weldon 95% at Weldon 100% at Weldon 100% at all dams 

Upstream dam passage inefficiency Baseline Baseline Baseline Baseline Baseline Baseline 

Broodstock collection Changed over time Changed over time Changed over time Changed over time Changed over time Changed over time 
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Table 3.18.3.3.1. Model inputs for 5 scenarios in the Smolt Mortality Analysis evaluating the effects of in-river, impoundment, and dam 
mortality that occurred in production unit 2 and at Weldon Dam. The model scenarios reflect existing conditions at Weldon Dam (Existing); 
proposed conditions at Weldon Dam with impoundment mortality present (Proposed w/ Impound); proposed conditions at Weldon Dam 
without impoundment mortality (Proposed); the removal of Weldon Dam (Weldon Removed); and the removal of all hydroelectric dams in 
the watershed, except those in the West Branch (No Dams). 
 

Input Existing 
Proposed w/ 
Impound Proposed 

Weldon  
Removed No Dams 

Stocking 1,000 smolts in PU 2 1,000 smolts in PU 2 1,000 smolts in PU 2 1,000 smolts in PU 2 1,000 smolts in PU 2 
In-river mortality Baseline Baseline Baseline Baseline Baseline 
Impoundment mortality Baseline Baseline 0% 0% 0% 
Downstream dam survival rates Baseline 96% at Weldon 96% at Weldon 100% at Weldon 100% at all dams 
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10. FIGURES 

 
Figure 1.1. The Penobscot River watershed divided into production units (numbered). Locations of 
modeled hydroelectric dams are denoted by the name of each dam and a dash (–) for dams that are 
present and active, a filled square (∎) for dams that have been removed, and a filled circle (●) for 
dams that have been bypassed. The insets show the Penobscot River watershed within the 
northeastern United States and southeastern Canada (upper map) and the mainstem and Stillwater 
branches of the Penobscot River (lower map).  
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Figure 2.1. Schematic of the Atlantic salmon (Salmo salar) life cycle detailed within the model. 
Rounded rectangles indicate life cycle stages, ovals indicate additions to the population, and 
rectangles indicate subtractions from the population. Dashed rectangles are neither additions to 
nor subtractions from the population but represent dynamics incorporated into the model. Adult 
Atlantic salmon were modeled as 2 sea-winter (2SW) fish. 
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Figure 3.3.1. Distribution of the number of Atlantic salmon (Salmo salar) eggs produced per 2 sea-
winter female generated from mean annual fecundity estimates for Penobscot River sea-run females 
spawned at Craig Brook National Fish Hatchery from 1997 to 2010. 
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Figure 3.4.1. Distribution of the Atlantic salmon (Salmo salar) egg-to-smolt survival rate generated 
from survival estimates of egg to fry, fry to parr0+, parr0+ to parr1+, and parr1+ to smolt life stages 
in the literature. 
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Figure 3.7.1. Cumulative frequency distribution of natural, in-river mortality per km for Atlantic 
salmon (Salmo salar) smolts migrating downstream. Mortality-per-km estimates did not include 
dam-related mortality. 
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Figure 3.7.2. Probability frequency distribution of natural, in-river mortality per km for Atlantic 
salmon (Salmo salar) smolts migrating downstream. Mortality-per-km estimates did not include 
dam-related mortality. 
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Figure 3.9.1.1. Cumulative flow probability functions (dashed line) and Atlantic salmon (Salmo salar) 
smolt survival (solid line) for 15 Federal Energy Regulatory Commission-regulated hydroelectric 
dams on the Penobscot River. For 6 of the dams, survival was modeled by flow (dams with only a 
solid black line; in cubic feet per second [CFS]). For the other 9 dams, smolt survival by flow is 
shown (solid gray line), but survival was modeled at a constant value (solid black line) based on 
current conditions. The constant value is not shown for Medway Dam because survival equaled 
zero. Note that the x-axes are dam-specific. 
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Figure 3.9.2.1. Probability frequency distribution of smolt path choice for Atlantic salmon (Salmo 
salar) in the Stillwater branch of the Penobscot River. 
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Figure 3.11.1. Probability frequency distribution of the discount on Atlantic salmon (Salmo salar) 
hatchery smolts to adjust to the equivalent number of wild smolts. 
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Figure 3.13.1.1. Probability frequency distributions of marine survival for hatchery-origin and wild-
origin Atlantic salmon (Salmo salar). 
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Figure 3.18.3.2.1. Number of Atlantic salmon (Salmo salar) smolts stocked in the Penobscot River 
watershed in generations 1–15 in the Phase 3 Recovery Analysis. 
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Figure 3.18.3.2.2. Smolt stocking locations for Atlantic salmon (Salmo salar) in the Penobscot River 
watershed in generations 1–15 in the Phase 3 Recovery Analysis. 
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Figure 3.18.3.2.3. Number of 2 sea-winter Atlantic salmon (Salmo salar) females removed for use as 
broodstock in the Penobscot River watershed in generations 1 – 15 in the Phase 3 Recovery 
Analysis. In generation 1, the removal of 150 2 sea-winter females was included in the calculation 
of the initial number of adults. 
  

0

25

50

75

100

125

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r r

em
ov

ed

Generation

Series2



72 
 

 
Figure 3.19.1. The Penobscot River watershed divided into 3 areas. The upper Penobscot area 
included the portion of the watershed above West Enfield Dam, the Piscataquis area included the 
Piscataquis River watershed, and the lower Penobscot area included the portion of the watershed 
below West Enfield Dam.  
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Figure 4.1.1. Median adult abundance of Atlantic salmon (Salmo salar) in the Penobscot River 
watershed in generations 1–15 for 4 model scenarios evaluating the effects of dams and hatchery 
supplementation in the Base Model Runs. Dams were either set at baseline survival rates (Dams 
On) or 100% survival (No Dams). Hatchery supplementation was either set to the baseline stocking 
strategy (Hatch On) or no stocking occurred (Hatch Off). Results overlap in Hatch Off scenarios. 
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Figure 4.1.2. Mean (dot), median (center line), 25th and 75th percentiles (box), and 5th and 95th 
percentiles (whiskers) of Atlantic salmon (Salmo salar) adult abundance in the Penobscot River 
watershed in generation 15 for 4 model scenarios evaluating the effects of dams and hatchery 
supplementation in the Base Model Runs. Dams were either set at baseline survival rates (Dams 
On) or 100% survival (No Dams). Hatchery supplementation was either set to the baseline stocking 
strategy (Hatch On) or no stocking occurred (Hatch Off). 
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Figure 4.1.3. Median proportion of wild-origin (solid borders) and hatchery-origin (dashed borders) 
Atlantic salmon (Salmo salar) adults in the upper Penobscot, Piscataquis, and lower Penobscot 
areas of the Penobscot River watershed in generation 15 for 4 model scenarios evaluating the 
effects of dams and hatchery supplementation in the Base Model Runs. Dams were either set at 
baseline survival rates (Dams On) or 100% survival (No Dams). Hatchery supplementation was 
either set to the baseline stocking strategy (Hatch On) or no stocking occurred (Hatch Off). 
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Figure 4.2.1.1. Median Atlantic salmon (Salmo salar) adult abundance in the Penobscot River 
watershed in generation 15 for 3 model scenarios evaluating the effects of varying dam, egg-to-
smolt, and marine survival rates in the Whole System Dam Analysis. Egg-to-smolt and marine 
survival were increased by a factor of 1–3. Downstream and upstream dam survival rates were set 
at low (0.80, 0.90; top panel), medium (0.90, 0.95; middle panel), and high (1, 1; bottom panel) levels 
at all dams in the watershed, except Howland (1, 1) and Medway (0, 0) dams. No hatchery 
supplementation occurred in these scenarios.  
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Figure 4.2.2.1. Median Atlantic salmon (Salmo salar) adult abundance in the Penobscot River 
watershed in generations 1–15 for 3 model scenarios evaluating the effects of stocking location in 
the Whole System Stocking Location Analysis. The model scenarios reflect all smolts stocked in 
production unit (PU) 14, immediately below Milford Dam (Milford); the baseline stocking strategy 
(Baseline); and all smolts stocked in PU 2, upstream of Weldon Dam (Weldon). Egg-to-smolt and 
marine survival were set at the baseline rates (top panel) and increased (bottom panel; egg-to-smolt 
survival was increased by a factor of 2.2, and marine survival was increased by a factor of 1.8). 
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Figure 4.2.2.2. Mean (dot), median (center line), 25th and 75th percentiles (box), and 5th and 95th 
percentiles (whiskers) of Atlantic salmon (Salmo salar) adult abundance in the Penobscot River 
watershed in generation 15 for 3 model scenarios evaluating the effects of stocking location in the 
Whole System Stocking Location Analysis. The model scenarios reflect all smolts stocked in 
production unit (PU) 14, immediately below Milford Dam (Milford); the baseline stocking strategy 
(Baseline); and all smolts stocked in PU 2, upstream of Weldon Dam (Weldon). Egg-to-smolt and 
marine survival were set at the baseline rates (top panel) and increased (bottom panel; egg-to-smolt 
survival was increased by a factor of 2.2, and marine survival was increased by a factor of 1.8). 
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Figure 4.2.2.3. Median Atlantic salmon (Salmo salar) adult abundance in production unit (PU) 2 in 
generations 1–15 for 3 model scenarios evaluating the effects of stocking location in the Whole 
System Stocking Location Analysis. The model scenarios reflect all smolts stocked in PU 14, 
immediately below Milford Dam (Milford); the baseline stocking strategy (Baseline); and all smolts 
stocked in PU 2, upstream of Weldon Dam (Weldon). Egg-to-smolt and marine survival were set at 
the baseline rates (top panel) and increased (bottom panel; egg-to-smolt survival was increased by 
a factor of 2.2, and marine survival was increased by a factor of 1.8). Results overlap in Milford and 
Baseline scenarios in top panel. 
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Figure 4.2.2.4. The probability of having zero Atlantic salmon (Salmo salar) adults in production unit 
(PU) 2 in generations 1–15 for 3 model scenarios evaluating the effects of stocking location in the 
Whole System Stocking Location Analysis. The model scenarios reflect all smolts stocked in PU 
14, immediately below Milford Dam (Milford); the baseline stocking strategy (Baseline); and all 
smolts stocked in PU 2, upstream of Weldon Dam (Weldon). Egg-to-smolt and marine survival were 
set at the baseline rates (top panel) and increased (bottom panel; egg-to-smolt survival was 
increased by a factor of 2.2, and marine survival was increased by a factor of 1.8). 
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Figure 4.2.2.5. Median proportion of wild-origin (solid borders) and hatchery-origin (dashed 
borders) Atlantic salmon (Salmo salar) adults in the upper Penobscot, Piscataquis, and lower 
Penobscot areas of the Penobscot River watershed in generation 15 for 3 model scenarios 
evaluating the effects of stocking location in the Whole System Stocking Location Analysis. The 
model scenarios reflect all smolts stocked in production unit (PU) 14, immediately below Milford 
Dam (Milford); the baseline stocking strategy (Baseline); and all smolts stocked in PU 2, upstream 
of Weldon Dam (Weldon). Egg-to-smolt and marine survival were set at the baseline rates (top panel) 
and increased (bottom panel; egg-to-smolt survival was increased by a factor of 2.2, and marine 
survival was increased by a factor of 1.8). 
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Figure 4.3.1.1. Median Atlantic salmon (Salmo salar) adult abundance in the Penobscot River 
watershed in generations 1–8 for 5 model scenarios evaluating the effects of varying dam survival, 
especially at Weldon Dam, in the Survival and Phase 2 Recovery Analyses. The model scenarios 
reflect existing conditions at Weldon Dam (Existing); proposed conditions at Weldon Dam with 
impoundment mortality present (Proposed w/ Impound); proposed conditions at Weldon Dam 
without impoundment mortality (Proposed); the removal of Weldon Dam (Weldon Removed); and 
the removal of all hydroelectric dams in the watershed, except those in the West Branch (No Dams). 
Smolt stocking numbers and locations were set at baseline conditions. Results overlap in Existing, 
Proposed w/ Impound, Proposed, and Weldon Removed scenarios. 
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Figure 4.3.1.2. Median Atlantic salmon (Salmo salar) adult abundance in production unit 2 in 
generations 1–8 for 5 model scenarios evaluating the effects of varying dam survival, especially at 
Weldon Dam, in the Survival and Phase 2 Recovery Analyses. The model scenarios reflect existing 
conditions at Weldon Dam (Existing); proposed conditions at Weldon Dam with impoundment 
mortality present (Proposed w/ Impound); proposed conditions at Weldon Dam without 
impoundment mortality (Proposed); the removal of Weldon Dam (Weldon Removed); and the 
removal of all hydroelectric dams in the watershed, except those in the West Branch (No Dams). 
Smolt stocking numbers and locations were set at baseline conditions. Results overlap in all 
scenarios. 
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Figure 4.3.1.3. The probability of having zero Atlantic salmon (Salmo salar) adults in production unit 
2 in generations 1–8 for 5 model scenarios evaluating the effects of varying dam survival, especially 
at Weldon Dam, in the Survival and Phase 2 Recovery Analyses. The model scenarios reflect 
existing conditions at Weldon Dam (Existing); proposed conditions at Weldon Dam with 
impoundment mortality present (Proposed w/ Impound); proposed conditions at Weldon Dam 
without impoundment mortality (Proposed); the removal of Weldon Dam (Weldon Removed); and 
the removal of all hydroelectric dams in the watershed, except those in the West Branch (No Dams). 
Smolt stocking numbers and locations were set at baseline conditions. Results overlap in Existing, 
Proposed w/ Impound, Proposed, and Weldon Removed scenarios. 
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Figure 4.3.1.4. Median proportion of wild-origin (solid borders) and hatchery-origin (dashed 
borders) Atlantic salmon (Salmo salar) adults in the upper Penobscot, Piscataquis, and lower 
Penobscot areas of the Penobscot River watershed in generation 8 for 5 model scenarios evaluating 
the effects of varying dam survival, especially at Weldon Dam, in the Survival and Phase 2 Recovery 
Analyses. The model scenarios reflect existing conditions at Weldon Dam (Existing); proposed 
conditions at Weldon Dam with impoundment mortality present (Proposed w/ Impound); proposed 
conditions at Weldon Dam without impoundment mortality (Proposed); the removal of Weldon Dam 
(Weldon Removed); and the removal of all hydroelectric dams in the watershed, except those in the 
West Branch (No Dams). Smolt stocking numbers and locations were set at baseline conditions. 
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Figure 4.3.2.1. Median Atlantic salmon (Salmo salar) adult abundance in the Penobscot River 
watershed in generations 1–15 for 5 model scenarios evaluating the effects of varying dam survival, 
especially at Weldon Dam, in the Phase 3 Recovery Analysis. The model scenarios reflect existing 
conditions at Weldon Dam (Existing); proposed conditions at Weldon Dam with impoundment 
mortality present (Proposed w/ Impound); proposed conditions at Weldon Dam without 
impoundment mortality (Proposed); the removal of Weldon Dam (Weldon Removed); and the 
removal of all hydroelectric dams in the watershed, except those in the West Branch (No Dams). 
The gray box highlights the period of changes in smolt stocking numbers, stocking locations, and 
removal of 2 sea-winter females for use as broodstock. 
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Figure 4.3.2.2. Median Atlantic salmon (Salmo salar) adult abundance in production unit 2 in 
generations 1–15 for 5 model scenarios evaluating the effects of varying dam survival, especially 
at Weldon Dam, in the Phase 3 Recovery Analysis. The model scenarios reflect existing conditions 
at Weldon Dam (Existing); proposed conditions at Weldon Dam with impoundment mortality present 
(Proposed w/ Impound); proposed conditions at Weldon Dam without impoundment mortality 
(Proposed); the removal of Weldon Dam (Weldon Removed); and the removal of all hydroelectric 
dams in the watershed, except those in the West Branch (No Dams). The gray box highlights the 
period of changes in smolt stocking numbers, stocking locations, and removal of 2 sea-winter 
females for use as broodstock. 
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Figure 4.3.2.3. The probability of having zero Atlantic salmon (Salmo salar) adults in production unit 
2 in generations 1–15 for 5 model scenarios evaluating the effects of varying dam survival, 
especially at Weldon Dam, in the Phase 3 Recovery Analysis. The model scenarios reflect existing 
conditions at Weldon Dam (Existing); proposed conditions at Weldon Dam with impoundment 
mortality present (Proposed w/ Impound); proposed conditions at Weldon Dam without 
impoundment mortality (Proposed); the removal of Weldon Dam (Weldon Removed); and the 
removal of all hydroelectric dams in the watershed, except those in the West Branch (No Dams). 
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Figure 4.3.2.4. Median proportion of wild-origin (solid borders) and hatchery-origin (dashed 
borders) Atlantic salmon (Salmo salar) adults in the upper Penobscot, Piscataquis, and lower 
Penobscot areas of the Penobscot River watershed in generation 15 for 5 model scenarios 
evaluating the effects of varying dam survival, especially at Weldon Dam, in the Phase 3 Recovery 
Analysis. The model scenarios reflect existing conditions at Weldon Dam (Existing); proposed 
conditions at Weldon Dam with impoundment mortality present (Proposed w/ Impound); proposed 
conditions at Weldon Dam without impoundment mortality (Proposed); the removal of Weldon Dam 
(Weldon Removed); and the removal of all hydroelectric dams in the watershed, except those in the 
West Branch (No Dams). 
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Figure 4.3.3.1. The numbers and proportions of Atlantic salmon (Salmo salar) smolts that survived 
and were killed by in-river, impoundment, and dam mortality in production unit (PU) 2 and at Weldon 
Dam for 5 model scenarios evaluating the effects of 3 types of mortality in the Smolt Mortality 
Analysis. The model scenarios reflect existing conditions at Weldon Dam (Existing); proposed 
conditions at Weldon Dam with impoundment mortality present (Proposed w/ Impound); proposed 
conditions at Weldon Dam without impoundment mortality (Proposed); the removal of Weldon Dam 
(Weldon Removed); and the removal of all hydroelectric dams in the watershed, except those in the 
West Branch (No Dams). 
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