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Abstract

In this paper we determine all algebraic transformation groups G, defined over an al-

gebraically closed field k, which operate transitively, but not primitively, on a variety Ω,

provided the following conditions are fulfilled. We ask that the (non-effective) action of G

on the variety of blocks is sharply 2-transitive, as well as the action on a block ∆ of the

normalizer G∆. Also we require sharp transitivity on pairs (X, Y ) of independent points of

Ω, i.e. points contained in different blocks.

Although classifications of imprimitive permutation groups appeared already at
beginning of the last century (see [10]) and imprimitive actions play an important
role in geometry, the corresponding literature is actually less well-developed than the
one concerning primitive groups. For finite groups some classification has been done
(see for instance [1], [5] and [11]). In [1] by using wreath products, the best-known
construction principle to get imprimitive groups, a classification of finite imprimitive
groups, acting highly transitively on blocks and satisfying conditions very common
in geometry, is achieved.

The present paper arises with the aim to obtain classifications for infinite im-
primitive groups belonging to well-studied categories. We start with an imprimitive
algebraic group G, over an algebraically closed field k, operating on an algebraic
variety Ω of positive dimension in such a way that the induced actions on the set
Ω of blocks and on a block ∆ are both sharply 2-transitive. Moreover we ask the
group to act sharply transitively on pairs of points lying in different blocks. The
latter condition, frequently occurring in geometry (see for instance [2]), avoids a too
general context. For the classification we do not need the group actions be bi-regular
morphisms but we just ask that the orbit maps be separable morphisms. It turns out
that G is the semidirect product of a 3-dimensional unipotent connected group Gu

by a 1-dimensional connected torus T , both acting on the points of an affine plane
over k with a full set of parallel lines as the blocks.

There are two subgroups which play a fundamental role for the classification: the
kernel G[ Ω ] of the representation on Ω (the so-called inertia subgroup) and its stabi-
lizer G[ Ω ]O

of a fixed point O, which turns out to be even the point-wise stabilizer of
the block containing O. There exists a G-invariant transversal L of G with respect to
G[ Ω ]O

which is essential for the classification. L is a subgroup precisely if Gu/z(Gu)

is commutative, in such a case Gu/z(Gu) is even a vector group. Fixing the struc-
ture of L, the classification (see the main theorem) depends on four (not necessarily
independent) integer parameters which distinguish the isomorphism class of G. But
if the char k is positive, then for suitable values of the integer parameters it happens
that L could be both a vector group and a non-commutative group.
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We refer to [13] for well-known results about non-affine algebraic groups and to
[9] about affine algebraic groups.

§1. Throughout the paper G will denote an algebraic group defined over an alge-
braically closed field k, operating effectively on the points of a variety Ω of positive
dimension. We assume that the orbit maps g 7→ g(X) are separable morphisms
G → Ω and G acts transitively with a nontrivial system of imprimitivity Ω. More-
over, putting

- the normalizer G∆ := {g ∈ G : g(∆) = ∆} of ∆ ∈ Ω,

- the centralizer G[ ∆ ] := {g ∈ G∆ : g(X) = X ∀X ∈ ∆} of ∆ ∈ Ω,

- the inertia subgroup G[ Ω ] :=
{
g ∈ G : g(∆) = ∆ ∀∆ ∈ Ω

}
,

we require the following transitivities:

1. G∆/G[ ∆ ] acts sharply 2-transitively on ∆,

2. G/G[ Ω ] acts sharply 2-transitively on Ω,

3. G acts sharply transitively on Λ :=
{
(X, Y ) ∈ Ω2 : ∆X 6= ∆Y

}
, where ∆Z ∈ Ω

denotes the block containing Z ∈ Ω.

We call such a triple G = (G, Ω, Ω) a (2, 2)-imprimitive algebraic group. Since the
stabilizer of a point is not trivial, conditions 3 and 1 guarantiy that the centre of G
consists just of the identity. Hence the algebraic group G must be affine.

1 . Proposition:

i) Every block ∆ ∈ Ω is closed and G∆ = G[ Ω ]GX for any X ∈ ∆;

ii) the inertia subgroup G[ Ω ] is closed.

Proof : Every block ∆ ∈ Ω is a constructible set as the union, for X ∈ ∆, of two
GX -orbits, {X} and ∆ \ {X}, so ∆ is closed by Theorem 1.6 in [7]. Then G[ Ω ] is
the intersection of all closed subgroups G∆. Finally G∆ = G[ Ω ]GX follows from the
fact that the normal subgroup G[ Ω ] acts transitively on ∆. ¤

2 . Remark : As orbit maps are separable morphisms G → Ω, by the universal
mapping property we may identify Ω with the homogeneous space G/GO for a fixed
stabilizer GO =

{
g ∈ G : g(O) = O

}
, O ∈ Ω. As well as, in view of Proposition 1,

we may identify Ω with the homogeneous space G/G∆.

3 . Proposition: For all X ∈ Ω the centralizer G[ Ω ]X
=

{
g ∈ G[ Ω ] : g(X) = X

}

is contained in G[ ∆X ] and G[ Ω ] = G[ Ω ]X
×G[ Ω ]Y

for any (X, Y ) ∈ Λ.

Proof : G[ Ω ]X
acts (effectively and) sharply transitively on the block ∆Y , the cen-

tralizer GX,Y being trivial. If blocks contain finitely many points the order of G[ Ω ]X

is |∆|. In such a case G[ Ω ]X
operates non-effectively on ∆X \ {X} with orbits of

the same length θ, since G[ Ω ]X,X′
= G[ Ω ] ∩ G[ ∆X ] for any X ′ ∈ ∆ \ {X}. But

gcd(|∆| − 1, |∆|) = 1 forces θ = 1.
If blocks contain infinitely many points, G[ Ω ]X

acts on ∆Y as the kernel of the

Frobenius group G∆Y /G[ ∆Y ]. So G[ Ω ]X
is a 1-dimensional connected unipotent

group by [7] (Theorem 1.10), hence must act trivially on ∆X by Proposition 1 in
[8]. Therefore in any case G[ Ω ]X

< G[ ∆X ] and this forces G[ Ω ]X
to be a normal

subgroup of G[ Ω ]. The last claim follows from the sharply transitivity of G on Λ. ¤
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4 . Proposition:

a) Ω contains infinitely many blocks and every block contains infinitely many points;

b) GO is the semidirect product of the 1-dimensional connected unipotent subgroup
G[ Ω ]O

by a 1-dimensional connected torus T ;

c) G/G[ Ω ] is a 2-dimensional Frobenius algebraic group with complement ' T ;

d) For all ∆ ∈ Ω, G∆/G[ ∆ ] is a 2-dimensional Frobenius algebraic group whose
1-dimensional kernel is isomorphic to G[ Ω ]X

for any X ∈ Ω \∆.

Proof : The group GO/G[ Ω ]O
acts effectively and sharply transitively on Ω \ {∆O}

and maps surjectively onto GO/G[ ∆O ] by Proposition 3. Thus |Ω| < ∞ implies
|∆O| < ∞ and Ω would be of finite cardinality. So infinitely many blocks occur and
the kernel of the Frobenius algebraic group G/G[ Ω ] is a 1-dimensional connected
unipotent group ([7], Theorems 1.8 and 1.10) with a 1-dimensional connected torus
as the complement G∆O /G[ Ω ] = G[ Ω ]GO/G[ Ω ] ' GO/G[ Ω ]O

([8], Proposition 1).

Finally the non-trivial factor group GO/G[ ∆O ], as a continuous epimorphic image
of GO/G[ Ω ]O

, must be a 1-dimensional connected torus, as well. So GO must split
over the unipotent group G[ Ω ]O

by a 1-dimensional connected torus T . ¤

5 . Proposition: G is a solvable connected affine group of dimension 4 and G is
the semidirect product of its unipotent radical Gu by the torus T . Moreover the centre
z(Gu) of Gu is contained in G[ Ω ] and for any X ∈ Ω we have G[ Ω ] = z(Gu)×G[ Ω ]X

.

Proof : As G[ Ω ] is a 2-dimensional connected unipotent group by Propositions 4.d
and 3 and G/G[ Ω ] is a connected solvable 2-dimensional group by Proposition 4.c,
the unipotent radical Gu has codimension 1 and acts transitively on Ω. We have
z(Gu) < G[ Ω ] since z(Gu) centralizes each G[ Ω ]X

. Finally z(Gu) is transitive on

every block ∆, hence sharply transitive, the group G∆/G[ ∆ ] being primitive. ¤

6 . Remark : If we denote by gu and gs the images of g ∈ G under the projections
Gu × T → Gu and Gu × T → T , respectively, the mapping π : G → Gu/G[ Ω ]O

with

π(g) = guG[ Ω ]O
turns out to be a separable morphism of algebraic varieties. The

fibres of π are precisely the cosets gGO, so gGO 7→ guG[ Ω ]O
yields an isomorphism

G/GO → Gu/G[ Ω ]O
. So we may take the homogeneous space Gu/G[ Ω ]O

as Ω and

(
g, hG[ Ω ]O

)
7→ ghg−1

s G[ Ω ]O
(g ∈ G, h ∈ Gu)

as the action of G on Ω since (g1g2)u = (g1)u(g1)s(g2)u(g1)
−1
s . In particular Ω '

Gu/G[ Ω ]O
is a 2-dimensional (irreducible affine) variety with

Ω =
⋃

g∈Gu
∆g(O) '

⋃
g∈Gu

gz(Gu)G[ Ω ]O
.

§2. Let G = UoT be a semidirect product of an n-dimensional connected unipotent
group U by a 1-dimensional connected torus T . According to Serre [14], p. 172, the
group U has a representation on the affine space kn in such a way the subspaces

Ui =
{
(x1, . . . , xn) ∈ kn : xi+1 = . . . = xn = 0)

}

are normal subgroups of G, the product is given by (x1, . . . , xn)(y1, . . . , yn) =

(
x1 + y1 + ψ1(x2, . . . , xn, y2, . . . , yn), . . . , xn−1 + yn−1 + ψn−1(xn, yn), xn + yn

)
,
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for suitable polynomials ψj ∈ k[xj , . . . , xn, yj+1, . . . , yn], and the automorphism of
U induced by an element τ ∈ T maps (x1, . . . , xn) to

(
ae1

τ x1 + ϕ
(τ)
1 (x2, . . . , xn), . . . , a

en−1
τ xn−1 + ϕ

(τ)
n−1(xn), aen

τ xn

)

with aτ ∈ k∗, an element depending bi-regularly on τ , the map ϕ
(τ)
j a morphism

Un/Uj → Uj/Uj−1 and ej a fixed integer.

7 . Lemma: Let n ≥ 2. Then for any τ ∈ T the morphism ϕ
(τ)
n−1 yields a group

homomorphism Un/Un−1 → Un−1/Un−2. Moreover we may take as ψn−1

a) the zero polynomial, if Un/Un−2 is a vector group,

b)
∑p−1

i=1
1
p

(p
i ) xipr

n y
(p−i)pr

n , if Un/Un−2 is an Abelian group of exponent p2,

c) xpr

n yps

n , if Un/Un−2 is not commutative,

where, in the cases b) and c), p = char k > 0, r and s are nonnegative integers such
that r < s and en−1 = endeg(ψn−1).

Proof : We may take as ψn−1(xn, yn) (see for instance Lemma 7.1 in [6])

- 0, if Un/Un−2 is a vector group,

- b
∑p−1

i=1
1
p

(p
i ) xipr

n y
(p−i)pr

n , if Un/Un−2 is Abelian but not a vector group,

- bxpr

n yps

n , if Un/Un−2 is not commutative,

for some non-negative integers r, s with r < s and a non-zero scalar b, that may
assumed 1 thanks to the isomorphism

( . . . , xn−1, xn)Un−2 7→ ( . . . , bxn−1, xn)Un−2.

Now the fact that τ operates on Un as an automorphism group implies that the
co-boundary

δ1(ϕ(τ)
n−1

)
(xn, yn) = ϕ

(τ)
n−1(yn)− ϕ

(τ)
n−1(xn + yn) + ϕ

(τ)
n−1(xn)

is one of the following

- 0, if Un/Un−2 is a vector group;

-
(
a

en−1
τ − a

en deg ψn−1
τ

)
ψn−1(xn, yn), otherwise.

In the latter case the fact that ψn−1 is not a co-boundary forces each aτ to be a
root of the polynomial Tendeg(ψn−1) − Ten−1 and this forces the condition en−1 =
endeg(ψn−1). As a consequence δ1

(
ϕ

(τ)
n−1

)
must be in any case the zero polynomial,

which means that ϕ
(τ)
n−1 yields a group homomorphism Un/Un−1 → Un−1/Un−2. ¤

8 . Remark : It follows from [3] that the action of a 1-dimensional torus on a 2-
dimensional connected unipotent group U may be given by diagonal (2×2)−matrices
with entries in k. The following lemma, which generalizes both the lemma on p. 109
in [12] and Corollary 2.9 in [7], shows that this can be done without destroying the
group structure of U .

9 . Lemma: Let ϕ
(τ)
2 = . . . = ϕ

(τ)
n−1 = 0 and assume ϕ

(τ)
1 is a group homomorphism

Un/Un−1 → U1. Then there exists a bi-regular section σ : Un/Un−1 → Un such that
σ
(
xnUn−1

)
=

(
f(xn), 0, . . . , 0, xn

)
with δ1(f) = 0 and σ

(
Un/Un−1

)
invariant under

T .
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Proof : We may suppose ϕ
(τ)
1 ∈ k[xn] with ϕ

(τ)
1 (xn) =

∑
i∈I, j∈J cija

j
τxi

n for some
finite sets I and J of integers with

I =

{ {1}, if char k = 0;
a finite set of p-powers, if char k = p > 0.

The product τ1τ2 of two elements of T gives

ϕ
(τ1τ2)
1 (xn) = ae1

τ1ϕ
(τ2)
1 (xn) + ϕ

(τ1)
1

(
aen

τ2 xn

)
,

hence for each i ∈ I
∑
j∈J

cija
j
τ1aj

τ2 =
∑
j∈J

cij

(
ae1

τ1aj
τ2 + aj

τ1aien
τ2

)
.

By comparing we infer that just ci,e1 and ci,ien can occur as nonzero entries. So

ci,e1ae1
τ1ae1

τ2 + ci,ienaien
τ1 aien

τ2 = ci,e1

(
ae1

τ1ae1
τ2 + ae1

τ1aien
τ2

)
+ ci,ien

(
ae1

τ1aien
τ2 + aien

τ1 aien
τ2

)
,

or ci,e1 + ci,ien = 0. Therefore ϕ
(τ)
1 (xn) =

∑
i∈I ci,e1(a

e1
τ − aien

τ )xi
n and{(−∑

i∈I ci,e1xi
n, 0, . . . , 0, xn

)
: xn ∈ k

}

turns out to be T -invariant with δ1 :
∑

i∈I ci,e1T
i 7→ 0. ¤

Set M :=
{
(0, . . . , 0, xn) : xn ∈ k

}
and let υ = (0, . . . , 0, u) ∈ M . We have

10 . Lemma: Let n ≥ 3. Assume the centralizer CUn−1(υ) of υ in Un−1 satisfies
the condition CUn−1(υ) = Un−2 mod Un−3 for all υ ∈ M . Then the automorphism
ρυ of Un−1/Un−3 induced by conjugation by υ maps

( . . . , xn−2, xn−1, 0)Un−3 7−→
(

. . . , xn−2 + uhxk
n−1, xn−1, 0

)
Un−3

with h and k p-powers if char k = p > 0, h = k = 1 otherwise.

Proof : As Un−1/Un−2 ≤ z(Un/Un−2), we have

ρυ : ( . . . , xn−2, xn−1, 0)Un−3 7−→
(

. . . , xn−2 + σ(u, xn−1), xn−1, 0
)
Un−3

for some additive polynomial σ ∈ k[ u, xn−1], which turns out to be monomial because
CUn−1(υ) = Un−2 mod Un−3 forces ρυ to act fixed-point freely on Un−2/Un−3. Thus

σ(u, xn−1) = cuhxk
n−1 for some integers h, k and scalar c ∈ k∗ that we may assume

1, up to the isomorphism ( . . . xn−2, xn−1, xn)Un−3 7→ . . . xn−2, c
− 1

k xn−1, xn)Un−3.
Clearly the integers h and k have to satisfy the claimed conditions. ¤

In the remaining part of the paper we ask the torus T to act sharply transitively
on Un/Un−1. This means

en =

{
1, if char k = 0;
a p-power, if char k = p > 0.

(1)

§3. Now we go back to the the (2, 2)-imprimitive algebraic group G = (G, Ω, Ω).
This section is devoted to the case where the 2-dimensional factor group Gu/z(Gu)
is commutative.

11 . Proposition: Gu/z(Gu) is a vector group.
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Proof : Assume it is not, then char k 6= 0 and G[ Ω ]/z(Gu) coincides with the unique
1-dimensional connected algebraic subgroup of Gu/z(Gu). Consequently G[ Ω ] is the
unique 2-dimensional connected algebraic normal subgroup of Gu containing z(Gu).
Furthermore Gu/z(Gu) commutative and dim z(Gu) = 1 require that z(Gu) is the
commutator subgroup of Gu, hence that each commutator morphism σg : x 7→ [g, x]
is a group homomorphism Gu → z(Gu), whose kernel must have dimension ≥ 2. So
ker σg ≥ G[ Ω ] for any g ∈ Gu, a contradiction since

⋂
g∈Gu

ker σg = z(Gu). ¤

12 . Proposition: There exists a T-invariant normal subgroup L of Gu containing
the centre z(Gu) and Gu = LoG[ Ω ]O

.

Proof : By [12] (Lemma on p. 109) the T -invariant subgroup G[ Ω ]/z(Gu) of Gu/z(Gu)
has a T -invariant complement, say L/z(Gu) for some T -invariant normal subgroup L
of Gu containing z(Gu). ¤

According to the notation of §2 we may take U1 = z(Gu), U2 = G[ Ω ], U3 = Gu.
In addition we may choose

G[ Ω ]O
=

{
(0, x2, 0) : x2 ∈ k

}
,

the subgroup G[ Ω ]O
being T -invariant. Observing that the normal subgroup L of G

is not contained in U2, we may also put

L =
{
(x1, 0, x3) : x1, x3 ∈ k

}
.

Thus the product (x1, 0, x3)(y1, 0, y3) of two elements of L is given by

(
x1 + y1 + β(x3, y3), 0, x3 + y3

)

and by Lemma 7 we may take

β(x3, y3) =





0, if L is a vector group,∑p−1
i=1

1
p

(p

i

)
xipr

3 y
(p−i)pr

3 , if L is commutative of exponent p2,

xpr

3 yps

3 , if L is not commutative,

(2)

for some nonnegative integers r, s with r < s. Besides an element υ = (0, 0, u) ∈ L
moves the block ∆O to a different block ∆υ(O) (Remark 6), so υ centralizes no element
in G[ Ω ]O

, the intersection G[ Ω ]O
∩ G[ Ω ]`(O)

being trivial. Then Lemma 10 applies

and, up to the isomorphism (x1, x2, x3) 7→ (x1, c
1

h2 x2, x3), we may claim

13 . Proposition: The product (x1, x2, x3)(y1, y2, y3) in Gu may be defined through

(
x1 + y1 + yh2

2 xh3
3 + β(x3, y3), x2 + y2, x3 + y3

)
,

where β is given by (2) and each exponent hi is a p-power in case char k = p > 0,
hi = 1 otherwise. ¤

As we observed in Remark 8, there is no loss of generality if we assume the action
of the torus T on the affine plane L given by diagonal (2× 2)−matrices. But G[ Ω ]O
occurs as a further T -invariant subgroup of dimension 1, so the diagonal action of
each τ ∈ T extends to the whole group Gu via

(x1, x2, x3) 7→
(
ae1

τ x1, ae2
τ x2, ae3

τ x3

)
. (3)



7

The value of the exponent e3 was given by (1), whereas the possible relationship
occurring between e1 and e3 was stated in Lemma 7. Now by imposing that τ is a
group homomorphism we find

e1 = e2h2 + e3h3 (4)

with hi arising from the product of Gu given in Proposition 13.

§4. Assume now the factor group Gu/z(Gu) to be not commutative. This requires
char k = p > 0 and we are going to see that even p > 2 holds.

Referring to the notation of §2 we may take again U3 = Gu, U2 = G[ Ω ], U1 =
z(Gu) and

G[ Ω ]O
=

{
(0, x2, 0) : x2 ∈ k

}
.

Also, by Lemma 7,
ψ2 : (x3, y3) 7→ xpm

3 ypn

3 ,

for some integer p-powers pm and pn such that m < n. Furthermore, looking at
Remark 6, we see that an element υ = (0, 0, x3) moves the block ∆O to a different
block ∆υ(O). So υ does not centralize any element of G[ Ω ]O

because the intersection
G[ Ω ]O

∩ G[ Ω ]υ(O)
is assumed to be trivial. So Lemma 10 applies and, up to an

isomorphism, we may assume that the automorphism induced on G[ Ω ] by an element
(0, 0, x3) maps

(y1, y2, 0) 7→ (
y1 + yh2

2 xh3
3 , y2, 0)

for suitable integer p-powers hi = pli , i = 2, 3. If we represent Gu as a non-
central extension of the vector group G[ Ω ] by Gu/G[ Ω ] using the cross section
(x1, x2, x3)G[ Ω ] 7→ (0, 0, x3), the product (x1, x2, x3)(y1, y2, y3) of two elements in
Gu can also be given by

(x1 + y1 + yh2
2 xh3

3 + β(x3, y3), x2 + y2 + xpm

3 ypn

3 , x3 + y3)

with β in k[x3, y3] such that β(0, y3) = β(x3, 0) = 0 and Gu is determined by taking

ψ1(x1, x2, y1, y2) = yh2
2 xh3

3 + β(x3, y3).

Now associative law forces the polynomial

δ2(β)(z1, z2, z3) = β(z1, z2) + β(z1 + z2, z3)− β(z2, z3)− β(z1, z2 + z3)

to be
δ2(β)(z1, z2, z3) = zpl3

1 zpl2+m

2 zpl2+n

3 (5)

and we can state

14 . Proposition: A necessary and sufficient condition in order that Gu can be
constructed as an extension of z(Gu) by a non-commutative connected unipotent group
is that there exists a polynomial β ∈ k[x3, y3] satisfying (5) with β(0, y3) = β(x3, 0) =

0. In such a case we may take ψ1(x2, x3, y2, y3) = ypl2
2 xpl3

3 + β(x3, y3). ¤

The crucial question now is under what conditions such a polynomial β there
exists. Using a universal property of the operator δ2 we have∑

π∈Sn
sign(π) δ2(β)(zπ(1), zπ(2), zπ(3)) = 0
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and this, in view of (5), is equivalent to

l3 − l2 = m, or l3 − l2 = n. (6)

Assume now char k = 2 and l2 + m > 0 and denote by βj the homogeneous component
of β of degree j. As in our case the operator δ2 is additive, (5) says that δ2(β) =
δ2(βk), where k = 2l2(2q +2m +2n) with either q = m, or q = n according as whether
l3 − l2 = m, or l3 − l2 = n. Let

βk(y1, y2) =
∑k

i=0 aiy
k−i
1 yi

2.
Then (5) becomes

∑k
i=0ai

(
zk−i
1 zi

2 + (z1 + z2)
k−izi

3 + zk−i
2 zi

3 + zk−i
1 (z2 + z3)

i
)

= z2l2+q

1 z2l2+m

2 z2l2+n

3 .

Deriving this identity with respect to z1 and evaluating at (0, y1, y2) we obtain

ak−1y
k−1
1 +

∂

∂y1
βk(y1, y2) + ak−1(y1 + y2)

k−1 = 0, (7)

whereas deriving with respect to z3 and evaluating at (y1, y2, 0) we get

a1(y1 + y2)
k−1 + a1y

k−1
2 +

∂

∂y2
βk(y1, y2) = 0. (8)

As char k = 2, ∂
∂y1

βk(y1, y2) and ∂
∂y2

βk(y1, y2) are polynomials in y2
1 and y2

2 , respec-
tively, the identities (7) and (8) force ak−1 = a1 = 0, hence

∂

∂y1
β(y1, y2) =

∂

∂y2
β(y1, y2) = 0

and this yields ai = 0 for all odd i. Thus we may do the substitution (z1, z2, z3) 7→
(z2

1 , z2
2 , z2

3), hence (z1, z2, z3) 7→ (z2l2+m

1 , z2l2+m

2 , z2l2+m

3 ) by iterating the process. So
(5) turns into

δ2(γ)(z1, z2, z3) = z2q−m

1 z2z
2n−m

3 (9)

with γ
(
y2l2+m

1 , y2l2+m

2

)
= β(y1, y2). Let γt be the homogeneous component of degree

t := 1 + 2n−m + 2q−m of γ and let γt(y1, y2) =
∑t

i=0 biy
t−i
1 yi

2. Then (9) says that
δ2(γ) = δ2(γt), hence

t∑
i=0

bi

(
zt−i
1 zi

2 + (z1 + z2)
t−izi

3 + zt−i
2 zi

3 + zt−i
1 (z2 + z3)

i
)

= z2q−m

1 z2z
2n−m

3 .

Likewise above we obtain




bt−1y
t−1
1 + ∂

∂y1
γt(y1, y2) + bt−1(y1 + y2)

t−1 = (1− ε)y1y
2n−m

2 ,

b1(y1 + y2)
t−1 + b1y

t−1
2 + ∂

∂y2
γt(y1, y2) = 0,

where either ε = 0, or ε = 1 according as whether q = m, or q = n. So Euler’s
identity says that tγt(y1, y2) is the polynomial

bt−1y1

(
yt−1
1 +(y1 + y2)t−1+ (1− ε)y1y2n−m

2

)
+ b1y2

(
(y1+ y2)t−1+ yt−1

2

)
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or the polynomial

bt−1

(
y1+2n−m

1 y2q−m

2 + y1+2q−m

1 y2n−m

2 + y1y2n−m+2q−m

2 + (1− ε) y2
1y2n−m

2

)
+

+b1
(
y2n−m+2q−m

1 y2 + y2n−m

1 y1+2q−m

2 + y2q−m

1 y1+2n−m

2

)
.

Let q = m. Then we have the polynomial identity

(
bt−1 + b1

) (
y1+2n−m

1 y2 + y1y
1+2n−m

2

)
+ b1y

2n−m

1 y2
2 = 0

which asks bt−1 = b1 = 0 and, consequently, ∂
∂y1

γt(y1, y2) = y1y
2n−m

2 , a contradic-
tion. Let q = n. Then

γt(y1, y2) = bt−1y1y
2n−m+1

2 + b1y
2n−m+1

1 y2

and δ2(γt)(x1, x2, x3) = 0. This contradicts (9) and p 6= 2 follows.
Actually, if p 6= 2 the polynomials

β(x3, y3) =





1
2
x2pl3

3 ypl2+n

3 if l3 − l2 = m;

xpl3+pl2+m

3 ypl3
3 + 1

2
xpl2+m

3 y2pl3
3 if l3 − l2 = n.

(10)

satisfy the conditions required in Proposition 14. Any other polynomial satisfying
the conditions of Proposition 14 differs from (10) for a co-cycle κ(x3, y3) for a central
extension of k+ by k+ that we are going to show it is a co-boundary.

It follows from Remark 8 that we may assume any element τ ∈ T acts on Gu via

(x1, x2, x3) 7→
(
ae1

τ x1 + ϕ
(τ)
1 (x3), a

e2
τ x2, a

e3
τ x3

)
,

with the morphism ϕ
(τ)
1 depending only on x3 because G[ Ω ]O

is T -invariant. By
imposing that τ operates as a group homomorphism we obtain first

e2 = e3(p
m + pn) and e1 = e2h2 + e3h3 = e3

(
pl3 + pl2+m + pl2+n

)
, (11)

but also

ae1
τ β(x3, y3)− β

(
ae3

τ x3, a
e3
τ y3

)
+ ae1

τ κ(x3, y3)− κ
(
ae3

τ x3, a
e3
τ y3

)
= δ1(ϕ(τ)

1

)
(x3, y3),

or
ae1

τ κ(x3, y3)− κ
(
ae3

τ x3, a
e3
τ y3

)
= δ1(ϕ(τ)

1

)
(x3, y3), (12)

because e1 = e3deg β in view of (11). Since e3 is a p-power and p > 2, the integer e1

can be, by (11), neither a p-power, nor the sum of two p-powers. Thus Theorem 4.6
in [4] guaranties that κ is a co-boundary, i.e. κ = δ1(g) for some polynomial g ∈ k[T],
that may be eliminated using the substitution x1 7→ x1 − g(x3). Such a replacement

yields δ1
(
ϕ

(τ)
1

)
(x3, y3) = 0, i.e. ϕ

(τ)
1 is additive, and we may assume the action of T

given by diagonal matrices, as Lemma 9 claims.
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§5. Now we collect all information achieved in the previous sections and classify G
according to the structure of the transversal L. With the aid of Remark 6 we can
state:

15 . Main Theorem: Every (2, 2)-imprimitive algebraic group G = (G, Ω, Ω) can
be constructed on the affine variety k3 × k∗ as follows:

• define the unipotent radical Gu on the affine space k3 through the product

(x1, x2, x3)(y1, y2, y3) =
(
x1 + y1 + ψ1(x3, y2, y3), x2 + y2 + ψ2(x3, y3), x3 + y3

)
,

where either

ψ2(x3, y3) = 0 and ψ1(x3, y2, y3) = yh2
2 xh3

3 + β(x3, y3) with each hi an
integer p-power pli in case char k = p > 0, hi = 1 otherwise, and β(x3, y3)
one of the polynomials

− 0;

− ∑p−1
i=1

1
p

(p

i

)
xipr

3 y
(p−i)pr

3 ;

− xpr

3 yps

3 ;

for suitable nonnegative integers r, s such that r < s,

or

ψ2(x3, y3) = xpm

3 ypn

3 , with p = char k > 2 and m, n non-negative integers
such that m < n, and ψ1(x3, y2, y3) as above with

β(x3, y3) =

{
1
2
x2pl3

3 ypl2+n

3 , if l3 − l2 = m;

xpl3+pl2+m

3 ypl3
3 + 1

2
xpl2+m

3 y2pl3
3 , if l3 − l2 = n;

• leave a ∈ k∗ operate on k3 via

(u1, u2, u3) 7→
(
ae1u1, a

e2u2, a
e3u3

)

where

– e1 = e2h2 + e3h3, but also e1 = e3deg β if β is not the zero polynomial;

– e2 = e3
deg β−h3

h2
if β is not the zero polynomial;

– e3 is a positive integer p-power in case char k = p > 0, e3 = 1 otherwise;

• identify Ω with the affine plane k2 with the parallel lines y = k giving the set Ω
of blocks. Then a transformation (u1, u2, u3, a) ∈ G moves the point (x, y) ∈ Ω
to the point

(
u1+ae2h2+e3h3x+ψ1(u3, 0, ae3y), u3+ae3y)

)
¤

The canonical representation of G given through the main theorem depends on
the polynomial β as well as on the integer parameters e2, e3, h2, h3, though h2 and
h3 could already be determined by β, e2 and e3. Labelling G as G

(e2, e3, h2, h3)
β , we ask

whether an isomorphism

Φ : G
(e2, e3, h2, h3)
β → G

(
e′2, e′3,h′2, h′3

)
β′

between two (2, 2)-imprimitive algebraic groups with different parameters exists. Of
course we may assume the same sets of points and blocks for both groups, so Φ is
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a pair (Φ1, Φ2) with Φ1 a group isomorphism G
(e2, e3, h2, h3)
β −→ G

(
e′2, e′3,h′2, h′3

)
β′ and

Φ2 : k2 → k2 a bijective morphism of the affine plane k2 transforming horizontal lines
into horizontal lines such that

Φ2

(
g(P )

)
= Φ1(g)

(
Φ2(P )

) (
g ∈ G

(e2, e3, h2, h3)
β , P ∈ k2).

As Gu is transitive on Ω, up to inner automorphisms we may assume that Φ2 leaves
the point O = (0, 0) of Ω fixed, hence the line y = 0 stable. Then the stabilizer of O,
as well as the normalizer and centralizers of ∆O correspond; in particular

Φ1

(
(0, u2, 0)

)
= (0, b2u2, 0) (b2 ∈ k∗),

Φ1

(
(u1, 0, 0)

)
= (b1u1, 0, 0) (b1 ∈ k∗),

(13)

and, moreover,

Φ1

(
(0, 0, u3)

)
=

(
f1(u3), f2(u3), b3u3)

)
(b3 ∈ k∗),

Φ2

(
(x, y)

)
=

(
b1x + f1(y), b3y

)
,

(14)

for suitable polynomials fj ∈ k[T] such that

δ1(f2)(x3, y3) = b2ψ2(x3, y3)− ψ′2(b3x3, b3y3) (x3, y3 ∈ k),

δ1(f1)(x3, y3) = b1ψ1(x3, 0, y3)− ψ′1
(
b3x3, f2(y3), b3y3

)
(x3, y3 ∈ k).

(15)

Manifestly tori fixing the point O correspond under Φ1; in particular we have

Φ1

(
T

(e2, e3, h2, h3)
β

)
= T

(
e′2, e′3,h′2, h′3

)
β′ since tori are conjugated under Gu. This means

(u1, u2, u3)
Φ1(τ) =

(
a

εe′1
τ u1, a

εe′2
τ u2, a

εe′3
τ u3

)
,

with ε = ±1. The identity Φ1

(
(0, 0, u3)

τ
)

=
(
Φ1(0, 0, u3)

)Φ1(τ)
and the first part

of (14) yield ε = 1, e3 = e′3 and fj

(
ae3

τ u3

)
= a

e′j
τ fj(u3), j = 1, 2, whereas

Φ1

(
(u1, u2, 0)τ

)
=

(
Φ1(u1, u2, 0)

)Φ1(τ)
and (13) give e1 = e′1 and e2 = e′2. So the

polynomials fj must be monomials and consequently, in case fj 6= 0,

ej = e3deg(fj) (j = 1, 2). (16)

Therefore fj(T) = djT
ej
e3 , dj ∈ k, j = 1, 2. Furthermore imposing the condition

Φ1(0, 0, u3)Φ1(0, v2, 0) = Φ1

(
(0, 0, u3)(0, v2, 0)

)
we obtain b

h′2
2 b

h′3
3 u

h′3
3 v

h′2
2 = b1u

h3
3 vh2

2 ,
i.e. (h′2, h

′
3) = (h2, h3) and

b1 = bh2
2 bh3

3 . (17)

So the first step is achieved:

16 . Proposition: Let G
(e′2, e′3,h′2, h′3)
β′ and G

(e2, e3, h2, h3)
β isomorphic as algebraic per-

mutation groups. Then (
e′2, e

′
3, h

′
2, h

′
3

)
= (e2, e3, h2, h3). ¤

Theorem 4.6 in [4] says that the first of (15) occurs precisely if

δ1(f2) = ψ2 − ψ′2 = 0. (18)
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Also the fact that e1 = e3 deg(β) if β is not the zero polynomial confines mat-
ters to examine the case where char k = p > 0, β = 0 and either β′(x3, y3) =∑p−1

i=1
1
p

(p

i

)
xipr

3 y
(p−i)pr

3 , or β′(x3, y3) = xpr

3 yps

3 : by (16) we have deg β′ = e1
e3

= deg f1

in case d1 6= 0. Then the second identity of (15) turns into

δ1(f1)(x3, y3) = −β′(b3x3, b3y3)− bh3
3 xh3

3 f2(y3)
h2 (19)

and again Theorem 4.6 in [4] excludes the possibility that f2 is the zero polynomial.
Then f2 is an additive monomial by (18) and (16) forces e2 to be a p-power. Thus, in
view of the main theorem, both e1 and deg β′, are the sum of two p-powers. So just
the following two possibilities can occur: either β′(x3, y3) = xpr

3 yps

3 , or char k = 2 and
β′(x3, y3) = x2r

3 y2r

3 . Thus the main theorem gives either e2h2 + e3h3 = e3(p
r + ps),

or e2h2 + e3h3 = e32
r+1, which means that the pair of p-powers (h2, h3) is one of the

following

1. (h2, h3) =
(

e3
e2

pr, ps
)
;

2. (h2, h3) =
(

e3
e2

ps, pr
)
;

3. (h2, h3) =
(

e3
e2

2r, 2r
)
.

(20)

As the right side of (19) must be a co-boundary, (20.1) gives, (20.2) and (20.3), lead
respectively to

1. d1 = bpr+ps

3 = bps

3 d
e3
e2

pr

2 , hence d2 = b
e2
e3
3 ;

2. d1 = 0 and bpr+ps

3 = −bpr

3 d
e3
e2

ps

2 , hence d2 = −b
e2
e3
3 ;

3. b2r+1

3 = b2r

3 d
e3
e2

2r

2 , hence d2 = b
e2
e3
3 .

Now it is straightforward calculation to verify that, for any b1, b2, d3 ∈ k, the maps

1.





G

(
e2, e3,

e3
e2

pr, ps
)

0 → G

(
e2, e3,

e3
e2

pr, ps
)

xpr
yps ,

(u1, u2, u3, a) 7→
(
b

e3
e2

pr

2 bps

3 u1 + (b3u3)pr+ps
, b2u2 + (b3u3)

e2
e3 , b3u3, a

)
;

2.





G

(
e2, e3,

e3
e2

ps, pr
)

0 → G

(
e2, e3,

e3
e2

ps, pr
)

xpr
yps ,

(u1, u2, u3, a) 7→
(
b

e3
e2

ps

2 bpr

3 u1, b2u2 − (b3u3)
e2
e3 , b3u3, a

)
;

3.





G

(
e2, e3,

e3
e2

2r, 2r
)

0 → G

(
e2, e3,

e3
e2

2r, 2r
)

x2r
y2r ,

(u1, u2, u3, a) 7→
(
b

e3
e2

2r

2 b2
r

3 u1 + d1u2r+1

3 , b2u2 + (b3u3)
e2
e3 , b3u3, a

)
;

(21)

are group isomorphisms in correspondence to the values (20. i) of the pair of p-powers
(h2, h3). Manifestly such isomorphisms supply isomorphisms for the associated per-
mutation groups. Summing up we have

17 . Theorem: The integer parameters e2, e3, h2, h3 and the polynomial β determine
uniquely the isomorphy class of the (2, 2)-imprimitive algebraic group G, except the
cases where the pair (h2, h3) takes one of the (integer) values (20. i) which produces
the corresponding isomorphisms (21. i). ¤
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