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Complexation equilibria, in mixed water-methanol solvent media, between native B-cyclodextrin and
a set of suitably selected p-nitro-aniline derivatives were studied by means of polarimetry. The effects
exerted by the organic co-solvent on the conditional inclusion free energies AGlnq and the differential
molar optical rotations A® were thoroughly analyzed under the perspective of the enthalpy-entropy
compensation effect. Experimental data suggest an intimate participation (‘dynamic co-inclusion’) of
solvent molecules in the formation and in the conformational dynamics of the host-guest inclusion

complex.
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1. Introduction

Establishing a hierarchy between the different factors affecting
the energetics of inclusion processes involving cyclodextrins (CDs)
as hosts has been a topic of major concern and intense debate!™
that is far from being exhausted. Indeed, despite the amount of
efforts devoted to the issue, the microscopic behaviour of these
simple cyclic oligo-saccharides still appears quite elusive in its in-
timate features, which cannot be yet considered satisfactorily
understood.

The simple and familiar idea of CDs as rigid buckets with a hy-
drophobic cavity easily led to the role of major driving force for the
inclusion process being ascribed to the transfer of a (possibly) hy-
drophobic guest G from the water pool into a more ‘friendly’ en-
vironment,>3> with the simultaneous transfer of ‘high energy’
water molecules from the host cavity into the aqueous bulk. Sol-
vation/desolvation phenomena have been assumed to be the main
source of thermodynamic stabilization for the supramolecular
complex,>®7 in terms of AH®, AS® and Acp. Thus, the observed en-
thalpy—entropy compensation (isoequilibrium) relationships® for
these systems have also been interpreted within such a frame-
work. 3?19 In other words, considering the overall binding equi-
librium as the sum of a ‘nominal’ (n) and an ‘environmental’ (e)
process (Scheme 1),° the latter one has been regarded as the most
important thermodynamically.
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[CD-hH,0] + [G-gH,0] === [CD-G-iH,O+ (h+g-i)H,0
(overall)

Scheme 1.

However, during the last years it has become clearer and clearer
that the situation is more complex. In fact, CDs are not rigid, but
fairly flexible systems, as accounted for by both computational and
experimental evidence."" The possible partial rotation around the
glycosidic bridge bonds allows a dynamic rearrangement of
the different glucose units, up to a certain extent, which affects the
optical activity of the macrocycle,'? as well as its binding properties
(‘induced fit'1® effect). Moreover, it has been unquestionably dem-
onstrated that the energetics of binding is heavily affected by fac-
tors such as van der Waals, steric and polar/electrostatic
interactions, and also specific (C-H---w,'* hydrogen bond?) in-
teractions, which must be specifically ascribed to the ‘nominal’
process.

Although no restriction on solvents might be set up, complex-
ation equilibria involving CDs have been studied up to now almost
exclusively in water or aqueous buffered systems. To the best of our
knowledge, reports on systematic studies carried out in mixed or
entirely non-aqueous solvent media are scarce in recent litera-
ture.l> However, it can be reasonably expected that the binding
properties of CDs should be significantly affected by the presence
of organic co-solvents. This, in turn, might shed some light on
the actual role and importance of solvent effects on the binding
equilibrium. Noticeably, recent attempts to achieve this piece of
informallftsion have been carried out by means of studies performed
in Dzo.
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We have recently shown that polarimetry can be profitably used
as an experimental tool in order to study the formation of inclusion
complexes with CDs.!” Determinations of the binding constants are
fast, accurate and reliable. Moreover, provided that a careful data
analysis is carried out, polarimetric data can give interesting in-
formation also on the structure and the dynamic behaviour of the
inclusion complex. So, to progress our previous work, we per-
formed a polarimetric study on the effect of methanol, as organic
co-solvent, on the inclusion equilibria between native B-cyclodex-
trin (B-CD) and a set of suitably selected p-nitro-aniline derivatives
1-8 (Fig. 1).

It is worth noting that p-nitro-aniline derivatives constitute for
several reasons a class of ideal model substrates. As a matter of fact,
the p-nitro-aniline moiety unambiguously directs the penetration
of the guest into the host cavity'® (the nitro group is always di-
rected towards the primary hydroxyl rim). Then, it is an effective
chromophore, whose behaviour can be comfortably investigated by
means of UV-vis spectrophotometry. Furthermore, large variations
in molecular properties (volume and steric hindrance, hydropho-
bicity, polarity, electric charge, and so on) can be easily achieved by
changing the groups linked to the amino nitrogen atom (the ‘an-
cillary chain’). Consequently, large variations can be observed in the
thermodynamic parameters for the inclusion process, as well as
different enthalpy-entropy compensation behaviours.* Nonethe-
less, guests 1-8 were selected in view of their satisfactory water
solubility, and in order to span a range of inclusion AH® and TAS®
values as large as possible. On the other hand, methanol was chosen
as co-solvent for its close similarity to water, in such a way as to
achieve a smooth modulation in the intrinsic properties of the
solvent system.

2. Results and discussion

The complete results of polarimetric determinations are repor-
ted as Supplementary data, namely the values of the conditional
binding constants K.ong measured at 298 K, the relevant conditional
inclusion free energies AG%nq and the molar differential optical
rotations A0 (the difference between the molar optical rotations of
the inclusion complex and of the free host), for guests 1-8 as
a function of co-solvent molar fraction ypeoy. Measurements were
performed in non-buffered aqueous systems containing increasing
amounts of methanol, at molar fractions (ymeon) usually ranging up
to 0.16 (30% v/v), with few exceptions. In particular, for the
N-methyl-ethanolamine derivative 4 we were able to increase the
amount of co-solvent up to a molar fraction of 0.31 (50% v/v). Plots
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Figure 1. p-Nitro-aniline derivatives 1-8.

of Keond, AGnd and A® as a function of XMeon for guest 4 are shown
in Figures 2-4, respectively, and typically illustrate the effect of the
increasing presence of the co-solvent on these parameters. In
general, the values of K.onq decrease exponentially on increasing
the amount of methanol (Fig. 2), with the exception of guests 3 and
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Figure 2. K.,nq versus MeOH plot for guest 4.

6, for which almost no effect is detected. As a consequence, trends
of Ac?ond versus ymeon are linear (Fig. 3). Thus, a suitable regression
data analysis allows us to obtain the values, extrapolated for pure
water, of the inclusion free energy AG% and its derivative dAG%nd/
dxmeon. The trends for A® appear more complex. As a matter of fact,
data plots for 4 (Fig. 4) and 5 are slightly curvilinear, whereas linear
plots are found in all other cases. Furthermore, A® usually de-
creases on increasing ymeou, but negligible variations are found for
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Figure 3. AGQnq versus MeOH plot for guest 4.
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Figure 4. A® versus ymeon plot for guest 4.

3, and even a slightly increasing trend is found for 8. Anyway,
a suitable regression data analysis for each guest provides the es-
timates of the values, extrapolated for pure water, of the differential
optical rotation A®,, and its derivative dA0/dymeon.°

Data for AGY, dAGCnd/dXMeon, AOy and dAO[dxmeon are col-
lected in Table 1, together with the relevant literature values of the
inclusion enthalpies AH? measured (UV) in buffered aqueous so-
lution. It is worth stressing here that the derivatives dAGZnd/
dxmeon and 8AO[dymeon Provide a quantitative estimation of the
effect exerted by the co-solvent methanol upon AG® and A®, re-
spectively. We compared these derivatives with AH? values (Figs. 5
and 6), obtaining very interesting results.

We already mentioned that p-nitro-aniline guests show differ-
ent enthalpy-entropy compensation behaviours, depending on the
features of the ancillary chain. In particular, we found that guests
1-3 belong to a subset of substrates the inclusion of which shows
entropy variations that overwhelm enthalpy ones on a relative
scale, according to the relationship:

TAS? = 20.9(+0.1) + 1.27( + 0.04)AH? kJ mol ! (1)

This particular behaviour accounts for the peculiar rigidity of the
inclusion complex, due to the occurrence of multiple host-guest
hydrogen bond interactions. As a consequence, binding constants
regularly decrease on increasing —AH?, according to the
relationship:

Table 1
Polarimetric and thermodynamic data

Guest  AGY, MG/  ABy 0AO/oxmeon  AH®

(kJ mol~1) DX MeOH (degdm™!  (degdm™! (k] mol~)

(Kmol ™) M) M)
1 —16.234+0.15 30.7+15 75.3+0.1 —75.54+0.7 —18.8+0.4
2 —15.56+0.15 21.5+0.6 89.1+0.5 —44.8+5.0 —20.7+0.5
3 —14.324+0.17 0+1.0 59.84+1.0 —5.04+5.0 —24.04+1.1
4 —17.64+0.18 23.2+1.0 80.8+0.1 —128.7+1.7 —15.6+0.4
5 —14.67+0.18 8.7+0.1 87.7+0.1 —168.2+1.3 —12.4+0.5
6 —14.14+0.25 0+1.0 55.9+0.1 —87.1+0.5 —9.8+0.8
7 —16.00+0.22 9.440.1 67.7+0.3 —63.74+3.2 —11.240.6
8 —17.31+0.11 23.0+1.2 80.1+1.0 18.8+0.6 —16.7+0.7
¢ From Ref. 4.
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Figure 5. 9AGona/0xmeon versus AH? plot.
AGY = —20.9(+0.1) — 0.27( + 0.04)AH? kJ mol ! (2)

By contrast, guests 4-8 belong to a subset of substrates the in-
clusion complexes of which are mainly stabilized by non-specific
(hydrophobic and/or dipolar) interactions,?® so that enthalpy vari-
ations outweigh entropy ones, according to the relationship:

TAS? — 9.8(+0.2) + 0.60( + 0.08)AH? k] mol ' (3)

Consequently, binding constants increase on increasing —AH?
according to the relationship:

-1
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Figure 6. 9AO/dYmeon Versus AH? plot.



2040 P. Lo Meo et al. / Tetrahedron 65 (2009) 2037-2042

Now, considering the dAGZ%nqa/dxmeon versus AH? plot (Fig. 5),
we can easily notice two distinct linear correlations, having oppo-
site slopes, for the two guest subsets 1-3 and 4-8, respectively. In
particular, for the first subset the disfavouring effect of methanol
addition on Kong appears to become stronger on decreasing —AH?,
whereas for the second subset the opposite is observed, according
to the relationships:

dAGO
——cond — 144(+9) + 6.0( = 0.4)AH?
9XMeoH
(r = 0997, n = 3) for guests 1—3 (5)
9AGD
———cond — _31(+6) - 3.3(+04)AH?
0XMeoH
(r = 0.972, n = 5) for guests 4—8 (6)

By comparing Eqs. 5 and 6 with Eqgs. 2 and 4, respectively, the
following expressions can be derived algebraically:

0AG?
——cond _ _320(+75) - 22(+4)AGY for guests1-3  (7)
9XMeOH

dAGO
———cond — _112(+20)-8.3(+1.9)AG) for guests4—8 (8)
9XMeOH

Egs. 7 and 8 show that aAG?OHd/a)(MeoH values are linearly cor-
related to the corresponding AG? for both guest subsets, with
negative slopes. Thus, within each subset we find that dAGCq/
OXMeoH Values become more positive on increasing —AGY. As
a consequence, the co-solvent methanol increasingly tends to de-
stabilize the inclusion complex on increasing the intrinsic stability
of the complex itself. Contrariwise, on decreasing the intrinsic
stability of the complex, the unfavourable effect of methanol
addition on AG%nq becomes weaker and weaker, until it fades
almost completely for guests 3 (first subset) and 6 (second subset).
Hence, we might also predict (although we did not actually
observed the case) that methanol should even revert its effect and
stabilize complexes having a particularly poor intrinsic stability.

The 9AO/dxmeon versus AH? plot (Fig. 6) is particularly in-
triguing. As a matter of fact, data points seem to draw two parallel
straight lines. The first one is defined by the neutral and anionic
guests 1-5, whereas the second one is defined by the cationic de-
rivatives 6-8. Thus, the entire dataset can be suitably fitted by
means of a unique biparametric equation:

086 = —353(+7) +124(+4)Q — 14.7(+0.4)AH?
9XMeoH
(r=0.998;n = 8) 9

where Q is an ad hoc conventional parameter accounting for the
electric charge status of the guest (Q=0 for neutral and anionic
guests, Q=1 for cationic ones).

These correlations deserve a thorough analysis. Let us examine
first AO trends. We have already shown in previous works that A®
values for p-nitro-aniline derivatives depend on both electronic and
structural/dynamic factors.”® In particular, the lowest A@ values
were found for the most rigid complexes, having the guest forced to
assume a tilted position within the host cavity. (By intuition, A®
depends on the time-averaged dot product between the dipole
momenta of the cavity and the chromophore.) In principle, a vari-
ation in optical activity on varying the solvent medium could be
ascribed to a change in the solvent refractive index n,?! depending
linearly on (n?+2). However, on the grounds of literature data for
water-methanol mixtures,”> we can predict that such an effect
should provide a small, reasonably negligible contribution to A®
variations. It is worth noting that we actually measured no

significant variation in the molar optical activity @p.cp of pure p-CD
in water-methanol mixtures within the range 0<ymeon<0.4 (i.e.,
0-60% v/v). Thus, considering the peculiar correlation found be-
tween 9AO[dymeon and AH?, the occurrence of variations on A®
seems rather to account for a specific effect exerted by the co-sol-
vent methanol on the dynamic behaviour of the complex. It is
worth recalling, indeed, that AHY values for this class of guests are
positively controlled by the ‘nominal’ counterpart of the binding
process.*

Now, assuming A® as an estimate of the time-averaged tilt angle
for the p-nitro-aniline chromophore with respect to the ideal axis
of the host cavity, data suggest that in general the immediate effects
of the co-solvent addition consist in an increase of guest tilting and,
consequently, in a diminished dynamism of the complex. It is im-
portant to stress that the existence of two parallel lines (i.e., having
the same slope, but different intercepts) in the correlation plot
indicates that these effects work in a somehow coherent way over
the entire set of guests, regardless of the actual charge of the guest
ancillary chain. So, the ‘distinct’ behaviour of cationic guests 6-8
towards co-solvent addition could be explained, in our opinion,
considering the peculiar electrostatic interaction between the in-
trinsic dipole momentum of the CD cavity and the cationic ancillary
chain. This interaction is probably able to offset the tilting effect,
but does not significantly affect the possible modifications in the
dynamic behaviour of the complex induced by the co-solvent.
Anyway, the trends for 0A0O[dxmeon Show that these effects increase
on decreasing —AH?. Consequently, on the grounds of the en-
thalpy-entropy isoequilibrium correlations, we may infer that
greater effects are exerted on intrinsically less rigid complexes.

The latter consideration leads us into the analysis of the aAGE’ond/
dxmeon Plot. We can initially notice that the experimental data
cannot be simply explained on the grounds of the solvation ener-
gies of the guests, because there is no apparent relationship be-
tween the features of the ancillary chains of the guests and the
relevant 9AG2na/dxmeon Values. For instance, 4 is undoubtedly less
hydrophilic than both 1 and 3, but it shows an intermediate
aAGQ(,nd/aXMGOH value. On the other hand, the existence of different
linear correlations with AH?, having opposite slopes, for subsets of
guests obeying different enthalpy-entropy compensation models,
is particularly meaningful. As a matter of fact, the relative variations
of conditional inclusion free energies are the output of the con-
comitant relative variations in both the conditional inclusion en-
thalpies (AH%nq) and the entropies (AS%nq). In other words, from
the obvious AG2na=AH%nd—TASSond, follows:

aTAS(C)ond ( 1 0)

0XMeOH

dAH?

cond
0XMeOH

AAGO

cond _
9XMeoH

The derivatives 6AH90nd/a)(Me0H and 6TAS?O,1d/a)(MeOH, of course,
quantify the relative effect exerted by the co-solvent methanol
upon the inclusion enthalpies and entropies, respectively. Un-
fortunately, our data do not provide us with the values of these two
derivatives for each guest. However, it can be easily demonstrated
(see Supplementary data) that the simultaneous occurrence of the
enthalpy-entropy compensation and of a linear dependence of
dAGnd/0xmeon on AH? implies that both 8AH%nd/dxmeon and
dTASY na/dxmeon must be linearly correlated with AH? too. It is at
once evident that the latter statement is perfectly consistent with
the considerations on d0A®/dxnmeon developed previously. From that
standpoint, we may deduce that in general the addition of meth-
anol decreases the inclusion entropies, because of the stiffening of
the inclusion complex, with a stronger relative effect for in-
trinsically less rigid complexes. This effect should work coherently
over the entire guests set, regardless of both the charge status of the
ancillary chain and the actual enthalpy-entropy compensation
model followed by the guest. Therefore, all the guests should
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eventually define a unique linear 8TAS2ynd/dxmeon versus AHY cor-
relation plot having a negative slope. On the other hand, the oc-
currence of distinct aAG?md/aXMeOH versus AH? correlations for the
different subsets of guests suggests that distinct correlations must
consequently exist for dAH%nq/dxmeon vValues. This implies also that
different types of effects, for the two guest subsets, are exerted by
methanol on inclusion enthalpies.

In more detail, we might reason that for guest 6, showing a null
MG nd/dxmeon and a large dAO/dxmeon value, the addition of
methanol makes the binding process more exothermic, in order to
counterbalance the stiffening effect of the complex (and in such
a way that enthalpy and entropy variations compensate almost
perfectly). However, if we extend our consideration to the entire
guest subsets 4-8 (with 6 as a sort of anchor point), the occurrence
of an overall negative slope for the 8AG%nd/dxmeon versus AH?
correlation implies that on increasing —AH? (i.e., the intrinsic
strength of the complex) any possible favourable effect of methanol
on AHYq vanishes very rapidly, and that the overall co-solvent
effects on AHZ,nq outweigh the concomitant effects on TASYq. By
contrast, for guests 1-3 the occurrence of a positive slope in the
MG nd/dxmeon versus AH? plot indicates a somehow opposite
behaviour for this guest subset (further discussion on these points
is reported in Supplementary data).

On the grounds of the previous discussion, it is clear that the
role played by the co-solvent in the binding equilibrium cannot be
limited to its effects on the ‘environmental’ process only. Data seem
rather to account for an involvement of the solvent system in the
‘nominal’ process too, by means of specific solvent-complex in-
teractions. This suggests the need to reconsider critically the overall
contribution of the solvent in affecting the structure and the in-
timate features of the inclusion complex. The idea that a CD may
have enough room to host some water molecules together with the
guest is not new. If anything, it is a specific assumption of the
theory of ternary complexes formation.”> However, at the best of
our knowledge this concept has been seldom exploited compre-
hensively in rationalizing the structure and the thermodynamics of
formation for ‘ordinary’ 1:1 complexes.®

In our opinion, the experimental results may be suitably
explained by admitting that solvent molecules can be ‘dynamically
co-included’, up to a certain extent, into the CD cavity together with
the guest. In other words, we may reasonably hypothesize the oc-
currence of a continuous swap of solvent molecules®* between the
solvent bulk and the residual space within the complex, without
requiring the formation of any individual structure/stoichiometry-
defined species. This ‘dynamic co-inclusion’ process is able to affect
the time-averaged conformational dynamics of the complex, as
well as the inner interplay of molecular interactions. In the pres-
ence of an organic co-solvent, namely methanol, this is probably
able to compete successfully with water molecules for this dynamic
process, because of the occurrence of more effective hydrophobic
interactions within the host cavity. As a consequence, the complex
tends to become on average more rigid. From a thermodynamic
point of view, the increased extent of hydrophobic interactions
tends to counterbalance the loss of conformational freedom for the
complex, as well as the less favourable desolvation of the guest.
However, when we consider guests 4-8, we have to conclude that
such a counterbalance mechanism works effectively only with the
weakest complex of the subset, i.e., B-CD-6. As a matter of fact, on
increasing the intrinsic stability of the complex, the increasing
strength of neat host-guest interactions rapidly vanquishes the
possible favourable effects due to methanol co-inclusion, as
accounted for by the overall negative slope of the dAGZnd/dXMeon
plot. On the other hand, things change dramatically when we
consider the behaviour of guests 1-3. Owing to the paramount role
assumed by hydrogen bonding in these cases, now the possible
increased occurrence of hydrophobic interactions due to the

co-solvent affects unfavourably the overall inclusion enthalpies.
Consequently, the stiffening effect of methanol co-inclusion pre-
vails, in a much more apparent way for the intrinsically least rigid
(and most stable!) complexes of the group, as accounted for by the
overall positive slope of the dAG%na/dxmeor plot.

In order to gain further support for our hypotheses, we studied
the effect of methanol addition on the inclusion of guest 4 in a-CD
(data in Supplementary data). We already knew that the narrowest
o-CD host is able to include very tightly only the aromatic moiety of
the guest. We actually detected no effect on A (i.e., a nearly null
value for 0AO®[dymeon). On the other hand, the concomitant
unfavourable effect on AGZ,nq due to the presence of the co-solvent
is much more significant for a-CD (0AGnd/dxmeon=62+4 k] mol~,
compared with the data reported in Table 1) than for $-CD. Clearly,
both these findings are perfectly consistent with the lack of any
inner solvent-complex interaction when the narrowest o-CD host
is involved.

3. Conclusions

The addition of methanol as organic co-solvent significantly af-
fects the binding equilibria between native $-CD and p-nitro-aniline
derivatives. In particular, general guest tilting and complex stiffen-
ing effects have been observed, which turn out in an unfavourable
effect on the conditional inclusion entropies. On the other hand, the
effects on the conditional inclusion enthalpies may be different,
depending on the particular features of the guest ancillary chain
(and, consequently, on the occurrence of different kinds of host-
guest interactions). Nevertheless, all these effects can be suitably
correlated with the intrinsic stabilities of the complexes in water, as
accounted for by AH? values. A detailed analysis of experimental
dataled us to explain the observed behaviours in terms of a ‘dynamic
co-inclusion’ of the solvent within the host-guest complex, with an
effective competition of methanol versus water molecules.

As a final remark, it is important to stress, in our opinion, that
the concept of a ‘dynamic co-inclusion’ of the solvent arises from an
overall critical consideration of the role of the solvent system in the
thermodynamic economy of the process. It seems evident, from the
discussions developed previously, that a full participation of sol-
vent molecules in the intimate dynamics of the inclusion complex,
seriously questions a strict distinction between ‘nominal’ and ‘en-
vironmental’ processes. Although such a distinction has constituted
up to now the implicit interpretative framework of binding phe-
nomena, it appears somehow artificial under the light of our re-
sults. This implies, in turn, that current views on solvation effects
are still too limited, indeed, and probably need to undergo a thor-
ough reconsideration in the future.

4. Experimental
4.1. Materials

All reagents, solvents (HPLC grade) and materials needed were
used as purchased, without further purification. Guests 1-8 were
prepared, purified and characterized as described elsewhere.!®4
Cyclodextrins were dried before use in vacuo over P205 at 90 °C for
at least 24 h, and stored in the same apparatus at 40 °C.

4.2. Polarimetric measurements

A general protocol for performing the polarimetric de-
termination of binding constants has been described in our pre-
vious papers.!” The standard procedure provides the preparation of
a set of sample solutions, by adding variable micro-amounts (up to
150 pL) of a concentrated guest solution (usually ca. 0.3 M) to fixed
volumes (5 mL) of a standard B-CD solution (usually 2.0 mM). For
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the aims of this work, suitable standard B-CD solutions were pre-
pared by dissolving a weighted amount of dry f-CD into the proper
water-methanol mixture. Nevertheless, in order to achieve a more
reliable estimate of low (<200 M~1) Kcong Values, in some cases we
slightly modified the procedure for preparation of sample solu-
tions, by directly dissolving weighed amounts of the appropriate
guest into the B-CD solutions. Whatever the procedure chosen,
polarimetric data were subjected to suitable fitting analysis as de-
scribed elsewhere.”
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