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RESUMO

A análise de dados de saúde é desafiadora devido ao seu grande volume, complexidade

e heterogeneidade. Técnicas de visualização de dados interativos são indispensáveis para

auxiliar a análise desses grandes sistemas de saúde. Nesta dissertação, propomos estudos

de caso desenvolvidos a partir de dados do SUS, o Sistema Único de Saúde, um dos

maiores sistemas públicos de saúde do mundo. Apresentamos protótipos de análise visual

em uma estrutura de cubos de dados de última geração que oferece suporte à exploração

visual interativa de milhões de registros. Demonstramos como a exploração de dados

fornecida por nossos protótipos pode auxiliar as tarefas essenciais na análise de grandes

dados de assistência médica, incluindo dados da COVID-19 no Brasil.

Palavras-chave: Analítica visual, dados de saúde, datacube, COVID-19.





ABSTRACT

The analysis of healthcare data is challenging due to its large volume, complexity, and

heterogeneity. Interactive data visualization techniques are indispensable to support the

analysis of such large healthcare systems. In this dissertation, we propose case studies

developed for data from SUS, the Brazilian Unified Healthcare System, one of the largest

public healthcare systems in the world. We present visual analytics prototypes on a state-

of-the-art datacube structure that supports the interactive visual exploration of millions of

records. We demonstrate how the data exploration provided by our prototypes can help

the essential tasks in analyzing big healthcare data, including data from COVID-19 in

Brazil.

Keywords: Visual analytics. healthcare data. datacube. COVID-19.
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1 INTRODUCTION

Healthcare systems are essential to maintaining the health of the world population.

The advancement of information management technology has allowed large amounts of

data related to monitoring patients in medical institutions to be captured. In the United

States alone, the volume of medical data is forecast to reach the order of zettabytes (1021

bytes) (RAGHUPATHI; RAGHUPATHI, 2014).

Healthcare data analysis is challenging due to its large volume, complexity, and

heterogeneity (e.g., structured and unstructured data such as database tables, text, images,

and video). Our goal is to achieve this challenge using visualization and big data tech-

niques. Interactive data visualization techniques are indispensable to support the analysis

of such large healthcare systems. The combined power of visualization with analytics

procedures leads to visual analytics systems recognized for their efficiency in exploring

and identifying patterns in complex data collections. A supporting big data infrastructure

plays a critical part in helping these tasks efficiently to support interactive visualizations.

Also, such data is highly relevant for cohort studies (groups of patients who are analyzed

for their responses to medical treatments).

In this work, we present two case studies using data from one of the largest public

healthcare systems in the world, the Brazilian Unified Healthcare System (SUS) (CAS-

TRO et al., 2019). In Brazil, SUS plays a vital role in the population’s health, particularly

for people who cannot afford private healthcare plans.

The first case study is QDS-SUS, a visual analytics prototype for admissions data

from SUS from 2017. To support interactive exploration of this dataset, which contains

hundreds of millions of records, we rely on the power of computed aggregations. The pre-

calculation of aggregations is the basis of datacubes structures. Still, these are challenged

by the high processing and storage power to store and query the different combinations

of existing aggregations. Our prototype builds upon the latest generation of datacubes

structures. We list several examples demonstrating how such a system can identify unique

patterns or inconsistencies in the data.

The COVID-19 pandemic has caused the death of nearly 5.1 million people in the

world as of late November of 2021. In Brazil, the number of deaths recently surpassed

611 000 and continues to grow daily. SUS makes publicly available large amounts of

data related to records of patient admissions in medical institutions in Brazil. Due to the

COVID-19 pandemic, the Brazilian Ministry of Health implemented the Health Surveil-
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lance Secretariat (SVS) through the e-SUS Notifica platform (formerly called e-SUS VE

Notifica) for the surveillance of the Flu Syndrome. The data collection started in March

2020 when the first case of COVID-19 in Brazil was detected. Due to this, the second

case study is devoted to data generated associated with COVID-19. In this case study,

we describe the prototype called QDS-COVID, a visual analytics system to support the

analysis of SUS data associated with COVID-19. We demonstrate our findings through

several examples based on formulated analysis questions. We compare our results against

related studies and provide feedback from a medical expert.

The dissertation is organized as follows. Chapter 2 reviews related work on health-

care systems, visual approaches for aggregated analytics, and data visualization of COVID-

19 data. Next, we describe the system architecture that supports the prototypes, the data

treatment used, and our visual analytics interface implemented. Chapter 4 introduces

QDS-SUS, showing examples used to detect issues in data quality and pattern discov-

ery. In chapter 5, we present the second case study called QDS-COVID. In this chapter,

we describe the results obtained from the SUS COVID-19 Dataset using this prototype.

Later, in chapter 6, we compare our case studies with other similar implementations. We

end with conclusions and directions for future work.
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2 RELATED WORK

In this chapter, we first review related work on the use of analytics systems for

healthcare data. We review approaches to computing visual and interactive analytics in the

sequence, which requires data structures that support aggregate analytics. We review the

main design called datacubes and the modifications and improvements introduced in other

works. We conclude with a summary of recent efforts to the analysis and visualization

COVID-19 data.

2.1 Healthcare Analytics Systems for Cohort Studies

The analysis of health data, specifically related to patient treatments, seeks to un-

derstand collective health behavior. The study of these data aims to identify how the

evolution of patients’ health is related to their types of treatments. With this information,

it is possible to change forms of treatment, improve patient satisfaction with more effec-

tive treatments, and make more efficient use of the budget allocated to health systems.

This last point is vital in Brazil, where the state finances the Brazilian Unified Healthcare

System (SUS). Its efficient use is crucial to provide quality service and compatibility with

the available resource.

Questions that frequently arise in these analyses raise points such as (1) "what

happened to a patient?", (2) "what will happen to a patient?", and (3) "what happened

to patients with a similar clinical condition? ". To answer these questions, the analysis

of health data has led to intense research in techniques of representation, prediction, and

exploration of these data. The first question is related to the representation problem that

motivates searching or creating a model to represent patient data. The second question

is related to prediction techniques that allow us to conjecture the future state of patients.

Finally, the last question is associated with the exploration of the data to identify patients

with similar behaviors. Due to these challenges, several approaches have been proposed

in the literature, and our bibliographic review summarizes recent works that adopt a visual

analysis approach to this data (MONROE et al., 2013; KRAUSE; PERER; STAVROPOU-

LOS, 2016; LIU et al., 2017; OMIDVAR-TEHRANI; AMER-YAHIA; LAKSHMANAN,

2018).

Visualization in healthcare has a broad range of applications designed for patients,

doctors, companies, and public policies. Gotz and Borland (2016) divides the range of
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applications into four primary classes:

(a) Patient-Centered Point-of-Care Applications: provide information from a single

patient to clinicians;

(b) Patient-Facing Applications: situations in which patients manage their medical his-

tories and treatment alternatives;

(c) Population Management Applications: segment population by similar patterns to

devise suitable health programs;

(d) Health Outcomes Research: similar to (c), focuses on a broader population, such as

epidemiologists trying to find risk factors over geographic regions.

EVENTFLOW (MONROE et al., 2013) (Figure 2.1) is a tool that allows you to

view data from health records and their respective sequences of events to enable you to

identify common patterns and find anomalies. Similarly, COREFLOW (LIU et al., 2017)

(Figure 2.2) also explores health records in one of its case studies. Still, the emphasis is

on analyzing the sequence of events. Both systems represent sequences of patient events

with irregular intervals, which leads to visualizations that are usually overlapping and dif-

ficult to interpret. COQUITO (KRAUSE; PERER; STAVROPOULOS, 2016) (Figure 2.3)

describes a tool with support for interactive visual consultations that allows you to cre-

ate groups of patients with time restrictions. These objectives are achieved through an

interactive mechanism during queries and data analysis with complementary visualiza-

tions such as bar graphs showing demographic properties and treemaps that encode the

distribution of events. This system does not support interval searches and does not seek

to identify anomalies. Finally, CORE (OMIDVAR-TEHRANI; AMER-YAHIA; LAKSH-

MANAN, 2018) (Figure 2.4) emphasizes identifying groups of patients similar to a given

type of medical appointment.

West, Borland and Hammond (2014), and Plaisant et al. (2014) leverage the infor-

mation collected in Electronic Medical Records (EMRs) through visualization tools and

techniques. They present the amount and complexity of EMRs data as the main challenge

in finding meaningful patterns and the further interest in analyzing the data in a temporal

dimension. Ola and Sedig (2016) expose the need to move from simple visualizations to

more sophisticated techniques that encode multiple aspects in demographic, geographic,

chronological, and overview visualizations for healthcare. Later, these authors proposed

HealthConfection (OLA; SEDIG, 2017) as a visualization tool that allows users to ana-

lyze and figure out the risk factors and the causes of mortality. Finally, in (OLA; SEDIG,
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Figure 2.1: EventFlow (MONROE et al., 2013)

Figure 2.2: CoreFlow (LIU et al., 2017)

2018), they highlight the relevance of human-data interaction through visualization frame-

works to better understand healthcare data.

The research on the relationship between visual analytics and healthcare data

(PLAISANT et al., 2014; WU et al., 2019; PREIM; LAWONN, 2019) shows numer-
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Figure 2.3: Coquito (KRAUSE; PERER; STAVROPOULOS, 2016)

Supporting Iterative Cohort Construction
with Visual Temporal Queries

Josua Krause, Adam Perer, Harry Stavropoulos

Fig. 1. As a part of a case study with a clinical researcher, COQUITO is utilized for medical cohort analysis. The researcher visually
applies a series of temporal constraints to a patient population and generates a cohort to statistically analyze.

Abstract— Many researchers across diverse disciplines aim to analyze the behavior of cohorts whose behaviors are recorded in large
event databases. However, extracting cohorts from databases is a difficult yet important step, often overlooked in many analytical
solutions. This is especially true when researchers wish to restrict their cohorts to exhibit a particular temporal pattern of interest.
In order to fill this gap, we designed COQUITO, a visual interface that assists users defining cohorts with temporal constraints.
COQUITO was designed to be comprehensible to domain experts with no preknowledge of database queries and also to encourage
exploration. We then demonstrate the utility of COQUITO via two case studies, involving medical and social media researchers.

Index Terms— Visual temporal queries, cohort definition, electronic medical records, information visualization.

1 INTRODUCTION

Researchers in many disciplines, such as medicine, social science, and
business analytics, seek to understand the effects of various factors on
cohorts, a population or group of individuals with common features.
For instance, in medicine, researchers may want to understand if a
cohort is at risk of developing a disease or health outcome, or social
media researchers may wish to understand if a cohort will adopt a new
social technology. In the era of Big Data, where electronic medical
records and social data logs are commonplace, the opportunity to do
retrospective cohort studies has never been greater. However, extract-
ing cohorts with temporal constraints from databases is an important
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• Adam Perer is with IBM T.J. Watson Research Center, E-mail:

adam.perer@us.ibm.com
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yet difficult step, often overlooked in many analytical solutions.
While there are many tools to assist researchers in filtering popu-

lations by attributes or facets (e.g. i2b21 and BTRIS2 in medicine),
many cohort studies require their subjects to exhibit a temporal pat-
tern to qualify. Unfortunately, these traditional query tools often lack
support for temporal queries.

Suppose medical researchers wish to understand the treatment ef-
fectiveness for patients suffering from a disease. They may need to
define a cohort as a set of patients with a disease diagnosis A, fol-
lowed by a medication prescription B and a performed procedure C
happening within 3 days apart from each other, and within 7 days after
A. Alternatively, the cohort should also contain other patients with a
diagnosis A followed by a treatment D within 5 days. A visual rep-
resentation of this query is illustrated in Fig. 2. Expressing such a
temporal query is extremely complex with standard query languages,
such as SQL. Recently, there have been several research projects de-
signed to define temporal constraints on populations [13,29], but these
approaches typically rely on filling out a set of forms, and do not give
feedback about the results until all constraints have been defined.

1http://www.i2b2.org
2http://www.btris.nih.gov

Figure 2.4: Core (OMIDVAR-TEHRANI; AMER-YAHIA; LAKSHMANAN, 2018)
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p7 Male Grenoble old alive present
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Fig. 3. Running example for cohort representation.

instance in the cohort of female patients in Grenoble, France,
one patient has entered the system in May 2000 and the
other one, in August 2011. However, both patients will be
aligned to start at time zero despite their 11-year difference
in admission time. If both patients have been under Oxygen
treatment in their second month of treatment (i.e., June 2000
for the former and September 2011 for the latter), there will
be a match between them with zero cost. By doing so, the
exact sequence and distance between events of each single
trajectory are preserved and the matching can be performed.
As shown in Figure 3 bottom-left, Algorithm 1 records all

found matches, i.e., ⇥(c), in a matching table. Note that each
event of a patient appears only once in the matching table (i.e.,
monotonicity in sequence matching [8]). Algorithm 1 builds a
representation matrix R whose rows are actions and columns
are times (see Figure 3 bottom-right). The value of a match m
is placed in R[m.action][m.time]. If more than one value is
inserted in an R[x][t]’s cell, the values get summed up which
reflect confidence(e) where e.action = x and e.time = t.
The representation of the cohort is then R’s cells whose value
is larger than the confidence threshold �. The confidence
threshold � dissipates insignificant and possibly noisy events.
However, systemic mistakes in patient data can be potentially
propagated to cohort representations. In [19], we discuss how
an ETL process should precede cohort analysis.

The final representation of the cohort in our running exam-
ple is shown in Figure 3 bottom-right. With � = 0.3, only
three events are placed in the representation: A at t0, C at t11
and t12. Instead of raw trajectories in Figure 3 top-right which
convey no unified message, the expert can now observe a

single-line story for this cohort: starting with A, the cohort
follows up with C after 11 months and repeats C in the next
month. This satisfies readability and succinctness.

In the final representation, we report the confidence values
for each event. For instance in our running example, there is a
full confidence in representing A at time t0 because this event
is occurring at the same time in all trajectories. However, the
confidence for other events is lower, as their corresponding
matches are not frequent among all trajectory pairs.

Matching efficiency. Our approach maximizes the confidence
and returns only few manageable results. However it is repeat-
edly reported in the state of the art that sequence matching
is an expensive process [20]. Inspired from the notion of
protein families [21], we introduce trajectory families. In an
offline process, CORE generates non-overlapping clusters of
trajectories in a time-agnostic way, where each cluster is
called a trajectory family. Intuitively, if T (p1) and T (p2) both
contain actions A and B, they will probably end up in a same
trajectory family F regardless of the time A and B occurred
in those trajectories. We employ k-medoids as our clustering
approach to obtain k families F1 to Fk.

In the online process of CORE, we abstract patient tra-
jectories with the medoid of their family Fi, denoted as
med(Fi). Figure 4 shows trajectory families for 10 patients
where k = 2. With these families, we approximate the
comparison of T (p1) and T (p6) with the comparison of their
medoids, i.e., med(F1) = T (p5) and med(F2) = T (p3). This
approximation reduces the number of matching verifications.
For instance, for a cohort c of patients p1, p2, p3 and p4, we

ous efforts to understand approaches using visualization tools to analyze healthcare data.

VisOHC (KWON et al., 2016) visualizes individual Online Health Communities (OHCs)

conversation threads through the use of histograms, word clouds, t-distributed Stochas-

tic Neighbor Embedding (t-SNE) (Van Der Maaten; HINTON, 2008) a popular dimen-

sionality reduction method to visualize threads with similarity, and the use of diver-

gent/sequential colors for sentiment analysis. This study indicates that visual analytics

helps to explore healthcare data and visually find patterns.

Other techniques follow a server-side approach that processes large and com-

plex healthcare datasets to explore, analyze, and understand data using Geovisual tech-

niques (TURDUKULOV; MONCRIEFF, 2016). In addition to processing and visualizing
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Figure 2.5: Big data analytics architecture in healthcare (WANG et al., 2018)

validated against data quality rules. Finally, the data are loaded into the
target databases such as Hadoop distributed file systems (HDFS) or in a
Hadoop cloud for further processing and analysis. The data storage prin-
ciples are based on compliance regulations, data governance policies
and access controls. Data storage methods can be implemented and
completed in batch processes or in real time.

2.2.3. Analytics layer
This layer is responsible for processing all kinds of data and

performing appropriate analyses. In this layer, data analysis can be di-
vided into threemajor components: HadoopMap/Reduce, stream com-
puting, and in-database analytics, depending on the type of data and the
purpose of the analysis. Mapreduce is the most commonly used pro-
grammingmodel in big data analytics which provides the ability to pro-
cess large volumes of data in batch form cost-effectively, as well as
allowing the analysis of both unstructured and structured data in amas-
sively parallel processing (MPP) environment. Stream computing can
support high performance stream data processing in near real time or
real time. With a real time analysis, users can track data in motion, re-
spond to unexpected events as they happen and quickly determine
next-best actions. For example, in the case of healthcare fraud detection,
stream computing is an important analytical tool that assists in
predicting the likelihood of illegal transactions or deliberate misuse of
customer accounts. Transactions and accounts will be analyzed in real
time and alarms generated immediately to prevent myriad frauds
across healthcare sectors. In-database analytics refers to a data mining
approach built on an analytic platform that allows data to be processed
within the datawarehouse. This component provides high-speed paral-
lel processing, scalability, and optimization features geared toward big
data analytics, and offers a secure environment for confidential enter-
prise information. However, the results provided from in-database ana-
lytics are neither current nor real time and it is therefore likely to
generate reports with a static prediction. Typically, this analytic compo-
nent in healthcare organizations is useful for supporting preventative
healthcare practice and improving pharmaceutical management. The
analytics layer also provides exceptional support for evidence based

medical practices by analyzing EHRs, patterns of care, care experience,
and individual patients' habits and medical histories.

2.2.4. Information exploration layer
This layer generates outputs such as various visualization reports,

real-time informationmonitoring, andmeaningful business insights de-
rived from the analytics layer to users in the organization. Similar to tra-
ditional business intelligence platforms, reporting is a critical big data
analytics feature that allows data to be visualized in a useful way to sup-
port users' daily operations and help managers to make faster, better
decisions. However, the most important output for health care may
well be its real-timemonitoring of information such as alerts and proac-
tive notifications, real time data navigation, and operational key perfor-
mance indicators (KPIs). This information is analyzed from sources such
as smart phones and personal medical devices and can be sent to inter-
ested users or made available in the form of dashboards in real time for
monitoring patients' health and preventing accidental medical events.

2.2.5. Data governance layer
This layer is comprised of master data management (MDM), data

life-cycle management, and data security and privacy management.
This layer emphasizes the “how-to” as in how to harness data in the or-
ganization. The first component of data governance, master data man-
agement, is regarded as the processes, governance, policies, standards,
and tools for managing data. Data is properly standardized, removed,
and incorporated in order to create the immediacy, completeness, accu-
racy, and availability of master data for supporting data analysis and de-
cision making. The second component, data life-cycle management, is
the process of managing business information throughout its lifecycle,
from archiving data, through maintaining data warehouse, testing and
delivering different application systems, to deleting and disposing of
data. By managing data effectively over its lifetime, firms are better
equipped to provide competitive offerings to meet market needs and
support business goals with lower timeline overruns and cost. The
third component, data security and privacy management, is the plat-
form for providing enterprise-level data activities in terms of discovery,
configuration assessment, monitoring, auditing, and protection (IBM,

Fig. 1. Big data analytics architecture in health care.
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healthcare data, this approach emphasizes the strong relationship of healthcare data with

socio-economic, demographic, and environmental data of spatial regions under analysis.

Frequence (PERER; WANG, 2014) is a visualization tool to explore and understand pat-

terns of temporal event sequences implementing a novel sequence mining algorithm to

handle real-world data requirements (such as multiple levels-of-detail, temporal context,

concurrency, etc.). Care Pathway Explorer (PERER; WANG; HU, 2015) extracts and

visualizes the EHRs of patients to obtain common sequences of medical events like di-

agnoses and treatment to contrast the correlation with the patient outcome. Our visual

analytics prototypes build upon these approaches by providing an infrastructure that sup-

ports an interactive visual exploration of hundreds of millions of EHRs. In chapter 6 we

provide the performance of this infrastructure.

Big data analytics has also been discussed for healthcare organizations (WANG et

al., 2018; GALLETTA et al., 2019). Wang et al. (2018) conducted a study of big data

implementations in healthcare, followed by the architecture proposal for improving the

use of big data analytics capabilities for healthcare organizations (Figure 2.5). Integrating

visualization techniques for healthcare systems is also discussed by Galletta et al. (2019),

which describes an architecture for remote patient monitoring using big data visualization

services.
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2.2 Data Structures for Supporting Visual Analytics

Healthcare systems often rely on relational databases to store some portion of their

data. Such databases are the only data source for all business management activities, such

as reports, which can be difficult to generate from a relational data model. Take, as an

example, the task of reporting all hospital admissions related to a specific diagnosis. In

this case, a database server can potentially query and count millions of records. The

problem becomes even more complicated if one needs to count records grouped by a

specific date interval or use another filtering criteria.

Such tasks frequently appear in visual data analysis, where it is necessary to build

environments that allow the interactive exploration of large datasets. This problem has

two opposing facets. From one side, the ever-growing complexity and size of datasets

bring the need to provide complex navigation and visual summarization capabilities. On

the other hand, human perception and cognition pose a challenge to how long the data

handling and rendering loop can occur. Even slight delays on the scale of half a second

can negatively impact the visual data exploration process (LIU; HEER, 2014).

As a result, there are limitations to the analysis that one can hope to perform in-

teractively. The area of Database Management Systems (DBMS) produced compelling

strategies to address the scalability requirements. Large datasets, e.g., social networks or

e-market, can be indexed into Relational (as PostgreSQL, MySQL) or NoSQL (as Mon-

goDB, Cassandra, Neo4j, OrientDB) DBMS. However, these strategies do not necessarily

achieve low latency, which is essential for interactive visualization tools. Recent efforts

proposed solutions to these problems following different schemes.

One approach to overcome this problem is called Online Analytical Processing

(OLAP). The fundamental idea is to pre-compute all totals and sub-totals necessary for

management reports when the database servers are typically idle, e.g., during weekends

or overnight. Pre-computed- values are stored into specifically designed data structures

known as datacubes (GRAY et al., 1997). The main advantage is that it can provide

instant results because it is unnecessary to loop over millions of transactions once all

required data is precalculated.

Datacubes can be seen as an in-memory snapshot of a specific view of the data

stored in a relational DBMS. A datacube does not replace the need for relational databases

but is frequently used in conjunction with them to overcome their limitations. Consider

a hospital that stores data on its patients represented by the relation of Figure 2.6: when
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Figure 2.6: Original datacubes concept representing all possible GROUP BY aggregations
of Gender and Status.

using relational DBMS, a DBA (Database Administrator) can create separated tables to

store the data of City, Gender, and Status attributes. A DBA can be asked to use an

aggregation function to compute a summarized count of all data records to generate a re-

port. Further analysis can require the use of both the aggregation function of summarized

count and the GROUP BY operation of Gender and Status. The outcome of this anal-

ysis is the combination of {Male, Female, Unknown} with {Active, Inactive},

yielding the following results: (Male, Active), (Female, Active), (Female, Inactive), and

(Unknown, Inactive) with its respective summarized counts.

The datacubes is defined as the combination of all possible GROUP BY aggrega-

tions of attributes for a given relation and their summarized numerical metrics, e.g., count

maximum, average, etc. In datacubes terminology, each attribute is called a dimension,

representing a 1-D array of values in a multi-dimensional data structure. In the

example of Figure 2.6, the cube on Gender and Status with a count metric is com-

posed by the following GROUP BY operations: (i) on Gender and Status, (ii) on Gender

only, (iii) on Status only, and (iv) no restrictions.

Business Intelligence (NEGASH; GRAY, 2008) is the ability to extract and pre-

pare DBMS data into datacubes to run queries (e.g., slicing, dicing, pivoting, and aggre-

gation), create management reports and data visualizations to present analytical results.

Such BI systems can be hard to implement, frequently requiring months to complete, and

many highly trained IT professionals. Modern iterations of datacubes, nowadays called

data cubes structures, combine (i) the ability to query with instant results, (ii) low memory

usage, and (iii) advanced data analysis and modeling techniques.

The building time of datacubes could be very time-consuming for datasets with

many dimensions. The required number of aggregations by datasets with more than three

dimensions becomes large (Figure 2.7). Follow-up works discussed ways to tackle the

storage limitations of datacubes using distributed computation (SISMANIS et al., 2003).

VisReduce (IM; VILLEGAS; MCGUFFIN, 2013) follows a MapReduce approach
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Figure 2.7: Datacubes fundamental idea: pre-computed- aggregations (GRAY et al.,
1997)

Related Work
• Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-

Tab, and Sub-Totals [Gray et al., 1997]

3

Figure 2.8: VisReduce uses a map-reduce architecture to speed up data cubes aggrega-
tions (IM; VILLEGAS; MCGUFFIN, 2013)

Related Work
• VisReduce: Fast and Responsive Incremental Information Visualization of Large

Datasets [Im et al., 2013]

5
).

Figure 2.9: The imMens brings interactive visualization of multidimensional datasets. It
relies on GPUs to improve datacubes aggregation operations (LIU; JIANG; HEER, 2013)

Related Work: imMens

7

imMens: Real-time Visual Querying of Big Data [Liu et al., 2013]

combines data reduction, multivariate data tiles, and
parallel query processing(using a GPU)

Main disadvantage
lacks support for compound brushing in more than four dimensions

that leverages on-demand aggregations but requires costly transfers over the partial and

final aggregations (Figure 2.8). Among the first approach to connect visualization tech-

niques and datacubes in an interactive fashion is imMens (LIU; JIANG; HEER, 2013).

The imMens approach proposes using GPUs to support the required data aggregation op-

erations of datacubes (Figure 2.9). The main problem of imMens is the maximum limit

of dimensions that the cube supports (5-dimensional or more data tiles), thus restraining

the application to more specific datasets.
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Figure 2.10: NanoCubes uses a hierarchical representation to store and share efficiently
pre-computed aggregations (LINS; KLOSOWSKI; SCHEIDEGGER, 2013)

Related Work
• Nanocubes for Real-Time Exploration of Spatiotemporal Datasets [Lins et al., 2013]

6

Nanocubes (LINS; KLOSOWSKI; SCHEIDEGGER, 2013) was the first work to

bring the power of datacubes to larger datasets (Figure 2.10). It uses a sophisticated data

structure that relies on a hierarchical representation to encode pre-computed aggregations,

organized so that redundant information could be more efficiently stored using a clever

sharing memory strategy. Nanocubes supported the interactive analysis of millions of

records composed of categorical, temporal, and spatial dimensions. The main disadvan-

tage of Nanocubes was the complexity of the data structure, which was hard to reproduce

and maintain.

The Hashedcubes (HC) (PAHINS et al., 2017) was proposed to improve upon

Nanocubes by providing a more straightforward data structure to implement (Figure 2.11).

At the same time, supported datasets that were an order of magnitude larger than the

datasets supported by NanoCubes. HashedCubes was based on the simple idea of keeping

the entire data sorted by a pre-defined hierarchy of dimensions. A list of intervals (also

called pivots) stored the indexes of aggregations for each dimension. The key idea was

that aggregations not explicitly encoded in the list of pivots could be efficiently computed

by merging the lists of pivots.

Later, other proposals tried to extend datacubes by proposing new indices based on

different memory organizations (e.g., ConcaveCubes (LI et al., 2018), SmartCubes (LIU

et al., 2019)) or more complex top-k queries called Topkube (MIRANDA et al., 2018).

The most recent works aim to generate more complex data aggregation, such as Gaussian

functions (WANG et al., 2017) or Quantile functions (Pahins; Ferreira; Comba, 2019).

This previous work introduced the Quantile Datacube Structure (QDS), an improved ver-
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Figure 2.11: HashedCubes uses lists of pivots to store shared aggregations (PAHINS et
al., 2017)PAHINS ET AL.: HASHEDCUBES: SIMPLE, LOW MEMORY, REAL-TIME VISUAL EXPLORATION OF BIG DATA 673
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Fig. 2. Overall summary for building Hashedcubes. (a) Input dataset of points [p0,...,p9] under a spatial-categorical-temporal schema. The complete
process is described in Section 3. (b) Step-by-step illustration of the process for building arrays of sorted partitions, as explained in Section 3.2.
(c) Data is loaded (in any order) into a sequential memory and each record is associated with an index (rectangle in orange). The Hashedcubes
construction algorithm executes multiple sorting phases that result in a array of sorted partitions. After building a Hashedcubes, every pivot delimits a
partition. The stored Hashedcubes data structure is shown below. Its memory usage is mainly composed by pivots (each corresponding for two
32-bit integers) and attribute ranges (for the spatial dimension, the range is a 2-dimensional bounding box; for the categorical dimensions, the range
is simply an integer value).

data array one element at a time, we can scan the array of pivots that
represent the sorting on (d,h). If we annotate the pivot arrays with
information about the range of attributes of the data they contain, we
will be able to make decisions about entire subsets of contiguous data
at once. This is already somewhat useful, but imagine, for example,
a natural interactive query in which users are interested in studying
the same histogram as before, but for a particular subset of days of
the week. As we have currently described Hashedcubes, there is no
connection between the different pivot arrays, and so we cannot use
information about values in one dimension to speed up queries of a
different dimension. But this is easy to fix: after sorting on a finer
attribute, we annotate the “coarse pivots” with the range of pivots that
they represent in the next finer dimension. In our example, the array
of d pivots will be annotated with the boundaries they represent on
the array of (d,h) pivots; the (d,h) pivots, in turn, will be annotated
with the boundaries they represent in (d,h, p) pivots, and so on. Now
consider our working queries above again. In the same way that we
exploited the query attribute values to skip entire ranges of data values
by scanning the (d,h) pivot array, we can scan the d pivot array to skip
entire ranges of the (d,h) pivot array itself. This is the central insight
behind Hashedcubes. The astute reader will have undoutedbly noticed
that if we instead wanted to filter on network ports, we could not escape
a scan of a relatively large (d,h, p) pivot array. This is correct, and we
discuss this further in Section 3.6.

3.2 Construction Algorithm

The algorithm for building Hashedcubes requires an ordering of dataset
dimensions (e.g. first spatial, then categorical, and finally temporal). In
what follows, we will sometimes use terms like “above” and “below”
to refer to precedence relationships in this ordering. Once defined, a
linear array called Hash is associated with a root pivot [0,n−1], which
represents the initial partition containing the universe of n elements.
Each element of the Hash array is an integer that points to a record in
the dataset. The Hash array can be stored in a random or sequential
ordering. For every dimension of the indexing scheme, each partition
(here forth referred as a bin) of each object is indexed using pivots. Bins
have different interpretations for each dimension. Bins represent re-

gions for a spatial dimension, specific values or ranges for a categorical
dimension, or time intervals for a temporal dimension.In a input array
of n elements all entries belong to the same bin, represented by a pivot
[i0, i1]. Each dimension receives as input a list of pivots and outputs a
list of pivots. The first dimension receives as input the root pivot. Sub-
sequent dimensions receive the list of pivots created from the previous
dimensions. Sorting is performed in each bin to group elements. The
bin delimited by a given pivot is further refined as necessary to create
subset bins, represented by a new list of pivots. After processing each
dimension a new list of pivots is generated. A hierarchy of pivot lists
connects the bins created in each dimension.

Hashedcubes supports three distinct dimension types: spatial, cat-
egorical and temporal. The pivot hierarchy for these three dimension
types can be built in any order. Since a bin at a given dimension is a
subset of a bin in the previous dimension, a list of pivots represents
subsets for all previously defined dimensions. This allows to remove
dimensions from the representation, which is useful for managing mem-
ory consumption. The pivot hierarchy mimics a tree hierarchy since
each pivot represents a set that can be further divided into a variable
number of subset pivots, but notably, it does not store edges from one
dimension to another. Sibling pivots (nodes) are stored as lists. Because
each dimension stores collections of pivots, and pivot indices are always
offsets into the data array, dimensions can be treated independently of
each other. This allows the algorithm which executes queries to skip
dimensions that are not referred to by in the query. Furthermore, the
cardinality of the subset represented by a pivot can be directly obtained
from the pivot indices; this way, the size of an aggregation can be
directly determined by the list of pivots themselves.

We use the Figure 2 to illustrate different aspects of Hashedcubes.
The input data consists of 10 points using the schema [[Latitude, Lonn-
gitude], [Device], [Time]]. In Figure 2b step 1, the array is re-ordered
along the first level of the quadtree and three partitions are created
associated to quadrants 0, 2, and 3 (the quadrants that contain points).
Three pivots are created ([0-5], [6-7], [8-9]) to delimit these partitions.
In step 2 the array is re-ordered along the second level of the quadtree.
Note that only the first quadrant of the quadtree is subdivided in this
step, and therefore only the partition affected (associated to the pivot

sion of HashedCubes.

The Quantile Datacube Structure (QDS) proposed by Pahins, Ferreira and Comba

(2019) is the current state-of-the-art datacube structure for interactive visual analysis. This

structure can (approximately) model the distribution of the data inside different portions

of the datacube. In QDS, aggregated values are not limited to averages but distributions

within different quantiles. For instance, instead of indexing average numerical attributes,

QDS stores its quantiles. As a result, all aggregations can be computed on the fly, such

as average, quantile, max, and min. To support quantile queries, QDS augments each

entry in the pivot lists with a compressed representation of a distribution function based

on a non-parametric distribution modeling technique called t-digest (DUNNING; ERTL,

2017). QDS stores such representation as a payload of numeric dimensions, supporting

on-the-fly aggregations and merging distribution functions. QDS allows one to build

visualizations based on robust statistics and also to perform interactive anomaly detection.

Another contribution of this structure is a novel indexing scheme that reduces memory

usage compared to previous methods. Figure 2.12 illustrates a simple instance of the

QDS indexing scheme for a dataset composed of eight records and three dimensions.

QDS was designed to support visual and interactive analysis by supporting count

queries used in heatmaps and histograms, e.g., “how many events occurred in a given

region on a given date?” (PAHINS et al., 2017; WANG et al., 2017). We implemented

both of our visual analytics prototypes using the QDS structure.
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Figure 2.12: An instance of QDS indexing scheme (Pahins; Ferreira; Comba, 2019). QDS
stores at each pivot (marked with an asterisk) a payload that contains the representation
of a distribution function.
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2.3 Visualization of COVID-19 Data

Understanding COVID-19 led to works that study the different facets of the data

associated with the pandemic. Since the beginning, visualization techniques have been

a fundamental part of this process with interactive dashboards (DONG; DU; GARD-

NER, 2020; KENNEDY et al., ; The New York Times, ) (Figure 2.13). Other exam-

ples include the visualization of graphs such as the networks that arise in contact tracing

and fact-checking applications or simulation results such as the spread of cough parti-

cles (COMBA, 2020). A recent survey describes the mapping of the vast types of crisis

visualizations used in COVID-19 data (ZHANG et al., 2021). The use of Choropleth

maps has been essential to illustrate disparities in maps using color. We follow this ap-

proach in this work to map the SUS records to state and city boundaries. Another critical

point raised in this survey is the ability to use visualization techniques in dynamic tem-

poral contexts. We solve this issue using an interactive prototype that supports filtering

different time intervals and updates in charts and Choropleth maps.
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Figure 2.13: JHU and New York Time dashboards for COVID-19 analysis (DONG; DU;
GARDNER, 2020; The New York Times, )

COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)
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3 SYSTEM ARCHITECTURE

This chapter describes the system architecture that supports the visual analytics

prototypes used to explore millions of healthcare records, the data treatment of millions

of records used, and our visual analytics interface implementation. First, we describe the

datasets used. Next, we describe the analysis and performance requirements of the system

that must satisfy to support data exploration. Later, we describe the Quantile Datacube

Structure (QDS) technology used to satisfy big data requirements. Finally, we describe

the components incorporated in the visual analytics interface of the prototypes that we

developed (Figure 3.4).

3.1 SUS Datasets

Brazil has one of the largest public healthcare systems, which is called Brazilian

Unified Healthcare System (SUS) (CASTRO et al., 2019). Created in 1990, SUS is known

worldwide and allows universal access to healthcare services for the Brazilian population.

As a result, this system accounts for hundreds of millions of electronic records in a single

year. The analysis of electronic records generated by this system is vital to understanding

the functioning of the system. This analysis can then be used to improve and correct the

system, identify regional disease trends, or give valuable information to support future

public health policies.

Healthcare data sources can have different representations, such as Electronic

Medical Records (EMRs), public health datasets, mIoT (Medical Internet of Things),

CPA (Cyber-Physical systems), social networks, and genomic datasets (HARERIMANA

et al., 2018). In this section we describe two different datasets collected from SUS: SUS

EMRs for 2017 and SUS COVID-19 public dataset. These datasets are the basis of our

two case studies.

3.1.1 SUS 2017 Dataset

The first dataset we use contains EMRs from the year 2017, supplied by the e-

SUSAB (SUS- Primary Care) of the Ministry of Health of Brazil during a project collabo-

ration. Data was given in the format of a SQL relational database, completely anonymized



34

due to privacy constraints. The full dataset comprehends 109 relational tables, account-

ing for roughly 8.4 billion records. We extracted tables related to individual treatment

records from this database, which contain patient data and disease and procedure classi-

fication codes called ICPC-2 (International Classification of Primary Care) and ABP1 (a

Brazilian code for primary basic attention). The ICPC-2 codes are classified into chapters.

These extracted tables were simplified into CSV format to facilitate data exploration.

Due to additional constraints that limited us to reporting results from the entire

dataset, we further reduced the dataset to only 10% random registers of the original

dataset. While the analysis results and figures we report here might not reflect the genuine

cases of the entire dataset, we use them as a proof of concept to show the potential of the

proposed approach. Nevertheless, we performed performance tests that corroborate how

the system performs scale well to the entire dataset. Also, the prototype using the whole

dataset was made available for the Brazilian Ministry of Health staff to experiment.

From the SUS database, we extracted a single table that contains records of indi-

vidual treatment records. Each record includes the location of the treatment (state, mu-

nicipality, region), demographic attributes (age, sex, etc.), treatment information (work

shift, type, team staff, etc.), system information (version and type of system used to input

data) and classification codes (ICPC-2, count of ICPC-2 codes, etc.). We discarded the

exact geolocation of treatments since the analysis requested by the Ministry of Health fo-

cused only on regional patterns. Also, we only consider the month of each treatment as a

temporal aspect (just 12 dimensions) for this database since we only had data for a single

year (2017). If data for an additional year was made available, we could easily include

both types of dimensions, similarly to COVIZ (PAHINS et al., 2019b).

3.1.2 SUS COVID-19 Dataset

The second dataset we used became publicly available during the rise of the COVID-

19 pandemic, responsible for the deaths of millions of people in the world. Since we were

working with the analysis of SUS data, and the scientific community was devoting its

knowledge to finding ways to reduce the impact and understand the pandemic, it became

natural for us to contribute to this considerable effort.

Due to the COVID-19 pandemic, the Brazilian Ministry of Health implemented

1About the description of the ABP values: <https://integracao.esusab.ufsc.br/ledi/documentacao/
estrutura_arquivos/dicionario-fai.html#listaciapcondicaoavaliada>.

https://integracao.esusab.ufsc.br/ledi/documentacao/estrutura_arquivos/dicionario-fai.html#listaciapcondicaoavaliada
https://integracao.esusab.ufsc.br/ledi/documentacao/estrutura_arquivos/dicionario-fai.html#listaciapcondicaoavaliada
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the e-SUS Notifica system (formerly called e-SUS VE Notifica) to report Flu Syndrome

records. The data collection started in March 2020, which was the month of detecting

the first case of COVID-19 in Brazil. The forms to collect this data are attached in ap-

pendix B. It consists of publicly available records containing patient information, clinical

and epidemiological data, and case closure data2.

The data is provided by SUS doctors, private doctors, as well as by patients with

suspected flu-like syndrome using the e-SUS Notifica platform. Governmental entities

then validate and check the consistency of submissions to the e-SUS Notifica platform.

Figure 3.1 illustrates this procedure to acquire data.

The data we used were downloaded in CSV on April 1, 2021, and the unprocessed

dataset has 42.9 million records. Also, we used the COVID-19 form version of April

2021.

3.2 Analysis and Performance Requirements for the SUS COVID-19 dataset

The first prototype was developed as a request from the Ministry of Health, and

served as a proof-of-concept for exploring the idea to other datasets. In the second proto-

type, we followed a more established line of requirements for creating a visual analytics

prototype. Below, we discuss design considerations underlying the development of a vi-

sual analytics system for exploring datasets related to the SUS COVID-19 data. We first

describe a set of analysis questions that will drive the design process of our prototype.

Such analysis questions were discussed with a medical expert and refined throughout the

development of the prototypes. Next, we consider a set of system requirements that our

system must satisfy to support healthcare data exploration effectively.

We designed our system to explore public health datasets that monitor the pan-

demic evolution and learn how different regions and demographic groups were affected by

COVID-19. Additionally, we designed our system to explore Electronic Medical Records

(EMRs) that monitor primary care treatment records. To do so, we seek to support the

following analyses:

• A1. Identify data inconsistencies or errors: Since the COVID-19 pandemic be-

gan, the e-SUS Notifica platform had several changes due to the same progressive

knowledge of the virus. And on the other hand, the e-SUSAB has different versions

2Public health dataset source: <https://opendatasus.saude.gov.br/dataset/casos-nacionais>

https://opendatasus.saude.gov.br/dataset/casos-nacionais
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Figure 3.1: “e-SUS Notifica” Data adquisition.

on different platforms, and those platforms have their validations. For these reasons

and because of the data acquisition models, the data usually have inconsistencies

and errors. Identifying those inconsistencies is helpful to improve data acquisition

protocols, the SUS platforms, and, therefore, the overall quality of the data;

• A2. Explore the geographical distribution of the health records: Given Brazil’s

continental proportions and also its great variety of climate characteristics, ethnic

distribution, and different patterns of existing conditions, it is expected that the pan-

demic evolution is not going to be uniform in the country. Therefore, to identify

how COVID-19 affects different states and, more importantly, specific municipali-

ties, particularly the ones with a great density of records per population. The same

happens with treatments reports. They are heterogeneous in different geospatial

distributions;
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• A3. Explore patients’ demographic background: Since the early stages of the

pandemic, it was known that some demographic groups were more affected by

COVID-19 than others, especially concerning age. The same happens with medical

treatment in the diseases that the patients will treat since it is usual that the illnesses

are linked to a specific demographic group. For this reason, it is crucial to support

the analysis of the health records for different age groups. For example, inspect if

later waves of the pandemic with the most recent variations are affecting younger

people, as recently reported;

• A4. Explore patients’ reason for encounter (RFE), the problems/diagnosis

managed, or primary/general health care interventions: There are many codes

to classify the different diagnoses in primary care medical treatments. For example,

there is the ICPC-2 (International Classification of Primary Care), ICD-11 (Inter-

national Classification of Diseases), and in Brazil, the ABP code (code created by

SUS). In turn, a critical factor in COVID-19 mortality is prior health conditions.

For example, cardiac diseases and diabetes are reported to be among the main risk

factors for COVID-19. Another critical factor is the identification and classification

of symptoms. For example, in COVID-19, there are a variety of symptoms that

patients have reported, such as cough, fever, headache, sore throat, asymptomatic,

among others, and how they manifest across the country. We want to investigate

how these (and possibly other) diagnoses, problems, health conditions, or symp-

toms are affecting patients in Brazil;

• A5. The analysis should be performed considering the temporal aspect of

the data: The COVID-19 pandemic has been a complex temporal process, which

presents different patterns over time. And in the reports of primary care treatments,

some diagnoses increase for periods, like the flu in the winter. Therefore, our tool

needs to allow the analyst to study particular periods such as months, seasons of the

year, or specific intervals of the medical records.

To effectively support the analyses described above, our system has to satisfy the

following technical requirements:

• P1. Support interactive exploration of health records: To be able to explore the

entire dataset, our prototype must support interactive visualizations of our dataset

containing tens to hundreds of millions of records. The prototype requires an infras-

tructure that can answer queries with low latency and acceptable storage require-
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ments;

• P2. Support for slice and dice operations that filter scenarios in categorical,

temporal, and spatial dimensions: The exploration must allow the user to perform

interactive filtering on the different dimensions of the data as well as summarize the

data in various levels of details such as states and cities;

• P3. All cross-platform: The prototype needs to run on any platform, provide re-

mote support and collaborative analysis.

3.3 Data Preprocessing

Data preprocessing involves the exploration, cleaning, and treatment of data. This

is an important step, since data are often subject to errors, such as ill-formatted fields,

incomplete or inconsistent information, noise, outliers, and other problems. The reason

for the mistakes that happen in this data may involve several factors, such as:

• use of multiple versions of the systems that collect the data;

• lack of data standards;

• lack of data consistency procedures;

• lack of knowledge when entering data.

Figure 3.2 illustrates the pre-processing steps that take raw data to data ready to

be stored in the QDS structure. The first step, called import stage, focus on exposing

data inconsistencies. When possible, we represent dimensions in a categorical format,

where values are discretized into a fixed number of categories. Categorical dimensions

simplify the check for inconsistencies or lack of standardization, such as in invalid data.

Temporal and numerical dimensions are treated as strings, since it simplifies the checking

of format used. We import data that describe spatial regions such as municipalities, states,

or countries as categorical dimensions.

The next step, called data exploration, is responsible for investigating what the

data contains. For each dimension, we observe the domain (minimum, maximum, mean,

median, quantiles, and number of nulls) and the distribution of the data using graphs

such as histograms (possible categorical dimensions) and boxplots (possible numerical

dimensions). This information helps us choosing which dimensions are significant, and

the errors that the data contains.

After the dimensions are chosen we start the data cleaning stage. In this stage we
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Figure 3.2: Data preprocessing methodology

define, for each dimension, an appropriate cleaning procedure. We list below examples

of data cleaning and treatment procedures:

• Categorical dimension:

• Treatment of nulls: If the null values are not significant, they are replaced by

the median value. However, if the domain allows nulls, a new factor is created

to store these null values.

• Outside domain: These values are the ones that do not make sense within

the domain of the dimension. For example, if the dimension sex has in the

domain the values man, woman, and car, then the car factor would be out of

the domain. When we have such values, they are replaced by the median.

• Lack of standardization: These data make sense within the domain but have

different values for the same sense of value. For example, if the dimension

sex has the values Female, Male, and Fem in its domain, it makes sense that

the values Fem and Female have the same sense in the domain. The values of

this type of data are grouped to standardize the domain.

• Simplifying domain: If the domain has too many factors, it is better to simplify

the most dominant factors and leave the least dominant factors with the name

others.

• Numerical dimension:

• Treatment of nulls: If the null values are not significant, they are replaced by

the median.

• Outside domain: For example, if the dimension age has values between -5 and

200 years, then the negative values and the ages greater than the oldest person
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alive do not make sense. When we have those values, we replace them with

the median without considering those erroneous values.

• Outliers: We look for the presence of outliers using boxplots or other tech-

niques. The median replaces the outliers without considering those values.

The technique for describing a value as an outlier is highly dependent on the

domain of the dimension.

• Temporal dimension:

• Treatment of nulls: If the null values are not very significant, they are replaced

by the median. This median is determined by ordering the values. However, if

the domain allows nulls, an unused temporal value is designed to store these

null values.

• Outside domain: For example, if the dimension years of medieval age has the

value 2005, this year does not make sense. When we have those values, we

replace them with the median without considering those erroneous values.

If the data has a field that identifies each record, all the records are analyzed to

search for duplicate records. A duplicate record would be a record with the same id as

another. If duplicate records are found, the records are treated, and a single record is

chosen that would be the most concise concerning the others. At this point, the data

is already clean, which could allow us to create new dimensions for visualization by

inferring from a clean dimension or by combining different dimensions.

It is essential to mention that many fields in the data records have the meaning of

a possible value of a dimension and contain more than one value in the same record. For

example, one record in the field symptoms could have the values “Fever, Cough, Other",

and another could have “Sore throat, Cough" This situation happens because, many times,

the data comes from the relationship from another data. For example, consider a table

relationship in SQL in the SUS dataset. We can take advantage of this situation by creating

new data, such as duplicating each record by the number of values that each record has.

Thus, new data are generated that involve the significance of the dimension in analysis.

Also, we can take advantage of that dimension by counting the number of different values

that dimension has in that record.

For example, if we have records of patient treatments in a hospital and each record

has the patient’s diseases, then the records can be duplicated to analyze each type of

disease. As a result, new data will no longer involve analyzing patient treatment but
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rather exploring the different diseases. Likewise, the number of diseases that each patient

has can be added as a new dimension to the original data that analyzes patient treatment.

At the end of this data cleaning stage, we generate one or more CSV files with the

data already cleaned and preprocessed for each dataset 3.

3.4 Data Storage in QDS cubes

Since the preprocessed data is comprised of millions of multivariate and spa-

tiotemporal records, we need an efficient data handling solution that satisfies requirements

P1 and P2. For this, we used the Quantile Datacube Structure (Pahins; Ferreira; Comba,

2019) described in the previous chapter. QDS is one of the most efficient OLAP cube

structures nowadays and can deliver the performance needed for interactive exploration

under the storage budget of personal computers. QDS is available4 as free software, under

GNU General Public License v3.0.

QDS stores tabular data containing many records, each composed of fields that

can describe spatial, numerical, categorical, and temporal data. The QDS cubes are ef-

ficiently compressed in memory to support real-time counting queries about the data or

approximations of the data distribution. The values of these queries are updated directly

on a user interface each time a new selection is made.

To prepare the SUS data for storage in QDS, we first need to define the dimensions

3Data preprocessing of the SUS COVID-19 Dataset available on the website <https://qdsvis.github.io/
qdscovid-data>

4Available in the repository <https://github.com/cicerolp/qds>

Figure 3.3: Data processing methodology

https://qdsvis.github.io/qdscovid-data
https://qdsvis.github.io/qdscovid-data
https://github.com/cicerolp/qds
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of the QDS cube. This is a critical step of the process since choosing which dimensions

to use, and their respective representation, can significantly impact the performance and

storage requirements of the QDS cube.

Before processing the data into QDS, we performed the data preprocessing de-

scribed in the previous section to generate CSV files. The decisions for the business

intelligence mapping were recorded into an XML configuration file. Using both the CSV

and XML files, we generate the QDS cubes, represented as a binary file. Figure 3.3 illus-

trates this process. We refer the reader to section A.1 of appendix A for details about the

generation of the QDS cubes.

For all our QDS cubes, the location of the records, described by states and munici-

palities, are described by categorical dimensions. We represent the state and municipality

by separate dimensions, each containing codes that map into the corresponding names

of the state and municipality. We collected the demographics and geographical bound-

aries of states and municipalities from the Brazilian Institute of Geography and Statistics

(IBGE). When displaying counts for the number of records in a given municipality, we ei-

ther show the absolute value or scale this number by the municipality population (number

of inhabitants), thus showing comparisons related to population density.

3.4.1 QDS-SUS Cubes

We performed a data exploration, cleaning, and treatment of the SUS 2017 dataset.

The dimensions that we chose to use are listed in Table 3.1. Although QDS supports dif-

ferent types of dimensions, we only used categorical dimensions in our QDS-SUS cubes.

We decided to create two different QDS cubes (Table 3.2). Since several records in the

SUS 2017 dataset do not have ICPC-2 classification codes, we created a cube that did not

Table 3.1: Significant dimensions on the SUS 2017 Dataset
platform data patient data treatment data location data

dimention origin version sex age data on
pregnancies childbirths gestational

weeks
work
shift

type of
treatment

ICPC-2
codes

ICPC-2
codes count

IBGE
state

IBGE
municipality teams

type cat. cat. cat. cat. cat. cat. cat. cat. cat. cat. cat. cat. cat. cat.
N 5 8 5 17 18 18 11 5 9/8 750 12 28 5549/5523 1416

Table 3.2: QDS-SUS cubes (10% version) description and statistics5

dataset objects memory load time pivots schema

records 20.9 M 722 MB 1 m 17 s 14.1 M
origin (5), version (8), sex (5), age (17), teams (1416)
childbirths (18), work shift (5), type of treatment (9),
ICPC-2 codes count (12), IBGE state (28), IBGE municipality (5549)

ICPC-2 codes 15.8 M 887 MB 28 s 35.1 M
origin (5), version (8), sex (5), age (17), data on pregnancies (18),
work shift (5), type of treatment (8), gestational weeks (11)
ICPC-2 codes (750), IBGE state (28), IBGE municipality (5523)
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include these codes. This cube was used in an exploration scenario focused on identify-

ing regional patterns related to the number of treatment records. The second cube only

includes records with ICPC-2 classification codes. It is used in an exploration scenario

to find regional patterns associated with specific classification codes (e.g., finding regions

with a high number of malaria treatment records). In the visual analytics prototype, it is

possible to select which cube to use. The cubes are detailed below:

• ANALYSIS BY TREATMENT RECORDS: in this cube, we represent the treatment

records. This data cube contains 209.1 million treatment records in the original

dataset and 20.9 million in the modified dataset with 10% of the data;

• ANALYSIS BY ICPC-2 CLASSIFICATIONS CODES: in this cube, each record rep-

resents a problem/diagnosis register for a service associated with the respective

treatment records. This cube contains 157.7 million treatment records in the origi-

nal dataset and 15.8 million in the modified dataset with 10% of the data.

3.4.2 QDS-COVID Cubes

Like in the SUS 2017 dataset, and according to the analysis questions we posed

in Section 3.2, for the SUS COVID-19 dataset we kept the significant dimensions listed

in Table 3.3. In this dataset, two categorical dimensions may have more than one value

5Values calculated with the hardware specifications described in chapter 6

Table 3.3: Significant dimensions on the SUS COVID-19 Dataset
patient data epidemiological clinical data case closure data location data

dimention health
professional age sex start date of

symptoms
notification

date conditions condition
count sympthons sympthon

count
test
status

test
type

test
result

evolution
case

final
classification

IBGE
state

IBGE
municipality

type cat. cat. cat. temp. temp. cat. cat. cat. cat. cat. cat. cat. cat. cat. cat. cat.
N 2 19 2 - - 10 3 11 5 5 7 4 8 7 28 5571

Table 3.4: QDS-COVID cubes description and statistics6

dataset objects memory load time pivots schema

records 42.9 M 3.0 GB 5 m 42 s 72.8 M

health professional (2), sex (2), condition count (3),
symptom count (5), test result (4), test status (5),
test type (7), final classification (7), evolution case (8),
age (19), IBGE state (28), IBGE municipality (5571),
start date of symptoms (temp.), notification date (temp.)

symptoms 94.3 M 6.7 GB 12 m 59 s 159.8 M

health professional (2), sex (2),
symptom (11), test result (4), test status (5),
test type (7), final classification (7), evolution case (8),
age (19), IBGE state (28), IBGE municipality (5571),
start date of symptoms (temp.), notification date (temp.)

conditions 5.0 M 429 MB 51 s 11.0 M

health professional (2), sex (2),
condition (10), test result (4), test status (5),
test type (7), final classification (7), evolution case (8),
age (19), IBGE state (28), IBGE municipality (5571),
start date of symptoms (temp.), notification date (temp.)
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for each record (patient’s conditions and symptoms). It is necessary to create a separate

record for each condition or symptom or a combination of both to compute aggregations

for conditions or symptoms individually. To simplify this process, we decided to create

three individual cubes. The first cube contains only records (without symptoms or con-

ditions). The other two cubes contain a single record for each condition or symptom.

Although there are up to 10 possible conditions, 38 million out of 42 million records have

no conditions. On the other hand, there are only 88K records with no symptoms and some

with up to 10 symptoms. For this reason, the conditions cube is much smaller than the

symptoms cube (Table 3.4).

3.5 User Interface for the Visual Analytics Prototypes

In this section, we describe the components of the visual analytics prototypes. We

combine the records stored in the QDS cubes, the population data from IBGE, and the

GeoJSON describing the boundaries of states and municipalities in Brazil. The prototype

architecture (Figure 3.4) is a client-server model (Shakirat Oluwatosin, 2014) with full

open-source software, using the TypeScript and C++ programming languages.

On the server-side, we use the QDS server, a technology developed for commu-

nication with the back-end data cubes and HTTP server to handle the web application

(Angular). We use Angular combined with D3.js for providing interactive visualizations

capabilities to explore the data resulting from the queries to the back-end and Leaflet with

Mapbox to display the maps on the client-side, thus satisfying P3.

The visualization components of the interface are summarized in Figure 3.5. For

each cube, a specific configuration was created. We refer the reader to more details about

the interface metadata configuration in section A.2 of appendix A. We built the QDS

interface based on the following main components:

• DATASETS SECTION, Figure 3.5-A shows the title and available datasets. These

are clickable buttons, and the highlighted one is the current dataset displayed in the

interface.

• CHARTS SECTION, Figure 3.5-B shows the scrolling chart section containing plots

such as bar, line, or treemaps charts. Each plot has its own interaction with the

visual interface. The bar charts and treemaps are selectable and deselectable by

6Values calculated with the hardware specifications described in chapter 6
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clicking over each element inside the chart and the line chart (used to display the

temporal dimension) by dragging the bottom slider. Additionally, this section al-

lows the rearrangement of the graphics order as the user preferences by dragging

each chart.

Figure 3.4: The system architecture of the visual analytics prototypes. It uses the QDS
data structure as the data back-end. The front-end is comprised of different visualizations
implemented as multiple coordinated views.

Figure 3.5: QDS prototype components: (A) dataset selection, (B) charts, (C) map and
statistics, and (D) filters.

A
B C

D
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• MAP SECTION, Figure 3.5-C contains the main menu and the map used to show the

current filters selection data distribution by states and municipalities. The top of this

section displays a search engine to find places by name and the button "Config" that

saves in a hash value the current state (all filter selections made). This button also

receives as input a hash value to reconstruct and show the filters in the interface.

Below, the section displays the menu in the top left to choose the colormap by

population, density, or counting the registers. The bottom left shows the colormap

legend that changes by every selection made to have the best color range in each

case. The right-side shows the menu where the user can select to display the map’s

data by states or municipalities. Below, the type of aggregation of the registers.

Next, the details of the mouse hovering a region. Finally, at the bottom, the button

section, by default, presents two buttons, one for exporting categorical data to CSV

and another button to clear the filters.

• FILTERS SECTION, given that almost all the interface’s elements are selectable and

some selected categories are not visible without zoom, it is confusing to remember

all the chosen filters. To summarize active filters, Figure 3.5-D shows all the se-

lections made in bar and map charts. These elements are clickable, for example to

clear the filters.

For each one of the QDS categorical, spatial, and temporal fields, we developed

one or more chart representations. To display categorical data, we first need to choose a

suitable colormap from the d3.js choices7. We selected to use the category10 colormap

when there are less or equal to ten categories to display and category20 colormap in other

cases. We used three types of charts to present the data:

• HORIZONTAL BAR CHART, we use this chart to show data that we want to be sorted

by value and usually have many categories. For example, Figure 3.6-A shows the

percentage of symptoms in descending order, which at first sight gives more in-

formation to the reader. All these categories are clickable and update the interface

considering it as a newly added/removed filter. Additionally, they have the mouse

hover function to display the values and full labels of each category. Lastly, this

kind of chart has on the upper right a button in "< "shape to turn the card and show

a table with the same data as the chart implemented with Angular (Figure 3.7).

• VERTICAL BAR CHART, we use this chart to present the data with an implicit order

7https://github.com/d3/d3-scale-chromatic
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Figure 3.6: Types of charts: (A) horizontal bar chart, (B) vertical bar chart, (C) line chart,
(D) hierarchical treemap chart
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Figure 3.7: Categorical data like table

or are few categories to display, so the order is not as important. For example,

Figure 3.6-B shows the chart for age distribution. Like the horizontal bar chart,

all these categories are clickable and update the interface considering it a newly

added/removed filter. They have the mouse hover function and a button in "< "shape

with the same functionalities on the upper right.

• HIERARCHICAL TREEMAP CHART, we configure the prototype to use this chart to

show data with hierarchical order, such as the ICPC-2 code and its different chapters

(Figure 3.6-D). When the user clicks over a category, it displays the subcategories

and so on, and the treemap’s header changes to green when a final category is

selected. The mouse hovering function in the header displays the chosen filters.

Finally, all final categories are selectable/deselectable and update the interface.

The prototype uses line charts to represent temporal data. Figure 3.6-C shows

an example, where at the X-axis is the time range and the Y-axis is the quantity for each

time. At the upper right of the chart is the label of the current time range displayed. While

categorical charts have selections clickable on the same plot, the range time selection for

temporal data is at the bottom of the chart as a slider.

As discussed before, the Municipalities and States are represented as categorical

data, and we display their corresponding geographical regions in the map using the Geo-

JSON file with the response from the QDS server. The prototype uses Leaflet for the

interactive map and Mapbox as the tile server. Over this map, the prototype draws in a

layer of the GeoJSON file regions and adds interactivity to all the states or municipalities.

The interface associates color mappings to different geographical regions in the map to

display counts, often associated with the number of records. We decided to use a sequen-

tial color mapping but modified it at higher values with different shades to help identify

high outlier values.

In Figure 3.8-A, we display the absolute number of records in different regions
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Figure 3.8: Location data analysis by: records (A), population (B), and density (C)
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Figure 3.9: Location data analysis by region levels: states (left) and municipalities (right).

Figure 3.10: Team evaluation analysis

of the map. A second view shows the population in each region (Figure3.8-B), which

allows us to distinguish the cities with the largest population. A third view (Figure 3.8-C)

combines the previous two views by scaling the number of records by the population,

thus showing the density of records per number of persons. In the density view, regions

displayed with darker shades of red are associated with high-density values (outliers). In

such regions, it might be the case that there are more active healthcare programs for the

population, or it may represent anomalies in the records. Looking for outliers is a critical

way to find inaccurate medical data (LAURIKKALA; JUHOLA; KENTALA, 2000).

Several exploration scenarios require the analysis of data in different levels of

geographical details. In addition to changing in the map the detail required (region, state,

or municipality), we allow the user to select a given region and only show in detail the

results for the current selection, following Shneiderman’s famous mantra for visual data

analysis (overview first, zoom and filter, then details-on-demand) (Shneiderman, 1996).

In Figure 3.9, we show these different levels of geographical detail in the prototypes.

The prototypes also allow working with subdivisions of a region that are not

strictly geographic. In the prototype of QDS-SUS, there is the definition of a staff team
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responsible for the treatment record in a municipality. The performance of staff teams is

essential to validate the efficiency of the system. In Figure 3.10, we selected a group of

municipalities (selected in yellow and highlighted on the borders) with an unusual den-

sity. For this selection, we provide another view that details the team staff distribution

using tables (staff team evaluation view) to show the subdivisions of these regions.
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4 QDS-SUS’ CASE STUDIES

In this Chapter, we show examples in which QDS-SUS can be used to detect data

quality issues and discover interesting patterns in the data. As mentioned in the previous

section, we created two cubes based on the dimensions of Table 3.1:

• ANALYSIS BY TREATMENT RECORDS: in this cube, we represent the treatment

records. The chart section presents all the categorical dimensions of the platform,

patient, and treatment data in vertical bar charts. Finally, in the map chart, we set

the location data.

• ANALYSIS BY ICPC-2 (INTERNATIONAL CLASSIFICATION OF PRIMARY CARE)

CLASSIFICATIONS CODES: in this cube, each record represents a problem/diagnosis

register for a service associated with the respective treatment records. All the charts

are almost the same as in the analysis by treatment records. However, we present

the ICPC-2 codes in a treemap and do not show the ICPC-2 code counts.

We described in the following sections several scenarios that were discovered

while using QDS-SUS. Even though the analysis question we posed in Section 3.2 were

later formulated to the COVID-19 dataset, we refer when possible to the analysis ques-

tions A1-A5 while describing our results.

4.1 Data Quality Analysis

The data in SUS is entered by hundreds of thousands of people from around the

country, and therefore is subject to inconsistencies and errors. Data exploration using

QDS-SUS helps to identify inconsistencies in the data.

For example, suppose one wishes to investigate the number of pregnancies that

deviate from the expected averages. In that case, we can select the number of childbirths

above 15 in the vertical bar chart and choose an age group in which individuals are un-

likely to have had so many children (e.g., 20 to 24 years old). We can see that the cases

are concentrated in Florianópolis, a city in the south of Brazil (Figure 4.1 on the left). We

observe that 73.4% of all cases are in the same city. When analyzing the teams in which

the data originates, we observed that all cases are from a single health team. This suggests

that the problem is an inconsistency limited to a specific team and makes it easier for the

Ministry to investigate the causes of this potential inconsistency (A1 and A2). Other in-
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Figure 4.1: Inconsistencies of the number of childbirths (left) and previous pregnancies
(right) of young women.

teresting observation is that most of the patients with more that 15 pregnancies are below

30 years of age (Figure 4.1 on the right).

4.1.1 Sex Inconsistencies

The ICPC-2 cube can be used to analyze the relations between the treatment data

to the different causes represented by the associated ICPCs. Through an exploratory

analysis involving specific ICPCs, we found inconsistencies related to the sex and the age

of the patients who received treatments or performed exams (A1, A3, and A4).

A good example are problems/diagnoses that only make sense to a given sex.

For example, Figure 4.2(bottom) shows treatments and exams which only apply to fe-

male patients, such as diagnoses of pregnancy (ICPC-2 W78 and ABP-001), post-partum

symptoms (ICPC-2 W18 and ABP-002), cervical cancer screening (ABP-022), and the

entire Chapter X of the ICPC-2. As we can see, several records of such exams are associ-

ated with male patients. A total of 1.9% of female-only procedures were applied to male

patients. It is a high amount since Brazil has a large population. We also observe in the

figure that the age range of men is almost constant, which can mean that the inconsistency

is not specific to the age of male patients.

We also investigated problems/diagnoses which only apply to male patients, such

as Chapter Y of ICPC-2 (Figure 4.2 on the top). The results show that about 41.4% of

these diagnoses were attributed to female patients. In this case we have an age group of

women almost concentrated in teenagers and scattered without any visual pattern in the

states of Brazil with these cases. We speculate that these issues were caused by either an
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Figure 4.2: Sex inconsistencies: male treatments administered on female patients (top)
and female treatments administered on male patients (bottom).
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error on a patient’s records, or they may indicate that one patient used the id of a relative

when receiving a treatment. For example, we can see that the procedure ICPC-2 Y14

(other methods of male family planning) has 31.4% of the total records, so it could be an

error in registering female patients in an exclusive procedure for male patients.

4.1.2 Age Inconsistencies

To investigate age inconsistencies, we selected specific problems/diagnoses that

are only applicable to certain age groups and verified whether they were administered to

other age groups (A1, A3, and A4).

The following age inconsistencies were detected (Figure 4.3):

• ICPC-2 W78/ABP-001 (Pregnancy): Approximately 0.04% of the total records

were identified for patients over 60 old (incompatible age for pregnancy).

• ICPC-2 W18/ABP-002 (Post-partum symptom/complaints): Several records were

found for children (up to 10 years old) and patients over 60 years old.

• ICPC-2 A98/ABP-004 (Childcare, Health maintenance/prevention): aimed at

patients aged between 0 and 19 years. Approximately 0.32% of the total records

are associated with adult patients, many of which are concentrated in Mato Grosso

do Sul.

• ABP-022 (Cervical cancer screening): Approximately 0.014% of the total records

were associated with children under ten years old.

It is worth pointing out that while QDS-SUS makes it easy to identify these possi-

ble age inconsistencies, we cannot be sure of their cause. There could be many possible

Figure 4.3: Age inconsistency in diseases: ABP-001, ABP-002, ABP-004, and ABP-022.
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explanations for them. Some problems could be simply a result of typos while entering

data into the system, while others could be due to the user’s lack of familiarity with the

system or even malpractice.

4.2 Knowledge Discovery

In this section, we show how to relate the codes of the ICPC-2, attributed to the

visits, with the patterns of some diseases in the country, and their relationship with the age

and sex of the patients. We used the ICPC-2 cube to exemplify the potential of QDS-SUS

for this purpose.

• ICPC-2 D96 (Worms/Other parasites): As can be seen in Figure 4.4, the north-

ern and northeastern regions of the country have the highest prevalence of this issue,

especially in child patients (A2, A3, and A4). The proportion of records to male

patients represents 43%, and the balance of children patients (under ten years old)

represents 49.6% of the total records for this code. This shows the vulnerability of

children to this disease, pointing out opportunities for improvement in their envi-

ronment (e.g., basic sanitation) or other public prevention policies.

• ABP-018 (Hansen’s disease): The proportion of records to male patients repre-

sents approximately 54.2% of the total records for this code. The state of Mato

Grosso is the one with the highest number of cases in proportion to its population,

followed by the Tocantins. In absolute numbers, specific states in the North and

Northeast regions concentrate the cases (A2, A3, and A4).

• ICPC-2 S70 (Herpes Zoster): The appointments typically refer to older patients.

This finding is compatible with the epidemiology of the disease, which usually

occurs in more fragile patients (A3 and A4).

• ICPC-2 T82/ABP-007 (Obesity): As shown in Figure 4.5, the number of records

involving female patients is higher when compared to male patients. The female

patients represent 76.3% of total records for this code (A3 and A4). Initially, it can

be thought that obesity is more prevalent in females. However, this finding may also

represent a bias since female patients may seek more help for this specific complaint

than male patients. Obese male patients who do not seek help specifically for this

issue may be registered only with another ICPC-2 code, such as high blood pres-

sure, diabetes, etc. In female patients, cases are distributed in different age groups,
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Figure 4.4: Worms/Other parasites on the digestive system (ICPC-2 D96) in Brazil.

Figure 4.5: Obesity (ICPC-2 T82/ABP-00) in Brazil.

with a peak between 35 and 60 years, perhaps revealing a more significant concern

with obesity itself or health in general. The appointments of male patients, on the

other hand, have peaks in childhood/adolescence and later in the range between 50

and 65 years.

• ICPC-2 P17/ABP-011 (Tobacco abuse), ICPC-2 P16/ABP-012 (Acute alcohol

abuse), and ICPC-2 P19/ABP-013 (Drug abuse): In the case of smoking, the

proportion of treatments to male patients increases to 43.5% of the total records

for this code (A3 and A4). In the case of alcohol, 71.6 % of treatments are for

male patients. Although there are treatments distributed across all age groups, the

peak is between 35 and 55 years. In the case of female patients, the peak is in the

age group between 20 and 25 years. Male patients also represent a majority in the

treatments for other drugs (57.3%). Most patients belong to the age group of 20
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to 25 years, followed by the age group between 25 to 40 years in a slightly lower

volume. In the case of female patients, the peak also occurs in the age group of

20 to 25 years, but with a much lower number of treatments in the age group that

follows (25 to 40 years). For all these pathologies, the high number of records of

children associated with these services is noteworthy. Exploring more attributes

related to these services could provide inputs for the definition of public policies

for preventing and monitoring these cases, especially among young adults.
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5 QDS-COVID’ CASE STUDIES

This chapter describes the results obtained using QDS-COVID, a visual analytics

tool for creating insights about the SUS COVID-19 Dataset. We build the prototype

using QDS to support slice and dicing exploration of charts and Choropleth maps for all

states and municipalities in Brazil. We follow the set of analysis questions formulated in

Chapter 3 to drive the development of the prototype and the construction of case studies

that demonstrate the approach’s potential 1.

As mentioned in Chapter 3 for the QDS-COVID prototype, we created three cubes

based on the dimensions of Table 3.3:

• ANALYSIS BY REGISTERS: in this cube, we prioritized the count of medical care

registers. The chart section presents all the categorical dimensions of the patient

data, epidemiological clinical data, and case closure data in vertical bar charts. We

present all temporal dimensions using line charts. Finally, in the map chart, we set

the location data.

• ANALYSIS BY CONDITIONS: we decided to show this data in a different cube to

focus on the conditions dimension. All the charts are almost the same as in the

analysis by records. However, we present the condition dimension in a horizontal

bar chart and do not show the symptoms and conditions counts.

• ANALYSIS BY SYMPTOMS: like the cube for conditions, we decided to split by

symptoms and show it as a horizontal bar charts.

5.1 Analysis Examples

We describe below several scenarios that were discovered while using QDS-COVID.

We used the analysis questions A1-A5 posed in Section 3.2 to drive our exploration pro-

cess.

Example 1 (A1 and A2): Fig. 5.1 illustrates the different ways to color-code

the map of Brazil using the boundaries of the 26 states and the federal district; or the

5602 different municipalities. For simplicity, when referring to states in Brazil, we use

their two-letter acronym. While Brazil is highly populated along the coast and in the

southwest, the total records for COVID-19 were higher in the southern states (e.g., RS

1Demo available on the website <https://qdsvis.github.io/qdscovid>

https://qdsvis.github.io/qdscovid
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Figure 5.1: Color-coding states or municipalities by the total number of records, popu-
lation, density (ratio of records by population), predominant symptom, and predominant
condition.

Cardiac Pregnancy

Diabetes Chromosome

Respiratory Obesity

Immuno Puerperal

Kidney Others

Others Runny Nose

Cough Dyspnea

Fever Gustatory 
Disease

Sore Throat Olfactory 
Disease

Headache Shortness of 
Breath

Asymptho
matic

SymptomsConditions

Records Density

Predominant 
Symptom

Predominant 
Condition

Population

Cardiac

Diabetes

Respiratory

Immuno

Kidney

Pregnancy

Chromosome

Obesity

Puerperal

Others

Others

Cough

Fever

Sore Throat

Headache

Asympthomatic

Runny Nose

Dyspnea

Gustatory 
Disease

Olfactory 
Disease

Shortness of 
Breath

and SC). The density map uses dark shades of red to reveal outlier states such as SC and

RR. While the density of records per population is 20.7% in Brazil, SC and RR have a

density of 57.2% and 46.0%, respectively. The predominant condition is cardiac disease,

followed by diabetes. While the predominant symptom is others for the entire interval, in

2021, the symptoms are cough and headache.

We also found situations that reveal limitations or inconsistencies in data. For

example, the records map for PR shows that it has fewer records (only 125K) than states

with a similar population count, such as RS that has 3.8M. Such difference might be

because the data does not include information from states or municipalities that use their

notification systems for COVID-19. While the percentage of records associated with

female/male (51.79%,48.21%) is slightly larger for females in Brazil, we see states with

much more male records, such as SC (28.09%, 71.91%) and ES (0.04%,94.96%).

Example 2 (A2): Comparing the number of records map and the density map

also allows identifying low populated areas with a high number of records (high-density

value). This can be seen in Fig. 5.2, where we observe that in RS, there is a large number

of records in the center and southwest of the state, while the density of records is higher

in the northeast. In SC, while the number of records is higher in the northeast, we observe
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municipalities with higher density in the west. The border between states has similar

high-density values.

Figure 5.2: Record and density maps for RS and SC.
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Example 3 (A3): As observed before, SC and RR have high-density values for the

entire period. In Fig. 5.3, we explore how the density changes when we filter the analysis

for each of the 19 age groups and display the top three states in each group. We observe

that SC is the top state in all age groups, which stresses the impact of COVID-19 in this

state. Also, we observe that RR is second place in all age groups until age 70th. RS also

appears as the third most frequent state in this ranking, particularly at higher age groups.

Both RS and SC have a large elderly population. RN and RO also appear in this ranking

for older and younger age groups, respectively.

Example 4 (A3 and A4): In this example, we compare the predominant condi-

tions against the different age groups. Fig. 5.4 shows the age-group histograms for each

condition. Cardiac is the top condition and accounts for 37.8% of conditions. It has a

nearly symmetric shape distribution, with a peak at the 56-60 age group. Diabetes is

the second topmost condition, similar to cardiac diseases but slowly increases until 50

years. Respiratory diseases peak at the 21-25 age group, with a decreasing shape as age

increases. Obesity has a steady and fast growth after 16 years, reaching a peak at 36-40,

and a slight decrease for the following age groups. Pregnancy, as expected, has a narrow

distribution from 16 to 45 years, with peaks around 21-25 and 26-30. Immunosuppressive

has a linear increase from 11 to 56-60, where it reaches a peak and starts to decrease at a

faster pace for older age groups.
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Figure 5.3: Top 3 states for each age group by density.
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Example 5 (A4 and A5): In Fig. 5.5, we display the predominant conditions from

June 2020 to March 2021 in the border of RS and SC. We observe that cardiac disease

is consistently the top condition. There are, however, perceptible changes for the other

conditions. To better illustrate the changes in time associated with conditions, we display

the timeline for each condition in the figure. Cardiac, diabetes, and respiratory diseases

are the top three conditions, and the timeline for each follows the overall distribution.

Respiratory diseases were more predominant from June-September, which corresponds

to the winter season. There is a peak of kidney diseases in July 2020. From September,

pregnancy increases in the north of RS from September 2021 and keeps elevated until

March 2021. Another condition to pay attention to is obesity. The obesity plot shows

low values until August because it was not part of the form before. After August, obesity

conditions increase and reach high values in the wave by February/March 2021.

Example 6 (A3, A4, and A5): While exploring the municipalities on the border

of RS and SC, we identified municipalities with short periods of intense record activity,

such as Caxias do Sul (RS). Fig. 5.6 shows the records during two high record periods of

45 days in winter 2020 (3401 records) and summer 2021 (3128 records). The number of

records in these two periods accounts for nearly 38% of all records in the entire year. The

first observation is that the histogram of age groups changes in the summer, with fewer

people in the age groups 51-90 but with more people from 16-50, with peaks in 36-40 and

21-25. Cardiac diseases are still the predominant condition, but we have more people with
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Figure 5.4: Age distribution for the top six conditions.
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diabetes in the summer. Respiratory problems decrease in the summer, while we observe

an increase in conditions as immunosuppressive and obesity. The obesity condition calls

attention since it moved from not appearing to be 10% of all conditions.

Example 7 (A4 and A5): During the exploration process, we inspected the changes

of symptoms throughout the year in different states of Brazil. It called our attention to the

fact that many states in the northeast of Brazil in October of 2020 had asymptomatic as a

predominant condition. To further remove patients that tested negative for COVID-19, we

filtered the cases for only records with positive results. Such filter reduced the number of
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Figure 5.5: Monthly predominant conditions for municipalities in RS and SC from June
2020 to March 2021: (top) map view with predominant conditions for each municipality
(bottom) timeline charts for each condition.
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records overall, but asymptomatic records remained a large number. In Fig. 5.7, we illus-

trate the changes of predominant symptoms for several municipalities across the northeast
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Figure 5.6: Records in Caxias do Sul (RS) for two 45-days during the winter 2020 and
summer 2021. The histograms reveal significant changes in the distribution of the age
groups and predominant conditions.

Caxias do Sul 
Winter 2020 

02/16/2021-03/30/2021 
3401 conditions

Caxias do Sul 
Summer 2021 

02/15/2021-03/31/2021 
3128 conditions

Cardiac Diabetes Respiratory Immuno Kidney Pregnancy Chromosome Obesity Puerperal Others

Age Conditions Age Conditions

0-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70 71-75 76-80 81-85 86-90 >90

Others Cough Fever Sore Throat Headache Asympthomatic Runny Nose Dyspnea Gustatory 
Disease

Olfactory 
Disease

Shortness of 
Breath

of Brazil. We observe that from June-July 2020, the symptoms contained five symptoms

(others, cough, fever, sore throat, and dyspnea), which were the only options in the form

at that time. The form was changed late in August to include additional symptom options,

which caused a reduction in records associated with the others category from September.

In particular, we observe that headaches made the top-3 symptom list from November

until March 2021. The color difference in the maps illustrates a significant variability in

the top symptoms across the different municipalities.

5.2 Comparison Against Other Studies

Lima et al. (LIMA et al., 2020) analyze state capitals between March 1st and Au-

gust 18th, 2020. In QDS-COVID, we found 2.6M registers, while they found 2.42M.

We also observed differences in the distribution by sex: we found 46.9% of registers

for women and 53.1% for men, while they found 55.1% and 44.0%, respectively. We

observed that if we consider the not available values (N.A) in our prototype, the results

match their reported values. Escobar et al. (ESCOBAR; RODRIGUEZ; MONTEIRO,

2020) shows that in RO between 1st January and 20th August 2020, they count over

184M records with 27.0% of positive tests. Using these filters in QDS-COVID, we found

195M records with 26.7% of positive tests. Additionally, the results of death percentage

by age groups they describe are similar to the ones we obtained, although our age groups

are every five years (against every ten years in their work). Marcolino et al. (MARCOL-

INO et al., 2021) presented clinical characteristics from hospitalized patients from March

to September 2020. The most frequent conditions were hypertension (52.9%) (a cardiac

disease), diabetes (29.2%), and obesity (17.2%). QDS-COVID shows that the most regis-

tered conditions were cardiac diseases (37.9%), diabetes (24.5%), and respiratory diseases
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Figure 5.7: Monthly evolution of predominant symptoms for patients tested positive for
COVID-19 in the northeast of Brazil. Months are selected in the line chart.
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5.3 Evaluation by a Medical Expert

We submitted the prototype for evaluation by an intensive care physician with

an M.Sc. in Computer Science. The use of maps to create quick insights by state or

municipality was the preferred functionality. The density maps that show registers by

population were also mentioned as important to compare different locations. The expert

also reported findings using the tool independently, and we report them below.

SP has the most number of registers, but SC is the state with a higher density of

registers. RR is the state with more healthcare professionals with positive tests by popula-

tion, followed by RO and RS. Patients submitted to a COVID-19 test had 64.5% negative

and 35.5% positive results. In 2020, 5.39% of the positive tests were from healthcare

professionals, while in 2021, it reduced to 2.11%. Since more than 50% of the outcome is

N.A., we can not compare mortality with other studies. In patients with positive tests, the

top symptoms were cough (18.8%), fever (15.5%), and sore throat (12.1%); only 4.5%

were asymptomatic. In patients with a negative COVID test, the top symptoms were

cough (16.5%), sore throat (13.2%), and fever (11.3%), but 13.2% were asymptomatic.
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6 PERFORMANCE RESULTS

In this chapter, we briefly discuss the scalability performance of QDS-SUS and

QDS-COVID. We provide performance and storage results for the datasets used in this

work, the QDS-COVID and the two versions of the QDS-SUS with the original data and

another with 10% of the data. Also, we report results for other datasets we have been

using to explore the potential of the QDS infrastructure. Additional datasets include:

• LICITA-VIS: A prototype generated from a public dataset containing public bid-

dings in southern Brazil. We presented this prototype for the Hackfest RS 2019.

• SpotifyVIS: A prototype that showed the top-preferred songs in different places

and was developed thanks to the data from the public API of Spotify.

• CAGED: A prototype with employment and unemployment records in Brazil from

a public dataset of the IBGE.

• COVIZ: A prototype to visualize and explore patient cohorts in France (PAHINS

et al., 2019a).

Performance tests were done with the following specifications:

• CPU: Intel(R) Core(TM) i5-9400F CPU @ 2.90GHz with 6 CPUs and 6 cores.

• Operating system: Debian GNU/Linux 9.5 (stretch) with core Linux 4.4.0.

• RAM: 32 GB.

Table 6.1 summarizes the benchmark results for all datasets an the table 6.2 shows

the results normalized. The storage requirements of QDS and the load time are pro-

portional to the number of objects of each dataset. Nevertheless, the memory used by

QDS stabilizes when the number of objects is higher. From these results and our recent

experience with implementing the QDS infrastructure to different datasets, we confirm

that QDS scales well into hundreds of millions of records. These results corroborate the

performance results given in the QDS work by Pahins, Ferreira and Comba (2019).
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Table 6.1: Performance of the QDS with different datasets. The schema contains the list
of dimensions stored in each QDS cube. Dimensions that have payloads store numerical
values and their distribution in a compressed format. After the QDS is loaded, the queries
stand in real-time.

Dataset Number
of Objects Schema (dimensions) QDS

Structure
Size Memory Load

Time Pivots

LICITA-VIS 226.5 k
2 PDigest payload, 2 Gaussian payload,
27 categorical, 2 temporal 16 MB 46 MB 4 s 1.1 M

SpotifyVIS 5.2 M
9 PDigest payload, 9 Gaussian payload,
6 categorical, 1 temporal 261 MB 1.6 GB 37 s 5.9 M

CAGED
(2 cubes) 328.8 M 2 PDigest payload, 10 categorical 8.6 GB 14.4 GB 10 m 28 s 201.2 M

COVIZ
(2 cubes) 21.0 M

2 PDigest payload, 3 Gaussian payload,
15 categorical, 2 temporal, 1 spatial 497 MB 1.6 GB 1 m 10 s 123.7 M

QDS-SUS
(10%, 2 cubes) 36.7 M 14 categorical 771 MB 1.6 GB 1 m 45 s 49.2 M

QDS-SUS
(2 cubes) 366.9 M 14 categorical 7.9 GB 7.1 GB 10 m 53 s 282.5 M

QDS-COVID
(3 cubes) 142.2 M 14 categorical, 2 temporal 4.1 GB 9.4 GB 19 m 7 s 243.6 M

Table 6.2: Normalized performance of the QDS with different datasets. With referenced
values from the table 6.1.

Dataset Number
of Objects Schema (dimensions) QDS

Structure
Size (MB/M)

Memory
(MB/M)

Load
Time (s/M)

Pivots
(M/M)

LICITA-VIS 226.5 k
2 PDigest payload, 2 Gaussian payload,
27 categorical, 2 temporal 70.6 203.1 17.7 4.9

SpotifyVIS 5.2 M
9 PDigest payload, 9 Gaussian payload,
6 categorical, 1 temporal 50.2 315.1 7.1 1.1

CAGED
(2 cubes) 328.8 M 2 PDigest payload, 10 categorical 26.8 44.8 1.9 0.6

COVIZ
(2 cubes) 21.0 M

2 PDigest payload, 3 Gaussian payload,
15 categorical, 2 temporal, 1 spatial 23.7 78.0 3.3 5.9

QDS-SUS
(10%, 2 cubes) 36.7 M 14 categorical 21.0 44.6 4.0 1.3

QDS-SUS
(2 cubes) 366.9 M 14 categorical 22.0 19.8 1.8 0.8

QDS-COVID
(3 cubes) 142.2 M 14 categorical, 2 temporal 29.5 67.7 8.1 1.7
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7 CONCLUSIONS AND FUTURE WORK

In this dissertation, we proposed a visual analytics prototype to analyze millions of

healthcare records. Specifically, we presented two case studies using data from SUS, the

Brazilian public health system, one of the biggest in the world. Interactive analysis of the

SUS data was challenging due to its size and complexity. We satisfied the performance

requirements using a datacube structure called QDS (Pahins; Ferreira; Comba, 2019) that

supports interactive queries requested by the user interface (despite the fragmentation of

the dimensions with many values). We needed to create five cubes to inspect the two SUS

datasets: SUS 2017 Dataset and SUS COVID-19 Dataset. In total, the system supports

the exploration of 367M records for the QDS-SUS prototype and 142.7M records for the

QDS-COVID prototype. We support filtering in the prototypes in all dimensions stored

in the structure. We support interactive analysis over charts and maps for states and mu-

nicipalities. We show the potential of our prototypes with use cases that bring findings

of COVID-19 and the primary care system. We compared our results to other works and

received feedback from a medical expert.

The interactive analysis of SUS records is not supported by any existing tool to

the best of our knowledge. As demonstrated here, the ability to interactively explore

SUS healthcare data after selecting and filtering the data, with the immediate result being

displayed in histograms and maps, is critical to identifying patterns and anomalies.

As future work is concerned, we are interested in exploring ways to enrich the vi-

sualizations used in the prototypes. For example, in the QDS-COVID, we only display in

the map the top condition or symptom. We want to explore other designs, such as glyphs

or their variants, to show the maps’ distribution of conditions or symptoms. We also

would like to interact with other medical experts, specialists, journalists and the health

ministry in Brazil.

Also, we are interested in comparing QDS with other tabular databases (Cassan-

dra, HBase, Azure Cosmos DB) and BI (OLAP). And also test different techniques to infer

values from nulls.
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APPENDIX A — STEPS FOR GENERATING QDS CUBES

This appendix has instructions for generating QDS (Quantile Datacube Structure)

structures, called cube for simplification, from CSV files representing registration tables.

With these structures, somebody can view and analyze CSV data in an interactive and fast

graphical interface. In addition, the interface metadata provided the instructions, which

are settings for how the interface will show each dimension (column) of the generated

cube data.

Two parts divide this appendix:

1. QDS cube generation: The first part details the transition of data in CSV files to a

cube structure (QDS), specifying the tools that must be installed and, in a superficial

way, how the process works. It is essential to follow the steps in order.

2. Interface metadata configuration: The second part directly indicates the edits made

to the interface files. The added metadata will be essential to translate the informa-

tion consulted from the cube during the execution of the interface and define some

parameters of treatment of each dimension.

The data set in Table A.1 will exemplify the treatment of the data for the final

treatment and generation of the interface.

Table A.1: Sample data set. Dimensions: fruit, quantity, producer, price, and truck.
fruit qty producer price truck

banana 571 "A" 2,50 5
apple 935 "B" 1,25 3

orange 218 "C" 1,75 10
... ... ... ... ...

apple 164 "D" 3,00 7

A.1 QDS Cube Generation

Install Tools

This subsection provides instructions on the tools necessary to generate the cube

and to configure the interface. The tools are qds-tools, nds-interface, GCC, CMake, Boost.
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CSV Requirements

For csv2nds to work correctly, the CSV files in the entry must follow some orga-

nization and formatting requirements.

Organize the data in a CSV file or a folder (if there are two or more files) and save

the path of the file/folder location on the computer. Example:

• Sample 1: /home/user/.../unique-file.csv

• Sample 2: /home/user/.../multiple-file-folder/

It is necessary to have in the files a header, the first line, with the names of the

columns. If more than one CSV file, its columns must have the same names and be in

the same order in all files. For example, if a file has the order of the columns in c1, c2,

c3, and c4, then everyone must have that order and the same columns.

If the files are created on one operating system and then passed on to another, there

may be invalid characters. These files can be checked by opening a terminal in the CSV

folder and running the command cat -v file.csv. If there are invalid characters,

delete them.

If numbers are represented with a decimal part, use the period as a separator. For

example, "1234.56" is correct and "1234,56" is incorrect.

Do not use special characters. For example, do not use the characters é, ã, or ç

instead of e, a, and c, respectively.

Do not use string delimiters (like quotes) in the fields of each line. Check that the

CSV separator is not present within the delimiters. If this is present, change the separator

within the delimiter.

It is possible to use the next command to remove or change unwanted characters

in all of the mentioned cases:

sed -i ‘s/old-character/new-character/g’ file.csv

For example, using the data in table A.1, we can organize and format correctly in

the file /home/username/fruit-store.csv:

fruit;qty;producer;price;truck

banana;571;A;2.50;5

apple;935;B;1.25;3

orange;218;C;1.75;10

...



81

apple;164;D;3.00;7

Schema

Before generating the cube, it is necessary to create a schema file with an XML

extension and save it in the csv2nds/schema folder of qds-tools. This file will serve

as a "recipe" for the cube to be generated, and the following details must be specified in

it:

• Data location on the computer.

• Name of the cube that will be generated and the place where it will be saved.

• For each dimension (column): a module with the index (index name of the dimen-

sion in the original file), type, name (name that will be used in the cube), and some

attributes that change for each type of dimension.

To generate the schema file, we have to define the columns in the scope of sup-

ported dimensions. The dimensions are divided into:

1. Categorical dimension: Categorical dimensions is the simplest and also the most

used. Their attributes consist of listing the possible values for each column (the

values must be in the same order as you want to see in the interface).

1. Discrete categorical dimension: Fits columns with integer numeric values or

non-numeric values. There should be a <bin>value</bin> segment for

each of the different column values (Fig. A.1a).

2. Binary categorical dimension: It serves for columns that only have values 0

or 1. It does not need attributes (Fig. A.1b).

3. Sequential categorical dimension: Fits columns with values arranged in a se-

quence of natural numbers. It must have a <min>interval-start</min>

segment and a <max>interval-end</max> segment (Fig. A.1c).

4. Interval categorical dimension: It serves for columns that will be analyzed

by intervals of natural numbers instead of value by value. There must be a

segment <bin>interval</bin>with beginning and end for each interval

of the different values of the column. All values must be in some range, and

no range can intersect with another interval (Fig. A.1d).

5. Payload dimension: Fits columns with numeric values. For example, salary, num-
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Figure A.1: Dimension representation

(a) Discrete categorical dimension (b) Binary categorical dimension

(c) Sequential categorical dimension (d) Interval categorical dimension

(e) Payload dimension
(f) Spatial dimension represen-
tation (g) Temporal dimension

Figure A.2: Schema file structure.

* If the data is stored in a single file, replace the line with <input>CSV-file-path</input>.

ber of cars, number of contagions, etc. (Fig. A.1e).

6. Spatial dimension: It serves pairs of columns with point values in a 2d space (Fig.

A.1f).

7. Temporal dimension: Fits columns with timestamp values (Fig. A.1g).

The structure of the schema file is shown in figure A.2. The dimension mod-

ules must be placed between <schema> and </schema> (replacing the three dots but

aligned in the same way).
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To make a small example, we will use the data in table A.1 to generate a schema

file fruit-store.xml. The complete path of the schema file would be

qds-tools/csv2nds/schema/fruit-store.xml. The general details of the

file would be:

- Cube data location: home/username/fruit-store.csv.

- Cube name: fruit-store.

- Place where the cube will be saved: home/username/output/.

The dimensions of the table would be represented as follows:

• fruit:

• Original file name: fruit.

• Type: discrete categorical dimension.

• Dimension name to be used in the cube: fruit.

• Attributes:

• Value 0: banana.

• Value 1: apple.

• Value 2: orange.

• qty:

• Original file name: qty.

• Type: interval categorical dimension.

• Dimension name to be used in the cube: quantity.

• Attributes:

• Value 0: Between 100 e 250.

• Value 1: Between 251 e 500.

• Value 2: Between 501 e 750.

• Value 3: Between 751 e 1000.

• producer:

• Original file name: producer.

• Type: discrete categorical dimension.

• Dimension name to be used in the cube: producer.

• Attributes:
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• Value 0: A.

• Value 1: B.

• Value 2: C.

• Value 3: D.

• Value 4: E.

• price:

• Original file name: price.

• Type: payload dimension.

• Dimension name to be used in the cube: price.

• truck:

• Original file name: truck.

• Type: sequential categorical dimension.

• Dimension name to be used in the cube: truck.

• Attributes:

• Inferior limit: 1.

• Superior limit: 10.

The way the example schema was organized is not unique. The attributes of the

modules depend on how the data will be analyzed in the interface.

Cube Generation

Finally, csv2nds must be prepared to generate the cube. To do this is necessary to

build the program with the help of CMake. In the qds-tools/csv2nds folder, create

a new folder with the name "build". That done, open a terminal in this new folder and

execute the commands:

cmake -DCMAKE_BUILD_TYPE=Release ..

make

cp csv2nds ..

After completing all the previous steps, open a terminal in the csv2nds folder

and execute command ./csv2nds -i schema/file.xml --sep=”;”, replac-

ing the name of the schema file and the separator of the CSVs with those corresponding
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Figure A.3: Dataset identifiers

to the data set used.

The command to generate the cube of table A.1 should be

/csv2nds -i schema/fruit-store.xml --sep=”;”.

A.2 Interface Metadata Configuration

With the cube ready, it is necessary to change some files so that the interface works

as expected. The files to be modified are all from the nds-interface repository:

nds-interface/src/app/services/schema.service.ts

nds-interface/src/app/services/configuration.service.ts

Dataset Identifiers

The cube’s data set must be identified by two variables (Fig. A.3).

In the case of table A.1, a dataset name of "fruit-store" and a dataset label of

"FRUIT STORE" should be used.

Chart Configuration

The charts of the interface interact with the dimensions of the cube. That is why

each chart is configured according to a dimension. Generic examples of all graphical

possibilities are shown in figure A.4. The choice of a chart type depends on the data set

and the desired interface.
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Figure A.4: Different types of charts

Figure A.5: The charts for the "Fruit store" dataset

Figure A.6: Definition of aliases

In the case of table A.1, the configuration of the charts would be as in figure A.5.

Aliases

Charts need to have identifiers on each value for the user interface to understand

them, as they are represented only by indexes in the cube. Then, it is necessary to create,

for each column that participates in these charts, aliases (alternative names) to replace the

cube indices in the interface with the identifiers (Fig. A.6).

To do this is necessary to edit the alias list in the schema.service.ts file

with a specific notation.

Each element of the list will be an alias of one of these three types:

• Alias column: It is obligatory. The column name must be placed on the left. Fur-



87

Figure A.7: The aliases for the "Fruit store" dataset

thermore, a list with the identifiers of all possible values of the column must be

placed on the right. These identifiers have to place in the same order as the schema

file indices.

• Alias column_label: It is optional. The column name with the "_label" must be

placed on the left. Furthermore, the name of the dimension that will appear in the

chart must be placed on the right. If this alias is omitted, the name of the column in

the CSV will be set.

• Column_desc alias: It is optional. The column name with the "_desc" must be

placed on the left. Furthermore, a list with the complete description of all possible

values of the column must be placed on the right. These descriptions have to place

in the same order as the schema file indices. If omitted, the values that will appear

will be those of the ’column’ alias.

The aliases in example table A.1 are shown in figure A.7. Note that they only

apply to dimensions that participate in bar charts, and not every dimension has aliases of

the three types.

Configuring the Default Dataset

This variable defines the cube that will be shown on the interface when it is started.

For example, in the case of the cube in table A.1, it would be:

public defaultDataset = ’fruit-store’;
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APPENDIX B — SUS COVID-19 DATASET FORMS

Figure B.1: "e-SUS Notifica" form (Brazilian Unified Healthcare System, b)

 
MINISTÉRIO DA SAÚDE 
SECRETARIA DE VIGILÂNCIA EM SAÚDE 

 

 
e-SUS Notifica –04/03/2021 

Nº 

FICHA DE INVESTIGAÇÃO DE SG SUSPEITO DE DOENÇA PELO CORONAVÍRUS 2019 – COVID-19 (B34.2) 
 

Definição de caso: Indivíduo com quadro respiratório agudo, caracterizado por pelo menos dois (2) dos seguintes sinais e sintomas: febre (mesmo que referida), 
calafrios, dor de garganta, dor de cabeça, tosse, coriza, distúrbios olfativos ou distúrbios gustativos.  
Em crianças: além dos itens anteriores considera-se também obstrução nasal, na ausência de outro diagnóstico específico. 
Em idosos: deve-se considerar também critérios específicos de agravamento como síncope, confusão mental, sonolência excessiva, irritabilidade e inapetência. 
Observação: Na suspeita de COVID-19, a febre pode estar ausente e sintomas gastrointestinais (diarreia) podem estar presentes. 

UF de notificação: 
|__|__| 

Município de Notificação: 
________________________ 

 

ID
EN

TI
FI

C
A

Ç
Ã

O
 

 

Tem CPF? (Marcar X) 

|__|Sim |__|Não 

Estrangeiro: (Marcar X) 

|__| Sim |__|Não 

Profissional de saúde (Marcar X)  

 

|__| Sim |__|Não 

Profissional de segurança (Marcar X) 

 

|__| Sim |__|Não 

CBO: CPF:  __|__|__|__|__|__|__|__|__|__|__ 

CNS: __|__|__|__|__|__|__|__|__|__|__|__|__|__ 

Nome Completo: 

Nome Completo da Mãe: 

Data de nascimento: ____|____|_______ País de origem: 

Sexo: (Marcar X) 

|__|Masculino 
|__|Feminino 

Raça/COR: (Marcar X) 

|__|Branca |__|Preta |__|Amarela  |__|Parda |__|Indígena Etnia:_____________       
|__|Ignorado 

É membro de povo ou comunidade tradicional? (Marcar X) 

|__| Sim |__|Não 
Se sim, qual? 
_____________________________ 

CEP: __|__|__|__|__ - __|__|__ Passaporte: __|__|__|__|__|__|__|__ 

Logradouro: Número: Bairro: 

Complemento: 

Estado de residência: |__|__| Município de Residência: _____________________________ 

Telefone Celular:  Telefone de contato: 

E-mail: 

D
A

D
O

S 
C

LÍ
N

IC
O

S 
EP

ID
EM

IO
LÓ

G
IC

O
S 

Data da Notificação: ___|___|____ Data do início dos sintomas: ___|___|____ 

Sintomas: (Marcar X) 

|__|Assintomático   |__|Febre          |__|Dor de Garganta          |__|Dispneia          |__|Tosse          |__| Coriza 
|__|Dor de Cabeça  |__|Distúrbios gustativos |__|Distúrbios olfativos   |__|Outros_____________________________ 

Condições: (Marcar X) 

|__| Doenças respiratórias crônicas descompensadas                                                |__| Diabetes                     |__| Obesidade 
|__| Doenças renais crônicas em estágio avançado (graus 3, 4 e 5)                         |__| Imunossupressão 
|__| Portador de doenças cromossômicas ou estado de fragilidade imunológica |__| Gestante 
|__| Doenças cardíacas crônicas                                                                                      |__| Puérpera (até 45 dias do parto) 

Estado do Teste: (Marcar X) 

|__|Solicitado  
|__|Coletado  
|__|Concluído 
|__|Exame Não Solicitado 

Tipo de Teste: (Marcar X) 

|__|RT – PCR  
|__|Teste rápido – anticorpo 
|__|Teste rápido – antígeno 
|__|Testes sorológico 

Data do Teste 
(PCR/Rápidos):  
 
___|___|___ 

Data do Teste (Sorológico):  
 
 
___|___|____ 

Resultado (PCR/Rápidos): (Marcar X) 

|__|Reagente  
|__|Não Reagente 

|__|Inconclusivo ou Indeterminado 

Teste Sorológico: (Marcar x) 

|__|IgA 
|__|IgG 
|__|IgM 
|__|Anticorpos Totais 

Resultado (IgA): (Marcar X) 

|__|Reagente  
|__|Não Reagente 

|__|Inconclusivo ou Indeterminado 

Resultado (IgG): (Marcar X) 

|__|Reagente  
|__|Não Reagente 

|__|Inconclusivo ou Indeterminado 

Resultado (IgM): (Marcar X) 

|__|Reagente  
|__|Não Reagente 

|__|Inconclusivo ou 
Indeterminado 

Resultado (Anticorpos Totais): 
(Marcar X) 

|__|Reagente  
|__|Não Reagente 

|__|Inconclusivo ou Indeterminado 
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Figure B.2: "e-SUS Notifica" Webform (Brazilian Unified Healthcare System, a)
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APPENDIX C — RESUMO EXPANDIDO

Título da Dissertação de Mestrado: Exploração Interativa de Milhões de Registros de

Saúde no Brasil

Resumo expandido:

Os sistemas de saúde são essenciais para manter a saúde da população mundial.

O avanço da tecnologia de gerenciamento da informação permitiu a captura de grandes

quantidades de dados relacionados ao monitoramento de pacientes em instituições médi-

cas. Só nos Estados Unidos, o volume de dados médicos está previsto para atingir em

breve a ordem de zetabytes (10 21 bytes) (RAGHUPATHI; RAGHUPATHI, 2014).

A análise de dados de saúde é desafiadora devido ao seu grande volume, complex-

idade e heterogeneidade (por exemplo, dados estruturados e não estruturados tais como

tabelas de banco de dados, texto, imagens e vídeos). Técnicas de visualização de dados

interativos são indispensáveis para auxiliar a análise de esses grandes sistemas de saúde.

Nesta dissertação, apresentamos dois estudos de caso utilizando dados de um dos

maiores sistemas públicos de saúde do mundo, o Sistema Único de Saúde (SUS) (CAS-

TRO et al., 2019). No Brasil, o SUS desempenha um papel vital na saúde da população,

principalmente nas pessoas que não podem pagar pelos planos privados de saúde.

O primeiro estudo de caso é chamado QDS-SUS, um protótipo de analítica visual

para dados de tratamentos do SUS do ano 2017. Para dar suporte à exploração interativa

desse conjunto de dados, que contém centenas de milhões de registros, contamos com

o poder das agregações computadas. Nosso protótipo se baseia na última geração das

estruturas chamadas datacubes. Listamos, também, vários exemplos que demonstram

como tal sistema pode ser usado para identificar padrões únicos ou inconsistências nos

dados. Para o protótipo do QDS-SUS criamos dois cubos baseados nas dimensões dos

dados processados:

• ANÃLISE POR REGISTROS DE TRATAMENTO, neste cubo, representamos os reg-

istros de tratamento.

• ANÁLISE POR CÓDIGOS DE CLASSIFICAÇÃO ICPC-2, neste cubo, cada registo

representa um registo de problemas/diagnósticos para um serviço, associado aos

respectivos registos de tratamento.

A pandemia causou a morte de quase 5,1 milhões de pessoas no mundo no final de

novembro de 2021. No Brasil, o número de mortes recentemente ultrapassou 611 mil e
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continua crescendo a cada dia. Devido à pandemia de COVID-19, o Ministério de Saúde

do Brasil, por meio da Secretária de Vigilância em Saúde (SVS), implantou a plataforma

e-SUS Notifica (anteriormente chamada de e-SUS VE Notifica) para a vigilância da Sín-

drome de Gripe. A coleta de dados teve início em março de 2020, quando foi detectado

o primeiro caso do COVID-19 no Brasil. Devido a isso, o segundo estudo de caso é ded-

icado aos dados gerados associados ao COVID-19. Neste estudo de caso, descrevemos o

protótipo denominado QDS-COVID, um sistema de análise visual para auxiliar a análise

de dados do SUS associados ao COVID-19. Demostramos nossas descobertas por meio

de vários exemplos baseados em questões de análise formuladas. Comparamos nossos

resultados com estudos relacionados e formecemos feedback de um especialista médico.

Como no primeiro caso de uso neste protótipo criamos também três cubos baseados nas

dimensões dos dados processados dos conjuntos de dados:

• ANÁLISE POR REGISTROS, neste cubo, priorizamos a contagem dos registros das

notificações dos pacientes que seriam os casos suspeitos de COVID-19.

• ANÁLISE POR CONDIÇÕES, decidimos mostrar esses dados em um cubo diferente

para nos concentrar nas condições dos casos suspeitos.

• ANÁLISE POR SINTOMAS, semelhante ao cubo das condições, decidimos fazer o

mesmo para os sintomas.

Na análise de resultados, discutimos brevemente o desempenho de escalabilidade

de QDS-SUS e QDS-COVID. Fornecemos resultados de desempenho e armazenamento

para os conjuntos de dados usados neste trabalho, o QDS-COVID e as duas versões do

QDS-SUS com os dados originais, e outra com 10% dos dados. Além disso, relatamos

os resultados de outros conjuntos de dados que temos usado para explorar o potencial da

infraestrutura QDS. Obtivemos que os requisitos de armazenamento do QDS são propor-

cionais ao número de objetos de cada conjunto de dados. No entanto, a memória usada

pelo QDS se estabiliza quando o número de objetos é maior. A partir desses resultados

e de nossa experiência atual com a implementação da infraestrutura QDS para diferentes

conjuntos de dados, confirmamos que o QDS pode ser escalonado em centenas de mil-

hões de registros. Esses resultados corroboram os resultados de desempenho fornecidos

no trabalho QDS dos Pahins, Ferreira and Comba (2019).

Nesta dissertação, precisamos criar cinco datacubes no total para inspecionar os

dois conjuntos de dados do SUS: SUS 2017 Dataset e SUS COVID-19 Dataset. No total,

o sistema suporta a exploração de 367 milhões de registros para o protótipo visual QDS-
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SUS e 142,7 milhões de registros para o protótipo QDS-COVID. Suportamos filtragem

nos protótipos em todas as dimensões armazenadas na estrutura. Também suportamos

análises interativas em gráficos e mapas para todos os estados e municípios do Brasil.

Mostramos o potencial de nossos protótipos com casos de uso que trazem descobertas

sobre o COVID-19 e o sistema de atenção primário do SUS.

Até onde sabemos, a análise interativa dos registros do SUS não é suportada por

nenhuma ferramenta existente. Como demonstramos aqui, a capacidade de explorar inter-

ativamente os dados de saúde do SUS após as seleções e filtrar os dados, com o resultado

imediato sendo exibido em histogramas e mapas, é extremamente importante para identi-

ficar padrões e anomalias.
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