
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

FELIX EDUARDO HUAROTO PACHAS

An Offline Writer-Independent Signature
Verification Method with Robustness

Against Scalings and Rotations

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Eduardo Simões Lopes Gastal

Porto Alegre
June 2022

CIP — CATALOGING-IN-PUBLICATION

Huaroto Pachas, Felix Eduardo

An Offline Writer-Independent Signature Verification Method
with Robustness Against Scalings and Rotations / Felix Eduardo
Huaroto Pachas. – Porto Alegre: PPGC da UFRGS, 2022.

76 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do
Sul. Programa de Pós-Graduação em Computação, Porto Alegre,
BR–RS, 2022. Advisor: Eduardo Simões Lopes Gastal.

1. Signature Verification. 2. Offline Signature Verification.
3. Writer independent models. I. Gastal, Eduardo Simões Lopes.
II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

Handwritten signatures are still one of the most used and accepted methods for user au-

thentication. They are used in a wide range of human daily tasks, including applications

from banking to legal processes. The signature verification problem consists of verifying

whether a given handwritten signature was generated by a particular person, by com-

paring it (directly or indirectly) to genuine signatures from that person. In this research

work, a new offline writer-independent signature verification method is introduced (named

VerSig-R), based on a combination of handcrafted Moving Least-Squares features and

features transferred from a convolutional neural network. In our experiments, VerSig-R

outperforms state-of-the-art techniques on Western-style signatures (CEDAR dataset),

while also obtaining competitive results on South Asian-style handwriting (Bangla and

Hindi datasets). Furthermore, a wide range of experiments demonstrate that VerSig-R

is the most robust in relation to differences in scale and rotation of the signature images.

This work also presents a discussion on dataset bias and on cross-dataset performance of

VerSig-R, as well as a small user study showing that the proposed technique outperforms

the expected human accuracy on the signature-verification task. Finally, a discussion

on the impact of the number of signature examples (per writer) used during training on

performance and execution time is presented.

Keywords: Signature Verification. Offline Signature Verification. Writer independent

models.

LIST OF FIGURES

Figure 1.1 Example CEDAR dataset signatures demonstrating bias in dataset................9

Figure 3.1 Proposed method pipeline overview. ...26
Figure 3.2 Moving Least-Squares (MLS) feature generation pipeline28
Figure 3.3 Proposed CLIP preprocessing pipeline.. 31

Figure 4.1 r2 histograms for CEDAR dataset ...35
Figure 4.2 r2 histograms for Bangla dataset ...36
Figure 4.3 r2 histograms for Hindi dataset ... 37
Figure 4.4 Example CEDAR dataset signatures demonstrating bias in dataset..............43
Figure 4.5 Example Bangla dataset signatures demonstrating ias in dataset..................44

LIST OF TABLES

Table 4.1 Statistics of the datasets used in the experiments performed in the present
work. ...40

Table 4.2 Number of reference samples per writer based on number of genuine
reference samples for the experiments in Section 4.7... 41

Table 4.3 Classification metrics for the methods evaluated in the comprehensive
experiments performed in the present work..46

Table 4.4 Ablation study (averaged over CEDAR, Bangla and Hindi datasets).50
Table 4.5 Classification metrics for the MCYT and GPDS datasets............................... 51
Table 4.6 Impact of PCA applied to the feature vectors ...53
Table 4.7 Impact of reference samples on CEDAR dataset ..55
Table 4.8 Impact of reference samples on CEDAR dataset ..56
Table 4.9 Impact of reference samples on CEDAR dataset .. 57
Table 4.10 Impact of random forgeries during the training phase59
Table 4.11 Cross-dataset validation Accuracy of the proposed technique for the

unbiased version of the datasets..60
Table 4.12 Cross-dataset validation Accuracy of the proposed technique for the

unbiased rotated (UR) version of the datasets. ...60
Table 4.13 Cross-dataset validation Accuracy of the proposed technique for the

unbiased scaled (US) version of the datasets. ... 61
Table 4.14 Cross-dataset validation Accuracy of the proposed technique for the

unbiased rotated and scaled (URS) version of the datasets. 61
Table 4.15 Time (in minutes and seconds – MM:SS) for feature generation of

VerSig-R, measured in the unbiased version of the datasets. CLIP features are
generated on a RTX 2080 Ti GPU (with pre- and post-processing on the CPU),
and MLS features are generated on a Intel(R) Xeon(R) Silver 4216 CPU @
2.10GHz, using 16 threads. ...62

Table 4.16 Execution time evaluation ...63

CONTENTS

1 INTRODUCTION... 7
2 BACKGROUND AND RELATED WORK..12
2.1 Online Signature Verification...13
2.2 Offline Signature Verification ..14
2.2.1 Writer-Dependent Approaches ..14
2.2.2 Writer-Independent Approaches ..16
3 PROPOSED METHOD: VERSIG-R..24
3.1 Moving Least-Squares (MLS) Feature Generation ...24
3.1.1 MLS Overview...25
3.1.2 MLS Detailed Algorithm ... 27
3.1.3 Moving Least-Squares Fit and r2...29
3.2 CLIP Feature Generation ..30
3.3 Classification with SVM ...32
4 EXPERIMENTAL RESULTS ...33
4.1 r2 Histograms Analysis...34
4.2 Experimental Methodology..39
4.3 Evaluation on “Unbiased” Datasets ..42
4.4 Evaluation of Rotation and Scale Invariance ...44
4.5 Ablation Study...49
4.6 GPDS and MCYT dataset results..52
4.7 Impact of reference samples on classification performance................................54
4.8 Impact of using only random forgeries during training......................................54
4.9 Cross-dataset validation ...58
4.10 Implementation Details and Execution Time ...62
4.11 User Study with Human Subjects..64
5 CONCLUSION ...65
6 FUTURE WORK.. 67
6.1 Training with Random Forgeries .. 67
6.2 Dataset Improvements.. 67
6.3 Signature Identification ..68
6.4 Feature Generation ...68
REFERENCES...70
APPENDIX A — RESUMO EXTENDIDO ..75

7

1 INTRODUCTION

With the rapid increase of developed software integrated into many kinds of pro-

cesses, some research effort has been made with the objective of having powerful and

effective techniques to authenticate legitimate users in order to access sensitive informa-

tion, both personal and professional. Some approaches to authenticate users are based on

“something you know,” such as PINs or passwords, and/or “something you have,” such as

smart cards. These approaches have the drawback that users can easily forget passwords or

lose smart cards. Also, users can be exposed to social engineering tactics, revealing their

PIN or password to malicious third parties (HADNAGY, 2010). In this sense, biometric

authentication is a good solution, since in this case the authentication process is based on

“something you are” or “something you do.” Specifically, biometric authentication could

be classified into two types: physiological (fingerprints, face recognition, iris recognition,

etc.) and behavioral (voice or speech recognition, keystroke dynamics and handwritten

signatures) (MOHAMMED et al., 2015).

In general, people are mostly accostumed to automated physiological biometric

recognition, using them in daily life tasks such as unlocking a mobile phone (with

facial or fingerprint recognition), or verifying physical presence at university or work

by fingerprint recognition. However, there are some activities in which physiological

biometrics are not sufficient, due to legal restrictions or social conventions. These activities

still required a socially and legally accepted behavioral biometric recognition technique:

Handwritten signatures, although the signature verification process is performed mostly

in a non-automated way and often based only on the judgment of the administrative staff

(sometimes with no scientific rigor nor experience). Some examples of these activities

are: signing a contract or any kind of banking and legal processes. On the other hand,

non-automated handwritten signature verification processes are user-friendly and non-

invasive, since it does not require any additional step for the user apart from performing

the signature itself (MOHAMMED et al., 2015; KUMAR; BHATIA, 2016).

Handwriting and signature verification are not trivial problems since, although

performing a signature is a behavioral trait learnt and perfected over a lifetime period

by the writer, it presents extremely high intraclass variability: no signature is identical

to another, even if performed by the same writer with some seconds of difference. In

addition to this, as expected, interclass variability is present when comparing signatures

from two different writers. So, in order to classify two signatures as belonging to the same

8

class/writer (genuine signature pair) or two different classes/writers (forgery signature

pair), the intraclass dispersion ideally should be as low as possible, while the interclass

dispersion needs to be as high as possible (KALERA; SRIHARI; XU, 2004).

In general, Handwritten Signature Verification consists of verifying whether a

particular handwritten signature is genuine (i.e., was generated by a particular person of

interest) or if it is a forgery (i.e., was generated by someone else trying to mimic the genuine

signature of the first person, in order to impersonate them). When considering automated

handwritten signature verification, this problem can be approached using either online

or offline information (MOHAMMED et al., 2015) depending on the way handwritten

signature information is collected. In the online case, signature information is collected

using a helper device which could be a tablet, a special pen or a handwriting digitizer,

these devices collect writing-time signature information, i.e. x and y coordinates for

each signature point at each moment in time, the total time employed to perform the

signature, pen inclination, applied pressure, etc. This online information is supposed to

be unique for each writer, identifying them based on these behavioral biometrics. On

the other hand, in the offline case, the handwritten signature is only available as a static

image, which is normally a scanned piece of paper containing the signature (Figure 3.2a).

Then, behavioral biometric information about the signer has to be collected indirectly from

the handwritten signature image, turning the signature verification into a more difficult

problem to solve (MOHAMMED et al., 2015), since behavioral information about the

user is not available directly (KALERA; SRIHARI; XU, 2004). Nonetheless, offline

signature verification it is still the most used and socially approved approach, since many

legal and banking processes base their legality on the verification of the truthfulness of

static handwritten signatures (without the necessity of any helper or additional device,

which would complicate the process), but still performing the signature verification in a

non-automated way.

Handwritten Signature Verification could also be classified as to be either writer

dependent or writer independent (KUMAR; BHATIA, 2016; MOHAMMED et al., 2015).

A writer-dependent approach for signature verification builds a distinct and unique classifi-

cation model for each writer, in order to classify signatures as either genuine or forgeries

for each writer. This approach tends to achieve better results, because the classifiers are

provided with writer-specific signature information, but in contrast this kind of classifier

needs a lot more genuine signature examples from each writer (KUMAR; BHATIA, 2016;

MOHAMMED et al., 2015). Achieving this could be tedious, challenging or even impos-

9

Figure 1.1: Example of signatures performed by the author in real-life documents.
(a) Vertical signature (b) Slightly rotated signature

Source: (a-b) Real documents signed by the author.

sible if one considers for example a large institution trying to implement a Handwritten

Signature Verification system. Furthermore, in the writer-dependent approach each new

user (or a user who decided to change their signature) has to be enrolled in the system in

order to generate a specific model for them.

On the other hand, in the writer-independent approach a single classification model

is built upon a set of handwritten signatures. This classification model is able to deal with

the classification of any new signature without the necessity to create a new specific model

or any kind of retraining (KUMAR; BHATIA, 2016), which leads to a better generalization

for the classification task. This approach usually operates on top of signature pairs; that

is, given a pair of images (each image containing a single handwritten signature), the

classification model classifies the pair as either genuine (if both signatures are believed

to be written by the same person), or as a forgery (if the signatures seem to be from

two different writers). This approach also performs well even when a small number of

signatures is available per writer (OLIVEIRA; JUSTINO; SABOURIN, 2007), due to the

fact that the model is trained on signature-pair examples of several writers (DEY et al.,

2017).

Previous research (KUMAR; BHATIA, 2016; MOHAMMED et al., 2015; OLIVEIRA;

JUSTINO; SABOURIN, 2007; DEY et al., 2017) only consider datasets with signature

images in a horizontal position (Figure 3.2a), and with similar sizes. Conversely, in real

life scenarios, writers could sign a document in any direction and with arbitrary sizes, from

10

a slightly rotated signature to a fully vertical signature (see Figure 1.1), even digitization

operations could introduce some rotation and scaling variations to the signature image.

In this sense, a good handwritten signature verification technique should be rotation and

scaling invariant, i.e. the accuracy of the technique must not be affected by the size and

rotation angle of the signature image being evaluated when comparing with a genuine

signature image.

In this work a new, offline, writer-independent approach for signature verification

is proposed. The proposed approach is named VerSig-R which stands for [Ver]ification

of [Sig]natures that is [R]obust to Scalings and Rotations. As shown by our experi-

ments (Table 4.3), VerSig-R significantly outperforms state-of-the-art techniques on the

CEDAR dataset (Western-style handwriting) (KALERA; SRIHARI; XU, 2004), while

performing on-par with the state-of-the-art on the Bangla and Hindi datasets (South

Asian-style handwriting) (PAL et al., 2016). Furthermore, VerSig-R outperforms the state-

of-the-art when one considers the more challenging situation, i.e., where the signatures are

subjected to variations in scale and rotation. As such, VerSig-R is more robust against this

kind of data variability (Section 4.4).

VerSig-R works by describing each signature image by a set of hybrid features:

some handcrafted and some obtained from a pretrained CLIP neural network (RADFORD

et al., 2021). The handcrafted features were designed based on Moving Least-Squares

goodness-of-fit, with simplicity and robustness in mind. Furthermore, an alternative

pipeline for obtaining the CLIP features for each signature image is proposed, this alterna-

tive pipeline is supported by an ablation study (Table 4.4). Finally, for the classification

task VerSig-R uses a simple linear Support Vector Machine (SVM) classifier with no

hyperparameter tunning.

The contributions of the present work include:

• A new offline writer-independent signature verification approach, which outperforms

the state-of-the-art for western-style handwritten datasets and is robust against

changes in scale and rotation of the signature images. This method (VerSig-

R) uses a novel set of handcrated features based on the idea of Moving Least-

Squares (MLS) (LANCASTER; SALKAUSKAS, 1981) and a set of features trans-

ferred from the CLIP neural network with a new preprocessing pipeline proposed by

the author;

• A discussion of unintended bias on signature-verification datasets and their impact

on metrics calculated over it, with a proposal of how to remove such bias (defining

11

new Unbiased datasets), supported by experiments;

• The proposal of variations on existing datasets in order to consider scalings and

rotations of the images, providing additionally comprehensive experiments on scale

and rotation invariance of existing signature-verification methods;

• A study about the impact of the number of references during training on the per-

formance of the classifier as well as the impact of using only random forgeries

during the training phaseAlso, a cross-dataset validation in order to determine the

generalization power of the trained classifiers and an examination of the execution

time across all the mentioned experiments.

• A small user study, in order to quantify human ability to determine whether a

signature image is a genuine or forgery, considering untrained individuals.

This work is organized as follows: Chapter 2 introduces the main concepts and

a literature revision on the signature verification field; Chapter 3 presents VerSig-R in

a detailed manner while Chapter 4 analyzes the results obtained from a wide range of

experiments. Finally, our conclusions and proposals for future work are listed both in

Chapter 5 and Chapter 6 respectively.

12

2 BACKGROUND AND RELATED WORK

A lot of research effort has been done in the field of signature verification, either

using online or offline information, as well as proposing writer-dependent or writer-

independent approaches (MOHAMMED et al., 2015; KUMAR; BHATIA, 2016). Most

of this research effort has been focused in extracting good feature-representations of an

individual genuine signature, in order to discriminate effectively genuine signatures from

forgeries. A forgery is a signature generated by a person (the forger) trying to mimic the

genuine signature of another legitimate person (the writer) in order to impersonate him.

Forgeries can be ascribed to one of three categories, in order of decreasing com-

plexity: skilled, unskilled, or random (KUMAR; BHATIA, 2016; MOHAMMED et al.,

2015). A skilled forgery is one in which the forger tries to mimic the original writer’s

signature after having seen it, and has time to practice performing the signature in order

to reproduce it accurately. On the other hand, an unskilled (or simple) forgery is one

where the forger does not have access to the actual signature of the original writer, but

knows only his or her name. Finally, a random forgery is produced knowing neither the

original signature nor the name of the original writer (in this case signature pairs are

usually generated by pairing genuine signatures from two different writers (KUMAR;

BHATIA, 2016)). The focus of the present work is to deal mainly with skilled forgeries,

which is the most difficult case to approach since interclass variability between genuine

and forgery signatures is extremely smaller. However, the present work also includes some

experiments with random forgeries in order to determine if VerSig-R is capable of training

with random forgeries only while performing accurately on skilled forgeries during the

test/validation phase. This is motivated by the fact that, in real-world situations, it is often

complicated to have a large number of skilled forgeries during the training phase.

Since the main focus of this research work is to deal with skilled forgeries, signa-

ture image datasets containing this kind of forgery samples were used to train and test

the VerSig-R method. For example, the CEDAR dataset (KALERA; SRIHARI; XU,

2004), which is provided by the Center of Excellence for Document Analysis and Recogni-

tion from Buffalo University;1 and BHSig260 (PAL et al., 2016), which in fact contains two

different datasets, one composed by Hindi writers and the other composed by Bangla writ-

ers. Additionally, two other datasets used in the present work are the MCYT (ORTEGA-

GARCIA et al., 2003; FIERREZ-AGUILAR et al., 2004) and GPDS (FERRER; DIAZ-

1<http://www.cedar.buffalo.edu/NIJ/data/signatures.rar>

http://www.cedar.buffalo.edu/NIJ/data/signatures.rar

13

CABRERA; MORALES, 2015; FERRER; DIAZ-CABRERA; MORALES, 2013) datasets,

the last one being generated synthetically. A set of statistics about the just mentioned

datasets such as the number of writers composing them, and the number of reference

samples for genuine and forgery class per writer, can be encountered in Table 4.1.

Although online and offline signature verification methods, as described in Chap-

ter 1, pursue the same objective, they are not directly comparable because of the way

they extract the signature’s information (KALERA; SRIHARI; XU, 2004). It is worth to

mention that online signature verification methods currently perform better than offline

methods (MOHAMMED et al., 2015), because of the advantage of having dynamic infor-

mation about the signature. However, online methods are less usable and user-friendly,

because normally it introduces a helper device such as an electronic pen and a digitizer,

making it difficult for the writer to perform their actual signature as done with pen and

paper. The following sections present a discussion of previous research works for online

and offline signature verification, as well as writer-dependent and writer-independent

approaches. Special emphasis is given to offline writer-independent techniques.

2.1 Online Signature Verification

Online signature verification is centered on capturing the position of the pen tip

as a function of time, although any other information could be associated with it like

applied pressure, inclination, etc. In order to generate this kind of information in real time,

normally a helper device is needed. Such a device could be a tablet, a camera, electronic

boards, etc.

For example, Munich and Perona (2003) present a camera-based method which,

according to the authors, was the first signature acquisition study using a general purpose

camera. In the same direction they claim to achieve similar or better performance than other

camera-based identification systems like face or hand shape recognition. The mentioned

system requires a video camera, a frame grabber (to digitize the input camera image) and

a computer. The main idea is to track the pen tip with a tip detector and then predict

the position of the tip in every image taken by the camera based on the current position,

velocity and acceleration of the pen. Additionally, the most likely position of the pen

tip is estimated for missing frames. The authors used Dynamic Programming Matching

(DPM) (SAKOE; CHIBA, 1978), first introduced in the field of speech recognition and also

known as Dynamic Time Warping (DTW) (RABINER, 1993), to find the correspondence

14

between the signature’s stroke points of two signatures, using some predefined metrics,

e.g., time. Despite the fact that the authors claim to achieve very good results (3.95%

verification error for skilled forgeries) and that the method does not require any dedicated

hardware, the method still needs some helper devices (camera and frame grabber) and

could introduce some artifacts or additional variability since writers are subjected to a

stressful and/or unfamiliar environment when performing the signature. This makes the

described method unsuitable for real-life scenarios.

For other works regarding online information, the author kindly refers the reader to

relevant recent surveys and techniques (MOHAMMED et al., 2015; KUMAR; BHATIA,

2016; HAFEMANN; SABOURIN; OLIVEIRA, 2019a; DIAZ et al., 2019; HAMEED et

al., 2021).

2.2 Offline Signature Verification

Offline signature verification is the least invasive signature verification approach

since it is only based on a static image of the signature. Writers perform the signature in a

piece of paper, then this piece of paper is scanned and used as input for the classifier. No

helper devices are needed. The main challenge is to generate a good feature representation

of the images of the genuine signatures that minimizes intraclass variability (same writer)

and maximizes interclass variability (different writers). Sections 2.2.1 and 2.2.2 present a

literature review of offline writer-dependent and writer-independent approaches.

2.2.1 Writer-Dependent Approaches

Writer-dependent approaches generate a unique classifier for each writer being

evaluated, i.e., during the training, testing, and validation phases, reference samples from

a unique writer are used. This means that, as in any generation of a classification model,

any change in the data (for example if the writer decides to change their signature, or the

intraclass variability changes sufficiently enough), the classification model needs to be

retrained. Also, to register a new user in a signature verification software that uses this

approach, a new classification model needs to be trained with information about this user,

needing (normally) a large number of signature reference samples from this writer.

Soleymanpour, Rajae and Pourreza (2010) present a writer dependent model using

15

the Contourlet transform as feature extractor and an SVM as classifier. They tested their

model over a Persian (600 signatures, 20 signatures per writer) and a Turkish signature

image dataset. The authors claim to achieve 6.5% of FAR (False Acceptance Rate), 2.5%

of FRR (False Rejection Rate) and 4.5% of AER (Average Error Rate), which in practical

terms could be understood as the EER (Equal Error Rate) metric (see Section 4.2 for the

EER definition).

Hafemann, Sabourin and Oliveira (2016) use a Deep Convolutional Neural Network

for feature learning, i.e., feature generation, and use these learned features to generate

writer-dependent models for the classification task. In this way, the features are obtained

from the data instead of generated manually based on the data. In their work the authors

use GPDS-960 (VARGAS et al., 2007) and Brazilian PUC-PR datasets (FREITAS et al.,

1998), obtaining good FAR metrics for random and simple forgeries but not so good for

the skilled ones. These results are perfectly reasonable considering the difficulty level of

each kind of dataset.

Hafemann, Sabourin and Oliveira (2019b) propose to formulate the signature

verification problem as a meta-learning problem based on learning across tasks. The authors

proposed to generate a meta classifier (in a writer-independent way) and subsequently

adapt it to a particular user (writer-dependent) in order to perform classification. The

authors mention that their proposed method is “as scalable as a writer-independent method”

since there is a single meta-model that can be adapted for writer-dependent application

with lighweight operations (a few gradient descent steps). However, one could consider

this work as still writer dependent, because despite the fact that a single meta-classifier is

learned and stored, it has to be adapted to a particular user (according to the authors with

lightweight operations) in order to perform classification. Additionally, the best results

obtained with this method were obtained when training and testing over the GPDS-960

dataset obtaining 5.16% and 4.39% of EER using 5 and 12 reference signatures respectively,

and a global threshold. The authors also performed cross-dataset validation, training on

the GPDS dataset and testing over the MCYT, CEDAR and PUC-PR datasets, concluding

that the generalization for other datasets is much worse. Finally, a combined dataset was

generated with images from all the mentioned datasets, used during the training phase,

showing that results do not improve with this new test. The authors consider that the GPDS

dataset dominates training because of being ten times larger than the other datasets used.

In summary, the authors conclude that their proposed method “requires a large amount of

data and is sensitive to changes in the operating conditions.”

16

Another interesting work is the by Pal et al. (2016), in which a new set of texture-

based features are presented, namely Local Binary Patterns (LBP) and Uniform Local

Binary Patterns (ULBP) considering non-Latin based signatures. The authors also introduce

a new large-scale offline dataset, BHSig260 (listed as Bangla and Hindi in Table 4.1). A

Nearest Neighbour classifier is considered in combination with the Euclidean Distance.

The mentioned method should be considered as writer-dependent because it tries to solve

a one-class classification problem, considering only genuine signatures at the training

phase in order to determine if the questioned signature belongs to any of the writer classes,

i.e., if it is a genuine signature or not. The training phase was performed with 8 and 12

signatures per class (i.e. per writer), being the last configuration which achieves better

results. Extremely similar results were achieve by both LBP and ULBP features, with

33% of Equal Error Rate (EER) for the BHSig260 dataset. Additionally it is worth

mentioning that the Bangla part of the BHSig260 dataset obtains worse results than the

Hindi subset, so one can logically conclude that the Bangla part of the dataset configures

a more challenging problem. Finally, some tests were performed over the GPDS-100

signature dataset (FERRER; ALONSO; TRAVIESO, 2005), obtaining similar results for

EER.

2.2.2 Writer-Independent Approaches

The main focus of the present work is to introduce a novel method for handwritten

signature verification using offline information and a writer-independent approach. Offline

signature verification approaches do not require any helper device and do not modify

in any way the protocols established for the manual signature verification in real-life

scenarios. In this sense, offline approaches are not invasive, since the writer will perform

the signature in the same way they are used to, and for this reason they fit perfectly in most

legal and banking processes. On the other hand, offline signature verification is the most

difficult problem to deal with (see Chapter 1), and offline approaches perform worse (on

average) than online approaches. Finally, we recall that this work deals mainly with skilled

forgeries, although some tests were performed with random forgeries during the training

phase (Section 4.8).

Most offline signature verification methods take into account the whole signature

image as source for feature extraction. For example, in the work presented by Kalera,

Srihari and Xu (2004), a set of global, statistical and geometrical/topological features

17

are extracted directly from images. These kinds of features correspond to what the

authors called Gradient, Structural, and Concavity (GSC) features. The gradient features

are used to detect local characteristics and to obtain information about stroke shape in

short areas. The structural features provide similar information to the gradient features

but for longer distances, so they are used to get information about stroke trajectories.

Finally, concavity features are used to find stroke relationships across the signature image.

Statistical distance distributions are calculated based on the mentioned features and are

used for the classification task with a Bayes Classifier (RISH et al., 2001).

Huang and Yan (1997) propose use of geometric features in combination with a

neural network classifier, specifically one based on a Multi-Layer Perceptron, using offline

information. Artificial genuine and forgery signature samples are generated from a small

set of genuine signatures by applying “perturbations” to them. Some of the geometric

features extracted are the following: skeleton of the pen trace (obtained by applying a

3×3 operator over a gray-labeled image, pixel is considered if it is a gray-level value local

peak), signature outline (corresponding to the pixels with values above a 25% gray-level

intensity and have less than 8 neighbors in a 3×3 pixels area), ink distribution, high

pressure region feature (where the writer puts more emphasis, it is usually the darker area

in the scanned image), directional frontiers, number of constituent parts of the signatures

(could be understood as the connected components of the signature), the centroid location

and the width and height of each signature constituent parts. A feature alignment process

is considered before the training of the neural network. The authors claim to achieve an

average correct classification rate of 90% using their artificially generated dataset with test

size of 24 genuine signatures and 144 forgery samples.

Ferrer, Alonso and Travieso (2005) present another set of geometric features based

on the signature envelope, i.e., the signature shape or outline, and the interior stroke

distribution in polar and Cartesian coordinates. The authors tested their proposed features

with different classifiers such as hidden Markov Models (HMM), support vector machines

(SVM) and Euclidean distance classifiers. Signature outline is obtained by dilating the

signature and filling it when necessary, then the outline is represented as a sequence of

Cartesian coordinates in counterclockwise orientation beginning from the geometric center

of the outline. They achieve their best results when using an HMM but only test on random

(general error percentage around 4%) and simple forgeries (general error percentage around

17%).

In the same direction, Kumar, Sharma and Chanda (2012) present a set of features

18

describing the signatures’ shape in terms of the spatial distribution of black pixels around

a candidate signature pixel (surroundedness). The set of features also provides texture

information through the correlation among signature pixels in the neighborhood of a

candidate signature pixel. Surroundedness is calculated with different radii r = 1, 2, . . . 11

centered on the candidate pixel, while the circle with the corresponding radius is calcu-

lated using the Chebyshev distance (CANTRELL, 2000). Surroundedness information is

summarized using statistical measures like entropy and first, second, and third orders of

moment producing a vector of 44 dimensions. CEDAR (KALERA; SRIHARI; XU, 2004)

and GPDS300 (VARGAS et al., 2007) signature datasets were tested with two classifiers,

namely Multi Layer Perceptron and Support Vector Machine with Radial Basis Function

kernal (RBF-SVM), obtaining good accuracy results (91.67% and 86.24% respectively).

Bertolini et al. (2010) propose an offline writer-independent signature verification

method which tries to simulate signature strokes using Bezier curves. Based on the bezier

curves a set of graphometric features are extracted, such as: density, slant, distribution,

and curvature. In other words, the authors try to obtain the same information that an

online signature verification approach would provide, but using a static image as input.

The method performs in a grid-based manner, defined over the whole signature area, i.e.,

the signature bounding box. An ensemble of classifiers (64 in total, 16 different grid

configurations for each of the four graphometric features just mentioned) is mounted

over the set of four forensic document examination characteristics previously mentioned

(density, slant, distribution, and curvature) and a genetic algorithm is used to determine

which of the base classifiers are the most relevant for the classification task. The method

proposed by Bertolini et al. (2010) was tested against a private signature image dataset

composed of a total of 100 writers (generated by undergraduate students in four different

sessions, collected on A4 white sheet paper and scanned in 600 dpi grayscale), 40, 20, and

40 writers were used for training, validation and testing respectively. To generate genuine

sample pairs, four randomly chosen genuine signatures were used per writer which leads to

a total of six sample pairs per writer, considering a total of 40 writers for training it leads to

240 genuine pairs. On the other hand, to generate negative samples they take two genuine

signatures for the first 36 writers and compare it to two signatures for four different writers

chosen randomly which leads to a total of 288 negative samples. The authors show that

their proposed ensemble of classifiers based on the four graphometric features are quite

efficient and can reduce considerably the acceptance of forgeries, i.e. reduce the False

Acceptance Rate (FAR), which is arguably more important than decreasing False Rejection

19

Rate (FRR) in the context of signature verification systems (i.e., accepting a false signature

has arguably worse consequences than rejecting a genuine signature).

Some other works proposed to extract features from signature images using a

Convolutional Neural Network, i.e. feature learning from CNNs. For example, the

work by Alvarez, Sheffer and Bryant (2016) introduces a completely CNN-based feature

extraction method, based on the VGG-16 CNN architecture (SIMONYAN; ZISSERMAN,

2014) which uses common learnable parameters such as fully connected layers and ReLU

as activation function. A transfer learning process was applied to the CNN architecture

using weights pretrained on ImageNet (DENG et al., 2009). The dataset used comes

from the International Conference on Document Analysis and Recognition (ICDAR)

2011 SigComp international signature verification competition (LIWICKI et al., 2011),

which contains online and offline information. The offline part contains Dutch (about 25

genuine signatures and 11 forged signatures for 10 writers) and Chinese (about 25 genuine

signatures and 30 forged signatures for also 10 writers) signatures. The authors performed

writer-dependent and writer-independent tests over the mentioned dataset, getting test

accuracies of 94% and 88% for Dutch and Chinese signatures respectively. It is worth to

mention that the authors indicate that they split data for each language in 80%, 10% and

10% for training, validation and testing respectively in a random manner, which could lead

to examples of signatures from the same writer used in training and testing time. When the

authors performed tests effectively separating by writer on the training and test data, they

show test accuracies of 76% on the Dutch dataset, which is not far better from a dummy

classifier accuracy (67%). Finally, writer-dependent experiments are also not shown to be

much better (67% for test accuracy).

Another work that applies the concept of feature learning from a CNN is the one

presented by Hafemann, Sabourin and Oliveira (2016), which although presents a writer-

dependent classification technique, relies on a writer-independent feature learning process.

Some preprocessing operations were applied over the images before passing them to the

CNN, e.g. background removal (based on Otsu’s algorithm (OTSU, 1979)), followed by

an image inversion (i.e. white background is mapped to zero values). This work was

tested on the GPDS (VARGAS et al., 2007) and PUC-PR datasets (FREITAS et al., 1998).

Hafemann, Sabourin and Oliveira (2017) extend the work mentioned before with tests over

MCYT and CEDAR datasets, mantaining their approach for writer-independent feature

learning and writer-dependent classification, but this time they include skilled forgeries at

training time. Additionally, Souza, Oliveira and Sabourin (2018) perform an analysis of

20

the goodness of the features obtained by Hafemann, Sabourin and Oliveira (2017), but this

time using a writer-independent approach. The authors use the Dichotomy transformation,

initially proposed by Cha and Srihari (2000), which transforms a multi-class problem

into a two-class problem. In particular, the authors calculate feature distances between

the same writer samples and categorized as within autor class, while feature distances

between samples for different writers were also computed and categorized as between

author class, configuring this way the two classes for classification. An SVM classifier

was used based on the RBF kernel, γ = 2−11 and regularization parameter C = 1.0. The

authors claim to achieve 4.90% in EER metric using a global threshold, and 1.48% in

EER using a user-specific threshold (considering a different optimal threshold for each

writer) in the PUC-PR dataset, using 30 samples per writer, outperforming the previous

work (HAFEMANN; SABOURIN; OLIVEIRA, 2017) (which uses a writer-dependent

approach). The authors also performs tests over the GPDS-160 and GPDS-300 datasets

obtaining the best EER results of 7.01% and 7.96% using 12 samples per writer, but in

this case not outperforming the writer-dependent technique by Hafemann, Sabourin and

Oliveira (2017). Finally, it is worth to mention that the authors also conclude that the

number of samples per writer used for training is directly proportional to the reduction of

the EER metric.

One of the top-performing offline writer-independent methods is the SigNet method

presented by Dey et al. (2017). It uses a Convolutional Siamese Network to extract

feature information from signature images, configuring signature image pairs as input

for the CNN. Before feeding each image to the network, some preprocessing steps are

required, including: resizing the images to a standard size (155× 220 pixels) using bilinear

interpolation, inverting the pixel values (so that background pixels have value zero), and

“normalizing” the images by dividing the pixel values by the standard deviation of all the

image pixels in the dataset. The network architecture consists of two twin networks joined

by a cost function, which computes a distance metric between the 128-D feature vectors of

the two images in a pair. Since SigNet outputs a continuous numerical distance D(s1, s2)

that measures the dissimilarity between two signature images s1 and s2, one has to fix a

threshold value τ to generate the binary classifier prediction. That is, if D(s1, s2) ≤ τ the

classifier predicts that the signatures are genuine (were performed by the same writer),

otherwise, if D(s1, s2) > τ , the classifier predicts that the pair (i.e., one of the signatures)

is a forgery. For performance evaluation of SigNet, the authors compute metrics such as

accuracy (which depends on the threshold τ) by selecting the maximum accuracy that is

21

obtained in the test set over all possible thresholds τ (DEY et al., 2017). According to

their results, the proposed technique outperforms the state-of-the-art in datasets with a

sufficient number of signatures for training, but its accuracy is negatively affected when

signatures vary too much in style and the number of signature samples is low. The authors

also perform an experiment training only with unskilled forgeries, demonstrating that the

results are worse than training only with skilled forgeries.

The accuracy for SigNet is listed as 100% on the CEDAR dataset, 86.11% on the

Bangla dataset and 84.64% on the Hindi dataset (DEY et al., 2017). As shown by the

experiments performed in the present work, the 100%-accuracy number is likely caused

by an inherent bias in the CEDAR dataset (Section 4.3). Also, the author of the present

work was able to recompute the results of Dey et al. (2017), using their source code but

removing the dataset bias (see Table 4.3).

Dey et al. (2017) also perform cross-dataset experiments, i.e. training with sig-

natures from one dataset, but testing over another dataset. According to their results, in

general, their proposed method does not provide good generalization in the cross-dataset

experiments (accuracies dropped dramatically (> 15%) in all the cases except for train-

ing on GPDS300 dataset and testing on CEDAR with 94.82% of accuracy). The other

cross-dataset validations obtain accuracies ranging from 50% to 69%.

The work by Dutta, Pal and Lladós (2016) also proposes a top-performing writer-

independent method for offline signature verification, but this time based only on hand-

crafted local features and global statistics. The feature extraction process can be summa-

rized by the following steps:

• Get BRISK feature points (corner detector and scale invariant, so, theoretically this

feature is independent of the signature size).

• Delaunay Triangulation is applied over BRISK feature points, connecting two feature

points if and only if they are connected by and edge in the triangulation. Their

hypothesis is that for genuine signatures most of the edges from the triangulation

remain stable, while for forged signatures they could suffer distortions.

• Additionally, histogram of oriented gradient (HOG) descriptors are computed for

each BRISK feature point (local descriptors). For points connected by an edge in the

triangulation, their HOG descriptors are concatenated (called pairwise descriptors).

• These descriptors go through an encoding process, followed by the computation of

weighted-histograms that define global image statistics (weights are defined based

on the areas of signature features, from a “water reservoir model”).

22

• Finally, a kernel function that measures the similarity between two images is defined,

and an SVM is trained to perform classification. The SVM hyperparameters are

optimized for each cross-validation fold based on the maximum accuracy obtained

over a range of possible parameters (DUTTA; PAL; LLADÓS, 2016).

The authors claim to achieve 100% accuracy for the CEDAR dataset (which is likely

caused by an inherent bias in the CEDAR dataset (Section 4.3)) while getting 88.79% for

GPDS300 dataset.

Hamadene and Chibani (2016) present a one-class writer-independent method that

involves the use of the Contourlet Transform for feature generation and the use of feature

dissimilarity measures for automatic threshold selection. The main contribution of the

proposed method is to require just a few genuine signatures for training. Dissimilarity

thresholding is based on the concept of signature stability, considering a signature pair as

more stable when their feature dissimilarity is lower. For the feature generation process

the Contourlet Transform is obtained by decomposing the image signature at only one

resolution level and four main directions, which leads to a feature vector of 16 components.

The feature dissimilarity is the Canberra distance because of its relative efficiency in

comparison to the Euclidean Distance. Additionally, threshold selection is performed by

computing feature dissimilarities between each possible genuine-genuine signature pair

per writer. Feature dissimilarities for each possible combination per writer are ordered

in a increasing order of dissimilarity value, being then the first and last element set the

minimum and maximum dissimilarity value. The decision threshold is selected from this

ordered set based on a stability parameter defined as the Half Total Error Rate which is

basically the average of FRR and FAR. For the experiments, the authors used CEDAR

and GPDS datasets, using 10 writers per dataset (20 writers in total) to define a writer-

independent decision threshold. According to their results, using more reference signatures

improves the performance, obtaining 2.10% of AER for CEDAR, 18.23% for GPDS and

16.8% for a combined mixed test dataset between CEDAR (45 writers) and GPDS (462

writers).

Some other tests were performed in order to determine if higher resolutions of

the Contourlet Transform have a possitive impact on the error rates with no successful

results. Additionally, an analysis of the impact of the number of training writers was

made, demonstrating that the AER appears to be invariant to the number of training writers.

Finally, a cross-dataset validation was performed, training with only one dataset and

testing on another, considering the mixed dataset mentioned in the previous paragraph as

23

an independent dataset. The results show that the average error rate remains almost the

same than when mixed training writers were used, also that the unbalancing between FAR

and FRR metrics virtually disappear when training on and testing on the mixed dataset.

This demonstrates the importance of merging different datasets for writer-independent

approaches. Comparing the results of the proposed method over the GPDS dataset with

other writer-independent methods shows that it did not achieve comparatively better results

at all, but it still has the benefit of using only a few genuine signatures for training.

In summary, offline signature verification is the least invasive approach for the

signature verification problem, although offline methods achieve worse results than the

online approaches. Additionally, writer-independent approaches have the advantage of

training one single model. Ideally, when trained with signatures from a wide range

of handwriting styles, they do not have the necessity of retraining at all. Finally, as

discussed in this section one can see different signature verification methods trying to

find a good (handcrafted) feature descriptor based on the signature shape or graphometric

characteristics such as density, slant, or distribution (BERTOLINI et al., 2010). Other

works include global statistics for the signature images, stroke signature and curvature.

The problem is: it is extremely difficult to determine the set of graphometric characteristics

that can reliably describe the handwritten signature style for all persons. In this sense, the

use of CNNs to extract relevant features automatically seems to be the best option and

proves to obtain good results (DEY et al., 2017). However, apparently such approaches

are not sufficient enough to deal with dataset transformations such as rotation and scaling

(see Chapter 4). As such, we propose the use of hybrid features: hancrafted in addition

to transferred from a CNN. This is done in order to obtain features that better describe

signatures (CNN features) and provide robustness against rotation and scaling operations

(handcrafted features).

24

3 PROPOSED METHOD: VERSIG-R

VerSig-R approaches the signature verification problem in a writer-independent

manner using offline information. Since VerSig-R is writer-independent, for training

and testing phases it receives as input a signature pair, which must be classified as either

genuine (if both signatures belong to the same writer), or as a forgery (if the signatures

belong to different writers). In Figure 3.1 a complete overview of VerSig-R is presented,

showing step by step the feature generation process and the operations performed over the

initial raw features to end up with a high dimensional vector, which combines information

from both signatures in the signature pair, and is used for the SVM classifier to perform

the actual classification task.

As one can observe in Figure 3.1, the signature verification is approached as a

binary classification problem (genuine, forgery), where a high-dimensional feature vector

is generated from signature pairs and then used as input to an SVM classifier (which is

widely used for binary classification problems, since it classifies information by finding the

hyperplane that maximizes class data separation, i.e., the hyperplane with the largest mar-

gin between two classes (BOSER; GUYON; VAPNIK, 1992; CHAPELLE; HAFFNER;

VAPNIK, 1999)). A set of hybrid features is proposed, which is composed of: handcrafted

features obtained by a novel Moving Least-Squares (MLS) strategy (Section 3.1), in

addition to features obtained from a pretrained convolutional neural network (CNN) (Sec-

tion 3.2). It is worth to notice that all the features are calculated in an automated way, with

no parameters requiring manual tuning. Additionally, the SVM classifier is trained in a

supervised manner (Section 3.3), using default hyperparameter settings.

In the following sections a more detailed description about feature generation

process (MLS and CNN features) is presented.

3.1 Moving Least-Squares (MLS) Feature Generation

The proposed handcrafted features are aimed at extracting geometrical and topo-

logical characteristics of the signatures, which are good discriminators for signature

verification (KALERA; SRIHARI; XU, 2004). Additionally, the secondary goal is to

achieve this in a way that is simple and robust. The handcrafted feature generation operates

on the idea of quantifying the occurence of pronounced curvatures and stroke-intersections

in the signatures, based on the intuitive observation that forgers would need to mimic these

25

exact characteristics in order to obtain a convincing forged signature. Furthermore, while

straight or nearly straight parts of the signature may be easier for forgers to imitate, the

exact proportion between curved and straight regions is more difficult to imitate.

In the following subsections an overview of the variant of the MLS algorithm

proposed is presented as well as a step by step description of the algorithm. Additionally,

the correlation between MLS algorithm and the r2 value is discussed in order to finally

present a discussion on this handcrafted feature visualization.

3.1.1 MLS Overview

VerSig-R is aimed to quantify the curvature of any part of the signature’s stroke

by evaluating how well it fits a straight line. More precisely, VerSig-R fits a weighted

least-squares line to each small neighborhood along the signature’s stroke, and evaluate its

goodness-of-fit using the r2 (r-squared) coefficient (DODGE, 2008). Since the signature’s

stroke locations with high curvature or stroke-intersections are not well described by a

straight line, they will be associated with small r2 values (Figure 3.2c). Furthermore, by

computing histograms of all r2 values obtained along the signature, one is able to describe

the distribution between curved and straight regions of the signature (Figure 3.2d).

In general, r2 values are calculated from the signature’s skeleton in small neigh-

bourhoods and then grouped in 5 histograms with a different number of bins, producing

the same quantity of histograms (vectors) with their corresponding dimensionality, to

finally concatenate them obtaining a final 75-D vector for each image in the signature pair.

Operations over this two final vectors like L2 and quadratic difference are performed to

end up with a final 226-D vector which contains information from both signatures in the

signature pair.

26

Figure 3.1: Overview of our offline writer-independent technique for signature verification. Given a pair of signature images (left), our method
generates features based on a Moving Least-Squares strategy (Section 3.1), in addition to CNN-transferred features (Section 3.2). The resulting
2274-D feature vector for the pair is fed to a binary SVM classifier, which distinguishes between genuine and forged signature pairs.

Input signature pair

Our MLS
feature generation

Normalize

Normalize
L2 distance

Quadratic
difference

Our CLIP
preprocessing

CLIP
(ResNet)

Sum
+

Norm.

Sum
+

Norm.

C
on

ca
te

na
te

SVM
binary

classifier

Genuine
(signatures
from same

writer)

Forgery
(signatures

from
different
writers)

r2 histograms (75-D)

r2 histograms (75-D)

75-D

75-D

1-D

75-D

1024-D
1024-D

22
74

-D

Source: Signature images from CEDAR dataset (KALERA; SRIHARI; XU, 2004), diagram created by the author.

27

3.1.2 MLS Detailed Algorithm

For each signature image, VerSig-R uses the following algorithm to compute a

75-D feature vector based on the idea of r2 histograms described above:

1. Binarize the input signature image. VerSig-R uses Otsu’s algorithm (OTSU, 1979),

which determines an optimal global binarization threshold from the image’s his-

togram;

2. Compute the signature’s skeleton from the binarized image (Figure 3.2b). VerSig-R

uses the thinning algorithm of Zhang and Suen (1984);

3. For each L× L pixel neighborhood Ωp centered at each point p in the signature’s

skeleton, VerSig-R fits a straight line through all skeleton points existing in Ωp,

using a Moving Least-Squares (MLS) strategy (described below in Section 3.1.3).

Additionally, VerSig-R discards all neighborhoods which contain less than five

skeleton points, with L = 11 pixels fixed in our implementation (according to the

experiments performed by the author, the final result is not sensitive to the exact

value of L, likely due to the weighting performed by VerSig-R in the least-squares

fits);

4. For each neighborhood Ωp, its associated r2 goodness-of-fit coefficient is computed

from the weighted least-squares residuals (Eq. (3.3), below);

5. Finally, all r2 values are collected to immediately compute their distributions at

several scales, using histograms with 5, 10, 15, 20 and 25 bins (uniformly distributed

in the [0, 1] interval, since r2 ∈ [0, 1]). Figure 3.2d shows the 25-bin version of the r2

histograms. The author determined experimentally that considering a concatenation

of all the histograms achieves better results than considering them individually or

considering any subset of them. By concatenating all these histograms, a 75-D

feature vector is obtained for the signature image.

Given a signature pair, as shown in Figure 3.1(left), VerSig-R computes the 75-D

r2 histograms descriptors (feature vectors) for each image in the pair. These feature vectors

are then normalized by dividing them by their L2 norm (this makes the histograms invariant

to the absolute number of pixels in the signature image). Furthermore, VerSig-R computes

the L2 distance between the normalized feature vectors ~u and ~v of both images (resulting

in a positive scalar d = ‖~u− ~v‖L2), in addition to their quadratic difference (resulting in

another 75-D vector ~w, whose i-th component is ~wi = (~ui − ~vi)2). Concatenating all these

28

Figure 3.2: Illustration of our Moving Least-Squares (MLS) feature generation pipeline,
for two example signatures from CEDAR. (a) An input signature is converted to a (b)
binary skeleton, followed by (c) MLS goodness-of-fit computation (r2 coefficients), which
detects curved and stroke-intersection signature regions. The resulting (d) r2 histograms
describe the distribution of curved and straight regions of the signature.

(a) Input signature images (b) Signature skeletons

(c) r2 coefficients visualization

0.0 0.5 1.0

(d) r2 coefficients histograms

0.0 0.5 1.0

0.3

0.6

0.0 0.5 1.0

0.3

0.6

Source: (a) Signature images from CEDAR dataset (KALERA; SRIHARI; XU, 2004).
(b-d) The author.

29

quantities as [~u,~v, ~w, d] results in the final 226-D handcrafted feature descriptor for the

signature pair. This will later be concatenated with the features generated by the neural

network backend (Section 3.2).

3.1.3 Moving Least-Squares Fit and r2

The idea of performing a sequence of least-squares line fits with a “sliding window”

is related to the concept of Moving Least-Squares (LANCASTER; SALKAUSKAS, 1981),

a technique widely used to reconstruct continuous functions from scattered data (LEVIN,

1998). Of particular importance for VerSig-R is the use of weights in the least-squares

functionals, which are normally inversely proportional to each data point’s distance from

the center of the window/neighborhood. This idea was adapted for VerSig-R by also

considering pixel intensity in the weighting.

Given a particular neighborhood Ωp and a collection of points (xi, yi) ∈ Ωp ∩ S

that are also part of the signature’s skeleton S (Figure 3.2b), VerSig-R fits a straight line

y = ax+ b through the points by minimizing the weighted least-squares functional:

E(a, b) =
∑
i

w2
i (yi − axi − b)2. (3.1)

The weights wi are inversely proportional to the L2 distance between the data points (xi, yi)

and the point p = (xp, yp) at the center of the neighborhood Ωp. That is, pixels that are

closer to the center of the neighborhood are given more importance (greater weights) in

the line fit. The weights are also inversely proportional to the intensities f(xi, yi) of the

pixels. Thus, darker pixels also receive greater weights, as they are more likely to be an

important part of the signature’s stroke:

wi =
1

1 + f(xi, yi) ‖(xi, yi)− (xp, yp)‖L2

. (3.2)

The optimal line parameters a? and b? that minimize E are the ones where ∂E(a?, b?)/∂a =

∂E(a?, b?)/∂b = 0. One can then compute the goodness-of-fit r2 value as:

r2 = 1− E(a?, b?)∑
iw

2
i (yi − ȳ)2

, where ȳ =

∑
iwiyi∑
iwi

. (3.3)

For lines with slope |a?| > 1, VerSig-R instead fits x as a function of y, with

x = my + c (this is done by simply swapping x and y in the equations above). This avoids

30

numerical problems for lines that are close to vertical (where the slope |a?| → ∞).

3.2 CLIP Feature Generation

Convolutional Neural Networks (CNNs) are able to automatically learn features

for distinguishing between images in classification tasks (LECUN; BENGIO; HINTON,

2015). The discriminative power of CNN features also generalizes well between different

problem domains, which is the idea behind transfer learning (ZHUANG et al., 2021).

This technique allows one to use features learned in a domain containing large amounts of

training data, in another domain where training data may be scarcer or harder to obtain.

Based on the transfer learning concept and looking for convolutional neural net-

works that could generalize well for the signature-verification problem being approched, a

set of experiments were performed using different publicly available pretrained Convolu-

tional Neural Networks such as: MobileNetv2 (SANDLER et al., 2018), DenseNet (IAN-

DOLA et al., 2014), ResNet101 (HE et al., 2016), Resnext101 (XIE et al., 2017) and

VGG16 (SIMONYAN; ZISSERMAN, 2014). The mentioned CNNs were used (without

modifications neither the necessity for retraining) to generate features for each signature

image in each signature pair, in order to finally use these features for the classification task.

The methodology used for the evaluation of all these models is described in Section 4.2

and the SVM classifier used is described in Section 3.3. None of the just mentioned models

exceeded 70% of accuracy on the CEDAR dataset.

Additionally, another set of experiments were performed with the CNN called

CLIP (Contrastive Language-Image Pre-training) (RADFORD et al., 2021) using both

backends ViT-B and ResNet-50. Both backends perform similarly, but the ResNet-50

backend managed to get better results. The initial tests were performed over CEDAR

dataset getting performance slightly over 97% of accuracy. In Table 4.4 one can see

averaged (over CEDAR, Bangla and Hindi datasets) results for the unbiased and the other

versions of the datasets. Based on the set of experiments performed by the author, one can

conclude that the recent CLIP neural network (using the ResNet-50 backend) produces

features which generalize well to the signature-verification problem being approached.

This Convolutional Neural Network was trained on 400 million images with associated

textual captions, with the goal of predicting which caption belongs to which image.

However, giving the “raw” signature image as input to CLIP CNN is not optimal

due to variations in the signatures’ aspect ratios (most signatures have a rectangular shape,

31

Figure 3.3: Proposed CLIP preprocessing pipeline (Section 3.2).
(a) Input signature image (b) Bounding-box crop

(c) 50% padding (d) Final three square crops

Source: (a) Bangla dataset (PAL et al., 2016). Images (b-d) Generated by the author based
on initial input image (a).

which is not taken into consideration by the original CLIP preprocessing pipeline, which

simply considers squared central part of the image). Furthermore, signatures are scanned

with varying degrees of padding (empty paper) around the signature (specially in the Hindi

and Bangla datasets). We propose the following preprocessing pipeline for CLIP CNN,

illustrated in Figure 3.3, which significantly improves classification accuracy (Section 4.5).

For each signature image:

1. Crop the image to the bounding-box of the signature. VerSig-R does this by remov-

ing pixel rows and columns (around the border of the image) whose average pixel

values are below the threshold 254 (considering 8-bit encoded grayscale, with pixel

values in [0, 255]);

2. Pad the image with empty rows/columns (i.e., with white pixels), to guarantee that

the smallest dimension is no smaller than 50% the size of the largest dimension. This

is done in order to guarantee that the crops generated in the next step (Step 3) cover

the whole signature, while also overlapping by ≥ 50%;

3. Generate three square crops from the signature image (since CLIP CNN expects

square images). If the image has width > height, crops are extracted aligned to

the left, center, and right of the image. Otherwise, if width ≤ height, the crops are

extracted from the top, center, and bottom of the image.

At the end of this preprocessing step, features are generated for each of the crops, using

the pretrained CLIP network. It is worth noticing that the number of crops generated was

determined empirically during the implementation phase. Additionally, each square crop

is resized to 224 × 224 pixels (operation performed to fulfill CLIP CNN requirements)

32

and fed to CLIP CNN, resulting in three 1024-D feature vectors (one for each crop). In

order to obtain a single feature vector per image, the best way to join the mentioned three

vectors was determined empirically. Experiments were performed using simple operations

like elementwise sum, mean and max operations, as well as concatenation, all operations

followed by a renormalization. The concatenation option significantly increases memory

consumption and execution time since the number of CNN features will be 3 times that of

the other options. Finally, the experimental results demonstrate that performing three vec-

tors elementwise sum, followed by L2 normalization, generates the best results generating

a single 1024-D feature vector that describes the whole signature.

3.3 Classification with SVM

For each signature pair, both MLS handcrafted features (Section 3.1) and CLIP

features (Section 3.2) are concatenated, resulting in a single 2274-D feature vector for each

single signature pair (Figure 3.1, right). This feature vector is used as input information

to a binary classifier, the two classes involved could be described as: 1) a signature pair

composed by two signature images belonging to the same writer (positive class) and 2) a

signature pair composed by two signatures images belonging to different writers (negative

class).

VerSig-R uses a linear Support Vector Machine (SVM) model to perform the binary

classification task, which performs better than other machine-learning classification models

for this particular problem according to experiments performed by the author. The imple-

mentation of VerSig-R in terms of the SVM classifier is based on the LinearSVC class

of scikit-learn (PEDREGOSA et al., 2011) framework, with default hyperparameters.1 The

training phase for the SVM classifier was performed in a supervised manner, using a train-

ing set composed of example signature pairs (combined from many different writers, addi-

tionally signature pairs examples from writers used during the training phase were excluded

from the testing set) with known genuine/forgery signature pairs labels. Finally, since

VerSig-R is using a writer-independent approach, it trains a single model for all writers.

1The SVM classifier was set to optimize for the primal problem, which is the recommended procedure
when the number of training examples is greater than the number of features.

33

4 EXPERIMENTAL RESULTS

Exhaustive experiments were performed with VerSig-R over the CEDAR dataset (KALERA;

SRIHARI; XU, 2004) and the Hindi and Bangla datasets composing the BHSig260

dataset (PAL et al., 2016). Experiments were performed over the original versions of the

three just mentioned datasets (i.e. images from the datasets without any kind of modifica-

tions) as well as their unbiased versions, a more detailed discussion on this topic can be

found in Section 4.3. Additionally, in order to analyze the effect of rotations and scalings

over the classification performance, three other versions (built on top of the unbiased

versions) of the datasets were generated (rotations, scalings, and a combination of both

transformations) and were subjected to the same set of experiments (Section 4.4). VerSig-

R was compared against the best-performing state-of-the-art offline writer-independent

methods found in the literature: Dutta, Pal and Lladós (2016), which is based on hand-

crafted features, and Dey et al. (2017), which is based on a neural network called SigNet.

In both cases, the source code provided by the corresponding authors were used to perform

experiments. Table 4.3 summarizes the results encountered, which are discussed in a

detailed manner in the following subsections.

Additionally, a set of experiments were performed in order to study the effect of the

number of reference signature samples used during the training phase over the classification

performance. Experiments were performed with 12, 5, 4, 3, and 2 reference samples from

positive as well as negative classes. Reducing the number of references samples during the

training phase intuitively should have a negative impact over the classification performance

of any model, but in the particular case of the signature verification problem, a reduced

number of required references samples is desirable because of the lack of reference

samples in real-life scenarios. A discussion of this topic and the results encountered in the

experiments is included in Section 4.7.

In addition to the experiments mentioned in the previous paragraphs, single ex-

periments were performed over the original versions of MCYT (ORTEGA-GARCIA et

al., 2003; FIERREZ-AGUILAR et al., 2004) and GPDS (FERRER; DIAZ-CABRERA;

MORALES, 2015; FERRER; DIAZ-CABRERA; MORALES, 2013) datasets. Finally, a

group of experiments for cross-dataset validation was performed, i.e. training VerSig-R

over one dataset and using the trained classifier to test over another dataset.

The remainder of this section is organized as follows: Section 4.1 shows a visual

analysis of histograms generated as part of the handcrafted feature generation process, in

34

order to identify the importance of these features. Section 4.2 introduces the methodology

used for the experiments, Section 4.3 discusses and explains details about bias encountered

during experiments (mainly in the CEDAR dataset), Section 4.4 presents the analysis of

the impact of rotation and/or scalings over the classification performance, Section 4.5

presents an ablation study from using only original CLIP neural network features, the

impact of the proposed variations to the CLIP preprocessing pipeline and the final features

generated by the method proposed in the present work. Additionally, in Section 4.6 a

discussion of the experiments performed over GPDS and MCYT datasets is presented,

while also introducing the use of PCA technique for dimensionality reduction of the feature

vectors. Section 4.7 evaluates the impact of the number of reference samples used during

the training phase while in Section 4.8 the impact of using only random forgeries during

training is evaluated. In Section 4.9 a study on the generalization power of VerSig-R

is presented, i.e., how well a classifier trained on one dataset generalizes when tested

over another dataset while in Section 4.10 a brief study of the execution time of the cross

validation applied to the datasets being studied in this work is presented. Finally, in

Section 4.11 a user study is presented, comparing accuracy results from VerSig-R against

results for humans performing the classification task.

4.1 r2 Histograms Analysis

The left-hand-size columns of Figures 4.1, 4.2, and 4.3 show mean r2 histograms

computed separately for genuine and forgery signatures samples from a particular writer

(the solid blue line with orange shaded area corresponds to forged signatures, and the solid

red line with green shaded area corresponds to genuine signatures). Additionally, mean

r2 histograms are represented by the solid lines, and their corresponding three-standard

deviations intervals are represented by the corresponding shaded areas. Histograms of

25 bins were computed for each signature image as detailed in Section 3.1.2 and then

averaged separately for genuine and forgery references respectively to generate mean r2

histograms. It is worth noticing that the mean r2 histograms shown in Figures 4.1 to 4.3

are used only for visual analysis purposes, and their computation is not included in the

VerSig-R pipeline.

Figures 4.1, 4.2, and 4.3 presents mean histograms for writer 30 (chosen arbitrarily)

from the CEDAR, Bangla and Hindi datasets respectively. Additionally, each of the just

mentioned figures contains reference genuine and forged signature examples of writer

35

Figure 4.1: Illustration of mean r2 histograms generated separately for original and forgery
signature references belonging to Writer 30 of the CEDAR dataset. Mean r2 histograms
were generated using 25 bins.

(a) CEDAR BIASED

(b) CEDAR UNBIASED

(c) CEDAR UNBIASED WITH ROTATIONS

(d) CEDAR UNBIASED WITH SCALES

(e) CEDAR UNBIASED WITH ROTATIONS AND SCALES

Source: (a) Signature images from CEDAR dataset (KALERA; SRIHARI; XU, 2004).
(b-e) Generated by the author based on (a).

36

Figure 4.2: Illustration of mean r2 histograms generated separately for original and forgery
signature references belonging to Writer 30 of the Bangla dataset. Mean r2 histograms
were generated using 25 bins.

(a) Bangla BIASED

(b) Bangla UNBIASED

(c) Bangla UNBIASED WITH ROTATIONS

(d) Bangla UNBIASED WITH SCALES

(e) Bangla UNBIASED WITH ROTATIONS AND SCALES

Source: (a) Signature images from Bangla dataset (PAL et al., 2016). (b-e) Generated by
the author based on (a).

37

Figure 4.3: Illustration of mean r2 histograms generated separately for original and forgery
signature references belonging to Writer 30 of the Hindi dataset. Mean r2 histograms were
generated using 25 bins.

(a) Hindi BIASED

(b) Hindi UNBIASED

(c) Hindi UNBIASED WITH ROTATIONS

(d) Hindi UNBIASED WITH SCALES

(e) Hindi UNBIASED WITH ROTATIONS AND SCALES

Source: (a) Signature images from Hindi dataset (PAL et al., 2016). (b-e) Generated by
the author based on (a).

38

30 for each of the dataset versions (biased, unbiased, with rotations, with scales, and

the combination of both transformations, as discussed in Sections 4.3 and 4.4) for visual

reference.

It is worth to notice that in all cases r2 histograms for genuine and forged signatures

differ from each other in one or more segments of the mean histograms, although the

difference sometimes falls inside the three-standard deviations interval. Nonetheless, this

fact indicates that the aforementioned MLS handcrafted feature is a good discriminator for

this particular classification problem. Additionally, one can notice that histograms (genuine

and forged) for the CEDAR dataset, have a totally different structure if one compares them

to the histograms corresponding to Bangla and Hindi datasets, and also that Bangla and

Hindi datasets have nearly the same mean histogram structure. This is perfectly reasonable

if one considers that the CEDAR dataset is composed by Western-style signatures, while

Bangla and Hindi corresponds to South-Asian styles signatures.

In particular, if one compares mean histograms in Figures 4.1a and 4.1b, which

correspond to the original version of the CEDAR dataset and its unbiased version respec-

tively, one can see that the mentioned histograms are nearly the same. Since the proposed

MLS hancrafted feature generation technique is based only on the signature skeleton,

this process is not affected (or is affected minimally) by the signature image background.

This is particularly useful for real-life scenarios, when the digitalization process could

introduced undesired backgrounds, and in contrast to other proposed techniques that use

the whole image for feature extraction (Section 4.3), the final features are not affected by

the just mentioned backgrounds.

Additionally, if one compares the mean histograms from the unbiased version of

the datasets and the version subjected to scales, in Figures 4.1, 4.2, and 4.3, one can notice

that the histograms have nearly the same structure but the standard deviation suffers an

increment in the scaled version with respect to the unbiased version. Also, both histograms

are moved down vertically, i.e., have a smaller count of values for each bin. This fact is

easily explained due to the fact that when the image is downscaled, some information

needs to be discarded or aggregated, so, the signature skeleton is composed now by a

smaller amount of pixels, and this also introduces a larger standard deviation (because

of the lack of skeleton points to represent it accurately). This is why in the proposed

approach the histograms are normalized by their L2 norms, making them invariant to the

absolute number of pixels in the signature image. Since the difference between the mean

histograms for the unbiased and scaled versions of the datasets are minimal, one can say

39

that the proposed MLS hancrafted feature generation technique provides scale invariant

properties to the global feature generation process.

In the same direction, comparing mean histograms from the unbiased versions of

the datasets and the version subjected to rotations in Figures 4.1, 4.2, and 4.3, one can

notice that the rotation transformation reduces the gap between the mean histograms for

genuine and forged signatures, and also slightly increments the standard deviations for both

histograms. In other words, it makes it more difficult to discriminate between the positive

and negative classes (considering only the proposed MLS hancrafted feature generation

technique). This negative impact together with the increment of the standard deviation

introduced by the scaling of a signature image makes the rotated and scaled versions of the

datasets the more challenging case for this particular classification problem. The inferences

just mentioned, are validated by the ablation study performed for VerSig-R (see Table 4.4)

One interesting fact to notice is that the CEDAR dataset presents, for all of its

versions, clearly separated mean histograms for genuine and forged signatures. This

fact means that genuine and forgery classes are easier to discriminate. Also, the standard

deviation for genuine and forged classes is greater in the CEDAR dataset than the Bangla or

Hindi datasets, specially in the forgery class. Despite the fact that the forgery class for the

CEDAR dataset has a significative standard deviation (significant intra-class variability),

from Figure 4.1 one can notice that the greater interclass variability for this dataset allows

an easier classification process than its counterparts Bangla and Hindi. In simple terms,

forgeries for the CEDAR dataset are not so accurate and additionally are different between

them, while in the case of Bangla and Hindi datasets, the forgeries are more accurate than

CEDAR dataset, making the classification over these datasets a more challenging problem.

4.2 Experimental Methodology

In order to perform a fair comparison between the three methods being evaluated,

it is necessary to implement a methodology or framework in such a way that it could

be applied in the same way for all signature datasets and classification methods. The

hardware specifications used to perform all the experiments shown here was the following:

RTX 2080 Ti GPU, Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz (16 threads). In the

subsequent paragraphs, the methodology used for all the experiments performed in the

present work is explained in detail.

Each dataset is composed of a collection of writers, each writer having a certain

40

Table 4.1: Statistics of the datasets used in the experiments performed in the present work.

(per writer)
Dataset Writers Genuine (G) Forgery (F) G-G G-F G-G + G-F (Balanced)

CEDAR 55 24 24 276 576 552
Bangla 100 24 30 276 720 552
Hindi 160 24 30 276 720 552
GPDS 4000 24 30 276 720 552
MCYT 75 15 15 105 225 210

number of genuine signature images (G) and skilled-forged signature images (F). By

pairing signatures from the same writer, one can generate examples of genuine-genuine

signature pairs (G-G), and genuine-forgery signature pairs (G-F). Table 4.1 summarizes

these numbers for the CEDAR, Bangla, Hindi, MCYT and GPDS datasets, while Table 4.2

summarizes these numbers when using a a smaller number of references than is available

(Section 4.7). It is worth to mention that, since the present work considers signature

verification as binary classification problem, G-G and G-F signature pairs are treated as

unique pairs, independently of the order of the signatures belonging to the pair, i.e. the

pairs X-Y and Y-X, for specific reference samples X and Y, are considered equivalent.

Additionally, the methodology includes dataset balancing because of the binary

classification model proposed, otherwise the model could be dominated by the predominant

class (the G-F class in this case). To get a balanced dataset, one must use the same quantity

of G-G and G-F pairs during training. Since the number of unique combinations of G-G

pairs is always less than unique G-F pairs for any dataset with the same or greater number

of forgery (F) reference samples than genuine (G) reference samples for each writer (which

is the case for all the datasets considered in this work), a balanced dataset is obtained by

randomly sampling count(G-G) pairs from all possible G-F pairs. For example, in the case

of the CEDAR dataset, all the 276 G-G pairs and 276 randomly choosen G-F pairs per

writer will be used to constitute a balanced dataset. Although Bangla, Hindi and GPDS

datasets have more G-F pairs than the CEDAR dataset, they finally will get the same

number of signature pairs per writer when generating the corresponding balanced dataset,

because they have the same quantity of G-G pairs than the CEDAR dataset. Finally, in the

case of MCYT dataset, only 105 G-G and G-F pairs will be used totaling 210 signature

pairs per writer in a balanced dataset.

For all methods being evaluated, 10-fold cross validation was performed. Data

splitting into training and test sets for each fold was performed in a by writer manner, i.e.

signature pairs belonging to the same writer must be either all on the training set or all on

41

Table 4.2: Number of reference samples per writer based on number of genuine reference
samples for the experiments in Section 4.7.

Genuine (G) Forgery (F) G-G G-F G-G + G-F (Balanced)

24 24 276 576 552
12 12 66 144 132
5 5 10 25 20
4 4 6 16 12
3 3 3 9 6
2 2 1 4 2

the test set, ensuring this way that test data is completely unknown by the SVM classifier at

the training phase. Metrics are evaluated for each fold independently, but averaged across

the 10 folds for simplicity, as one can see in the evaluation tables, mean and standard

deviation for each metric evaluated are reported. The metrics considered for techniques

comparison were: Accuracy, F1-score, precision, recall, ROC curve and the Equal Error

Rate (EER). The EER metric is included, because it is widely used to compare signature

verification techniques (MOHAMMED et al., 2015). EER is defined as the value at the

intersection of the False Acceptance Rate (FAR) and False Rejection Rate (FRR) curves

(which are generated by varying the discrimination threshold). Lower EER means better

classification performance. According to Mohammed et al. (MOHAMMED et al., 2015),

EER for offline signature verification systems ranges from 10% to 30% (versus 2% to 5%

for online systems).

The source code of SigNet (DEY et al., 2017) does not implement cross validation

for evaluation of their proposed technique. Because of that, the same cross validation

mechanism described in the previous paragraph was implemented by the author. It is worth

to mention that since the SigNet method is a Convolutional Neural Network, it separates a

portion of the training data for validation, in order to always save the best obtained model

state across all training epochs.

Additionally, it is worth to remind that, as mentioned in Chapter 2, the SigNet

method selects the discrimination threshold that maximizes its accuracy over the test

set, possibly using a different threshold in each different fold. In contrast, the proposed

technique and Dutta et al.’s method use SVM classifiers with a fixed threshold defined

by the particular implementation over the training set (normally the threshold used is 0).

Therefore, the EER metric is the most suitable when comparing experimental results

against the SigNet method, since EER is not affected by the test-set threshold selection

of SigNet (the names of the metrics that are affected by this selection are marked with an

42

asterisk in the result tables of the present work, see Table 4.3).

In the case of the implementation of Dutta et al. (DUTTA; PAL; LLADÓS, 2016), it

requires large amounts of memory for signature features computation, because of that, their

source code provides a parameter which controls which percentage of the dataset is used

for training and testing in each fold. In the experiments performed using this method, the

default value of 30% (hard-coded in their source code) was used for CEDAR. In order to

end up with similar number of examples in the test set for all datasets, percentages of 15%

for Bangla and 10% for Hindi datasets were selected. The dataset percentages choosen

lead to 828, 828 and 884 signature pairs for CEDAR, Bangla and Hindi respectively, for

the testing set in each fold (considering all writers in the set).

In Table 4.3, the best results in each group are marked in bold, and the results which

are statistically equivalent to the best result (according to Welch’s t-test with p < 0.05) are

highlighted in green.

Additionally, a set of experiments was performed over the GPDS dataset (FERRER;

DIAZ-CABRERA; MORALES, 2015; FERRER; DIAZ-CABRERA; MORALES, 2013)

which contains information from 4000 synthetic individuals (Table 4.1), i.e. synthetically

generated signature samples for 4000 writers according to the technique described by Ferrer

et al. (FERRER; DIAZ-CABRERA; MORALES, 2015; FERRER; DIAZ-CABRERA;

MORALES, 2013). This dataset is referred to as GPDS-4000. Additionally, one experiment

was performed over the MCYT dataset (ORTEGA-GARCIA et al., 2003; FIERREZ-

AGUILAR et al., 2004), the results obtained from this set of experiments are reported in

Table 4.5.

Finally, a set of experiments for cross-dataset validation was performed. The idea

behind this kind of experiments is to validate how well a classifier trained with one dataset

generalizes when used to evaluate writers for another dataset, especially when trained and

test over datasets with different type of handwriting. Associated results can be found in

Tables 4.11, 4.12, 4.13 and 4.14.

4.3 Evaluation on “Unbiased” Datasets

When performing experiments over the CEDAR dataset, the author noticed that

genuine signature images for all the writers in the dataset have an extremely different

background when compared against their corresponding forged signature images (Figures

4.4a and 4.4b). More precisely, genuine signature images have light-gray background, in

43

Figure 4.4: Example signatures from CEDAR dataset, illustrating the significantly different
background color between the (a) genuine and (b) forged signature images. This is a source
of bias for Machine Learning algorithms.

(a) Forged signature (b) Genuine signature
(c) Genuine signature after the
proposed unbiasing step

Source: (a-b) CEDAR dataset (KALERA; SRIHARI; XU, 2004), (c) Image generated by
the author based on image (b).

constrast with forged signature images with completely white backgrounds. This pattern is

repeated for all writers in CEDAR, and is a significant source of bias for Machine Learning

algorithms, which could “cheat” by differentiating between the two classes just based on

the background color. In particular, the author hypothesizes that the 100%-accuracy listed

in the SigNet paper for CEDAR is a consequence of this bias.

To prove the hypothesis introduced in the previous paragraph, a histogram transfor-

mation was applied to all genuine signatures in CEDAR in order to remove the background

color discrepancy (i.e., make all images have a white background). This is illustrated in

Figure 4.4c. The histogram transformation was applied using the following equation:

new_pixel_color = clamp01 (1.23 ∗ (original_pixel_color− 0.4) + 0.35) , (4.1)

where the clamp01(x) operator returns the value x clamped to the [0, 1] range. From this

“unbiasing” procedure the author defines a new version of the CEDAR dataset which was

named C-Unbiased, and the original CEDAR dataset was renamed as C-Biased.

As shown in Table 4.3, the accuracy for SigNet drops from 100% in C-Biased

to 79.51% in C-Unbiased, supporting the hypothesis that SigNet is heavily influenced

just by the difference in the background color between the genuine and forged signature

reference samples (i.e., the classifier was not differentiating between the signatures, just

their backgrounds). The method of Dutta et al., on the other hand, is not corrupted by this

bias, instead increasing its accuracy from 90.93% in C-Biased to 92.87% in C-Unbiased

(likely the white-background images work better for their BRISK feature extraction).

Finally, VerSig-R also includes CNN features and thus is sensitive to this type of bias,

but proves to be significantly more robust (versus SigNet): its accuracy drops just 2.15

44

Figure 4.5: Example signatures from Bangla dataset, illustrating the different signature
position between (a) genuine and (b) forged signature images.

(a) Forged signature (b) Genuine signature
(c) Genuine signature after the
proposed unbiasing step

(a-b) Bangla dataset (PAL et al., 2016). (c) Image generated by the author based on Image
(b).

percentage points, from 99.57% in C-Biased to 97.42% in C-Unbiased. Overall, VerSig-R

significantly outperforms both SigNet and the technique of Dutta et al. in C-Unbiased,

achieving an EER of just 1.95% (and thus FAR = FRR = 1.95%).

Following this bias analysis on the CEDAR dataset, the author analyzed both the

Bangla and Hindi datasets also looking for possible sources of bias. The author found that

all the genuine image signatures for all the Bangla and Hindi writers are not centered. In

fact, all the genuine signature images, for all the writers have the signature positioned at

the left side, as shown in Figure 4.5b. To test whether this could introduce bias, a trimming

operation was applied over all images in both datasets, cropping empty regions around

the signature images (Figure 4.5c). Similarly to the renaming perform over the CEDAR

dataset, the author thus defined B-Unbiased and B-Biased datasets based on Bangla, and

H-Unbiased and H-Biased datasets based on Hindi dataset. As shown in Table 4.3, the

centering of the signatures did not prove to be a significant source of bias.

4.4 Evaluation of Rotation and Scale Invariance

In real-world scenarios, signatures can be found in different orientations and sizes.

Therefore, it is important for signature-verification methods to perform well in situations

where the signatures being compared are subjected to differences in rotation and scale.

To evaluate this property, the author propose the following variations of the previously-

proposed X-Unbiased datasets (for X ∈ {C, B, H}, respectively CEDAR, Bangla, and

Hindi):

• X-UR = X-Unbiased + Rotations, where each image in the original X-Unbiased

dataset has been subjected to a different random rotation between 0 and 360 degrees;

• X-US = X-Unbiased + Scalings, where each image in the original X-Unbiased

dataset has been subjected to a different random downscaling between 50% and

45

100% of its original size;

• X-URS = X-Unbiased + Rotations + Scalings, which combines both random ro-

tations and downscalings (with different random parameters versus UR and US

datasets).

Table 4.3 summarizes the results encountered by the experiments performed in the

present work, grouped by dataset. As one can see, VerSig-R is significantly more robust

against Rotations (UR datasets), with an average loss in accuracy of just 2.2 pp (percentage

points) when replacing Unbiased by UR data. In comparison, the next-best method, SigNet,

suffers a 8.4 pp loss in accuracy, while Dutta et al. loses 14.8 pp. Furthermore, VerSig-R

method is adequately robust against Scalings (US datasets), with an average loss in accuracy

of 2.2 pp (versus 0.9 pp for SigNet and 9.9 pp for Dutta et al.). Finally, the VerSig-R

method is the most robust against combined Rotations and Scalings (URS datasets), with

an average loss in accuracy of just 4.5 pp, versus 8.9 pp for SigNet and 22.7 for Dutta et al.

46

Table 4.3: Classification metrics for the methods evaluated in the experiments performed in the present work. Best results in each group are marked
in bold, and results which are statistically equivalent to the best result are highlighted in green (Welch’s t-test). Metric names marked with an
asterisk (*) are affected by SigNet’s test-set threshold selection procedure (see Section 4.2).

Dataset Method EER (%)

(lower is

better)

Acc.* (%)

(higher is

better)

F1-Score* (%) Precision* (%) Recall* (%) ROC AUC

C-Unbiased VerSig-R 1.95± 1.71 97.42± 1.95 97.43± 1.97 97.08± 3.03 97.92± 3.40 99.75± 0.44

C-Unbiased SigNet 21.73± 9.17 79.51± 8.40 80.25± 7.74 78.90± 10.10 82.75± 9.83 85.43± 9.39

C-Unbiased Dutta et al. 6.67± 3.58 92.87± 3.39 92.80± 3.48 93.53± 4.65 92.49± 6.13 97.84± 1.89

C-Unbiased Human 79.20± 5.22

C-UR VerSig-R 2.82± 1.56 96.71± 1.95 96.68± 2.02 97.02± 2.43 96.48± 3.74 99.52± 0.49

C-UR SigNet 25.76± 6.18 75.83± 6.62 78.00± 6.08 71.65± 5.78 85.84± 7.98 81.31± 6.78

C-UR Dutta et al. 20.07± 3.82 79.18± 4.45 77.69± 7.03 82.64± 4.87 74.83± 12.46 87.85± 4.17

C-US VerSig-R 5.13± 2.90 94.17± 2.84 94.09± 2.97 94.75± 3.39 93.70± 5.30 98.71± 1.38

C-US SigNet 25.76± 9.23 75.05± 9.15 76.46± 7.46 73.97± 10.05 79.76± 6.45 80.19± 10.54

C-US Dutta et al. 23.68± 4.02 75.76± 4.77 73.94± 7.25 78.63± 2.66 70.87± 12.44 84.74± 4.50

C-URS VerSig-R 6.26± 2.16 93.39± 2.09 93.38± 2.16 93.24± 2.34 93.62± 3.65 98.34± 1.24

C-URS SigNet 27.10± 4.95 74.67± 5.30 76.92± 5.46 70.64± 4.91 84.96± 8.69 79.82± 5.09

C-URS Dutta et al. 34.23± 2.31 64.95± 2.49 59.39± 5.27 70.47± 3.31 52.03± 8.35 71.42± 3.36

C-URS Human 78.20± 4.66

47

B-Unbiased VerSig-R 15.87± 4.02 83.76± 3.68 83.57± 4.38 83.87± 2.36 83.62± 7.70 92.30± 3.32

B-Unbiased SigNet 16.46± 4.20 84.57± 3.82 85.14± 3.67 82.31± 4.70 88.45± 5.14 91.20± 3.71

B-Unbiased Dutta et al. 16.16± 3.36 83.55± 3.22 83.29± 3.44 84.83± 5.03 82.39± 6.60 91.90± 2.78

B-UR VerSig-R 17.66± 2.62 81.98± 2.62 81.80± 2.65 82.93± 4.47 81.05± 4.81 90.80± 2.35

B-UR SigNet 21.05± 4.37 79.62± 4.23 80.43± 3.88 77.51± 4.42 83.67± 3.98 86.94± 4.20

B-UR Dutta et al. 32.74± 3.49 66.82± 3.60 65.12± 5.26 68.46± 3.76 62.68± 8.64 72.96± 4.10

B-US VerSig-R 16.96± 4.01 82.90± 3.92 82.69± 4.45 83.40± 3.95 82.34± 7.21 90.91± 3.46

B-US SigNet 15.35± 3.66 85.45± 3.78 85.82± 3.59 84.03± 5.06 87.96± 4.68 91.76± 3.13

B-US Dutta et al. 22.15± 4.24 77.79± 4.06 77.10± 4.84 79.42± 4.75 75.39± 7.79 86.12± 4.24

B-URS VerSig-R 19.24± 2.78 80.65± 2.96 80.44± 3.01 81.60± 4.61 79.71± 5.28 89.36± 2.90

B-URS SigNet 21.78± 3.65 79.24± 3.46 80.39± 3.31 76.29± 3.85 85.16± 4.90 86.17± 3.68

B-URS Dutta et al. 35.99± 3.14 63.76± 3.12 62.39± 5.27 64.60± 2.85 60.94± 8.99 69.03± 3.91

H-Unbiased VerSig-R 16.39± 3.47 83.59± 3.37 83.53± 3.46 83.85± 3.94 83.36± 4.69 91.61± 3.31

H-Unbiased SigNet 15.22± 4.02 85.14± 3.90 85.33± 3.88 84.35± 4.41 86.48± 4.63 92.74± 3.03

H-Unbiased Dutta et al. 19.36± 2.67 80.69± 2.57 80.96± 2.61 79.83± 2.69 82.19± 3.37 88.94± 2.54

H-UR VerSig-R 20.64± 4.23 79.39± 4.21 79.21± 4.26 80.02± 4.86 78.55± 4.89 87.30± 4.25

H-UR SigNet 31.85± 3.30 68.55± 3.38 70.02± 3.53 66.84± 2.86 73.59± 4.83 74.42± 4.07

H-UR Dutta et al. 33.36± 2.65 66.56± 2.23 65.34± 3.09 67.71± 1.90 63.26± 4.79 73.20± 2.86

48

H-US VerSig-R 18.87± 3.73 81.03± 3.84 80.96± 4.04 81.19± 4.03 80.87± 5.26 88.88± 3.92

H-US SigNet 14.41± 3.57 86.06± 3.26 86.33± 2.90 85.26± 4.83 87.59± 2.38 92.89± 2.92

H-US Dutta et al. 26.15± 2.34 73.71± 2.40 73.26± 2.49 74.71± 3.57 72.13± 4.43 81.99± 2.75

H-URS VerSig-R 22.54± 4.22 77.28± 4.23 77.06± 4.25 77.87± 4.64 76.36± 4.76 84.99± 4.55

H-URS SigNet 31.77± 4.33 68.70± 4.29 70.13± 4.66 67.05± 3.91 73.91± 7.44 74.34± 5.10

H-URS Dutta et al. 39.66± 2.23 60.23± 1.86 59.19± 2.70 60.77± 1.97 57.85± 4.40 64.14± 2.53

C-Biased VerSig-R 0.20± 0.26 99.67± 0.34 99.67± 0.34 99.55± 0.66 99.79± 0.31 100.00± 0.00

C-Biased SigNet 0.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

C-Biased Dutta et al. 8.32± 4.36 90.93± 4.52 90.66± 5.04 92.41± 6.12 90.07± 9.89 96.44± 3.43

B-Biased VerSig-R 14.98± 3.31 84.80± 3.17 84.67± 3.49 85.17± 3.32 84.45± 6.00 93.10± 2.57

B-Biased SigNet 14.30± 3.99 86.46± 3.85 86.56± 3.62 86.37± 5.36 87.04± 4.59 92.48± 3.56

B-Biased Dutta et al. 17.25± 3.58 82.74± 3.56 82.39± 4.11 83.90± 4.20 81.45± 7.40 91.07± 3.10

H-Biased VerSig-R 16.03± 3.58 83.95± 3.61 83.85± 3.78 84.29± 3.91 83.57± 5.31 91.59± 3.65

H-Biased SigNet 14.93± 2.87 85.73± 2.66 86.26± 2.54 83.32± 3.40 89.52± 3.09 93.25± 1.85

H-Biased Dutta et al. 18.72± 2.62 81.19± 2.04 81.40± 2.07 80.55± 2.63 82.38± 3.28 89.52± 1.98

49

4.5 Ablation Study

Table 4.4 presents an analysis of the proposed set of features and their individual

performance, averaged over the CEDAR, Bangla and Hindi datasets for simplicity. Note

how the proposed CLIP feature extraction, which uses the preprocessing pipeline described

in Section 3.2, performs better in the signature-verification context than the original CLIP

pipeline (which simply crops the input image to a square, discarding information from

the signatures, which are often rectangular in shape). Furthermore, combining the learned

CLIP features with the generated MLS features (VerSig-R), results in further increase in

performance (higher accuracy and lower EER), while also reducing the standard deviation

between different folds of the cross validation experiment.

It is also worth to notice that the improvement in performance from the features

obtained using the original CLIP preprocessing pipeline and VerSig-R, to the final pro-

posed features is considerably better in the unbiased version of the datasets, and also the

only rotated and only scaled versions of the datasets. In the rotated and scaled version of

the datasets there is only a small improvement when including the proposed MLS features

with the proposed CLIP features.

Overall, Table 4.4 shows that the proposed preprocessing pipeline for CLIP feature

generation and its combination with the proposed MLS handcrafted features have a positive

impact over the metrics in general.

50

Table 4.4: Ablation study (averaged over CEDAR, Bangla and Hindi datasets). VerSig-R
= Proposed MLS + CLIP Features. The best result in each group is highlighted in bold.
UR = Unbiased + Rotations; US = Unbiased + Scales; URS = Unbiased + Rotations +
Scales.

Dataset Method EER (%)
(lower is
better)

Accuracy*
(%)

(higher is
better)

Unbiased VerSig-R 11.40± 3.07 88.26± 3.00
Unbiased Our MLS Features 17.19± 4.87 82.71± 4.79
Unbiased Our CLIP Features 14.60± 4.06 85.28± 4.04
Unbiased Original CLIP 19.03± 3.35 80.59± 3.69

UR VerSig-R 13.71± 2.80 86.03± 2.93
UR Our MLS Features 22.88± 4.39 76.98± 4.62
UR Our CLIP Features 14.99± 2.86 84.74± 2.84
UR Original CLIP 19.68± 3.26 80.11± 3.26

US VerSig-R 13.65± 3.55 86.03± 3.53
US Our MLS Features 31.31± 3.09 68.72± 3.17
US Our CLIP Features 15.18± 4.03 84.60± 3.95
US Original CLIP 21.36± 4.28 78.27± 4.34

URS VerSig-R 16.01± 3.05 83.77± 3.09
URS Our MLS Features 35.00± 3.82 64.97± 4.01
URS Our CLIP Features 16.19± 3.02 83.64± 3.05
URS Original CLIP 21.48± 3.31 78.11± 3.37

51

Table 4.5: Classification metrics for the MCYT and GPDS datasets. Metric names marked with an asterisk (*) are affected by SigNet’s test-set
threshold selection procedure (see Section 4.2). ** SigNet and Dutta et al. results shown in the table were extracted from (DEY et al., 2017), no
experiments were reproduced.

Dataset Method EER (%)

(lower is

better)

Acc.* (%)

(higher is

better)

F1-Score* (%) Precision* (%) Recall* (%) ROC AUC

GPDS-200 VerSig-R 32.14± 2.94 67.57± 2.79 66.98± 2.84 68.31± 3.33 65.86± 3.87 74.16± 3.62

GPDS-500 VerSig-R 30.99± 1.59 69.09± 1.62 69.37± 1.79 68.75± 1.51 70.03± 2.52 75.71± 1.95

GPDS-1000 VerSig-R 30.17± 0.97 69.97± 0.93 70.58± 1.02 69.18± 0.96 72.05± 1.69 76.75± 1.08

GPDS-1000 VerSig-R with PCA 30.10± 0.95 70.04± 1.0 70.64± 1.23 69.23± 0.91 72.14± 2.17 76.81± 1.05

GPDS-4000 VerSig-R with PCA 31.04± 0.59 69.25± 0.58 70.24± 0.80 68.05± 0.56 72.59± 1.64 75.66± 0.78

GPDS-4000 SigNet** 22.24 77.76 − − − −

GPDS-4000 Dutta et al.** 27.98 73.67 − − − −

MCYT VerSig-R 30.16± 4.26 69.27± 4.33 68.14± 4.88 71.37± 6.83 66.21± 8.56 76.59± 5.35

52

4.6 GPDS and MCYT dataset results

This section discusses a set of experiments over the GPDS-4000 (FERRER; DIAZ-

CABRERA; MORALES, 2015; FERRER; DIAZ-CABRERA; MORALES, 2013) dataset

and the MCYT (ORTEGA-GARCIA et al., 2003; FIERREZ-AGUILAR et al., 2004)

dataset with the same methodology used for CEDAR and BHSig260 datasets, described in

Section 4.2. Experiments were performed over 3 sub-datasets of the GPDS-4000 dataset

considering only the 200, 500 and 1000 first writers of the whole GPDS-4000 dataset

(which we call GPDS-200, GPDS-500 and GPDS-1000, respectively). Results for these

experiments can be encountered in the Table 4.5. In the case of the whole dataset, a

dimensionality reduction process was needed because the workstation where experiments

were executed could not manage the amount of memory required to perform this particular

experiment (GPDS-4000 has 4000 writers with 552 signature pairs per writer (balanced),

resulting in a total of 2,208,000 signatures).

A dimensionality reduction was performed after the feature generation using the

well-known concept of Principal Component Analysis (PCA) (WOLD; ESBENSEN;

GELADI, 1987). The idea behind using dimensionality reduction is to reduce the size (in

memory) of the final feature vector for each image and in this way reduce the amount of

memory required to perform the experiment. For this particular case, the number of princi-

pal components was set to 128 (this number was defined arbitrarily), the dimensionality

reduction was applied after obtaining the final feature vector (2048 features from CLIP

and 226 features from handcrafted MLD = 2274-D), so the feature generation process

was not modified at all, just considering the 128-D most representative feature dimensions

according to the PCA algorithm. The amount of memory used to store the features were re-

duced by approximately 17 times for each image: with PCA applied the complete CEDAR

dataset (2640 images) has a size of ∼1.3MB, while without PCA it has a size of ∼23MB.

Results obtained with the additional PCA dimensionality reduction over the GPDS-

4000 and GPDS-1000 datasets are shown in Table 4.5. The differences in metrics for

GPDS-1000 between both trained classifiers, with and without PCA, are minimal, showing

that the dimensionality reduction step likely does not significantly impact the result shown

for GPDS-4000 as well. Additionally, results for GPDS-4000 dataset obtained by Dey et

al. (2017) and Dutta, Pal and Lladós (2016), as reported by Dey et al. (2017), are shown

in the same table. Please consider that this experiments were not reproduced by the author.

Finally, the results obtained by VerSig-R over the MCYT dataset are reported in the last

53

Table 4.6: General results for VerSig-R method after applying a dimensionality reduction
to the final feature vectors from 2274-D to 128-D using Principal Component Analysis.

Dataset EER (%)
(lower is
better)

Accuracy*
(%)

(higher is
better)

Exec. Time
(in seconds)

C-Biased 0.16± 0.25 99.42± 0.73 5.12
C-Unbiased 2.71± 1.82 97.00± 1.89 6.09

C-UR 3.62± 1.41 96.08± 1.60 8.22
C-URS 7.58± 2.07 92.33± 2.03 9.89
C-US 6.94± 2.91 92.68± 3.00 7.87

B-Biased 15.35± 4.71 84.33± 4.64 20.47
B-Unbiased 17.03± 4.91 82.85± 4.73 21.21

B-UR 17.81± 5.19 82.03± 5.20 25.82
B-URS 19.36± 5.44 80.55± 5.48 27.82
B-US 18.94± 5.59 80.85± 5.31 25.05

H-Biased 16.75± 3.07 83.04± 2.90 39.48
H-Unbiased 17.23± 3.12 82.46± 3.03 37.95

H-UR 20.97± 3.04 79.01± 3.14 49.75
H-URS 23.85± 3.14 76.13± 3.23 57.72
H-US 19.83± 3.33 79.95± 3.10 47.56

row of the same table.

From the results shown in Table 4.5, one can notice that for GPDS-4000, VerSig-R

is not as well-performant as in the case of CEDAR dataset for example. GPDS-4000

dataset is an extremely difficult dataset since looking at the references samples, it shows

an extremely higher intraclass variability in genuine and forged samples (different sizes,

signature’s stroke width, signature shapes, etc.), also the author considers that being

synthetically generated signatures, they could not replicate the curvatures and stroke

intersections in the way a human would do, affecting the performance of VerSig-R.

Based on the results obtained using PCA dimensionality reduction technique over

the GPDS-1000 (1000 first writers of GPDS-4000), the author applies the same dimension-

ality reduction process for CEDAR and BHSig260 datasets. Results shown in Table 4.6

demonstrate that the performance loss is extremely low, but in contrast, it offers an ex-

tremely faster execution time (see Section 4.10) and a 10 times reduction in size for the

final feature vector. It is worth noticing that dimensionality reduction with PCA is not part

of the main VerSig-R pipeline, but it is an optional step, especially useful when memory

resources are limited.

54

4.7 Impact of reference samples on classification performance

The number of reference samples using during the training phase is an extremely

important variable to consider because normally a large number of both genuine and

forgery signature images are not available. In this sense, a method which achieves similar

or better performance than another using a smaller amount of reference samples during

the training phase should be considered better. Also in this direction, writer-independent

approaches are preferable, since it does not need a lot of reference samples per writer to

generate a well-performant classification model.

In Tables 4.7, 4.8, and 4.9, one can find an analysis about the impact of the number

of references samples used during the training phase into the two main metrics considered

in this work: Accuracy and Equal Error Rate (EER) for the features proposed in the present

research work. Additionally, a validation step was performed over the signature samples

not used during cross-validation training, using a classifier trained on all the corresponding

reference samples, and evaluated on the remaining samples. This metric is presented in the

mentioned tables as Val. (%). It is worth to notice that the fewer the reference samples,

the worse the metrics, but down to 4 references (even 3 references in some cases) the Val.

metrics could still be considered acceptable. Furthermore, with a very reduced number

of reference samples, the possibility of overfitting during training increases, reducing

dramatically the classifier’s performance.

The mentioned tables present information for CEDAR, Bangla and Hindi datasets

respectively for each of their versions.

4.8 Impact of using only random forgeries during training

In the same direction that the number of reference samples used during training, the

author performed some experiments to analyze the impact of using only random forgeries

during the training phase. As indicated in Chapter 2, signature pairs including a random

forgery are usually generated using (i) one genuine signature sample from a writer, and (ii)

a genuine signature sample from another writer, to act as a forgery signature for the first

writer. In this way, one does not need skilled forgeries at all to train the writer independent

classifier.

The author generated new signature pairs for writer X by randomly chosing another

writer Y and using only Y’s genuine signatures to act as the forged signatures for writer

55

Table 4.7: Study of the impact of the number of reference samples used during training
with VerSig-R (MLS + CLIP features) for the CEDAR dataset. Accuracy and EER and
execution time metrics are calculated from cross validation during training, Validation
accuracy (Val.) is calculated from evaluation of the test set.

Dataset #References
per writer

Accuracy* (%)
(higher is better)

EER (%)
(lower is
better)

Val. (%)
(accuracy)

Exec. Time
(in seconds)

Biased All=24 99.76± 0.27 0.07± 0.12 - 39.03
Biased 12 99.47± 0.73 0.22± 0.43 100.00 14.64
Biased 5 98.43± 1.73 0.63± 1.09 99.61 4.10
Biased 4 97.89± 2.67 2.03± 2.25 99.31 2.81
Biased 3 95.89± 3.45 3.72± 4.42 98.37 1.48
Biased 2 93.50± 6.21 0.83± 2.50 93.22 0.54

Unbiased All=24 97.81± 1.96 1.67± 1.33 - 50.46
Unbiased 12 96.98± 2.09 2.34± 1.98 98.62 17.75
Unbiased 5 93.53± 3.39 4.77± 2.73 97.23 4.05
Unbiased 4 93.06± 4.27 4.36± 2.68 96.07 2.48
Unbiased 3 91.50± 4.46 8.72± 5.31 93.63 1.39
Unbiased 2 100.00± 0.00 0.00± 0.00 80.09 0.49

UR All=24 97.11± 1.83 2.49± 1.59 - 74.94
UR 12 94.10± 3.19 5.68± 3.63 96.68 25.77
UR 5 90.30± 4.04 8.07± 3.34 92.00 5.05
UR 4 89.67± 3.93 6.81± 4.26 89.92 3.13
UR 3 85.94± 7.41 12.44± 8.97 86.23 1.69
UR 2 97.17± 4.35 0.00± 0.00 72.51 0.57

URS All=24 94.28± 1.62 5.59± 1.75 - 92.46
URS 12 90.18± 3.33 9.24± 3.07 94.18 33.99
URS 5 88.52± 3.72 11.30± 2.76 88.52 6.17
URS 4 87.81± 4.59 9.97± 6.27 85.97 3.73
URS 3 84.44± 7.65 16.11± 9.60 81.19 1.80
URS 2 94.33± 4.67 2.00± 6.00 66.85 0.61

US All=24 94.49± 2.59 4.88± 2.66 - 69.40
US 12 92.36± 3.99 7.33± 3.67 96.79 23.60
US 5 89.77± 5.39 10.67± 3.81 93.31 4.89
US 4 89.64± 4.13 11.25± 6.14 91.69 2.84
US 3 86.56± 6.12 11.22± 7.83 85.44 1.52
US 2 98.00± 4.00 0.00± 0.00 70.49 0.52

56

Table 4.8: Study of the impact of the number of reference samples used during training
with VerSig-R (MLS + CLIP features) for the Bangla dataset. Accuracy and EER and
execution time metrics are calculated from cross validation during training, Validation
accuracy (Val.) is calculated from evaluation of the test set.

Dataset #References
per writer

Accuracy* (%)
(higher is better)

EER (%)
(lower is better)

Val. (%)
(accuracy)

Exec. Time
(in seconds)

Biased All=24 84.60± 3.33 14.85± 3.58 - 205.09
Biased 12 85.11± 3.49 14.61± 3.52 89.28 56.17
Biased 5 83.52± 4.01 16.17± 3.76 86.10 10.29
Biased 4 82.56± 3.93 17.34± 4.23 85.08 6.83
Biased 3 79.59± 4.58 21.24± 4.39 82.98 3.18
Biased 2 73.28± 5.27 26.17± 8.10 78.61 1.17

Unbiased All=24 83.07± 3.66 16.42± 3.93 - 214.97
Unbiased 12 82.67± 4.15 16.49± 4.11 88.21 57.59
Unbiased 5 82.98± 3.19 16.57± 3.41 85.19 10.09
Unbiased 4 83.23± 3.94 16.62± 4.35 84.51 6.39
Unbiased 3 79.89± 5.10 19.94± 4.91 82.40 3.16
Unbiased 2 76.78± 6.72 23.72± 8.90 78.38 1.17

UR All=24 82.50± 2.96 17.48± 3.05 - 254.31
UR 12 81.28± 3.76 18.50± 3.47 80.40 66.24
UR 5 83.29± 4.30 16.63± 3.99 76.52 11.06
UR 4 82.57± 4.37 17.94± 5.14 76.60 6.78
UR 3 83.72± 6.18 16.80± 4.47 72.88 2.98
UR 2 95.39± 5.35 5.11± 5.59 62.28 0.94

URS All=24 82.07± 3.16 17.82± 2.98 - 273.26
URS 12 79.59± 5.41 20.13± 5.32 77.71 70.54
URS 5 83.03± 3.39 16.66± 3.50 73.95 10.95
URS 4 86.23± 4.78 14.51± 5.20 67.65 6.34
URS 3 86.06± 3.47 12.94± 4.16 59.89 2.77
URS 2 92.39± 5.19 7.11± 5.17 54.97 0.97

US All=24 81.64± 3.98 18.18± 4.19 - 244.41
US 12 81.01± 4.19 18.75± 4.31 86.25 64.39
US 5 79.09± 4.78 20.61± 4.96 82.36 12.04
US 4 76.73± 4.24 22.01± 3.92 81.46 7.26
US 3 74.98± 5.85 24.19± 5.16 77.96 3.46
US 2 69.89± 8.70 30.11± 11.43 73.61 1.16

57

Table 4.9: Study of the impact of the number of reference samples used during training
with VerSig-R (MLS + CLIP features) for the Hindi dataset. Accuracy and EER and
execution time metrics are calculated from cross validation during training, Validation
accuracy (Val.) is calculated from evaluation of the test set.

Dataset #References
per writer

Accuracy* (%)
(higher is better)

EER (%)
(lower is better)

Val. (%)
(accuracy)

Exec. Time
(in seconds)

Biased All=24 83.69± 3.97 16.46± 3.84 - 377.59
Biased 12 83.04± 4.38 17.07± 4.47 87.92 98.72
Biased 5 81.23± 4.87 18.72± 4.62 84.21 17.29
Biased 4 81.20± 4.76 18.70± 4.30 83.37 10.50
Biased 3 78.34± 4.80 21.24± 4.65 80.56 5.23
Biased 2 78.69± 6.10 22.85± 7.17 76.33 1.74

Unbiased All=24 83.89± 3.99 16.06± 4.07 - 371.50
Unbiased 12 83.09± 4.35 16.85± 4.35 87.32 96.82
Unbiased 5 80.98± 4.65 18.61± 4.09 83.89 16.79
Unbiased 4 81.65± 4.15 17.96± 5.11 82.80 11.00
Unbiased 3 80.53± 5.01 19.88± 5.01 80.56 5.17
Unbiased 2 77.04± 7.53 24.21± 9.25 76.87 1.90

UR All=24 79.96± 4.49 20.01± 4.39 - 485.87
UR 12 78.90± 4.59 21.10± 4.52 76.69 118.62
UR 5 81.30± 3.03 18.73± 3.08 70.92 18.36
UR 4 81.03± 4.15 19.03± 3.83 70.22 11.61
UR 3 81.87± 5.23 18.62± 5.48 65.66 5.63
UR 2 86.23± 7.90 13.77± 9.98 56.53 1.80

URS All=24 77.49± 4.28 22.34± 4.21 - 548.85
URS 12 78.93± 4.28 21.24± 4.35 71.16 124.40
URS 5 82.09± 3.91 18.16± 4.17 67.20 18.69
URS 4 82.07± 3.22 17.15± 2.55 63.73 11.47
URS 3 81.70± 4.62 19.25± 5.32 62.70 5.74
URS 2 87.44± 6.68 10.06± 8.48 54.15 1.58

US All=24 80.99± 4.48 18.91± 4.35 - 459.23
US 12 79.52± 5.17 20.38± 5.12 84.40 116.16
US 5 75.41± 6.04 24.46± 5.80 80.01 19.60
US 4 74.41± 6.24 25.26± 6.55 77.54 12.02
US 3 72.88± 5.92 26.90± 6.06 75.50 5.80
US 2 69.21± 6.24 33.60± 5.89 67.39 1.85

58

X. These signature pairs can be considered as a completely new dataset, having the

same number of writers as well as the same number of signature pairs than the original

dataset (since one simply replaced the skilled forgeries by random forgeries). In this

sense, one can apply the VerSig-R method over this new dataset directly, considering

the same methodology (see Section 4.2). A cross validation was applied in a series

of experiments obtaining the results shown in Table 4.10. A single classifier model

was generated for each dataset version based on the complete dataset reference samples

(balanced dataset). Finally, the classifiers generated based on these datasets of random

forgeries were also evaluated using the corresponding skilled-forgery datasets, which

represent a more challenging situation than random forgeries. The results of this evaluation

is also included in Table 4.10.

As see in Table 4.10, for the Unbiased datasets, the classifiers trained on random

forgeries achieve Accuracy values above 60% when testing with random forgeries, and

above 70% when testing with skilled forgeries, which the the most challenging of the two

situations. It is unclear why the classifiers perform better in the skilled-forgeries case

vs the random-forgeries case, despite being trained on random forgeries. One possible

explanation could be that the handcrafted features measure the amount of curvature of the

signature, and the curvature of two signatures from different writers (random forgeries)

are not necessarily different, specially when both have the same handwriting style (same

dataset). Nonetheless, training the classifier on random forgeries and using the classifier

on skilled forgeries represents a common real-world situation, and as such these represent

good results. One interesting experiment, which is planned as a future work, could be to

analyze the impact of using a combination of random forgeries and a small number of

skilled forgeries during the training phase. Finally, the behaviour observed on the metrics

in Table 4.3 is repeated in Table 4.10, where one sees a performance reduction when

considering dataset transformations such as scalings and rotations.

4.9 Cross-dataset validation

This experiment was considered by the author based on the cross-dataset validation

experiments reported by Dey et al. (DEY et al., 2017). The main idea is to validate how

well a classifier trained over a specific dataset generalizes when it is tested over another

dataset. To perform this experiment the author used the trained classifiers for the three

main datasets used in this work (CEDAR and BHSig260 (Bangla and Hindi)), in their

59

Table 4.10: Study of the impact of training only with random forgeries, while evaluating
with random and skilled forgeries, over the Accuracy metric of VerSig-R (MLS + CLIP
features) for all datasets and their transformations. Datasets: C = CEDAR, B = Bangla, H
= Hindi. Transformations: UR = Unbiased + Rotations; US = Unbiased + Scales; URS
= Unbiased + Rotations + Scales. Hardware specifications: RTX 2080 Ti GPU, Intel(R)
Xeon(R) Silver 4216 CPU @ 2.10GHz (16 threads)

Dataset
(with random

forgeries)

Accuracy (%)
(on random

forgeries)

Accuracy (%)
(on skilled
forgeries)

Exec. Time
(in seconds)

C-Biased 58.99± 5.39 75 86.45
C-Unbiased 61.77± 5.26 77 55.91

C-UR 51.51± 3.11 69 65.27
C-US 57.82± 4.80 71 66.76

C-URS 48.27± 2.35 65 67.39

B-Biased 62.66± 3.79 74 109.58
B-Unbiased 62.83± 4.70 72 109.13

B-UR 55.36± 2.70 66 120.88
B-US 46.20± 2.28 62 125.58

B-URS 49.09± 2.08 63 127.57

H-Biased 68.20± 3.26 72 182.21
H-Unbiased 68.59± 3.09 71 186.40

H-UR 54.27± 3.05 61 205.02
H-US 52.92± 2.92 64 206.07

H-URS 48.37± 2.25 57 213.95

60

Table 4.11: Cross-dataset validation Accuracy of the proposed technique for the unbiased
version of the datasets.

—

C
E

D
A

R

B
an

gl
a

H
in

di

CEDAR 97.42 50.24 50.09

Bangla 52.74 83.76 68.76

Hindi 54.90 68.24 83.59

Table 4.12: Cross-dataset validation Accuracy of the proposed technique for the unbiased
rotated (UR) version of the datasets.

—

C
E

D
A

R
-U

R

B
an

gl
a-

U
R

H
in

di
-U

R

CEDAR-UR 96.71 50.05 50.17

Bangla-UR 52.90 81.98 64.02

Hindi-UR 51.70 70.81 79.39

unbiased versions. The same process was followed for the other versions of the datasets

to analyze the results when transformed dataset are used (rotations and scales). Results

obtained can be encountered in Tables 4.11, 4.12, 4.13 and 4.14

As one can expect, when training on CEDAR dataset and testing on Bangla/Hindi

datasets the classifier performs poorly, and in the opposite case the results are just slightly

better. Also, when training on Bangla and testing on Hindi the results are significantly

better than testing with CEDAR, and in the opposite case the results are even better

(training on Hindi and testing on Bangla). This could be explained in two statements:

• Datasets with a larger number of writers (not necessarily larger number of reference

samples per writer) normally generalize better that one with fewer writers;

• Datasets normally generalize well on the same type of writing, CEDAR (Western

style) and Hindi/Bangla (Asian style) are very different kind of writing styles.

61

Table 4.13: Cross-dataset validation Accuracy of the proposed technique for the unbiased
scaled (US) version of the datasets.

—

C
E

D
A

R
-U

S

B
an

gl
a-

U
S

H
in

di
-U

S

CEDAR-US 94.17 50.22 49.98

Bangla-US 52.20 82.90 63.46

Hindi-US 52.45 66.19 81.03

Table 4.14: Cross-dataset validation Accuracy of the proposed technique for the unbiased
rotated and scaled (URS) version of the datasets.

—

C
E

D
A

R
-U

R
S

B
an

gl
a-

U
R

S

H
in

di
-U

R
S

CEDAR-URS 93.39 49.03 50.56

Bangla-URS 51.35 80.65 65.50

Hindi-URS 50.57 69.35 77.28

62

Table 4.15: Time (in minutes and seconds – MM:SS) for feature generation of VerSig-R,
measured in the unbiased version of the datasets. CLIP features are generated on a RTX
2080 Ti GPU (with pre- and post-processing on the CPU), and MLS features are generated
on a Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz, using 16 threads.

Dataset # signature pairs Avg. resolution CLIP features MLS features Total time

CEDAR 30.360 544×350 00:21 06:47 07:08
Bangla 55.200 982×282 00:27 10:52 11:19
Hindi 88.320 989×282 00:57 22:26 23:23

4.10 Implementation Details and Execution Time

Since in our experiments we use signature pairs, one signature image can appear

several times composing different signature pairs. In this sense, the author computes the

features for each signature only once, and then simply reuses the feature vector when

needed. CLIP feature generation for all crops takes a few seconds to complete (when

computed with a GPU; the GPU used for this research work was an NVIDIA GeForce

RTX 2080 Ti), but after that some post-processing process is applied to generate the final

CLIP features (see Section 3.2). In our Python implementation, the whole process takes

about 7 minutes for CEDAR-based datasets, about 11 minutes for Bangla-based datasets

and about 23 minutes in the case of Hindi-based datasets. These timings are detailed in

Table 4.15. Finally, applying PCA does not represent a considerable increase on time,

since it takes approximately 1 second to be applied to a single dataset (this is valid for

all datasets considered in this work) and even offers time reduction in other parts of the

VerSig-R method (see Tables 4.6 and 4.16).

Execution times reported in the tables in the present research work are summarized

in Table 4.16. These represent the time computed for the 10-fold cross-validation step,

i.e. after the feature generation, and include training and testing time for all folds. As

one can observe and as one can expect, execution time for cross validation is directly

proportional to the number of reference signatures per-writer used during the training phase

(values of R shown on the table). Additionally, one can notice that using random forgeries

during the training phase leads to a significantly shorter execution time for the Bangla

and Hindi datasets, in other words, it took less execution time for the SVM classifier

to converge. Additionally, when using PCA (reducing the feature dimensionality from

2274-D to 128-D), execution time is reduced up to 10 times (see execution times for

B-Unbiased for example).

63

Table 4.16: Execution time of VerSig-R (in seconds) for 10-fold cross-validation, includ-
ing training and testing time, for CEDAR and BHSig260 and their transformations. The
number R represents the number of reference signatures per-writer used during training.
Datasets: C = CEDAR, B = Bangla, H = Hindi. Transformations: UR = Unbiased +
Rotations; US = Unbiased + Scales; URS = Unbiased + Rotations + Scales.

Dataset R = 24 R = 24
with PCA

R = 12 R = 5 R = 24
random
forgeries

C-Biased 39.03 5.12 14.64 4.10 86.45
C-Unbiased 50.46 6.09 17.75 4.05 55.91

C-UR 74.94 8.22 25.77 5.05 65.27
C-URS 92.46 9.89 33.99 6.17 67.39
C-US 69.40 7.87 23.60 4.89 66.76

B-Biased 205.0 20.48 56.17 10.29 109.58
B-Unbiased 214.9 21.22 57.59 10.09 109.13

B-UR 254.3 25.82 66.24 11.06 120.88
B-URS 273.2 27.83 70.54 10.95 127.57
B-US 244.4 25.05 64.39 12.04 125.58

H-Biased 377.5 39.49 98.72 17.29 182.21
H-Unbiased 371.5 37.95 96.82 16.79 186.40

H-UR 485.8 49.76 118.62 18.36 205.02
H-URS 548.8 57.73 124.40 18.69 213.95
H-US 459.2 47.56 116.16 19.60 206.07

64

4.11 User Study with Human Subjects

The author designed a small user study to measure the expected human accuracy

in the signature verification task. A pair of signature images is presented (side by side)

to the user, who is asked to determine if the signatures are genuine (written by the same

writer) or if one of them is a forgery (signatures are written by different writers). A total of

five users were recruited for the mentioned study, with no previous experience in visual

signature verification neither relation to the present research work. Each user saw a total

of 200 signature pairs, being 100 from the C-Unbiased and 100 from the C-URS dataset

(in this order). Within each dataset, the author separated a balanced set of 50 genuine

and 50 forged signature pairs, which were presented to the users in a random order. All

users saw the same set of images, and no time limited was imposed to them although the

average time for test completion was about 25 minutes. The author built a single graphical

interface for the human tests which allow the user to indicate their classification through

keys 0 (to indicate a forgery) and 1 (to indicate genuine signatures), then the application

automatically presents the next signature pair avoiding waste of time and maintaining user

focus in the classification task.

As seen in Table 4.3 (rows in light blue), the average human accuracy was ∼ 79%,

and the users did not suffer any significant performance loss due to rotations and scalings of

the images (C-URS dataset). This reinforces the importance for the classification methods

to exhibit rotation and scale invariance properties. The individual accuracies for the users

were {82%, 86%, 80%, 74%, 74%} for C-Unbiased and {81%, 81%, 80%, 79%, 70%} for

C-URS. Although a user study with just five participants could not be considered as

statistically significant, this small user study allows the author to infer that signature

verification is not an easy task for (untrained) humans, and state-of-the-art algorithms are

able to significantly surpass human classification performance as well as being extremely

faster than humans.

65

5 CONCLUSION

The present work introduced a new offline writer-independent signature verifica-

tion method, based on a combination of Moving Least-Squares handcrafted features and

features transferred from the CLIP convolutional neural network. VerSig-R significantly

outperforms state-of-the-art techniques on the CEDAR dataset (Western-style handwrit-

ing), while simultaneously obtaining good results on the Bangla and Hindi datasets both

belonging to BHSig260 large dataset. The worse performance numbers on the BHSig260

dataset when compared with the results for the CEDAR dataset could be explained by the

different handwriting style for these datasets. In particular, the BHSig260 signatures have

considerably minor portions of curved regions when compared to the signatures on the

CEDAR dataset. Finally, VerSig-R exhibits some degree of rotation and scale invariance,

being the best-performing technique across all datasets when the signature images are

subjected to random changes in rotation and scale.

Additionally, this research work presented a discussion of unintended bias in the

datasets (mainly on the CEDAR dataset), suggesting an approach to remove such bias and

demonstrating that effectively removing such bias produces a decrease in the SigNet (DEY

et al., 2017) proposed technique metrics, supported by a wide range of experiments.

Another source of bias were investigated and discussed over the Bangla and Hindi datasets,

although they did not affect considerably the metrics. In the same direction, new dataset

versions are proposed in the present research work, applying transformations, such as

rotations and scalings, to the original unbiased versions of the datasets.

It is clear from experimental results shown in Tables 4.11, 4.12, 4.13 and 4.14 that

in order to get an offline writer-independent classifier that generalizes well for most of the

handwriting styles (Western, Asian, Arabic, etc) the dataset needs to be more heterogeneus

with respect to the training dataset. One interesting experiment (planned as future work)

is to build a large dataset containing information from CEDAR, BHSig260, MCYT and

GPDS and use it to train a single writer-independent classifier in order to analyze how well

it generalizes.

Additionally, results reported in Tables 4.7, 4.8, 4.9 show that VerSig-R behaves

surprisingly well using fewer number of references per writer during the training phase,

i.e. the impact of decreasing the number of references during training is relatively low

(although with only two references the validation accuracy decrease dramatically, especially

for the rotated versions of the datasets). This fact is highly desirable for the specific case

66

of signature verification problem since normally a limited number of reference samples per

writer are available in real-life scenarios. In the same direction, experiments using only

random forgeries during the training phase were performed (Section 4.8) demonstrating

that random forgeries could be a good initial point for building an ensemble of classifiers

that helps with the classification task, and giving some directions to the author for future

work and making the model more adaptable to real-life scenarios.

In addition to this, a general evaluation of execution time is performed for the

whole cross-validation process as well as the two parts of the feature generation process

(CLIP and MLS handcrafted features). Although classifiers could be trained and be ready

to use in a few hours in the worst cases (and in a few minutes in the best cases), saving the

features to disk for reproducibility is still demanding (some gigabytes of space in disk is

required to save even the smallest dataset features (CEDAR)).

Finally, to the best of the author’s knowledge, the first user study to obtain a

reference measure of human performance on the signature verification task on the CEDAR

dataset was introduced in the present research work. The results could allow us to infer

that the human accuracy for CEDAR unbiased dataset and the CEDAR-URS versions are

on average 79% for both datasets, demonstrating that signature verification is not an easy

task, even for humans, and that VerSig-R probably outperforms the human performance.

The contributions of this thesis were presented at the SIBGRAPI 2021 con-

ference and published as an article in the SIBGRAPI full paper proceedings (Main

Track) (PACHAS; GASTAL, 2021).

67

6 FUTURE WORK

6.1 Training with Random Forgeries

One interesting experiment to perform is to analyze a new procedure for generating

random forgeries during training. Instead of choosing a single writer to act as the “forgery

source” for another writer (as discussed in Section 4.8), the idea would be to use the genuine

signatures from all other writers to create signature pairs for a writer. The challenge with

this approach is the significantly larger dataset that would be generated and would be

required to use during training.

Additionally, as mentioned in Section 4.8, a pending experiment for the author, is

to analyze the metrics obtained when we use a combination of random forgeries and a

minimum number of skilled or simple forgeries. These future works have the objective to

reduce the necessity of skilled forgeries for training the classifiers in order to introduce

better generalization and the adaptability required for real-life scenarios.

6.2 Dataset Improvements

As one can see in Table 4.3 and Table 4.4, rotated versions of the datasets are

the most difficult problem to solve. This could be explained by the lack of references

samples, since the generated rotations were applied in a unique randomly chosen degree for

each reference sample in the initial dataset (one rotation per signature). A more complete

approach to deal with this problem is to generate more rotation reference samples, ideally

one rotation for every single degree belonging to the interval [0◦, 360◦[, this way every

rotation of signatures could be considered during the training phase and could lead to an

even better performance and generalization for VerSig-R.

In the same direction, the author proposes to introduce data augmentation tech-

niques, which is an (arguably) different approach than generating totally synthetic signa-

tures (see (FERRER; DIAZ-CABRERA; MORALES, 2015; FERRER; DIAZ-CABRERA;

MORALES, 2013) for synthetic signature generation applied to generate GPDS-4000).

The proposal is to use data augmentation techniques to generate slightly transformed

reference samples in the datasets, maintaining the inherent characteristics of a handwritten

signature, and this way increment the number of samples used during training which at

the same time could lead to a better performing classifier. This remains to be explored,

68

however, since signature images distorted by geometric augmentation transformations

could lead to worse results, and colorspace transformations would probably not be very

useful (signatures are most commonly dark ink on white paper).

Finally, according to the results obtained in the present research work, the most

‘diverse’ the training reference samples the best results any signature verification method

will obtain. In the cross-dataset validation (Section 4.9) one can notice that in general,

datasets with different handwriting style do not generalize well when testing over a dataset

with a different handwriting style. Then, one reasonable experiment consists in combining

datasets with different handwriting styles, in order to improve generalization across datasets.

This could be done with CEDAR and BHSig260 datasets in order to validate the previous

mentioned hypothesis.

6.3 Signature Identification

Signature identification consists on identifying the position of any signature in an

static image, in order to extract it to perform signature verification. In the present work the

author only approaches the signature verification problem, but in real-life scenarios signa-

ture identification also needs to be approached in order to make the signature verification

scalable across an organization, for example. Some works exist on the literature that deal

with the mentioned problem, and future work for the author consists on evaluating these

works and if necessary proposing a new signature identification method which works well

with the already proposed signature verification method.

6.4 Feature Generation

Features generated by VerSig-R behave well for CEDAR and BHSig260 datasets,

achieving good accuracies and reducing the Equal Error Rate (EER). However, VerSig-R

generates feature vectors of 2274-D per image, so, giving a pair of signature images, the

actual dimensionality of the signature pair is 4548-D, making it extremely challenging to

manage this information in memory for using when training the classifiers. As shown in

Section 4.6, PCA dimensionality reduction manages to reduce the feature dimensionality

without sacrificing metric performance. Future work for the author is to make more

experiments in this direction as well as to evaluate ways to optimize the feature generation

69

process to include fewer but representative feature description of the signature pairs, maybe

by concatenating images in the signature pair and calculating CLIP and MLS handcrafted

features from only one bigger image.

70

REFERENCES

ALVAREZ, G.; SHEFFER, B.; BRYANT, M. Offline signature verification with
convolutional neural networks. Tech. Report, Stanford Univ., 2016.

BERTOLINI, D.; OLIVEIRA, L. S.; JUSTINO, E.; SABOURIN, R. Reducing forgeries in
writer-independent off-line signature verification through ensemble of classifiers. Pattern
Recognition, Elsevier, v. 43, n. 1, p. 387–396, 2010.

BOSER, B. E.; GUYON, I. M.; VAPNIK, V. N. A training algorithm for optimal margin
classifiers. In: Proceedings of the fifth annual workshop on Computational learning
theory. [S.l.: s.n.], 1992. p. 144–152.

CANTRELL, C. D. Modern mathematical methods for physicists and engineers.
[S.l.]: Cambridge University Press, 2000.

CHA, S.-H.; SRIHARI, S. N. Writer identification: statistical analysis and dichotomizer.
In: SPRINGER. Joint IAPR international workshops on statistical techniques in
pattern recognition (SPR) and structural and syntactic pattern recognition (SSPR).
[S.l.], 2000. p. 123–132.

CHAPELLE, O.; HAFFNER, P.; VAPNIK, V. N. Support vector machines for
histogram-based image classification. IEEE transactions on Neural Networks, IEEE,
v. 10, n. 5, p. 1055–1064, 1999.

DENG, J.; DONG, W.; SOCHER, R.; LI, L.-J.; LI, K.; FEI-FEI, L. Imagenet: A
large-scale hierarchical image database. In: IEEE. 2009 IEEE conference on computer
vision and pattern recognition. [S.l.], 2009. p. 248–255.

DEY, S.; DUTTA, A.; TOLEDO, J. I.; GHOSH, S. K.; LLADÓS, J.; PAL, U. SigNet:
Convolutional siamese network for writer independent offline signature verification.
arXiv:1707.02131, 2017.

DIAZ, M.; FERRER, M. A.; IMPEDOVO, D.; MALIK, M. I.; PIRLO, G.; PLAMONDON,
R. A perspective analysis of handwritten signature technology. Acm Computing Surveys
(Csur), ACM New York, NY, USA, v. 51, n. 6, p. 1–39, 2019.

DODGE, Y. The Concise Encyclopedia of Statistics. [S.l.]: Springer, 2008. ISBN
9780387317427.

DUTTA, A.; PAL, U.; LLADÓS, J. Compact correlated features for writer independent
signature verification. In: IEEE. Intl. Conference on Pattern Recognition. [S.l.], 2016.
p. 3422–3427.

FERRER, M. A.; ALONSO, J. B.; TRAVIESO, C. M. Offline geometric parameters for
automatic signature verification using fixed-point arithmetic. IEEE Transactions on
Pattern Analysis and Machine Intelligence, IEEE, v. 27, n. 6, p. 993–997, 2005.

FERRER, M. A.; DIAZ-CABRERA, M.; MORALES, A. Synthetic Off-Line Signature
Image Generation. In: 6th IAPR International Conference on Biometrics. [S.l.: s.n.],
2013. p. 1–7. 4–7 June 2013, Madrid. doi: 10.1109/ICB.2013.6612969.

71

FERRER, M. A.; DIAZ-CABRERA, M.; MORALES, A. Static Signature Synthesis: A
Neuromotor Inspired Approach for Biometrics. IEEE Transactions on Pattern Analysis
and Machine Intelligence, IEEE, v. 37, n. 3, p. 667–680, 2015.

FIERREZ-AGUILAR, J.; ALONSO-HERMIRA, N.; MORENO-MARQUEZ, G.;
ORTEGA-GARCIA, J. An off-line signature verification system based on fusion of
local and global information. In: SPRINGER LNCS-3087. Workshop on Biometric
Authentication. [S.l.], 2004. p. 295–306.

FREITAS, C.; BORTOLOZZI, F.; SABOURIN, R.; FACON, J. Bases de dados de cheques
bancarios brasileiros. 1998.

HADNAGY, C. Social engineering: The art of human hacking. [S.l.]: John Wiley &
Sons, 2010.

HAFEMANN, L. G.; SABOURIN, R.; OLIVEIRA, L. S. Writer-independent feature
learning for offline signature verification using deep convolutional neural networks. In:
IEEE. Intl. Joint Conference on Neural Networks. [S.l.], 2016. p. 2576–2583.

HAFEMANN, L. G.; SABOURIN, R.; OLIVEIRA, L. S. Learning features for offline
handwritten signature verification using deep convolutional neural networks. Pattern
Recognition, Elsevier, v. 70, p. 163–176, 2017.

HAFEMANN, L. G.; SABOURIN, R.; OLIVEIRA, L. S. Characterizing and evaluating
adversarial examples for offline handwritten signature verification. IEEE Transactions
on Information Forensics and Security, v. 14, n. 8, p. 2153–2166, 2019.

HAFEMANN, L. G.; SABOURIN, R.; OLIVEIRA, L. S. Meta-learning for fast classifier
adaptation to new users of signature verification systems. IEEE Transactions on
Information Forensics and Security, IEEE, v. 15, p. 1735–1745, 2019.

HAMADENE, A.; CHIBANI, Y. One-class writer-independent offline signature
verification using feature dissimilarity thresholding. IEEE Transactions on Information
Forensics and Security, IEEE, v. 11, n. 6, p. 1226–1238, 2016.

HAMEED, M. M.; AHMAD, R.; KIAH, M. L. M.; MURTAZA, G. Machine
learning-based offline signature verification systems: A systematic review. Signal
Processing: Image Communication, Elsevier, p. 116139, 2021.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
[S.l.: s.n.], 2016. p. 770–778.

HUANG, K.; YAN, H. Off-line signature verification based on geometric feature
extraction and neural network classification. Pattern Recognition, Elsevier, v. 30, n. 1, p.
9–17, 1997.

IANDOLA, F.; MOSKEWICZ, M.; KARAYEV, S.; GIRSHICK, R.; DARRELL, T.;
KEUTZER, K. Densenet: Implementing efficient convnet descriptor pyramids. arXiv
preprint arXiv:1404.1869, 2014.

72

KALERA, M. K.; SRIHARI, S.; XU, A. Offline signature verification and identification
using distance statistics. Intl. Journal of Pattern Recog. and Artificial Intelligence,
World Scientific, v. 18, n. 07, p. 1339–1360, 2004.

KUMAR, A.; BHATIA, K. A survey on offline handwritten signature verification system
using writer dependent and independent approaches. In: IEEE. International Conference
on Advances in Computing, Communication, & Automation. [S.l.], 2016. p. 1–6.

KUMAR, R.; SHARMA, J.; CHANDA, B. Writer-independent off-line signature
verification using surroundedness feature. Pattern Recognition Letters, Elsevier, v. 33,
n. 3, p. 301–308, 2012.

LANCASTER, P.; SALKAUSKAS, K. Surfaces generated by moving least squares
methods. Mathematics of computation, v. 37, n. 155, p. 141–158, 1981.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep Learning. Nature, Nature Publishing
Group, v. 521, n. 7553, p. 436–444, may 2015. ISSN 1476-4687.

LEVIN, D. The approximation power of moving least-squares. Mathematics of
computation, v. 67, n. 224, p. 1517–1531, 1998.

LIWICKI, M.; MALIK, M. I.; HEUVEL, C. E. V. D.; CHEN, X.; BERGER, C.; STOEL,
R.; BLUMENSTEIN, M.; FOUND, B. Signature verification competition for online and
offline skilled forgeries (sigcomp2011). In: IEEE. 2011 International conference on
document analysis and recognition. [S.l.], 2011. p. 1480–1484.

MOHAMMED, R. A.; NABI, R. M.; SARDASHT, M.; MAHMOOD, R.; NABI, R. M.
State-of-the-art in handwritten signature verification system. In: IEEE. Intl. Conference
on Computational Science and Computational Intelligence. [S.l.], 2015. p. 519–525.

MUNICH, M. E.; PERONA, P. Visual identification by signature tracking. IEEE TPAMI,
IEEE, v. 25, n. 2, p. 200–217, 2003.

OLIVEIRA, L. S.; JUSTINO, E.; SABOURIN, R. Off-line signature verification using
writer-independent approach. In: IEEE. Intl. Joint Conference on Neural Networks.
[S.l.], 2007. p. 2539–2544.

ORTEGA-GARCIA, J.; FIERREZ-AGUILAR, J.; SIMON, D.; GONZALEZ, J.;
FAUNDEZ-ZANUY, M.; ESPINOSA, V.; SATUE, A.; HERNAEZ, I.; IGARZA, J.-J.;
VIVARACHO, C.; ESCUDERO, D.; MORO, Q.-I. MCYT baseline corpus: a bimodal
biometric database. IEE Proceedings-Vision, Image and Signal Processing, IET, v. 150,
n. 6, p. 395–401, December 2003.

OTSU, N. A threshold selection method from gray-level histograms. IEEE Trans. on
Systems, Man, and Cybernetics, IEEE, v. 9, p. 62–66, 1979.

PACHAS, F. E. H.; GASTAL, E. S. L. An offline writer-independent signature verification
method with robustness against scalings and rotations. In: 2021 34th SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI). [s.n.], 2021. p. 322–329.
Available from Internet: <https://doi.org/10.1109/SIBGRAPI54419.2021.00051>.

https://doi.org/10.1109/SIBGRAPI54419.2021.00051

73

PAL, S.; ALAEI, A.; PAL, U.; BLUMENSTEIN, M. Performance of an off-line signature
verification method based on texture features on a large indic-script signature dataset. In:
IEEE. 12th IAPR workshop on document analysis systems. [S.l.], 2016. p. 72–77.

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION,
B.; GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG,
V.; VANDERPLAS, J.; PASSOS, A.; COURNAPEAU, D.; BRUCHER, M.; PERROT,
M.; DUCHESNAY, E. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, v. 12, p. 2825–2830, 2011.

RABINER, L. Fundamentals of speech recognition. Fundamentals of speech
recognition, PTR Prentice Hall, 1993.

RADFORD, A.; KIM, J. W.; HALLACY, C.; RAMESH, A.; GOH, G.; AGARWAL, S.;
SASTRY, G.; ASKELL, A.; MISHKIN, P.; CLARK, J. et al. Learning transferable visual
models from natural language supervision. preprint arXiv:2103.00020, 2021.

RISH, I. et al. An empirical study of the naive bayes classifier. In: IJCAI 2001 workshop
on empirical methods in artificial intelligence. [S.l.: s.n.], 2001. v. 3, n. 22, p. 41–46.

SAKOE, H.; CHIBA, S. Dynamic programming algorithm optimization for spoken word
recognition. IEEE transactions on acoustics, speech, and signal processing, IEEE,
v. 26, n. 1, p. 43–49, 1978.

SANDLER, M.; HOWARD, A.; ZHU, M.; ZHMOGINOV, A.; CHEN, L.-C. Mobilenetv2:
Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. [S.l.: s.n.], 2018. p. 4510–4520.

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

SOLEYMANPOUR, E.; RAJAE, B.; POURREZA, H. R. Offline handwritten signature
identification and verification using contourlet transform and support vector machine. In:
IEEE. 2010 6th Iranian Conference on Machine Vision and Image Processing. [S.l.],
2010. p. 1–6.

SOUZA, V. L.; OLIVEIRA, A. L.; SABOURIN, R. A writer-independent approach for
offline signature verification using deep convolutional neural networks features. In: IEEE.
Brazilian Conference on Intelligent Systems. [S.l.], 2018. p. 212–217.

VARGAS, F.; FERRER, M.; TRAVIESO, C.; ALONSO, J. Off-line handwritten signature
gpds-960 corpus. In: IEEE. Ninth International Conference on Document Analysis
and Recognition (ICDAR 2007). [S.l.], 2007. v. 2, p. 764–768.

WOLD, S.; ESBENSEN, K.; GELADI, P. Principal Component Analysis. Chemometrics
and Intelligent Laboratory Systems, Elsevier, v. 2, n. 1-3, p. 37–52, 1987.

XIE, S.; GIRSHICK, R.; DOLLÁR, P.; TU, Z.; HE, K. Aggregated residual
transformations for deep neural networks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. [S.l.: s.n.], 2017. p. 1492–1500.

ZHANG, T.; SUEN, C. Y. A fast parallel algorithm for thinning digital patterns. Commun.
of the ACM, ACM New York, NY, USA, v. 27, n. 3, p. 236–239, 1984.

74

ZHUANG, F.; QI, Z.; DUAN, K.; XI, D.; ZHU, Y.; ZHU, H.; XIONG, H.; HE, Q. A
comprehensive survey on transfer learning. Proceedings of the IEEE, v. 109, n. 1, p.
43–76, 2021.

75

APPENDIX A — RESUMO EXTENDIDO

As assinaturas manuscritas são ainda um dos métodos de autenticação biometrica

mais usados em processos legais, administrativos e bancários. O presente trabalho de

mestrado procura contribuir com a automatização da verificação de assinaturas manuscritas

com um enfoque writer independent, i.e. construindo um modelo de classificação só, que

permita classificar pares de assinaturas como verdadeiras (se as duas assinaturas pertencem

a mesma pessoa) o falsas (se uma das assinaturas foi feita por alguém tentando imitar a

assinatura da pessoa de interesse) ao invés de criar um modelo de classificação específico

para cada pessoa. Adicionalmente, o presente trabalho está focado na verificação offline,

i.e. usando só imagens estáticas das assinaturas (digitalizadas usando um scanner após a

assinatura for escrita), as quais não contém informação dinamica referente ao processo

de escrita da assinatura como inclinação e pressão aplicada sobre a caneta, seqüência de

tempo de assinatura, entre outros.

Um novo framework para extração de features é proposto baseado num conjunto de

features obtidas com uma rede neural convolucional (CNN) pre-treinada chamada CLIP e

um outro conjunto de handcrafted features com base no conceito de Moving Least Squares.

No caso das features obtidas da CNN o autor propõe um novo pipeline para o cálculo das

features que gera cortes das imagens e processa elas indepentemente para logo fazer um

proceso de junção desses features pela média deles elemento a elemento. Dessa forma, o

novo pipeline consegue extrair features da imagem completa independentemente da forma

dela (retangular o quadrada) ou sua orientação (horizontal ou vertical).

As handcrafted features propostas pelo autor são geradas com base na ideia intuitiva

de que curvas acentuadas e / ou interseções de traços são as partes mais difíceis de imitar

quando se deseja forjar uma assinatura. As handcrafted features são obtidas após de um

processo de binarização da imagem seguido por um processo de skeletonization sobre a

imagem binarizada, o que visa obter uma representação de um pixel de largura da assinatura.

Pequenas vizinhanças do skeleton da assinatura são ajustados a weighted least-square lines,

o coeficiente r2 é usado para medir a qualidade do ajuste (curvas acentuadas e interseções

de traços estarão asociados con valores pequenos do coeficiente r2). Finalmente, os valores

do coeficiente r2 obtidos para cada vizinhança são convertidos a vetores de features usando

histogramas, os quais são invariantes a rotações e escalamentos.

As features obtidas a partir da CNN tem uma dimensionalidade de 1024D por cada

imagem, considerando um par de imagens, finalmente é obtido um vetor de 2048D. No caso

76

das handcrafted features, histogramas com dimensionalidade de 75D são geradas a partir

da junção de diferentes vetores gerados usando diferentes numeros de bins (5,10,15,20,25).

A diferencia quadrática dos vetores de features (histogramas) de cada par de assinaturas

é calculada obtendo um outro vetor de 75 dimensões, finalmente a distância L2 desses

mesmos vetores é calculada (1 dimensão só). No final as handcrafted features ficam com

226 dimensões que juntadas com as 2048 dimensões das features da CNN nos dá um total

de 2274 dimensões.

As features finais de cada par de assinaturas são passadas para um classificador

SVM (Support Vector Machine0) com o conjunto de hiperparâmetros padrão. Adicional-

mente, o presente trabalho nota um possível bias num dataset de assinaturas amplamente

utilizado na literatura e propõe modificações aos datasets atuais para gerar versões deles

que incluem rotações e escalamentos ou a combinação deles (casos da vida real). Experi-

mentos abrangentes sobre a resistência do método proposto ás mencionadas modificações

foram feitos, assim como uma discussão do impato do número de exemplos usado para o

treinamento do modelo nas métricas e uma avaliação do poder de geralização do modelo

proposto quando o treinamento é realizado num dataset e o teste é realizado em outro

diferente. Um ablation study é também realizado, para mostrar o impato de cada uma das

features utilizadas (CNN e handcrafted) nos resultados e as métricas obtidas.

Os resultados mostram que o método proposto consegue melhorar o estado da

arte num dos datasets (western style) usados enquanto mantem uma perfomance similar

a outros métodos nos outros datasets (asian-style). Adicionalmente, o método proposto

é resistente a rotações e escalamentos em contraste com outros métodos, o autor consid-

era que as handcrafted features fornecem a propriedade de invariabilidade por causa de

que as mencionadas featuras estão compostas por histogramas (invariantes a rotações e

escalamentos).

	Abstract
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Background and Related Work
	2.1 Online Signature Verification
	2.2 Offline Signature Verification
	2.2.1 Writer-Dependent Approaches
	2.2.2 Writer-Independent Approaches

	3 Proposed Method: VerSig-R
	3.1 Moving Least-Squares (MLS) Feature Generation
	3.1.1 MLS Overview
	3.1.2 MLS Detailed Algorithm
	3.1.3 Moving Least-Squares Fit and r2

	3.2 CLIP Feature Generation
	3.3 Classification with SVM

	4 Experimental Results
	4.1 r2 Histograms Analysis
	4.2 Experimental Methodology
	4.3 Evaluation on ``Unbiased'' Datasets
	4.4 Evaluation of Rotation and Scale Invariance
	4.5 Ablation Study
	4.6 GPDS and MCYT dataset results
	4.7 Impact of reference samples on classification performance
	4.8 Impact of using only random forgeries during training
	4.9 Cross-dataset validation
	4.10 Implementation Details and Execution Time
	4.11 User Study with Human Subjects

	5 Conclusion
	6 Future Work
	6.1 Training with Random Forgeries
	6.2 Dataset Improvements
	6.3 Signature Identification
	6.4 Feature Generation

	References
	Appendix A — Resumo Extendido

