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Abstract: The inverse correlation between NDVI and LST is widely known for its long time series.
However, when more specific statistical tests were performed, subtle differences in the correlation
behavior over time are more clearly observed. In this work, regression analyses were performed
between NDVI and LST at intervals of approximately 10 years, quantifying this relationship for an
area of transition from vegetation to urban occupation from 1985 to 2018. The removal of vegetation
cover (reduction of 51% to 7% in grassland and 14.4% to 0.6% in forest) to occupy impermeable
surfaces ( increase of 31% to 91% in urban areas) caused an average LST increase of 4.18 °C when
compared to the first and last decades of the historical series. Temporal analysis allowed us to verify
the increase in temperature in the four seasons. The largest difference was 6.36 °C between the first
and last decade of autumn, 4.40 °C in spring, 4.09 °C in summer, and 2.41 °C in winter. The results also
show that LST has a negative correlation with NDVI, especially in urban areas, with an increase in
this correlation during the period (1989: R =−0.55; 1999: R =−0.58; 2008: R =−0.59; 2018: R =−0.76).
Our study results will help policymakers understand the dynamics of temperature increases by
adding scientifically relevant information on the sustainable organization of the urban environment.

Keywords: vegetation and urban modeling; land use and land cover change; land surface processes;
Porto Alegre four districts

1. Introduction

In view of the urbanization process, which has intensified since the 18th century and is
mainly associated with the occurrence of the rural exodus and the industrialization process,
it is possible to verify the unrestrained growth of the population and urban spots in the
global scenario. According to the World Urbanization Prospects report, produced by the
United Nations Division, on a global scale, the urban population has been larger than the
rural population since 2007 [1]. In Brazil, according to data from the census conducted by
the Brazilian Institute of Geography and Statistics (IBGE) in 2010, 84.4% (169.9 million) of
the population lived in an urban area [2].

The expansion of cities severely alters the natural biophysical environment through
changes in land use and land cover (LULC). The removal of vegetation covers to develop
urban activities causes changes not only in the hydrological cycle but mainly in energy
balance, with regard to energy storage and transfer that occurred naturally before anthropic
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interference [3,4]. As a consequence, there are changes in air temperature and humidity,
wind speed, and direction. In this manner, the city starts to develop its own urban climate
determined by these changes, by the regional climate, and by the local physical environ-
ment, configuring a Superficial Urban Heat Island (SUHI) [5,6]. According to Zhang and
Sun [7], as the main urbanization reflection, there is an increase in the Earth’s surface
temperature (LST) and the consequent formation of SUHI, also known as heat core, thermal
or humid cores, heated core, or even as heat pockets. This increase occurs because of an-
thropic interferences occuring in the environment by replacing natural surface covers with
materials with high heating capacity. In addition, there is a decrease in urban green areas
that would be responsible for reducing LST through the evapotranspiration process [8,9].

Vegetation presence influences LST through the absorption and selective reflection
of solar radiation, regulating the exchange of latent and sensitive heat [10–12]. In an
urban environment, the correlation between this presence and lower temperature areas is
established. Such correlations can be observed by using generalized definitions of surface
greenness or by using the Normalized Difference Vegetation Index (NDVI) values detected
using remote sensing techniques [13–16].

In the last decades, some studies were conducted regarding the relationship between
LULC and LST variables in large cities such as Tokyo [17], Bangkok [9] and Inner Hanoi [18]
and with low spatial resolution [13,15,19,20]. The impact of urbanization combined with
changes in LULC and seasonal effects on LST and SUHI intensity was also verified in
seven major urban districts (Barisal, Chattogram, Dhaka, Mymensingh, Rajshahi, Rangpur,
and Sylhet) of Bangladesh [21] and in cities such as Raipur [22], Chittagong [23], Shiraz [24],
Wuhan [25], Bengaluru [26], Calcutá [27],and Tehran [28]. Furthermore, most of these
studies related variables according to specific conditions in the areas of study. However,
the LST, NDVI, and LULC relationship occurs differently over time and according to land
use and cover in a large metropolitan area compared to a medium-sized urban center.

The inverse correlation between NDVI and LST is widely known for long time se-
ries [22,24,29–31]. However, this approach does not always work, because some changes
can occur at specific periods without being registered. This subtle anomalous behavior is
enhanced and characterized in this study, by using appropriated statistical performance.
Regression analyses were used in NDVI and LST data at adjusted intervals of approximately
10 years. The results allowed quantifying a different pattern between NDVI and LST for an
area of transition from vegetation to urban occupation from 1985 to 2018. This unnoticed
behavior can help to better understand the dynamics of temperature increases, adding
scientifically relevant information on the sustainable organization of urban environments.

From the beginning of the 20th century to the present, the municipality of Porto
Alegre-Rio Grande do Sul, Brazil, has experienced accelerated urban growth mainly due
to the industrial and labor occupation process becoming an economic and population
center at the regional level. The urban spot rapid transformation and expansion caused
not only central and rural area densification but also urban conurbation phenomenon.
According to Frumkin [32], this phenomenon is known as the urban sprawl and human
activities diversification, demanding enormous planning and management capacity from
the municipalities governments and technical staff. The city is among the ten smartest
and most connected cities in Brazil (ninth position), being the 4th in entrepreneurship,
6th in technology and innovation, 13th in economy, and 15th in health. Although most
large urban centers have agencies responsible for urban planning and the maintenance
of public services, many lack space-time data and information that serve as a basis for
decision making.

In this sense, the LST evolution diagnosis and characterization have been shown to
be a potential instrument for urban space management [33]. However, the lack of detail
regarding the LST and LULC spatial and temporal variation in urban environments ends
up harming mitigation actions by the government. Once data on the spatial differences
between the intraurban and rural temperatures are acquired, it is possible to measure and
mitigate possible SUHI formation. Thus, urban planners and designers are allowed to
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suggest measures to adjust LST and the associated effects of SUHI from the management
of LULC composition [18]. LST, NDVI, and LULC spatio-temporal variations can be
dimensioned using remote sensing techniques. Several works on the urban surfaces’
thermal characterization from data obtained by a sensor can be observed in the world
literature [34–39]. In Brazil, it is worth mentioning the work of [40–43]. The advent of
these techniques made it possible to study SUHI, both on a local and global scale, since
it allows the transformation of data in the thermal infrared spectral range for apparent
surface temperature.

The objective of this work is to analyze the evolution of surface temperature between
vegetated and urbanized areas, correlating 30 years of calculated data from LST and NDVI
and identifying possible seasonal influences by uing regression analysis. The study shows
the relationship between LST and NDVI during a rapid urbanization process and how
changes in land use and land cover can affect this relationship.

2. Materials and Methods

The area of this study comprises the current urban location belonging to four districts
located in Porto Alegre city, Rio Grande do Sul state (Brazil: Hípica, Campo Novo, Aberta
dos Morros, and Restinga), as shown in Figure 1. This spot covers an area of 534.61 hectares,
withan approximate population of 120,000 inhabitants (IBGE, 2010), and is located between
the coordinates 51°15′–51°20′ W and 30°14′–30°18′ S. This area was defined by considering
the changes in LULC due to the rapid urbanization process that occurred between the period
of 1985 and 2018. As exposed by [36,44,45], this acceleration of urban growth resulted in
significant changes in LULC and is responsible for increasing density and height-built areas.

The relief of Porto Alegre is characterized by a region of contact between the Planalto
Uruguaio Sul-Rio-Grandense and the Lowland and/or Terras Baixas Costeiras, in addition
to the sediments from the Peripheral Depression [46]. In altimetric terms, the municipality
has altitudes ranging from 0.1 m on Ilha das Flores to 311.20 at its peak, Morro Santana.
The study area has altitudes ranging from 14 m in the Hípica neighborhood (far west of the
study area) to 21 m in the Restinga neighborhood (far east of the study area).

In turn, Porto Alegre’s climate, according to the Koeppen classification, corresponds
to the subtype “Cfa”, for which its mean annual temperature results in 19.5 °C, an annual
rainfall of 1300 mm [47], and an evapotranspiration annual mean of 937.38 mm [48].

The methodological procedures took place in five stages: 1. Definition of the study
area; 2. LULC classification based on images from the Landsat 5 satellite TM sensor and
the Landsat 8 satellite OLI sensor; 3. Calculation of LST from the TM sensor band 6 and
the OLI sensor band 10; 4. LST temporal and spatial evolution analysis over the historical
series; and 5. Spatio-temporal relationship between LST and LULC classes. The flowchart
in Figure 2 shows each of the steps performed to construct the present study.

The choice of the period from 1985 to 2018 is based two reasons: 1. The history of
the study area districts is associated with the appropriation of space from the creation of
popular subdivisions and industrial parks. The Hípica district, which covers most of the
study area, was officially created in 1991, the Restinga neighborhood (eastern region of the
study area) was created in 1990, and the Campo Novo district was created in 2011. All of
these areas have two characteristics in common: accelerated urban growth and consequent
loss of the previously predominant rural landscape. Thus, they coincide with the history of
the districts and the period used in the present study, and 2. the ideal period of a climate
modeling study should cover series with at least 30 years of data. Faced with the difficulties
associated with the availability of images with clear sky conditions, a longer time series
allows the acquisition of a greater number of images in order to mainly cover seasonal
variations of LST, NDVI, and LULC.



Atmosphere 2022, 13, 460 4 of 18

51°5'W51°12'W51°18'W

29
°59

'S
30

°6'
S

30
°12

'S

Brazil
Rio Grande 

do Sul

 Porto 
Alegre

 County

4

51°11'W51°12'W

30
°9'

S
30

°11
'S

0 1 2 3½
Km

Legend
Study Area
Porto Alegre
Rio Grande do Sul
Brazil

0 10 20 305
Km

Figure 1. Location map of the urban spot of Hípica, Campo Novo, Aberta dos Morros, and Restinga
neighborhoods in the municipality of Porto Alegre, Rio Grande do Sul, Brazil.
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Figure 2. Flowchart of the methodological procedures used in the present study.

NDVI and thermal infrared images from the Landsat8 satellite Operational Terra
Imager (OLI) and Thermal Infrared Sensor (TIRS) sensors were used to extract information
about LULC and LST, respectively. The specific objectives are as follows: (1) derive LST
from Landsat 5 and 8 satellites Thematic Mapper (TM) and TIRS sensors from 1985 to 2018;
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(2) examine the LULC and LST spatial pattern and temporal variation for the same period;
and (3) investigate the relationship between LST and LULC from NDVI.

Images from the TM- Landsat 5 sensor (30 m) and the OLI- Landsat 8 sensor (30 m)
referring to four dates of the 34-year historical series studied in the present work were
used to perform LULC classification: 29 September 1989, 25 October 1999, 3 October 2008,
and 16 November 2018. The definition of dates took into account the approximate interval
of 10 years, availability of images without the presence of clouds, and the associated
seasonality; in this case, it is the spring season. The classification supervised by Maximum
Likelihood was carried out [49]. Such a classifier qualifies as one of the most commonly
used parametric algorithms for image classification, mainly due to its robustness [49–51].
The LULC classes used comprised those that are visually verified on the study area, which
are named as follows: Forest, Urban Area, Grassland, and Exposed Soil.

Currently, different algorithms are used to retrieve LST from data obtained by orbital
sensors, highlighting the mono-window algorithm [52], single-channel algorithm [53],
radiation conduction equation [54], and split window algorithm [55]. The calculation of
the surface temperature (LST) was performed as described by [56] using a single-channel
algorithm. According to the authors, the first step consists in converting the digital number
(DN) of each pixel in the image into spectral radiance and converting it to brightness
temperature using the Planck function.

Since Landsat 8 and 5 satellites TIRS and TM sensors bands 10 and 6, respectively, have
similar spectral ranges, several studies have carried out the use of these bands to retrieve
LST [53,57–59] against TIRS sensor band 11 contamination by thermal energy outside the
normal field of view (stray light effect) [60], which is also corroborated the results of indirect
calibration [61].

Following the procedures, the present study retrieved superficial emissivity from
NDVI (Equation (1)) [62] for the 117 images obtained:

NDVI =
ρnir − ρred
ρnir + ρred

(1)

where NDVI is the Normalized Difference Vegetation Index, nir is the Near Infrared region,
and red is the Red region. After obtaining NDVI values for each pixel, emissivity was
estimated from the four cases shown in Table 1.

Table 1. Relationship between the Normalized Difference Vegetation Index and the Emissivity
proposed by [62].

NDVI Land Surface Emissivity (ε i)

NDVI < −0.185 0.995
−0.185 ≤ NDVI < 0.157 0.970
0.157 ≤ NDVI ≤ 0.727 1.0094 + 0.047ln(NDVI)
NDVI > 0.727 0.990

LST retrieval presents some complexity due to the surface not having characteristics
similar to a blackbody in terms of thermal emission capacity. Moreover, the atmosphere
and soil effects must be considered [63,64]. Therefore, to retrieve LST, Radiative Transfer
Equation (RTE) inversion (Equation (2)) is applied to a given sensor channel and wave-
length range:

L(sensor, λ) = [ελBλ(Ts) + (1− ελ)L↓atm,λ]τλ + L↑atm,λ (2)

where Lsensor is the radiance measured by the sensor in W/m−2 m−1 sr−1, ελ is the land
surface emissivity (LSE), Bλ(Ts) is the Planck’s function given by Equation (3), L↓ is the
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descending atmospheric radiation in W/m−2 m−1 sr−1, L↑ is the ascending atmospheric
radiation in W/m−2 m−1 sr−1, and T is the atmospheric transmittance:

Bλ(Ts) =
C1λ−5

(exp(C2/λT)− 1)
(3)

where C1 and C2 are Planck radiation constants, with values of (each type of sensor has
a value).

The parameters include the following: Descending and ascending atmospheric ra-
diation and transmittance used in Equation (2) can be accessed through a website of
the National Aeronautics and Space Administration (NASA, Washington, DC, USA)
(http://atmcorr.gsfc.nasa.gov, acessed on 15 August 2021), where image information (such
as sensor passing time, latitude and longitude, and season) is inserted to calculate these
parameters. These parameters are available on the website from the year 2000, between
1985 and 1999, and the values of L↓,L↑, and T generated by Moderate Spectral Resolution
Atmospheric Transmittance Algorithm and Computer Model (MODTRAN) 4.0 v3r1 version
1.2 were used.

Since the relationship between vegetation areas and urban temperatures varies across
space [65,66], for a comprehensive view of the impact caused by rapid urbanization on the
LST, the LST means were calculated for each land use and land cover class, obeying the
area covered by it on the different dates. Subsequently, simple linear regressions at pixel
level were established between the classes of LULC (represented by NDVI values) and
LST. This relationship took into account the LULC images (obtained on 29 September 1989,
25 October 1999, 3 October 2008, and 16 November 2018) and corresponding LST.

In order to verify the surface temperature evolution over the historical series, the data
were divided by season. Thus, under similar seasonal conditions, the data were grouped
and compared using descriptive statistical analysis performed for the variables mean and
standard deviation. From the surface temperatures obtained in each of the 117 images,
the variables per year and respective season were calculated. It is noteworthy that there
was an absence of images in some seasons, mainly due to the presence of cloudiness and/or
technical failure in data collection by the sensor.

3. Results

The main changes in LULC during the analyzed period can be observed in the area
occupied by the urban spot (Figure 3). Table 2 shows the LST and area values for each
class by year of study. In 1989 the total area corresponding to urban settlements was
approximately 165 hectares, that is, approximately 31% of the study area, increasing to 91%
in 2018 (486.54 hectares). It is worth mentioning that the most expressive variations of this
class in the period from 2008 to 2018, where its cover increased by 25.4%, compared to the
21.5% were verified between 1999 and 2008 and 13.1% between 1989 and 1999.

An adverse situation can be observed on the LULC evolution in areas classified as
forest and grassland. In 1989, the areas with forest cover occupied 14.44% of the area, and in
2018, they changed to only 0.6% just as the grassland areas decreased from approximately
51% to 7.8% in the same period. This result was probably associated with the expansion
process of the urban area, which, as shown in Figure 3, occurs over areas previously covered
by native forest, areas in reforestation, and grassland.

The areas represented by the exposed soil class showed an oscillation in their occu-
pation between the years 1989 and 2018. In 1989, these covered an approximate area of
19 ha, changing to 2.67 ha in 2018, that is, a decrease from 3.6% to 0.5% of the total area.
However, between 1999 and 2008, there was an increase from 0.2% to 8.9%, which was
probably associated with the increase in the areas of soil preparation for planting temporary
crops since not all areas were urbanized and/or soil exposure due to the occurrence of
deforestation since the forest areas had the greatest reduction in this period among the
analyzed intervals (reduction from 13.3% to 5.6% of the total area).

http://atmcorr.gsfc.nasa.gov
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In turn, the LST mean values (Table 2) obtained in each of the LULC classes, for the
four years covered, were ranked as follows: Exposed Soil > Urban area > Grassland >
Forest. The covers classified as Exposed Soil and Urban area qualified for intense human
activity and obtained LST mean values superior to the Grassland and Forest covers. In the
four classified images (Figure 4), minimum and maximum LST mean differences of 3.7 °C
in 1989 and 4.5 °C in 2008 were observed between covers classified as forest and urban area.
An even greater difference can be observed between the exposed soil and forest classes,
in which the smallest difference reached 3.6 °C in 2008 and 5.6 °C in 2018. Therefore,
measures for planning the land use and cover and cooling the surface should consider
the implementation of green areas in environments where civil construction and soil
exposure predominate.

1989

4
2008

1999

2018

0 1 2 3 4½
Km

Legend
Classes 

Urban Area
Florest
Grassland
Exposed Soil
Neighborhoods

Figure 3. LULC maps of 1989, 1999, 2008, and 2018 of the study area.

Table 2. LST (°C) and area (%) means obtained in the 1989, 1999, 2008, and 2018 images from the
LULC types.

Years Urban Area Grassland Forest Exposed Soil

LST (°C)/Area
(%)

LST (°C)/Area
(%)

LST (°C)/Area
(%)

LST (°C)/Area
(%)

1989 22.5/31.0 20.8/51.0 18.9/14.4 22.6/03.6
1999 30.9/44.1 28.3/42.4 26.7/13.3 31.5/00.2
2008 29.2/65.6 26.9/19.9 24.7/05.6 28.3/08.9
2018 36.5/91.0 33.9/07.8 32.5/00.6 38.1/00.5

LST mean values obtained in areas classified as exposed soil qualified the most heated
surfaces in the years 1989, 1999, and 2018 (Table 2). This result is attributed to the high
thermal amplitude in short periods seen in this type of LULC, which favors the sudden in-
crease in temperature in the face of prolonged exposure to sunlight. Thus, as a consequence,
there is an intensification of the heat irradiation process for the environment, mainly on a
local scale.

The annual graphic behavior of the average LST values of each LULC type associated
with area variations, as well as the average decennial values presented in Table 2, pointed
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to the temperature growth in all classes, as shown in the graphs in Figure 5. The annual
correlation between LST values and areas of each LULC class resulted in R = 0.36 for
urbanized surfaces, R = −0.34 for grassland covers, R = −0.22 for forest areas, and 0.21
for exposed soil surfaces. However, seasonally, there were better correlations between the
variables for the Urban Area and Grassland classes (R = 0.49 and R = −0.50, respectively)
in the autumn season and Exposed Soil (R = 0.51) in the summer, as shown in Table 3. It
is associated with high annual amplitudes in the areas of Forest and Exposed Soil classes,
probably associated with silviculture and soil management practices for planting annual
crops, respectively.

1989

4
2008

1999

2018

0 1 2 3 4½
Km

Legend
Temperature (°C)

15° to 20°
20° to 25°
25° to 30°
30° to 35°
35° to 40°
40° to 45°
Neighborhoods

Figure 4. LST maps for September 1989, October 1999, October 2008, and November 2018.

The seasonal analysis of the time series shown in Figure 6 allows verifying the increase
in LST of the study area in all seasons. This result is justified by the increasing average
values obtained over the decennial intervals classified in Table 4. The greater amplitude
between the average values of the first and last decade was verified in the autumn season.
In this season, the difference between the mean temperatures verified between the first
(mean of 20.20 °C) and the last decade (mean of 26.56 °C) of the analyzed period was
6.36 °C. Between the same periods, this difference was 4.09 °C in summer, 4.40 °C in spring,
and 2.41 °C in winter. Probably, this difference observed in the autumn is associated with the
amplitude of the LST values verified over the years, since the standard deviation resulted
in the highest value among the other seasons, reaching 7.75 °C. It is worth mentioning the
high amplitude of these average annual values (Figure 6) due to the low availability and
even the absence of orbital images with good atmospheric conditions in some intervals of
the historical series.
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Figure 5. LST annual means for each land use and land cover areas in the period of 1985 to 2019.

Table 3. Correlation Coefficient (R) between LST sazonal means and respective areas for each
LULC type.

Urban Area Grassland Forest Exposed Soil

Summer 0.26 −0.35 −0.13 0.51
Autumn 0.49 −0.50 −0.26 0.12
Winter 0.25 −0.16 −0.32 −0.06
Spring 0.25 −0.20 −0.16 −0.04
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The greatest reduction in the mean LST was observed in the winter season between
the periods 1985–1999 and 2000–2008. In addition to the biggest difference observed in
autumn, associated with the high standard deviation value (7.75—Table 4), this reduction
in winter also resulted from the high amplitude of LST values in the 2000–2008 period (7.50
standard deviation). Thus, there are uncertainties as to whether cooling actually occurred
in this season in the period of 1985–2008.
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Figure 6. Land surface temperature means by year in the period from 1985 to 2019 of the study area.
(a) Annual LST means for Summer and Winter. (b) Annual LST means for Autumn and Spring.

A trend analysis was carried out using the Mann–Kendall non-parametric test [67]
at a 95% confidence interval, as shown in Table 5. The first scenario is to test the null
hypothesis (H0)—there is no trend in the series against the alternative hypothesis (Ha),
and there is a trend in the series. If the computed p-value is lower than the significance
level alpha = 0.05, one should reject null hypothesis H0 and accept alternative hypothesis
Ha. If the computed p-value is greater than the significance level of alpha = 0.05, one
cannot reject null hypothesis H0. Thus, in autumn and spring, the LST follows an upward
trend across the years, when the p-value was lower (0.02 and 0.03, respectively) than the
significance level. On the other hand, in summer and winter, no trend was found since the
p-values were above the significance level, 0.08 and 0.38, respectively.

Table 4. Mean and STD (° C) of the seasons in the 1985–1999, 2000–2008, and 2009–2018 intervals.

Intervals Summer Autmumn Winter Spring

Mean STD Mean STD Mean STD Mean STD

1989–1999 32.85 3.07 20.20 5.85 18.38 4.83 29.88 5.70
1999–2008 32.81 3.06 22.76 7.75 16.95 7.50 31.14 3.57
2008–2018 36.94 4.14 26.56 3.88 20.79 4.69 34.28 3.84

Table 5. Trend Analysis using the Mann–Kendall test.

Summer Autumn Winter Spring

Observations 29 27 26 33
Minimum 27.85 12.64 9.74 18.88
Maximum 42.66 32.20 29.50 39.42

Mean 33.40 22.79 18.84 31.92
Std. deviation 3.41 5.92 5.33 4.84
Kendall’s tau 0.23 0.32 0.13 0.27

S 94 111 41 144
p-value 0.08 0.02 0.38 0.03

It was verified a negative linear regression between NDVI and LST (Table 6). In this
manner, the reduction in surface temperature is confirmed by the increase in NDVI both in
urbanized areas and in their surroundings occupied by rural activities demonstrated by
soil exposure and areas covered by forest and grassland. Therefore, the implementation
of green spaces in areas of intense human activity contributes to improving the thermal
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comfort of the population on a local scale. The low values of correlation coefficient found
in the grassland and forest classes in 1989 may be associated with the influence of local
meteorological conditions and forest in 2008 and 2018 and exposed soil classes in 2018,
justified by the reduced number of samples due to the reduction in their areas, as shown
in Table 2. In addition, smaller areas may have greater influence from the surroundings,
either by the action of winds, humidity, air temperature, and by the spectral mixture.

Table 6. Results of Correlation Coefficient (R) obtained from the LULC classes in the years 1989, 1999,
2008, and 2018.

Year Urban Area Grassland Forest Exposed Soil

1989 −0.55 −0.03 0.12 −0.40
1999 −0.58 −0.30 −0.30 −0.72
2008 −0.59 −0.39 −0.07 −0.56
2018 −0.76 −0.28 −0.16 −0.06

In particular, demonstrated by the higher values of the Correlation Coefficient (R),
the cover designated by the urban area quantified greater dependence on its LST compared
to variations in NDVI when compared to the other covers in 1989, 1999, 2008, and 2018.
In addition, there was an increase in this dependence over the study period and since in
1989, approximately 55% of the LST values were explained by the NDVI variation, whereas
in 2018, this ratio increased to 76%. This result is probably attributed to the high decrease
in vegetation covers (forest and grassland), as demonstrated in Table 2, and its cooling
effect on the surrounding areas over the approximate 34 years period. This effect was
already related by Marzban et al. [29] in a study where all LULC classes depict an inverse
correlation between LST and NDVI.

The relationship between the variables can also be observed over the area characterized
by soil exposure in the years 1999 and 2008 when NDVI explained 72% and 56% of the LST
values, respectively. This result was probably associated with the significant increase in
urban areas occurring in 1989 to 2008 (34.6% increase), given the similarity between the
two types LULC mean temperatures and surrounding effects. In this manner, it is possible
to affirm the relationship between the two classes in the years 1999 and 2008 justified by
the correlation coefficient. The not-significant correlation value verified for this LULC type
in 2018 results from the very low area classified; thus, the low number of pixels in the date
is exposed in Figure 3. Furthermore, such a relationship occurred mainly in areas where
the highest values of LST were recorded (anthropized surfaces).

Regarding the direct relationship between NDVI and LST in the aforementioned four
years, regardless of LULC, in general, satisfactory R values were obtained. As shown in
Table 7, in 1989, NDVI explained 64% of LST values, 79% in 1999, 79% in 2008, and 78%
in 2018. The lowest R value verified in 1989 was associated with the predominance of
grassland areas (Table 2) for which its correlation coefficient between NDVI and LST was
close to zero (Table 7). Thus, probably the highest R values obtained in the following years
were associated with the predominance of urbanized areas, where NDVI explained LST
variations better.

Table 7. Results of correlation coefficient (R) obtained from the LULC classes in the years 1989, 1999,
2008, and 2018.

Statistic 1989 1999 2008 2018

Mean LST (°C) 21.10 29.25 28.43 36.42
STD LST (°C) 2.02 2.27 2.18 2.29
Mean (NDVI) 0.59 0.57 0.40 0.40
STD (NDVI) 0.15 0.21 0.19 0.18
R (LST-NDVI) −0.64 −0.79 −0.79 −0.78
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4. Discussion

In the present study, visible, near infrared, and thermal infrared images from the TM-
Landsat 5 and OLI/TIRS-Landsat 8 sensors were used to classify LULC and to calculate
NDVI and LST. RTE inversion was used to retrieve the LST of images collected by the
sensors throughout the historic series (1985–2019), and LULC classification was performed
in the spring of the years 1989, 1999, 2008, and 2018 in order to verify the influence of LULC
classes on the temperature from NDVI on a temporal and spatial scale.

Seasonally, the highest correlations between LST and area size were verified on the
Urban Area and Grassland classes classified in the autumn season and Exposed Soil in
the summer. The surfaces classified as Urban Area, Grassland, and Exposed Soil had
approximately 50% of the LST values explained as a function of the variation in the
occupied area over the period covered. In turn, in areas classified as Forest, this correlation
was relatively weak (32% in winter). Zhou et al. [68] verified an adverse situation in a
study carried out in the northeast of the USA, state of Maryland, where the percentage of
imperviousness explained approximately 50% of the total variation in LST in the wintertime
and up to 77.9% during summer.

This study also analyzed long-term seasonal trends in LST during the last three
decades. The calculation of the average decadal differences of LST allowed verifying the
increases for all seasons, which were more expressive in autumn (6.36 °C), intermediate
in spring and summer (4.40 °C and 4.09 °C, respectively), and less expressive in winter
(2.41 °C). However, for annual averages, by using the Mann–Kendall test, trends of temper-
ature increase were observed only in the autumn and spring seasons. In a similar study
carried out in Spain, Khorchani et al. [69] verified the Mann–Kendall trend of temperature
increases in the four seasons of the year, which were more expressive in summer, inter-
mediate in spring and autumn, and less expressive in winter. In addition, the authors
attributed the increase in summer temperature to the strong increase in Summer sunshine
duration (SUN) in Spain between 1982 and 2014. Thus, for future research, we recommend
the analysis of this variable together with the trends of increase or decrease in LST.

The highest values of the correlation coefficient, between the LST and NDVI variables,
were calculated in the LULC classes designated as Urban Area and Exposed Land. This
result points to the dependence of LST values on the presence of vegetation in areas where
anthropogenic interference occurred exactly, either through soil impermeability or the
removal of vegetation cover exposing the surface. Thus, human actions qualified the
increase in temperature in these areas in relation to neighboring environments, quantifying
the phenomenon of Urban Heat Islands (UHIs). Similar results were verified in Yue et
al. [70] and Hereher [71].

The increase in temperature observed for each season from 1985 to 2018 is in line with
the scenario projected by the IPCC (Intergovernmental Panel on Climate Change, Geneva,
Switzerland) in its Fifth Assessment Report (AR5) [72]. According to the report, at the end
of the century, the increase in mean temperature should be 2.6 to 4.8 °C, which is mainly
attributed to the growth of cities and their emission of 40% of the gases responsible for
potentiating the greenhouse effect [73,74].

In a study carried out on the municipality of Porto Alegre- Rio Grande do Sul, Brazil,
Grondona et al. [75] verified an increase in the average LST during the period from 1985
to 2005 with a 4.13% reduction in the vegetated area and an increase of 24.22% in the
urbanized area. The present study found that the removal of vegetation cover and the
impacts caused on the LST are of great complexity. Smaller correlation coefficients (from
0.12 to −0.39), between LST and NDVI, were found in vegetated areas (field and forest)
and higher (from −0.55 to −0.76) in urbanized areas. It is important to note that, in
terms of remote sensing, vegetated areas present greater homogeneity (lower spectral
variability and types of materials) when compared to urbanized areas (greater geometric
and spectral variability, especially of the materials used in construction). Such a result is
probably associated with local meteorological variables (rainfall, air humidity, and wind)
and physicochemical factors inherent to these roofs.
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Although many factors (meteorological, topography, and roughness) are responsi-
ble for LST variations, the extension and arrangement of the areas are fundamental for
understanding the relationship of this variable with vegetation. The results of this study
demonstrate the temporal and spatial evolution of the interaction between vegetation
and thermal dynamics through linear regression analysis at the pixel level. For urban
areas, the correlation strength between LST and NDVI increased with time. In the study
carried out in Shanghai, China, Weng et al. [35] concluded that when urban structures and
built-up areas occupy most of a study area, their thermal surface will become spatially
homogenized. Thus, we conclude that the highest values of R (0.72 in 2018) between
LST and NDVI may be associated with the expansion of the urban area (195% increase
for 1989 until 2018 period), causing changes in the energy balance and changes in local
weather conditions, which are responsible for configuring an environment urban area with
homogeneous thermal conditions.

Since several studies report high correlation coefficients (above 0.9) between NDVI
and LST for urbanized areas that were already large at the beginning of the historical series,
as shown in Baghdad, Iraq with 227,800 ha in 1984 [76], Adama Zuria District-Ethiopia
with 64,800 ha in 1989 [77], and Dhaka metropolitan area-Bangladesh with 802,200 ha in
2000 [78], we observed the smaller correlation value (−0.55) obtained where the small urban
nucleus occupied only 165 ha in 1989. Thus, for urban planners and urban policymakers, it
is necessary to understand that the influence of vegetation presence to mitigate the increase
in temperature is dependent on the spatial arrangement and coverage area of urbanized
surfaces. The urban thermal environment planning of new neighborhoods, condominiums,
and industrial parks must take into account not only the presence of vegetation but also
biophysical, meteorological, and topographic parameters, and other LULC indices (e.g.,
Normalized difference built-up index, Enhanced vegetation index, Soil adjusted vegetation
index, Modified normalized difference water index, Normalized difference mud index, etc.)
may be examined to find a better correlation with LST.

LST is considerably influenced by vegetation dynamics [20,79]. NDVI is widely used
to assess changes in LST [14,79,80]. Therefore, we chose to use it in this work. NDVI
can suppress a significant amount of the noise caused by atmospheric effects, clouds or
cloud shadow, topography, and changing sun angles [31,81]. However, it is worth noting
that it is sensitive to canopy background variations and more saturated at high biomass
levels [31,82–84]. The Enhanced Vegetation Index (EVI), with a more dynamic range, can be
considered as an improvement of the NDVI, concerning the saturation in dense forest, soil
reflectance influence, and atmospheric correction [31,85]. Some papers have analyzed the
relationship between LST and EVI [31,79,84,86,87] and so we intend to include this index
in future research.

5. Conclusions

The main conclusions were as follows: (1) The LST retrieved by the RTE inversion of
Landsat 5 and 8 data showed consistency both for atmospheric parameters obtained from
MODTRAN (1985–1999) and for NASA’s online calculator (2000–2018). (2) Throughout the
period from 1989 to 2018, the area where the current urban spot belonging to the Hípica,
Aberta dos Morros, and Restinga neighborhoods has undergone significant changes in its
LULC. The forest and grassland classes showed a decrease of approximately 98% and 79%
in their areas, respectively, while the classes represented by the urban spot and surface
exposure areas suffered an increase of 31% and 3.5% in 1989 to 75% and 14% in 2018 of the
study area, respectively. (3) From annual mean values of temperature, the Mann–Kendall
test allowed observing the trend of temperature growth in the autumn and spring seasons.
In autumn, LST growth was more expressive, and its difference reached 6.36 °C when
compared to the first and last decades of the historical series. In spring, this difference was
4.4 °C. (4) Multiple comparative analyses indicated that the difference in LST between most
types of LULC was significant, with areas of exposed soil with the highest LST (mean of
the study area 38.1 °C) and forest land with the lowest LST (mean of 18.9 °C), which may
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indicate the formation of urban heat islands on the study area. (5) The study allowed the
demonstration of the influence of the urbanization process and the removal of vegetation
cover on the significant increase in temperature. High surface temperatures were associated
with areas of high urban concentration for both the images classified in 1989 and 2018,
but an increase in a mean of 4.18 °C was observed when compared to the first and last
decade of the historical series in the four seasons. This conclusion is attributed to the
significant expansion of the urban spot and the areas of exposed soil over the forest and
grassland areas. Thus, the interference of the characteristics of the materials covering
the surface over the heat of the environment where they are located is evident. (6) The
relationship between NDVI and LST verified for the urban area, exposed soil, grassland,
and forest classes showed a negative linear correlation, as expected. A higher correlation
coefficient (R) was obtained between NDVI and LST in the areas classified as urbanized area
and exposed soil, where the highest temperatures were found. (7) The relationship between
NDVI and LST in urbanized areas showed an increase associated with the correlation
coefficient from −0.55 in 1989 to −0.76 in 2018. This result is probably related to the growth
of the urban area (from 31% of the area in 1989 to 91% in 2018), causing surface homogeneity
(lesser meteorological variations, reduced effect of the surrounding areas, and less spectral
mixing). A different behavior was observed in other areas (field, forests, and exposed soil),
where R did not present any pattern of evolution.

Some drawbacks to this work should not be overlooked. First, the meteorological
variables, land surface albedo, [88] and landscape metrics [89] can provide greater accuracy
to the results and discussions, since these variables directly influence LST. Second, the low
availability of satellite images, especially during the winter when clear sky conditions are
less frequent, render the trend analysis of increases or decreases in LST over the period
difficult. Future studies should make use of complementary products to meet this demand,
for example, the Aster sensor LST product. Finally, the results obtained were generated
from high-resolution remote sensing images and geoprocessing tools; however, the LST
was not validated with field measurements.

The information gathered about the surface temperature, land use, and cover using
remote sensing techniques, using visible and thermal infrared bands from the Landsat 5 and
8 satellites, TM, and OLI sensors, respectively, allowed the visualization and understanding
of the microclimate dynamics of an urban area in the city of Porto Alegre, RS-Brazil, over
the period studied, as well as its relationship with the different types of surface cover.
The historical characterization of the relationship between LST and NDVI according to
the types of LULC made it possible to quantify the impacts of the rapid urbanization
process in a small urban nucleus as a model for future decision making regarding urban
expansion and planning. Thus, the study highlights the importance of air humidity and
evapotranspiration processes, which should be maintained through the adoption of policies
that mitigate the effects caused by urban expansion and densification.
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